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Addendum to “Direct trajectory method for semiclassical wave functions”
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For two kinetically coupled Morse oscillators, we present details of the method of calculation ifl Reff.
the semiclassical wave function for an Einstein-Brillouin-Keller quantizing torus, using a single trajectory and
its stability matrix. This is the “standard” method, contrasted in R&f.with our new “direct” method, which
does not require the calculation of the stability matrix.
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[. INTRODUCTION two others to get the amplitude factor, determining the influ-

ence of the stability by observing numerically the divergence

In Ref. [1], we tested a new method for semiclassicalOf two distinct Frajectorigs. We do the entire calculation by
wave functions corresponding to an invariant tori satisfyingfunning one trajectory. Like Knudsaet al., we get the phase

Einstein-Brillouin-Keller (EBK) quantization conditions. PY &ftaching a semiclassical wave to the trajectory. However,

This “direct” method is intuitively very appealing; one sim- we calculate the amplitude by simultaneously solving the

: . . equations of motion and the stability equations for our single
ply attaches a semiclassical wave to a trajectory on the qua'?r'aj ectory
tizing torus, and lets the trajectory run, building the phase- '

coherent wave function. The semiclassical amplitude is taken Il. COUPLED MORSE OSCILLATOR SYSTEM
simply as the numerically accumulated classical density. This
avoids the need to deal with the cumbersome stability matri>§]
in the usual implementations of the EBK wave function a
method. We compared our direct method with the “standard
method of Maslov and FedoridR], and found that they give

The system of two kinetically coupled Morse oscillators
s been studied by several workgss-8| as a model for the
,Stretch motions of a polyatomic molecule such g©HIts
Hamiltonian is given by

identical results within numerical accuracy, as demonstrated pi pg
in Fig. 2 of Ref.[1]. H=_—+D(1-e 1>+ = +D(1-e #2)%+ap;p,,
; . . . 2m 2m
In this Addendum, we present details, omitted in R&f, 1)

of our computational implementation of the standard methodvhich can be scaled to the form

of Maslov and Fedoriuk. We plan in a later paper to compare i g %np 5

for chaotic systems the results of the direct and standard &= P/2+(1-e )"+ P2+ (1-e72)°+6p:1P, (2)
methods, applied teantori, the remnants of tori broken up .

by chaos. It, therefore, seems advisable in this Addendum tgy the transformations
explain the rather involved details of our implementation of = H/D, B;=(1/ymD) p;, %=p8%;, 7=Dyt, (3)
the standard method. Furthermore, there actually are very

few demonstrations of the EBK wave-function method. Ongvhere

is the calculation of Knudsoet al. [3] on coupled oscilla- é=ma= (M/M) cosd (4)

tors. Their computational method differs in certain respect§S the coupling constant related to the finite msof the

from ours. For this reason as well, it seems worthwhile ©central atommi s the reduced mass of the light atom and the
spell out exactly what we did in Ref1].

o . heavy central atomé is the angle made by the two bonds
The “EBK quantization conditions”

_'he BBt _ were postulated by o the moleculeD is the dissociation energy of the Morse
Einstein[4] in 1917, together with the conjectured existenceyggijator B is the Morse parameter of the system, and

of Tvarlarjrthtorfl in thlt_a clafssTr?l mecha}nlcs ofI nonlnt?gratple — wo/V3D, with wy=+28?DIm the small oscillation
systems. The formalism for the semiclassical wave functionqq ency of the Morse oscillator.

corresponding to an EBK torus was not developed until 195
by Keller[5]. Still later, Maslov and FedoriuR] developed 1. SEMICLASSICAL WAVE FUNCTION OF AN EBK-
a theory for the semiclassical wave function. The difference QUANTIZING TORUS

between these two theories is the use of local coordinates in

the former and global coordinates in the latter in the repre—S atiA; ]Ei\gg g%?{eel;g];{irzeai%%mc(l)nn\/cﬁ:ilgr?;-torus is quantized if it
sentation of the amplitude factor. q ’

Knudson et al. [3] successfully applied the Maslov- i; ~ ~ _ 1
Fedoriuk formalism to the regular region of a system of two Ca(p1d7<1+ Pad¥e) =2mh y(Nat2),

coupled harmonic oscillators. Our implementation in R&f.
of the “standard” Maslov-Fedoriuk method is different from % (P10%; +Pod%p) = 271h (N g+ 1),
theirs. They used one trajectory to get the phase factor, and Cp

®)
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where C, and C; are independent circuitsy, andn, are
integers,X;,X,,P1,P» are dimensionless coordinates and
momenta, andy is the constant related to the scaling trans-
formation in the previous section. The semiclassical wave
function for the torus can be written &3]

r(0X20) [
J (T X20)

Y% %z.0) 2

xr{ﬁ'—yamn:x'z)

