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What interactions are sufficient to simulaebitrary quantum dynamics in a composite quantum system?
We provide anefficientalgorithm to simulate any desired two-body Hamiltonian evolution using any fixed
two-body entanglingn-qubit Hamiltonian and local unitary operations. It follows that universal quantum
computation can be performed usiagy entangling interaction and local unitary operations.
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A central goal of quantum physics is to understand andff arbitrary local unitary operations.
control quantum dynamics. Recently, the emergence of fields Our techniques make use of generalizations of standard
such as quantum contrdl], laser coolind2], quantum com-  nuclear-magnetic-resonan¢®MR) techniques for decou-
munication, and quantum computatif®4] has focused ef- pling and refocusing8,9]. Similar ideas have been applied
forts to understand and control quantum dynamics at théy [10,11 to the problem of efficiently implementing
single quantum level. coupled logic gates using a restricted class of Hamiltonians

Our interest is in the dynamics of composite quantumwhich arises naturally in NMR.
systems. An especially important example of such a system The structure of this Rapid Communication is as follows.
is a quantum computer, which is a composite of a large num¥e begin with a precise formulation of our goals and results.
ber of two-level quantum systentqubity. We wish to de- A specific two-qubit example is given to illustrate our tech-
termine which interactions are sufficient for the simulation ofniques, and the general algorithm is described for the case of
arbitrary quantum dynamics in such a system. Our resultsan arbitrary two-qubit system. The efficiency of the algo-
demonstrate equivalence between this propertynifersal-  rithm and the effect of errors are then discussed. We con-
ity and the ability to entangle all components of the systemclude by generalizing the algorithm tequbit systems.

More precisely, we consider the following problem: what  An arbitrary Hamiltonian om qubits can be given the
dynamics can we produce with a specified two-badgubit  operator expansion
Hamiltonian, given the ability to perform arbitrary local uni-
tary operations on individual qubits? Under these conditions,
we exhibit an explicit algorithm which shows thatny H= 2 hj.o0,8 80, @
Hamiltonian which produces entanglement can be used to I
E:\fficient!y simulate an _arbitrary ‘Wo'b‘?dy dyn_amical OPET&\yhere theh; . are real numbers ana,,o,,03 are the
tion. This holds even if the Hamiltoniaalone is only ca- RESY ) ] . , }
pable of producing a small amount of entanglement. usual Pauli sigma matrices, withy=1 the identity. Our dis-

It follows that any entangling interaction, together with CUSSion is res_tr!cted to the case of time-independent H_am_|l-
local unitary operations, is sufficient to perform universaltonians containing only one- and two-body terms, that is, if

quantum computation. Our results thus confirm the “folk- hj,...;,#0 then only one.or tYVO of thej?l, .. ..jn are not _
lore” belief that the ability to entangle is a crucial element in equal to zero. If the Hamiltonian contains a nonzero contri-
guantum computation. bution to o ® o then we say the Hamiltoniacouplessys-

Substantial prior work has been done on universal operademsk andl. This focus on two-body Hamiltonians is a mild
tions, and many specific sets of universal gates are knowrestriction as most candidate systems for quantum informa-
[5,3]. Our work differs from previous work on the general tion processing are of this type.
requirements for universality in several regards. Closest is Under what circumstances is it possible to produce en-
the work in[6] and[7], where it was shown that almost any tanglement between arbitrary pair of systems, even ones
two-qubit quantum gate is universal for quantum computathat are not directly coupled by the Hamiltonidt? Not
tion. This work focused on unitary gates rather thansurprisingly, Hamiltonians which have terms coupling sys-
continuous-time Hamiltonian evolution, and did not explic-temsk and| can produce entanglement between these sys-
itly determine which sets of unitary gates are universal. Outems. We say that systerksandk’ areconnectedf there is
work explicitly determines which two-body Hamiltonians, a sequencek(ky, ... kq.,k") such that each adjacent pair in
together with the additional requirement of local unitary op-the sequence is coupled by It is clear that ifk andk’ are
erations, are universal. Furthermore, [B] and [7] it was  not connected then no entanglement can be created between
assumed that gates could be independently applieginto them, and thus it is not possible to perform an arbitrary uni-
pair of qubits in the computer, and thus required the ability totary operation on the system. Conversely, it follows from our
turn on and turn off interactions between different pairs oflater discussiorand isa priori plausiblg that if a pair of
gubits. By contrast, we assume only a fixed entangling opsystems is connected then it is possible to create entangle-
eration, although we do require the ability to turn on and turnment between ther(cf. [12,13)). This motivates our defini-
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tion of a two-body entangling Hamiltoniams a two-body from observation(a) and the fact thatr;® o=(U®V)X
Hamiltonian such that all pairs of systems are connected. ®Z(U®V)" for appropriate single-qubit rotation$ and V.
The main result of this Rapid Communication is the fol- It is easy to see that observati® also allows us to simu-

