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Electrostatic interpretation of an electron density associated with the spherical
exchange-correlation potentialV,.(r) in atoms: Application to Be
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By means of an electrostatic analogy, an electron density is proposed that is related to the exchange-
correlation potentiaV,.(r) in atoms. More precisely, such an electron density is best characterized by the
amount of electronic charg®,.(r), say, enclosed within a sphere of radiusentered on the atomic nucleus.
ThenQ,(r) is related to the radial derivative ®(r) by Q,(r)=—r20V,./dr. |Qy(r)| tends to unity as
r—o and becomes zero in the limit-0. However, it increases at first as one comes away from the point at
infinity, having the form at large |Qyu(r)|— 1+ 2a/r3+ O(1/r%), wherea is the dipole polarizability of the
singly charged positive ion. This means th@(r)| must have at least one maximum, its hei@ht(r ) and
its positionr,, then being important parameters characterizing the sha@eg.0f). The intersectiofs) with the
line |Q,¢ =1 are also plainly of importance in this same context. The exact for@gf) involves both fully
interacting one- and two-particle fermion density matrices, as well as the orbitals of the Slater-Kohn-Sham
(SKS) reference system. However, the example of Be is worked out, where it is shown that, if the ground-state
densityp(r)=pskg(r) is known from either x-ray or electron diffraction experiments or from quantal computer
simulation studies, the®,.(r) can be derived for this light atom.
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The exchange-correlation potentia).(r) lies at the heart Vs Q(r)
of current applications of density-functional theory. While in a 2
the approach of Kohn and Shdr|, whose work represents
the formal completion of the work begun by Slaf@l, this  where the total number of electrons enclosed by a sphere of

as yet unknown exchange-correlation enelgy p ],
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_ B dp] Q)= amZp(ryar. ©
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Evidently, for atomic numbez,
the study of Holas and Mardl8], based on the exact differ-
ential virial theorem, express&s.(r) explicitly in terms of Q(r)—Z asr—o». (0
first- and second-order density matrices of the fully interact- _
ing system, plus the Slater-Kohn-Sha8KS) one-electron Now we use the above, elementary, electrostatics to mo-

orbitals found from the Schdinger equation with one-body tivate the introduction of an integrated radial deny(r),
potential related toV,.(r) by

INVye
ar

V(1) =Vap(r)+Vedr) +Vy(r). (2 Qu(r)=—r2 (8)
Here V {r) is generated by the ground-state dengity),
these two quantities being related by Poisson’s equation
electrostatics:

O'Fhis is the central idea of this Brief Report.
We immediately note from the work of Aimbladh and von
Barth[4] that the asymptotic form of,.(r) in neutral atoms

V2V (1) = — 4mp(r)e? 3) is given by(now in atomic units
e .
1 «a
Equation(3) will now be used to motivate the central idea Vylr)=— PRy 9

of this Brief Report. Let us restrict ourselves to spherically
symmetric atoms, He, Be, Ne, Ar, etc., to be definite. The

Eq. (3) is readily rewritten as Mwhere a is the dipole polarizability of the singly charged

positive ion. Hence, from the definitid8) of Q,.(r) we find

d Vv 2
| p2 eS| 2 2 a
ar (r ar )_ Amrp(re @ [QulN|=1+ -5 +0

1
P (10
or at sufficiently larger.
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Since Q,(r)—0 as r—0, the asymptotic resul{10) oV
shows that, sincéQ,(r)| exceeds unity at large, it must _Qxc(r):rZW_‘]’_l' Q(r). (16)
have at least one maximum. In additidi@,.(r)| asr is
reduced from the position,, of the above maximum must . .
intersect the value unity at least once. The point to be emI_Ehverythlng odn the RHS %f Ec{16)dcan_be dete(rjmr:ned fr(r)]m
phasized here is that therefore there are very characterist}ce(assume exa)._:gro_un -state densiy(r) an . ence the
features associated with tipresently necessarynodeling exchange-correlation integrated electron den¥y(r) can

. ) AR . be found.
of Q,.(r), namely, (i) the dipole polarizabilitye, (ii) the L .
position 1, and height|Q,(r -)| of the above maximum, Before summarizing, it is of some importance to compare

(iii) the position,r, say, where|Qu(r,)|=1, and (iv) the and contrast this electrostatic interpretation of the exchange-
limit O C(pr) whiéhltenﬁ’s t0 7610 gcsténds tb Sero correlation potential via the integrated dens@y(r) with
X ’ .

