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Addendum to ‘‘Direct trajectory method for semiclassical wave functions’’
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For two kinetically coupled Morse oscillators, we present details of the method of calculation in Ref.@1# of
the semiclassical wave function for an Einstein-Brillouin-Keller quantizing torus, using a single trajectory and
its stability matrix. This is the ‘‘standard’’ method, contrasted in Ref.@1# with our new ‘‘direct’’ method, which
does not require the calculation of the stability matrix.
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I. INTRODUCTION

In Ref. @1#, we tested a new method for semiclassic
wave functions corresponding to an invariant tori satisfy
Einstein-Brillouin-Keller ~EBK! quantization conditions
This ‘‘direct’’ method is intuitively very appealing; one sim
ply attaches a semiclassical wave to a trajectory on the q
tizing torus, and lets the trajectory run, building the pha
coherent wave function. The semiclassical amplitude is ta
simply as the numerically accumulated classical density. T
avoids the need to deal with the cumbersome stability ma
in the usual implementations of the EBK wave functi
method. We compared our direct method with the ‘‘standa
method of Maslov and Fedoriuk@2#, and found that they give
identical results within numerical accuracy, as demonstra
in Fig. 2 of Ref.@1#.

In this Addendum, we present details, omitted in Ref.@1#,
of our computational implementation of the standard meth
of Maslov and Fedoriuk. We plan in a later paper to comp
for chaotic systems the results of the direct and stand
methods, applied tocantori, the remnants of tori broken u
by chaos. It, therefore, seems advisable in this Addendum
explain the rather involved details of our implementation
the standard method. Furthermore, there actually are
few demonstrations of the EBK wave-function method. O
is the calculation of Knudsonet al. @3# on coupled oscilla-
tors. Their computational method differs in certain respe
from ours. For this reason as well, it seems worthwhile
spell out exactly what we did in Ref.@1#.

The ‘‘EBK quantization conditions’’ were postulated b
Einstein@4# in 1917, together with the conjectured existen
of invariant tori in the classical mechanics of nonintegra
systems. The formalism for the semiclassical wave funct
corresponding to an EBK torus was not developed until 19
by Keller @5#. Still later, Maslov and Fedoriuk@2# developed
a theory for the semiclassical wave function. The differen
between these two theories is the use of local coordinate
the former and global coordinates in the latter in the rep
sentation of the amplitude factor.

Knudson et al. @3# successfully applied the Maslov
Fedoriuk formalism to the regular region of a system of t
coupled harmonic oscillators. Our implementation in Ref.@1#
of the ‘‘standard’’ Maslov-Fedoriuk method is different from
theirs. They used one trajectory to get the phase factor,
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two others to get the amplitude factor, determining the infl
ence of the stability by observing numerically the divergen
of two distinct trajectories. We do the entire calculation
running one trajectory. Like Knudsonet al., we get the phase
by attaching a semiclassical wave to the trajectory. Howe
we calculate the amplitude by simultaneously solving
equations of motion and the stability equations for our sin
trajectory.

II. COUPLED MORSE OSCILLATOR SYSTEM

The system of two kinetically coupled Morse oscillato
has been studied by several workers@6–8# as a model for the
stretch motions of a polyatomic molecule such as H2O. Its
Hamiltonian is given by

H5
p1

2

2m
1D~12e2bx1!21

p2
2

2m
1D~12e2bx2!21ap1p2 ,

~1!
which can be scaled to the form

«5 p̃1
2/21~12e2 x̃1!21 p̃2

2/21~12e2 x̃2!21d p̃1p̃2 ~2!

by the transformations

«5 H/D , p̃i5~1/AmD! pi , x̃i5bxi , t5Dgt, ~3!

where
d5ma5 ~m/M! cosu ~4!

is the coupling constant related to the finite massM of the
central atom,m is the reduced mass of the light atom and t
heavy central atom,u is the angle made by the two bond
of the molecule,D is the dissociation energy of the Mors
oscillator, b is the Morse parameter of the system, a
g5v0 /&D, with v05A2b2D/m the small oscillation
frequency of the Morse oscillator.

