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Universal quantum computation and simulation using any entangling Hamiltonian and
local unitaries
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What interactions are sufficient to simulatearbitrary quantum dynamics in a composite quantum system?
We provide anefficientalgorithm to simulate any desired two-body Hamiltonian evolution using any fixed
two-body entanglingn-qubit Hamiltonian and local unitary operations. It follows that universal quantum
computation can be performed usingany entangling interaction and local unitary operations.
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A central goal of quantum physics is to understand a
control quantum dynamics. Recently, the emergence of fi
such as quantum control@1#, laser cooling@2#, quantum com-
munication, and quantum computation@3,4# has focused ef-
forts to understand and control quantum dynamics at
single quantum level.

Our interest is in the dynamics of composite quant
systems. An especially important example of such a sys
is a quantum computer, which is a composite of a large nu
ber of two-level quantum systems~qubits!. We wish to de-
termine which interactions are sufficient for the simulation
arbitrary quantum dynamics in such a system. Our resu
demonstrate equivalence between this property ofuniversal-
ity and the ability to entangle all components of the syste

More precisely, we consider the following problem: wh
dynamics can we produce with a specified two-body,n-qubit
Hamiltonian, given the ability to perform arbitrary local un
tary operations on individual qubits? Under these conditio
we exhibit an explicit algorithm which shows thatany
Hamiltonian which produces entanglement can be use
efficiently simulate an arbitrary two-body dynamical ope
tion. This holds even if the Hamiltonianalone is only ca-
pable of producing a small amount of entanglement.

It follows that any entangling interaction, together wi
local unitary operations, is sufficient to perform univers
quantum computation. Our results thus confirm the ‘‘fo
lore’’ belief that the ability to entangle is a crucial element
quantum computation.

Substantial prior work has been done on universal op
tions, and many specific sets of universal gates are kn
@5,3#. Our work differs from previous work on the gener
requirements for universality in several regards. Closes
the work in@6# and@7#, where it was shown that almost an
two-qubit quantum gate is universal for quantum compu
tion. This work focused on unitary gates rather th
continuous-time Hamiltonian evolution, and did not expl
itly determine which sets of unitary gates are universal. O
work explicitly determines which two-body Hamiltonian
together with the additional requirement of local unitary o
erations, are universal. Furthermore, in@6# and @7# it was
assumed that gates could be independently applied toany
pair of qubits in the computer, and thus required the ability
turn on and turn off interactions between different pairs
qubits. By contrast, we assume only a fixed entangling
eration, although we do require the ability to turn on and tu
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off arbitrary local unitary operations.
Our techniques make use of generalizations of stand

nuclear-magnetic-resonance~NMR! techniques for decou
pling and refocusing@8,9#. Similar ideas have been applie
by @10,11# to the problem of efficiently implementing
coupled logic gates using a restricted class of Hamiltoni
which arises naturally in NMR.

The structure of this Rapid Communication is as follow
We begin with a precise formulation of our goals and resu
A specific two-qubit example is given to illustrate our tec
niques, and the general algorithm is described for the cas
an arbitrary two-qubit system. The efficiency of the alg
rithm and the effect of errors are then discussed. We c
clude by generalizing the algorithm ton-qubit systems.

An arbitrary Hamiltonian onn qubits can be given the
operator expansion

H5 (
j 1 , . . . ,j n50

3

hj 1••• j n
s j 1

^ •••^ s j n
, ~1!

where thehj 1••• j n
are real numbers ands1 ,s2 ,s3 are the

usual Pauli sigma matrices, withs0[I the identity. Our dis-
cussion is restricted to the case of time-independent Ha
tonians containing only one- and two-body terms, that is
hj 1••• j n

Þ0 then only one or two of thej 1 , . . . ,j n are not
equal to zero. If the Hamiltonian contains a nonzero con
bution to sk^ s l then we say the Hamiltoniancouplessys-
temsk andl. This focus on two-body Hamiltonians is a mil
restriction as most candidate systems for quantum infor
tion processing are of this type.

