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Electrostatic interpretation of an electron density associated with the spherical
exchange-correlation potentialVxc„r … in atoms: Application to Be
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By means of an electrostatic analogy, an electron density is proposed that is related to the exchange-
correlation potentialVxc(r ) in atoms. More precisely, such an electron density is best characterized by the
amount of electronic chargeQxc(r ), say, enclosed within a sphere of radiusr centered on the atomic nucleus.
ThenQxc(r ) is related to the radial derivative ofVxc(r ) by Qxc(r )52r 2]Vxc /]r . uQxc(r )u tends to unity as
r→` and becomes zero in the limitr→0. However, it increases at first as one comes away from the point at
infinity, having the form at larger uQxc(r )u→112a/r 31O(1/r 4), wherea is the dipole polarizability of the
singly charged positive ion. This means thatuQxc(r )u must have at least one maximum, its heightQxc(r m) and
its positionr m then being important parameters characterizing the shape ofQxc(r ). The intersection~s! with the
line uQxcu51 are also plainly of importance in this same context. The exact form ofQxc(r ) involves both fully
interacting one- and two-particle fermion density matrices, as well as the orbitals of the Slater-Kohn-Sham
~SKS! reference system. However, the example of Be is worked out, where it is shown that, if the ground-state
densityr(r )5rSKS(r ) is known from either x-ray or electron diffraction experiments or from quantal computer
simulation studies, thenQxc(r ) can be derived for this light atom.
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The exchange-correlation potentialVxc(r ) lies at the heart
of current applications of density-functional theory. While
the approach of Kohn and Sham@1#, whose work represent
the formal completion of the work begun by Slater@2#, this
potential is to be obtained by functional differentiation of t
as yet unknown exchange-correlation energyExc@r#,

Vxc~r !5
dExc@r#

dr~r !
, ~1!

the study of Holas and March@3#, based on the exact differ
ential virial theorem, expressesVxc(r ) explicitly in terms of
first- and second-order density matrices of the fully intera
ing system, plus the Slater-Kohn-Sham~SKS! one-electron
orbitals found from the Schro¨dinger equation with one-bod
potential

V~r !5Vn~r !1Ves~r !1Vxc~r !. ~2!

Here Ves(r ) is generated by the ground-state densityr(r ),
these two quantities being related by Poisson’s equatio
electrostatics:

¹2Ves~r !524pr~r !e2. ~3!

Equation~3! will now be used to motivate the central ide
of this Brief Report. Let us restrict ourselves to spherica
symmetric atoms, He, Be, Ne, Ar, etc., to be definite. Th
Eq. ~3! is readily rewritten as

]

]r S r 2
]Ves

]r D524pr 2r~r !e2 ~4!

or
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]Ves

]r
52

Q~r !

r 2 , ~5!

where the total number of electrons enclosed by a spher
radiusr centered on the atomic nucleus,Q(r ), is defined by

Q~r !5e2E
0

r

4pr 2r~r !dr. ~6!

Evidently, for atomic numberZ,

Q~r !→Z as r→`. ~7!

Now we use the above, elementary, electrostatics to
tivate the introduction of an integrated radial densityQxc(r ),
related toVxc(r ) by

Qxc~r !52r 2
]Vxc

]r
. ~8!

This is the central idea of this Brief Report.
We immediately note from the work of Almbladh and vo

Barth @4# that the asymptotic form ofVxc(r ) in neutral atoms
is given by~now in atomic units!

Vxc~r !52
1

r
2

a

2r 4 , ~9!

where a is the dipole polarizability of the singly charge
positive ion. Hence, from the definition~8! of Qxc(r ) we find

uQxc~r !u511
2a

r 3 1OS 1

r 4D ~10!

at sufficiently larger.
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Since Qxc(r )→0 as r→0, the asymptotic result~10!
shows that, sinceuQxc(r )u exceeds unity at larger, it must
have at least one maximum. In addition,uQxc(r )u as r is
reduced from the positionr m of the above maximum mus
intersect the value unity at least once. The point to be e
phasized here is that therefore there are very characte
features associated with the~presently necessary! modeling
of Qxc(r ), namely, ~i! the dipole polarizabilitya, ~ii ! the
position r m and heightuQxc(r m)u of the above maximum
~iii ! the position,r 1 say, whereuQxc(r 1)u51, and ~iv! the
limit Qxc(r ), which tends to zero asr tends to zero.