III. SEMICLASSICAL WAVE FUNCTION OF AN EBK-
QUANTIZING TORUS

A two degree-of-freedom invariant torus is quantized if
satisfies EBK quantization conditions:

R
Ca

~ p̃1dx̃11 p̃2dx̃2!52p\g~na1 1
2 !,

~5!R
Cb

~ p̃1dx̃11 p̃2dx̃2!52p\g~nb1 1
2 !,
©2002 The American Physical Society03-1
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whereCa and Cb are independent circuits,na and nb are
integers, x̃1 ,x̃2 ,p̃1 ,p̃2 are dimensionless coordinates a
momenta, andg is the constant related to the scaling tran
formation in the previous section. The semiclassical wa
function for the torus can be written as@2#

c~ x̃1 ,x̃2 ,«!5(
r 51

n AUJr~0,x̃20!

Jr~t,x̃20!
UexpF i

\g
Sr~t,x̃1 ,x̃2!

2 i
m r~t!p

2 G , ~6!

whereSr(t,x̃1 ,x̃2)5*0
t( p̃1x8 11 p̃2x8 2)dt is the phase along a

classical trajectory. The Maslov indexm r(t) is the number
of times that the trajectory has passed through classical c
tics, or turning points, at timet. The subscriptr means at
time t the trajectory is in ther th ‘‘branch’’ @3#; for the
coupled oscillator system the number of branches isn54.

In Eq. ~6! no initial distribution appears, in contrast t
Ref. @2#. The reason for this is that we will obtain the wav
function by running asingleclassical trajectory.

The Jacobian determinantJr in Eq. ~6! is related to the
divergence of nearby trajectories and is given by

Jr~t,x̃20!5det
]~ x̃1 ,x̃2!

]~t,x̃20!
5x8 1

] x̃2

] x̃20
2x8 2

] x̃1

] x̃20
, ~7!

where it is understood thatx̃20, t are fixed when we take th
partial derivatives. The choicex̃20 for the direction in which
to take the partial derivatives is arbitrary@2#. Jr can be nega-
tive; its absolute value is proportional to the inverse of
classical density for the trajectory. The partial derivatives
Eq. ~7! relate to the stability of the classical trajectory, whi
will be determined by stability equations in Sec. IV. Th
Jacobian determinantJr is zero at the classical turning poin
There, Eq.~6! diverges, so the semiclassical wave function
a ‘‘primitive’’ type.

Jr(0, x̃20) appears in Eq.~6! as the initial value of the
Jacobian determinant, and from Eq.~7!, is given by

Jr~0, x̃20!5Fdet
]~ x̃1 ,x̃2!

]~t,x̃20!
G

t50

5x8 10, ~8!

i.e., thex̃1 component of the initial velocity of the classic
trajectory.

IV. DETERMINATION OF THE JACOBIAN
DETERMINANT

In this section we outline in detail the most difficult pa
of the numerical execution of the semiclassical wa
function method, the calculation of the Jacobian determin
Our development in part follows loosely the treatment
Greene@9# for a classical map.

As stated earlier, we build the wave function by runni
just a single, arbitrary trajectory on the invariant EBK toru
we can do this because, in general, such a trajectory w
densely cover the torus. The time evolution of the traject
is governed by the Hamiltonian equations of motion
03410
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d

dt F x̃1

p̃1

x̃2

p̃2

G53
]«

] p̃1

2
]«

] x̃1

]«

] p̃2

2
]«

] x̃2

4 . ~9!

Now consider a nearby trajectory. Its displacement from
first is denoted as

DZ5F D x̃1

D p̃1

D x̃2

D p̃2

G . ~10!

DZ evolves with timet. The equations that determineDZ(t)
are obtained by taking the difference in both sides of Eq.~9!:

d

dt F D x̃1

D p̃1

D x̃2

D p̃2

G53
D

]«

] p̃1

2D
]«

] x̃1

D
]«

] p̃2

2D
]«

] x̃2

4 . ~11!