Under what circumstances is it possible to produce
tanglement between anarbitrary pair of systems, even one
that are not directly coupled by the HamiltonianH? Not
surprisingly, Hamiltonians which have terms coupling sy
temsk and l can produce entanglement between these s
tems. We say that systemsk andk8 areconnectedif there is
a sequence (k,k1 , . . . ,km ,k8) such that each adjacent pair
the sequence is coupled byH. It is clear that ifk andk8 are
not connected then no entanglement can be created bet
them, and thus it is not possible to perform an arbitrary u
tary operation on the system. Conversely, it follows from o
later discussion~and isa priori plausible! that if a pair of
systems is connected then it is possible to create entan
ment between them~cf. @12,13#!. This motivates our defini-
©2002 The American Physical Society01-1
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tion of a two-body entangling Hamiltonianas a two-body
Hamiltonian such that all pairs of systems are connected

The main result of this Rapid Communication is the fo
lowing:

Let H be a given two-body entangling Hamil-
tonian onn qubits, and letK be a desired two-
body Hamiltonian onn qubits. Then we have an
efficient algorithm to simulate evolution due to
K, to any desired degree of accuracy, using only
~a! the ability to evolve according toH and ~b!
the ability to perform local unitary operations on
the individual qubits.

In particular, given such a Hamiltonian it follows that w
can perform an arbitrary two-qubit unitary gate on any spe
fied pair of qubits. Thus, by well-known universality resu
@5,3#, we may efficiently perform any quantum computatio

Three elementary observations about Hamiltonian evo
tion form the key to our methods:

~a! Imagine we can evolve according to the Hamiltoni
J, and perform unitary operationsU andU†. Then it follows
from the identitye2 i tUJU†

5Ue2 i tJU† that we can exactly
simulate evolution according to the HamiltonianUJU†.

~b! Imagine we can evolve according to HamiltoniansJ1
and J2. Then we can simulate evolution due toJ11J2 for
small timesD, due to the approximate identity

e2 iD(J11J2)'e2 iDJ1e2 iDJ2. ~2!

Initially we treat this identity as though it is exact, and an
lyze the effect of errors later.

~c! Imagine we can evolve according to a HamiltonianJ.
Then, by appropriate timing, we can exactly simulate evo
tion according tolJ for any l.0.

The basic idea can be illustrated using a two-qubit
ample. Suppose we have the ability to evolve according
the two-qubit Hamiltonian

H5Z^ I 12X^ Z1Z^ Z, ~3!

whereX, Y, andZ are a convenient shorthand for the Pa
sigma matrices.H couples the two qubits, and is thus a tw
body entangling Hamiltonian. The first step of our proced
is to show thatH and local unitaries can be used to simula
evolution according to the largest coupling term inH, in this
caseX^ Z. We do this using~a!, ~b!, and~c! to eliminate the
other terms inH, according to the identity

X^ Z5
1

4
~X^ I !H~X^ I !†1

1

4
H. ~4!

This procedure eliminates the undesired couplings by a
aging over the given interactionH and a rotated version o
the interaction, (X^ I )H(X^ I )†.

Using the ability to simulate evolution by the Hamiltonia
X^ Z we can easily obtain the ability to simulate a Ham
tonian which isany product of Pauli matrices. Products o
the formI ^ s j ands j ^ I follow immediately from our abil-
ity to do local unitaries. Products of the forms j ^ sk follow
04030
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from observation~a! and the fact thats j ^ sk5(U ^ V)X
^ Z(U ^ V)† for appropriate single-qubit rotationsU andV.
It is easy to see that observation~a! also allows us to simu-
late terms of the form2s j ^ sk . An arbitrary two-qubit
HamiltonianK can be decomposed as a linear combinat
of products of Pauli matrices, and thus by observations~b!
and ~c! may be simulated using our ability to simulateX
^ Z. ThusK may be simulated usingH and local unitaries.

The general two-qubit case follows using similar tec
niques. SupposeH is an entangling Hamiltonian and choos
r ,sÞ0 such thatuhr ,su is maximized. It is easy to verify tha

sgn~hr ,s!s r ^ ss5 (
j P$0,r %,kP$0,s%

~s j ^ sk!H~s j ^ sk!
†

4uhr ,su

2
hr ,0s r ^ I 1h0,sI ^ ss1h0,0I ^ I

uhr ,su
.

~5!

Using observations~a!, ~b!, and ~c! it follows that boths r
^ ss and2s r ^ ss can be simulated usingH and local uni-
tary operations, and thus the result follows for a general tw
qubit HamiltonianK.

In more detail, suppose we wish to simulateK for a non-
infinitesimal timet.0. We have shown that we can approx
mate evolution due toK for a small timeD by applying an
appropriate sequence of evolutions due toH and local uni-
tary operations. Such a simulation requires, in general,
separate periods of evolution due toH, interleaved by single-
qubit unitary gates applied to the two qubits. To simulate
evolution due toK over a timet we break the intervalt into
N increments of lengthD[t/N, and perform the simulation
of K for each increment, repeating the small time step p
cedureN times, for a total of at most 36N separate periods o
evolution due toH.