. Mr(T)'”'
'™

: (6)

whereS, (7,%1,%,) = [ §(P1X1+P2Xo)dt is the phase along a Now consider a nearby trajectory. Its displacement from the
first is denoted as

classical trajectory. The Maslov index(7) is the number
of times that the trajectory has passed through classical caus-
tics, or turning points, at time. The subscript means at
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time 7 the trajectory is in therth “branch” [3]; for the
coupled oscillator system the number of branches=gt.
In Eqg. (6) no initial distribution appears, in contrast to

AZ

AP,
A%,
AD;

Ref.[2]. The reason for this is that we will obtain the wave
function by running asingle classical trajectory.
The Jacobian determinadt in Eq. (6) is related to the
divergence of nearby trajectories and is given by
( 11~2) . JSZZ . (75'(1
=% Ko
N1 Xa0) TRpg 2%

J (T Xzo) det (7)

where it is understood th&b,, 7are fixed when we take the
partial derivatives. The choi&e,, for the direction in which

to take the partial derivatives is arbitrdi3]. J, can be nega-
tive; its absolute value is proportional to the inverse of the
classical density for the trajectory. The partial derivatives in
Eq. (7) relate to the stability of the classical trajectory, which
will be determined by stability equations in Sec. IV. The

X1
d | AP,
dr| A%, |~
AP,

A de
Xz

(€)

(10

AZ evolves with timer. The equations that determideZ( 7)
are obtained by taking the difference in both sides of (Ej.

(11)

Jacobian determinadt is zero at the classical turning point. Note thate and its partial derivatives are functionsyf, P, ,

There, Eq(6) diverges, so the semiclassical wave function isx,
a “primitive” type.

, andp,. Taking the first-order difference, we get

J;(0,%,p) appears in Eq(6) as the initial value of the A%,
Jacobian determinant, and from E@), is given by d | Ap,
(X15(2) . dr| A%,
[ e e e #e ]
i.e., theX; component of the initial velocity of the classical 9%, 0P, dp% 9p 0%, 9p10p,
trajectory. - - 5 5
Jee J7e Joe Jd°e
fe2 ne e e~ e N~ e
IV. DETERMINATION OF THE JACOBIAN a Cfiopr HNOR ORidps
DETERMINANT Fe Fe Pe ’e
o oy o )
In this section we outline in detail the most difficult part dXiop> Opropy 0X20P> P>
of the numerical execution of the semiclassical wave- e P e ’e Pe
function method, the calculation of the Jacobian determinant. T 9% 0%,  opox, (97%  9%,0P,
Our development in part follows loosely the treatment of .
Greend 9] for a classical map. M
As stated earlier, we build the wave function by running Az,
just a single, arbitrary trajectory on the invariant EBK torus; Ap,
we can do this because, in general, such a trajectory will- A%
densely cover the torus. The time evolution of the trajectory Aﬁ2
2

is governed by the Hamiltonian equations of motion
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Equations(9)—(12) are the basic relations we will use, after use the variabl&,, in Eq. (7)], at a given timer, from Eq.
defining some further notation, to get the desired Jacobiafll5) we get the partial derivatives needed in Eg. for cal-

determinant as a function of time.

A. Time-evolution matrix

The 4x4 matrixM in Eq. (12) is a function of the coor-

dinates and momenta of our trajectory. Let us define the 4

X 4 evolution matrixU(7):

%, A%y,
AP AP

AZ(7)= M(; =U(7) A?:z —U(7)AZ(0). (13
bZ T)ZO

Substituting Eq(13) into Eq. (12) we have

(_;j—TU(T)ZMU(T). (14

Equation(14) is called the stability equatiof®] of the clas-
sical trajectory. The initial condition fod(7) is U(0)=1,
wherel is the unit matrix of dimension 4J(7) is indepen-
dent of the choice of displacementZ(0), once the initial
phase-space point is chosen. We will use 84) in calcu-
lating U(7), as described at the end of Sec. IVC.

From Eqg.(13) we have

AX3=U13A% 0+ U1oAP 10+ UgAXo0+ U1AP2g

~ - ~ ~ ~ 15
AXp=U31A% g+ UgAP 10+ UgaA X0t UssAP2g (15

where theu;;’s are time-dependent elements of matdikr).
In a surface-of-section &t;y=constant[having chosen to

culating the Jacobian determinant:

(;XZO ~x (;XZO ~ (;XZO ~X
(75’(20 % ’ JXZO (;XZO %

Equation (16) is generally true for any energy-conserving

Hamiltonian system. To use it, we need to calculate the par-

tial derivatives atr=0, and then the evolution matrix ele-
mentsu;; at time 7.