lowing: late terms of the form—o;®oy. An arbitrary two-qubit
. ) i HamiltonianK can be decomposed as a linear combination
LEI. H be a given two-body entangllng Hamil- of products of Pauli matrices, and thus by observati@mns
tonian onn qubits, and leK be a desired two- and (c) may be simulated using our ability to simulate
bo_dy Ham|lt0r_1|an om qub|ts. Then we have an ®Z. ThusK may be simulated using and local unitaries.
efficient algorithm to simulate evolution due to The general two-qubit case follows using similar tech-
K, 0 any desired degree of accuracy, using only niques. Supposkl is an entangling Hamiltonian and choose

(a) the ability to evolve according tbl and (b)
the ability to perform local unitary operations on
the individual qubits.

r,s#0 such thath, ¢ is maximized. It is easy to verify that

(Uj@Uk)H(O'j(@O'k)T

In particular, given such a Hamiltonian it follows that we  sgr(h, ()0, ® os=

can perform an arbitrary two-qubit unitary gate on any speci- je{or}ke{os} 4fh g
fied pair of qub|t.s..Thus, by well-known universality resylts hy o0, @1 +hodl ® oot ho d @1
[5,3], we may efficiently perform any quantum computation. - : '
Three elementary observations about Hamiltonian evolu- LI
tion form the key to our methods: (5)

(a) Imagine we can evolve according to the Hamiltonian
J, and perform unitary operatiot$ andU". Then it follows
from the identitye VY =Ue UT that we can exactly
simulate evolution according to the Hamiltoniald U™,

(b) Imagine we can evolve according to Hamiltoniahs
and J,. Then we can simulate evolution due g+ J, for
small timesA, due to the approximate identity

Using observationsa), (b), and(c) it follows that botho,
®os and —o,® o5 can be simulated usinig and local uni-
tary operations, and thus the result follows for a general two-
qubit HamiltonianK.
In more detail, suppose we wish to simul#tdor a non-
infinitesimal timet>0. We have shown that we can approxi-
e 1A1H32) < g 1AJ gAYy ) mate evolution due t& for a small timeA by applying an
appropriate sequence of evolutions dueHt@nd local uni-
Initially we treat this identity as though it is exact, and ana-tary operations. Such a simulation requires, in general, 36
lyze the effect of errors later. separate periods of evolution dueHpinterleaved by single-
(c) Imagine we can evolve according to a Hamiltonian ~ qubit unitary gates applied to the two qubits. To simulate the
Then, by appropriate t|m|ng, we can exact]y simulate evo|uBVO|Uti0n due tK over a timet we break the interval into
tion according tonJ for any A >0. N increments of lengtiA=t/N, and perform the simulation
The basic idea can be illustrated using a two-qubit exof K for each increment, repeating the small time step pro-
ample. Suppose we have the ability to evolve according té¢edureN times, for a total of at most 36 separate periods of

the two-qubit Hamiltonian evolution due tcH. _ _ _
Let us turn to the sources of error in our simulation pro-
H=Z®|+2X®Z+Zx7Z, (3) cedure. In practice, there will be experimental errors due to

decoherence and discrepancies between the desired opera-

whereX, Y, andZ are a convenient shorthand for the Paulitions and those that are actually applied. We will not deal
sigma matricesH couples the two qubits, and is thus a two- here with these types of errors, but these issues will be ad-
body entangling Hamiltonian. The first step of our proceduredressed in future work on the fault tolerance of our simula-
is to show thaH and local unitaries can be used to simulatetions. Here, we discuss errors that amberentin our simu-
evolution according to the largest coupling termHnin this  lation technique. Although the procedure uses only the
caseX®Z. We do this usinga), (b), and(c) to eliminate the observationsa), (b), and (c), of which (a) and (c) are in
other terms inH, according to the identity principle exact, the identity Eq2) used in(b) only holds
approximately. In order to perform a good simulationkof

we therefore need to choose a time stepufficiently small
that Eq.(2) is a good approximation.