Let us turn to the sources of error in our simulation pr
cedure. In practice, there will be experimental errors due
decoherence and discrepancies between the desired o
tions and those that are actually applied. We will not d
here with these types of errors, but these issues will be
dressed in future work on the fault tolerance of our simu
tions. Here, we discuss errors that areinherentin our simu-
lation technique. Although the procedure uses only
observations~a!, ~b!, and ~c!, of which ~a! and ~c! are in
principle exact, the identity Eq.~2! used in~b! only holds
approximately. In order to perform a good simulation ofK
we therefore need to choose a time stepD sufficiently small
that Eq.~2! is a good approximation.

To do the error analysis, we introduce a measure qua
fying how well our simulated evolution approximates th
desired evolution due toK. That is, we wish to compare th
unitary evolutionW8 achieved by our simulation with the
unitary evolutionW5exp(2iKt) that we wish to simulate.
We use as our measure of error the operator norm of
difference betweenW and W8, iW2W8i , defined byiAi
[maxc :ucu51uAuc&u. This is physically well motivated since
two operatorsW andW8 are close according to this norm
1-2
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and only if the difference in their effects on an arbitrary st
is bounded by a small number. The actual measure of e
used is not all that important, but we find it useful to dema
the following two properties, both of which are satisfied
the operator norm:~1! stability under tensor product with
ancilla systems, that is,iAi5i I ^ Ai ; and~2! invariance un-
der unitary transformations, that is,iAi5iV8AVi for any
unitary operatorsV,V8. This latter property implies the
chaining inequalityfor any unitary operatorsV1 ,V2 ,W1 ,W2

iV1W12V2W2i<iV12V2i1iW12W2i . ~6!

We bound the errors induced by the approximation in E
~2! using the inequality@14#

ie2 i t(A11•••1Am)2e2 i tA1
•••e2 i tAmi

<
t2

2 (
1< j <k<m

i@Aj ,Ak#i , ~7!

wheret is a positive real number and theAj are Hermitian
operators. Applying this bound and the chaining property
the procedure we have described gives

iW82Wi<CD2tD, ~8!

whereC is a constant which we can easily bound to be
most 104, andD is a parameter determined by the propert
of H andK as follows. Leth[maxi,juhi,ju andk[maxi,juki,ju,
where K has the operator expansion( i , j ki , js i ^ s j . Then
D[uhk/hr ,su.

The error bound Eq.~8! can be improved substantially i
several ways. The linear dependence onD in Eq. ~8! is due
to the technique used to simulate sums of Hamiltonia
namely, e2 iD(J11J2)5e2 iDJ1e2 iDJ21O(D2). Each simula-
tion step thus contributes an errorO(D2), and there aret/D
such steps for a total errorO(tD). Higher-order approxima-
tion techniques@14# can be used to obtain more accura
simulations. For example, identities such as

e2 iD(J11J2)5e2 iDJ1/2e2 iDJ2e2 iDJ1/21O~D3! ~9!

yield a cumulative error which isO(tD2). In general, an
approximation analogous to Eq.~2! but accurate to orderDk

leads to a cumulative errorO(tDk21). The tradeoff is such
that higher-order approximations require the use of so
what more complicated gate sequences for each time ste
practical applications, this additional complication must
balanced against the improvement in accuracy to achieve
timal results.

A second way to improve the bound in Eq.~8! is to lever-
age specific knowledge of the given and desired Hami
nians. For example, imagine that we have available
Hamiltonian of Eq.~3!, and wish to simulate a controlled
NOT gate@3#. We can do this more efficiently than implied b
the identity in Eq.~5! by examining the properties of th
controlled-NOT gate. Up to an unimportant global phase, t
controlled-NOT gate may be generated by applying t
Hamiltonian I ^ X1Z^ I 2Z^ X for a time t5p/4. The
terms in this Hamiltonian commute, so the controlled-NOT
04030
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operation is given bye2 i (I ^ X)te2 i (Z^ I )tei (Z^ X)t. Thus, to
simulate the controlled-NOT gate for a timet, it suffices to
simulate evolution according to the HamiltonianK52Z
^ X, followed by local unitary operations. We observe tha

K5~R^ RX!
~X^ I !H~X^ I !†1H

4
~R^ RX!† , ~10!

whereR is the Hadamard gate@3#, denoted here byR instead
of the usualH to avoid confusion with the given Hamil
tonian. Using the method outlined earlier gives a cumulat
error 8tD. If we wish to have an accuracy of 1023 this cor-
responds to roughly 104 periods of evolution according toH,
interleaved with local unitary operations. This number of o
erations is probably too large to be practical, however it
substantially better than is obtained using the general bo
Eq. ~8!.