Note that« and its partial derivatives are functions ofx̃1 , p̃1 ,
x̃2 , and p̃2 . Taking the first-order difference, we get

.

~12!
3-2
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Equations~9!–~12! are the basic relations we will use, aft
defining some further notation, to get the desired Jacob
determinant as a function of time.

A. Time-evolution matrix

The 434 matrix M in Eq. ~12! is a function of the coor-
dinates and momenta of our trajectory. Let us define th
34 evolution matrixU(t):

DZ~t!5F D x̃1

D p̃1

D x̃2

D p̃2

G[U~t!F D x̃10

D p̃10

D x̃20

D p̃20

G5U~t!DZ~0!. ~13!

Substituting Eq.~13! into Eq. ~12! we have

d

dt
U~t!5MU~t!. ~14!

Equation~14! is called the stability equation@9# of the clas-
sical trajectory. The initial condition forU(t) is U(0)5I ,
whereI is the unit matrix of dimension 4.U(t) is indepen-
dent of the choice of displacementDZ(0), once the initial
phase-space point is chosen. We will use Eq.~14! in calcu-
lating U(t), as described at the end of Sec. IV C.

From Eq.~13! we have

D x̃15u11D x̃101u12D p̃101u13D x̃201u14D p̃20

D x̃25u31D x̃101u32D p̃101u33D x̃201u34D p̃20
, ~15!

where theui j ’s are time-dependent elements of matrixU(t).
In a surface-of-section atx̃105constant@having chosen to
al

03410
n

4

use the variablex̃20 in Eq. ~7!#, at a given timet, from Eq.
~15! we get the partial derivatives needed in Eq.~7! for cal-
culating the Jacobian determinant:

S ] x̃1

] x̃20
D

x̃10,t

5u131u12S ] p̃10

] x̃20
D

x̃10

1u14S ] p̃20

] x̃20
D

x̃10

,

~16!

S ] x̃2

] x̃20
D

x̃10,t

5u331u32S ] p̃10

] x̃20
D

x̃10

1u34S ] p̃20

] x̃20
D

x̃10

.

Equation ~16! is generally true for any energy-conservin
Hamiltonian system. To use it, we need to calculate the p
tial derivatives att50, and then the evolution matrix ele
mentsui j at timet.

B. Partial derivatives at tÄ0

From the Hamiltonian~2! of the coupled Morse oscilla
tors we get

p̃1052d p̃20

6A2«2~12d2! p̃20
2 22~12e2 x̃10!222~12e2 x̃20!2.

~17!

The ‘‘1’’ in Eq. ~17! corresponds tox8 10.0, and the ‘‘2’’
corresponds tox8 10,0. By differentiating both sides of Eq
~17! with respect tox̃20, with « constant andx̃10 fixed, we
obtain
S ] p̃10

] x̃20
D

x̃10

52dS ] p̃20

] x̃20
D

x̃10

7

~12d2! p̃20S ] p̃20

] x̃20
D

x̃10

12~12e2 x̃20!e2 x̃20

A2«2~12d2! p̃20
2 22~12e2 x̃10!222~12e2 x̃20!2

, ~18!
where ‘‘2’’ corresponds tox8 10.0, and ‘‘1’’ corresponds to
x8 10,0. To use Eq.~18! in Eq. ~16!, we need (] p̃20/] x̃20) x̃10

,

which will be determined numerically from the classic
torus, as described below in Sec. V.

C. Calculation of the time-evolution matrix

Next, using the Hamiltonian~2!, the matrixM in Eq. ~12!
is

M5F 0 1 0 d

2~e2 x̃122e22x̃1! 0 0 0

0 d 0 1

0 0 2~e2 x̃222e22x̃2! 0

G .