To do the error analysis, we introduce a measure quanti-
This procedure eliminates the undesired couplings by aveiying how well our simulated evolution approximates the
aging over the given interactiod and a rotated version of desired evolution due t. That is, we wish to compare the
the interaction, X®@ 1 )H(X®1)T. unitary evolutionW'’ achieved by our simulation with the

Using the ability to simulate evolution by the Hamiltonian unitary evolutionW=exp(—iKt) that we wish to simulate.
X®Z we can easily obtain the ability to simulate a Hamil- We use as our measure of error the operator norm of the
tonian which isany product of Pauli matrices. Products of difference betweewW and W', |[W—W’|, defined by|A|
the forml® o ando;®1 follow immediately from our abil- ~ =max; . ,-1|/Al)|. This is physically well motivated since
ity to do local unitaries. Products of the form® o follow  two operatorsV andW' are close according to this norm if
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and only if the difference in their effects on an arbitrary stateoperation is given bye '(®Xte=1(ZeDtel(ZeX)t  Thys to
is bounded by a small number. The actual measure of err@imulate the controlledtoT gate for a timet, it suffices to
used is not all that important, but we find it useful to demandsimulate evolution according to the Hamiltonidg= —2Z
the following two properties, both of which are satisfied by @ X, followed by local unitary operations. We observe that
the operator norm(1) stability under tensor product with ) o
ancilla systems, that i§A| =]/l ® A|; and(2) invariance un- (X@H(X®!l)'+H
der unitary transformations, that i§A|=||V'AV|| for any K=(R&RX) 4 (RERX)T, (10
unitary operatorsV,V'. This latter property implies the
chaining inequalityfor any unitary operator¥,,V,,W;,W,  whereRis the Hadamard ga{&], denoted here bR instead
of the usualH to avoid confusion with the given Hamil-
V1 W, = VoWo <[V = Vol + Wy — Wy (6)  tonian. Using the method outlined earlier gives a cumulative
) S error &A. If we wish to have an accuracy of 1®this cor-
We bound the errors induced by the approximation in Eqresponds to roughly feriods of evolution according td,
(2) using the inequality14] interleaved with local unitary operations. This number of op-
erations is probably too large to be practical, however it is
substantially better than is obtained using the general bound
2 Eq. (8).
> E ILA; AL (7 Further improvement may be obtained by using the
1<j<k=m higher-order approximation Eq(9). Using the operator
norm, simple algebra shows that the correction in E.
may be bounded to orde¥® by || 34|32/l (134l + 2] 35|y A3.
%n this specific example, this reduces #||H||3A% for a
cumulative error of at mosts;|H|*tA2. Bounding|[H| by
W’ — W] <CDXA, ®) ||Z®I|!+2||X®Z||+||ZZ®ZH:4 we see that the cumulative
error is at mosttA2. Therefore, to achieve an accuracy of

whereC is a constant which we can easily bound to be atl0 ° in our simulation of the controlledoT gate we need

||e_iT(Al+"'+Am)—e_iTAl. . .e_iTAm”

=

=

where 7 is a positive real number and ti#g are Hermitian
operators. Applying this bound and the chaining property t
the procedure we have described gives

of H andK as follows. Leth=max;|h;;| andk=max k. with local unitary operations. Further improvements may be
where K has the operator expansiah jk; jo;®o;. Then obtained by using better approximations than €. ,
D=|hk/h, 4. s The number of operations required to simulate an arbi-

The error bound Eq8) can be improved substantially in frary ynitary operation can thus be substantial. In pra_ctice_,
several ways. The linear dependenceoin Eq. (8) is due this disadvantage may be offset by the advantages gained in

to the technique used to simulate sums of Hamiltonians¥Sing the natural coherent interaction_s present in a system.
namely, e 120132 =g~ 1816718321 O(A2). Each simula- urthermore, our results merely provide a lower bound on
tion ste7p thus contributes an ern®(A?), and there aré/A the efficiency with which it is possible to simulate an arbi-

such steps for a total err@(tA). Higher-order approxima- trary unitary operation, and provide substantial impetus to

tion techniqueg14] can be used to obtain more accurate Search for better methods in.specific cases. )
simulations. For example, identities such as We now turn to then-qubit case. The basic idea is to