Further improvement may be obtained by using t
higher-order approximation Eq.~9!. Using the operator
norm, simple algebra shows that the correction in Eq.~9!
may be bounded to orderD3 by 1

6 iJ1iiJ2i(iJ1i12iJ2i)D3.
In this specific example, this reduces to1128iHi3D3 for a
cumulative error of at most1128iHi3tD2. BoundingiHi by
iZ^ I i12iX^ Zi1iZ^ Zi54 we see that the cumulativ
error is at most12 tD2. Therefore, to achieve an accuracy
1023 in our simulation of the controlled-NOT gate we need
approximately 102 periods of evolution due toH, interleaved
with local unitary operations. Further improvements may
obtained by using better approximations than Eq.~9!.

The number of operations required to simulate an a
trary unitary operation can thus be substantial. In pract
this disadvantage may be offset by the advantages gaine
using the natural coherent interactions present in a sys
Furthermore, our results merely provide a lower bound
the efficiency with which it is possible to simulate an arb
trary unitary operation, and provide substantial impetus
search for better methods in specific cases.

We now turn to then-qubit case. The basic idea is t
reduce the problem to the two-qubit case already solved.
divide the system into two parts, aprincipal system Pcon-
sisting of two qubits which are coupled by the Hamiltoni
H, and theremainderof the system, denotedS. We use a
technique generalizing the work in@11,15# that turns off all
interactions betweenP andS and withinS, leaving only the
interactions present inP. These interactions can then b
used, as before, to simulate arbitrary dynamics on the
qubits inP. Thus, it is possible to simulate arbitrary dynam
ics onany two qubits coupled by the HamiltonianH. Finally,
an arbitrary interaction between qubitsk andk8 may be ef-
fected by performing a sequence ofSWAP gates between the
qubits connectingk andk8, applying the desired interaction
and then swapping back.

The first step is to decouple systemsP andS. To do this,
let XS denote a tensor product ofX operators applied bitwise
to all the qubits inS. Define YS and ZS similarly. Observe
that forming the Hamiltonian

H85
1

4
@H1XSHXS

†1YSHYS
†1ZSHZS

†# ~11!
1-3
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leaves the Hamiltonian onP invariant, but eliminates all cou
pling terms betweenP and S, and all single-system term
on S.

We now explain a recursive construction to eliminate
remaining couplings inS. First, we break the blockS into
two blocksS0 and S1 of approximately equal size. We de
coupleS0 andS1 by forming the Hamiltonian

H95
1

4
@H81XS0

H8XS0

† 1YS0
H8YS0

† 1ZS0
H8ZS0

† #.

~12!

Next, we breakS0 into two blocksS00 and S01 of approxi-
mately equal size, and breakS1 into two blocksS10 andS11
of approximately equal size. We can decoupleS00 from S10,
andS01 from S11 in a single stepby forming the Hamiltonian

H-5
1

4
@H91XS00

XS10
H9XS00

† XS10

† 1YS00
YS10

H9YS00

† YS10

†

1ZS00
ZS10

H9ZS00

† ZS10

† #. ~13!

We repeat this blocking procedured log2(n22)e times to de-
couple all the terms inS, leaving a sum overO(4log2n)
5O(n2) terms involving the conjugation ofH by local uni-
tary operations.

Thus, simulating a HamiltonianK applied toP for a time
t requires the use ofO(n2) periods of evolution due toH,
interleaved with local unitary operations. Using a similar
a,

d

-

o

on

on
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ror analysis to that described earlier, and the stability pr
erty of the operator norm, we find an errorO(n2tD). In
practice it may be possible to do substantially better by
veraging our knowledge of specific systems, and using be
approximations.

A number of problems will be addressed in future wor
including: ~a! the extension of our results beyond the qu
model to higher-dimensional systems;~b! the fault tolerance
@16,3# of our simulation techniques;~c! the optimization of
our techniques for specific systems; and~d! the further study
of the general requirements for universal computation~cf.
@17–20#!. For example, it is likely interesting to impose re
strictions on the class of local unitary operations that may
applied during the computation, perhaps adopting acellular
automatamodel in which operations are applied nearly h
mogeneously across the entire system.

The results presented in this Rapid Communication de
onstrate that all two-body,n-qubit entangling Hamiltonians
areequivalentin the sense that any such Hamiltonian can
used to efficiently simulate any other with the aid of loc
unitary operations. We conjecture that the same result isnot
true for k-body Hamiltonians wherek.2. It would be of
interest to determine, in general, what characteristics of
sets of Hamiltonians determine whether they are equival
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