B. Partial derivatives at 7=0

From the Hamiltonian2) of the coupled Morse oscilla-
tors we get

P10=— P20
+ 26— (1- 6%)P3—2(1—e *10)2—2(1—e *2)2,
(17)

The “+”in Eq. (17) corresponds tX;,>0, and the "
corresponds tX,,<0. By differentiating both sides of Eq.
(17) with respect tdX,y, with & constant and,q fixed, we
obtain

5 [ P20 e
(1— 6P . +2(1—e *20)e 20
P10 20| X20/5,,
iy I T — —, (18
TR0l 5. M0/ 5, V26— (1— 6%)p2y—2(1—e %10)2—2(1—e X202

where “—" corresponds taX;,>0, and “+" corresponds to
X10<0. To use Eq(18) in Eq. (16), we need §P2o/ Xa0)x,

which will be determined numerically from the classical

torus, as described below in Sec. V.

C. Calculation of the time-evolution matrix

Next, using the HamiltoniafR), the matrixM in Eq. (12)
is

0 1 0 S
2(e X1-2e %) 0 0 0

M= 0 5 0 1
0 0 2(eX-2e"%%) 0

(19

By substituting matrixM into Eq. (14) we get the set of
differential equations

Fup] T Uzzt Sz T
Uss 2(e \1—2e 1)Uy,
Usp Ugpt SUz
Ugp 2(e *2—2e"2)ug,
Uqs Upzt SUgaz
Uy | 2(e *1—2e Z1)yy,

dr| ugs| Ugat SUz3 ' 20
Uaz 2(e %2—2e" P2)ug,
U14 Upgt SUgs
Uz2q 2(e \1—2e Zyyy,
U3zg Uggt+ SUsy
LUsad | 2(e7%2— 20" Z2)ug,

034103-3



BRIEF REPORTS PHYSICAL REVIEW A 65 034103

with the initial conditionu;;(0)=&j; for i=1, 2, 3, 4 and oo 5
=2,3,4. Equations (200 are used to determine the (&“T _ =apt2agXe=—0.022537207 787 184 83.
mdependent matrix elements,, Uq3, U4, Uszp, Ugz, and 20 %0

uz, of U(7) in Eq.(16). The differential equations for matrix (22)

eltﬁments,t’i.l folr 'Ilt' 2 ?I)E ang 4 arti decoupledl fromt :he We estimate that in actual fact, our calculated Jacobian de-
other matrix elements in Eq&20), SO ey are irrelevant 10 o minant values were accurate to nine or ten significant fig-
our problem, and do not appear in E0). The time- res

dependent matri(7) is not symmetric, as can be seen e three-dimensional plot for the semiclassical wave

from Eq. (14) and Eq.(19). function reported in Ref.1] was obtained by calculating the

To solve U(7) numerically, we solve the equations of e function at 108 70 grid points. To generate the values
motion of the trajectory simultaneously with Eq20). Ex- at the grid lines along th&, axis direction, we used a

cept for one final step, treated in the next section, we NOW, , t- "o saction at eadh value on the grid. The wave-
have all the ingredients needed for E6) and finally Eq. function values on grid lines along th& direction were

(7), the Jacobian determinant. obtained by an interpolation method. By using the data at the
crossing points of these two sets of grid lines, the three-

V. NUMERICAL CALCULATION OF SEMICLASSICAL dimensional mesh plot was generated.

WAVE FUNCTION FOR A QUANTIZING TORUS

To use Eqs(16) and (18), we need {Pao/ Xx0)5,, This VI. CONCLUSION

has to be gotten numerically. To do this, it is useful to fit a  |n this Addendum to Ref.1] we have presented details of
small piece of the torus into a smooth curve expressed as & r computation of a semiclassical wave function for
analytic function, and from this function calculate coupled Morse oscillators, using the “standard” method of
(dP20/ FX20)x,; The precision obtained has a strong effect onvaslov and Fedoriuk. This gave results in Riif] equiva-
the accuracy of the Jacobian determinant. lent to the new “direct” method developed there. Previously,
In Ref. [1], we reported the result of a quantizing torus Deloset al. [3] had shown that a numerical implementation
corresponding to the staté, 3) of two kinetically coupled of the standard method gives a good semiclassical wave
Morse oscillators with the following parameter value®: function, using three trajectories, including two which in ef-
=-0.014, D=44505.216cm?!, w,=7.2916<x10"s !,  fect give the stability determinant. Our implementation of the

andB=2.175< 10 cm™ 1. standard method uses only a single trajectory, giving the sta-
The torus in the surface-of-section¥f,=0 aroundX,, bility with great numerical accuracy, at the cost of the cum-
=0.323221125355621710 % was fit as bersome algebra presented here. Part of our motivation has
been to achieve sufficient numerical accuracy to test the
Pao=a1+aXot agksy, (21)  Maslov-Fedoriuk wave-function method on quantizicen-

tori, the chaotic remnants of EBK tori, shown by Dajdg)]
to be useful for semiclassical energies in the chaotic region.
_ It may be that only the new “direct” method developed in
8;=0.962439573258279 1, [1] will have sufficient numerical stability to make this test.

a,=—0.022 471 538 043 222 85, We hope to report on this in future work.
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