reduce the problem to the two-qubit case already solved. We
e 1801 o) = g 1AN2g1ADe = 1ANZ L §(AZ) (9)  divide the system into two parts, @incipal system Pcon-

sisting of two qubits which are coupled by the Hamiltonian
yield a cumulative error which i©(tA?). In general, an H, and theremainderof the system, denote8 We use a
approximation analogous to E) but accurate to ordek®  technique generalizing the work [11,15 that turns off all
leads to a cumulative errdd(tA*~1). The tradeoff is such interactions betweeR andS and withinS, leaving only the
that higher-order approximations require the use of someinteractions present if?. These interactions can then be
what more complicated gate sequences for each time step. #$€d, as before, to simulate arbitrary dynamics on the two
practical applications, this additional complication must bedubits inP. Thus, it is possible to simulate arbitrary dynam-
balanced against the improvement in accuracy to achieve ofS onanytwo qubits coupled by the Hamiltoniath. Finally,
timal results. an arbitrary interaction between qubksandk’ may be ef-

A second way to improve the bound in E8) is to lever-  fected by performing a sequence sAP gates between the
age specific knowledge of the given and desired Hamiltoqubits connecting andk’, applying the desired interaction,
nians. For example, imagine that we have available th@nd then swapping back.

Hamiltonian of Eq.(3), and wish to simulate a controlled-  The first step is to decouple systeisandS. To do this,

NOT gate[3]. We can do this more efficiently than implied by et Xs denote a tensor product foperators applied bitwise
the identity in Eq.(5) by examining the properties of the to all the qubits inS. Define Yg and Zg similarly. Observe
controlledNoT gate. Up to an unimportant global phase, thethat forming the Hamiltonian

controlledNOT gate may be generated by applying the 1

Hamiltonian | X+Z®1-Z® X for a time t=w/4. The r_ T t T

terms in this Hamiltonian commute, so the controlienir H=Z[HTXHXsHYsHY s+ ZH 2] (1)
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leaves the Hamiltonian dA invariant, but eliminates all cou-
pling terms betweer? and S and all single-system terms
onS
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ror analysis to that described earlier, and the stability prop-
erty of the operator norm, we find an err@(ntA). In
practice it may be possible to do substantially better by le-

We now explain a recursive construction to eliminate allveraging our knowledge of specific systems, and using better

remaining couplings irS First, we break the blocls into
two blocksS, and S; of approximately equal size. We de-
coupleS, andS; by forming the Hamiltonian

1
— ’ 1yt [AVa) &al
H7=ZTH + XgH XL + YgH YL +Z5 2L )

12

Next, we breakS; into two blocksSy, and Sy, of approxi-
mately equal size, and bre&k into two blocksS;, andS;;
of approximately equal size. We can decoujg from S,
andSy; from Sy in asingle stepby forming the Hamiltonian

myt T
H YSOOYS].O

S10

1
m_ mye T T
H"= ZTH"+ X, Xs, HXE XL + Vs Y

n—=>1t =t
+ ZSooZSmH ZSO Zg 0]

0 1l

13

We repeat this blocking procedup®g,(n—2)] times to de-
couple all the terms inS leaving a sum overO(4'°%")
=0(n? terms involving the conjugation dfl by local uni-
tary operations.

Thus, simulating a Hamiltoniak applied toP for a time
t requires the use o®(n?) periods of evolution due tél,

approximations.

A number of problems will be addressed in future work,
including: (a) the extension of our results beyond the qubit
model to higher-dimensional systengb) the fault tolerance
[16,3] of our simulation techniquegr) the optimization of
our techniques for specific systems; ddgthe further study
of the general requirements for universal computatici
[17-20). For example, it is likely interesting to impose re-
strictions on the class of local unitary operations that may be
applied during the computation, perhaps adoptirgelular
automatamodel in which operations are applied nearly ho-
mogeneously across the entire system.

The results presented in this Rapid Communication dem-
onstrate that all two-bodyy-qubit entangling Hamiltonians
areequivalentin the sense that any such Hamiltonian can be
used to efficiently simulate any other with the aid of local
unitary operations. We conjecture that the same resulois
true for k-body Hamiltonians wheré&>2. It would be of
interest to determine, in general, what characteristics of two
sets of Hamiltonians determine whether they are equivalent.

We thank Carl Caves, Andrew Childs, ke Chuang, Chris
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interleaved with local unitary operations. Using a similar er-cussions.
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