We conclude with théadmittedly somewhat complicated the cu stomary treatment of the exchange-correlation energy

example of the Be atom. We bypass the need for fully inter_E;;(\all2ntfe16h:;<change-correlatlon hate, [7.8]. In this latter

acting low-order density matrices by assuming that the

ground-state density(r) is known: e.g., from x-ray or elec- 1

tron diffraction experiments or from quantal computer stud- EXC:_eZJ' dr p(r)f dr/np(r,r’). 17

ies. The idempotent first-order density matsigr,r’) gener- 2

ated by the one-body potenti(r) in Eq. (2) then takes the

form [5] This fundamentally nonlocal “kernelh,(r,r") determining
N U2 e a2 , E,. is then to be obtained as an integral over a coupling

y(r,r)=p(r)*p(r’)"Fcog 6(r)—=6(r')], (1) parametern (0=<A<1) introduced to scale the electron-

- - lectron interactioe?/|r —r'| to Ae?/|r—r’| [7,8]. Although
where the phaseé(r) is characterized solely b¥plp and € L . . L .
phas#(r) y by plp the practical implementation of this coupling strength inte-

hysical boundary conditions through the eigenvalue equa- ~ .
Eo?]/ 5] y g 9 g gration remains an obstacle, as does the dependence stressed

already of the exchange-correlation holgon the two vec-
) p , torsr andr’, there is the important physical constraint ex-
ViO+ = VO Asin20=0. (120 pressed through the sum rule

Hence the eigenvalue and the eigenfunctiod are uniquely Nr' =
determined by knowledge of th@ssumed exactground- np(r,ridr’=-1 (18)
state electron density(r) of the Be atom.
~Going Iback to the equation of motion of the density ma-for i r. The corresponding constraint on the integrated
trix y(r,r'), namely[5,6], charge densityQ,.(r) is expressed in the atomic example
V29— V2 y=2[V(r)=V(r')]7, 13 presented in this Brief Report through Efj0). But Q,(r) is
- Vey=2Vn =V ly (13 then related not to the exchange-correlation en&igybut to
it is a straightforward if tedious matter to extract the radialthe eéxchange-correlation potentidl., thus bypassing the
derivative dV/dr of the one-body potential2) in terms of  need for the functional der.lvatlve in E@L). Of course, both
the electron density(r) and the phasé(r) to be obtained {reatments based, respectively,myfr,r’) andQy(r), have

from Vpl/p by solving Eq.(12). fundamentally electrostatic in'_[erpretations, th_e f(_)rmer being
The result is given by through Egs.(17) and (18) while the latter, with its focus
directly on the functional derivative of the exchange-
Zﬂ— i[P_"_ }(P_’ﬂ 40— 1y L1 PP"—P'T correlation energyV,.(r), is more akin to the Gauss theo-
o ar|lp 2\p 2 p® rem of classical electrostatics.

R ) In summary, the definition of the exchange-correlation in-
glPP P L P g S 2 0,,} tegrated densit®,.(r) is proposed as in E{8), by analogy
2 p r? r with the classical electrostatic result in E&). For larger,
, Eqg. (10) gives the asymptotic form o®,.(r), which also
p/i+017+ 30’}i(cot 20). tends to zero as—0. The form(10) shows that|Q,«(r)|

p r oar must have at least one maximum, and must intersect the
(14) value unity at least once for finite For Be, Eqs(16) and
(14) give |Qu(r)| in a form characterized solely by the

But from Eq.(2) ground-state electron densipyr), the phase&)(r) being de-
rzf?ch(r) oV 4_r20Ves(r) termined by solution of Eq(12), into which Vp/p is the

_ .2 only input information.
ar ar a (15

+

X(cotf@—tand)+2
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