We conclude with the~admittedly somewhat complicated!
example of the Be atom. We bypass the need for fully in
acting low-order density matrices by assuming that
ground-state densityr(r ) is known: e.g., from x-ray or elec
tron diffraction experiments or from quantal computer stu
ies. The idempotent first-order density matrixg(r ,r 8) gener-
ated by the one-body potentialV(r ) in Eq. ~2! then takes the
form @5#

g~r ,r 8!5r~r !1/2r~r 8!1/2cos@u~r !2u~r 8!#, ~11!

where the phaseu(r ) is characterized solely by“r/r and
physical boundary conditions through the eigenvalue eq
tion @5#

¹2u1
“r

r
•“u1l sin 2u50. ~12!

Hence the eigenvaluel and the eigenfunctionu are uniquely
determined by knowledge of the~assumed exact! ground-
state electron densityr(r ) of the Be atom.

Going back to the equation of motion of the density m
trix g(r ,r 8), namely@5,6#,

¹ r
2g2¹ r8

2 g52@V~r !2V~r 8!#g, ~13!

it is a straightforward if tedious matter to extract the rad
derivative]V/]r of the one-body potential~2! in terms of
the electron densityr(r ) and the phaseu(r ) to be obtained
from “r/r by solving Eq.~12!.

The result is given by

2
]V

]r
5

]

]r H r9

r
2

1

2 S r8

r D 2J 24u8u92
1

r 2

r8

r
1

1

r Frr92r82

r2 G
1Fu8H rr92r82

r2 J 1u9
r8

r
1u-2

2

r 2 u81
2

r
u9G

3~cotu2tanu!12Fr8
u8

r
1u91

2

r
u8G ]

]r
~cot 2u!.

~14!

But from Eq.~2!

r 2
]Vxc~r !

]r
5r 2

]V

]r
242r 2

]Ves~r !

]r
, ~15!

since for BeVn524/r . The last term on the right-hand sid
~RHS! of Eq. ~15! is given in terms ofr(r ) by Eqs.~5! and
~6! and hence, using the definition~8!,
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2Qxc~r !5r 2
]V

]r
241Q~r !. ~16!

Everything on the RHS of Eq.~16! can be determined from
the ~assumed exact! ground-state densityr(r ) and hence the
exchange-correlation integrated electron densityQxc(r ) can
be found.

Before summarizing, it is of some importance to compa
and contrast this electrostatic interpretation of the exchan
correlation potential via the integrated densityQxc(r ) with
the customary treatment of the exchange-correlation ene
Exc via the exchange-correlation holenh @7,8#. In this latter
case one has

Exc5
1

2
e2E dr r~r !E dr 8nh~r ,r 8!. ~17!

This fundamentally nonlocal ‘‘kernel’’nh(r ,r 8) determining
Exc is then to be obtained as an integral over a coupl
parameterl (0<l<1) introduced to scale the electron
electron interactione2/ur2r 8u to le2/ur2r 8u @7,8#. Although
the practical implementation of this coupling strength in
gration remains an obstacle, as does the dependence str
already of the exchange-correlation holenh on the two vec-
tors r and r 8, there is the important physical constraint e
pressed through the sum rule

E nh~r ,r 8!dr 8521 ~18!

for all r . The corresponding constraint on the integrat
charge densityQxc(r ) is expressed in the atomic examp
presented in this Brief Report through Eq.~10!. But Qxc(r ) is
then related not to the exchange-correlation energyExc but to
the exchange-correlation potentialVxc , thus bypassing the
need for the functional derivative in Eq.~1!. Of course, both
treatments based, respectively, onnh(r ,r 8) andQxc(r ), have
fundamentally electrostatic interpretations, the former be
through Eqs.~17! and ~18! while the latter, with its focus
directly on the functional derivative of the exchang
correlation energy,Vxc(r ), is more akin to the Gauss theo
rem of classical electrostatics.

In summary, the definition of the exchange-correlation
tegrated densityQxc(r ) is proposed as in Eq.~8!, by analogy
with the classical electrostatic result in Eq.~5!. For larger,
Eq. ~10! gives the asymptotic form ofQxc(r ), which also
tends to zero asr→0. The form ~10! shows thatuQxc(r )u
must have at least one maximum, and must intersect
value unity at least once for finiter. For Be, Eqs.~16! and
~14! give uQxc(r )u in a form characterized solely by th
ground-state electron densityr(r ), the phaseu(r ) being de-
termined by solution of Eq.~12!, into which “r/r is the
only input information.

It is a pleasure to thank Professor A. Holas and Profes
A. Nagy, together with Professor V. E. Van Doren and h
colleagues in Antwerp, for many most stimulating discu
sions on the area embraced by this study.
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