~19!
By substituting matrixM into Eq. ~14! we get the set of
differential equations

d

dt 3
u12

u22

u32

u42

u13

u23

u33

u43

u14

u24

u34

u44

4 53
u221du42

2~e2 x̃122e22x̃1!u12

u421du22

2~e2 x̃222e22x̃2!u32

u231du43

2~e2 x̃122e22x̃1!u13

u431du23

2~e2 x̃222e22x̃2!u33

u241du44

2~e2 x̃122e22x̃1!u14

u441du24

2~e2 x̃222e22x̃2!u34

4 , ~20!
3-3
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with the initial conditionui j (0)5d i j for i 51, 2, 3, 4 andj
52,3,4. Equations ~20! are used to determine th
t-dependent matrix elementsu12, u13, u14, u32, u33, and
u34 of U(t) in Eq. ~16!. The differential equations for matrix
elementsui1 for i 51, 2, 3, and 4 are decoupled from th
other matrix elements in Eqs.~20!, so they are irrelevant to
our problem, and do not appear in Eq.~20!. The time-
dependent matrixU(t) is not symmetric, as can be see
from Eq. ~14! and Eq.~19!.

To solve U(t) numerically, we solve the equations o
motion of the trajectory simultaneously with Eqs.~20!. Ex-
cept for one final step, treated in the next section, we n
have all the ingredients needed for Eq.~16! and finally Eq.
~7!, the Jacobian determinant.

V. NUMERICAL CALCULATION OF SEMICLASSICAL
WAVE FUNCTION FOR A QUANTIZING TORUS

To use Eqs.~16! and ~18!, we need (] p̃20/] x̃20) x̃10
. This

has to be gotten numerically. To do this, it is useful to fi
small piece of the torus into a smooth curve expressed a
analytic function, and from this function calcula
(] p̃20/] x̃20) x̃10

. The precision obtained has a strong effect
the accuracy of the Jacobian determinant.

In Ref. @1#, we reported the result of a quantizing tor
corresponding to the state~6, 3! of two kinetically coupled
Morse oscillators with the following parameter values:d
520.014, D544 505.216 cm21, v057.291631014s21,
andb52.1753108 cm21.

The torus in the surface-of-section atx̃1050 aroundx̃20
50.323 221 125 355 621 731024 was fit as

p̃205a11a2x̃201a3x̃20
2 , ~21!

where

a150.962 439 573 258 279 1,

a2520.022 471 538 043 222 85,

and

a3521.015 864 044 927 796,

so
-
,

ys

03410
w

an

n

S ] p̃20

] x̃20
D

x̃10

5a212a3x̃20520.022 537 207 787 184 83.

~22!

We estimate that in actual fact, our calculated Jacobian
terminant values were accurate to nine or ten significant
ures.

The three-dimensional plot for the semiclassical wa
function reported in Ref.@1# was obtained by calculating th
wave function at 100370 grid points. To generate the value
at the grid lines along thex̃1 axis direction, we used a
surface-of-section at eachx̃1 value on the grid. The wave
function values on grid lines along thex̃2 direction were
obtained by an interpolation method. By using the data at
crossing points of these two sets of grid lines, the thr
dimensional mesh plot was generated.

VI. CONCLUSION

In this Addendum to Ref.@1# we have presented details o
our computation of a semiclassical wave function f
coupled Morse oscillators, using the ‘‘standard’’ method
Maslov and Fedoriuk. This gave results in Ref.@1# equiva-
lent to the new ‘‘direct’’ method developed there. Previous
Deloset al. @3# had shown that a numerical implementatio
of the standard method gives a good semiclassical w
function, using three trajectories, including two which in e
fect give the stability determinant. Our implementation of t
standard method uses only a single trajectory, giving the
bility with great numerical accuracy, at the cost of the cu
bersome algebra presented here. Part of our motivation
been to achieve sufficient numerical accuracy to test
Maslov-Fedoriuk wave-function method on quantizingcan-
tori, the chaotic remnants of EBK tori, shown by Davis@10#
to be useful for semiclassical energies in the chaotic reg
It may be that only the new ‘‘direct’’ method developed
@1# will have sufficient numerical stability to make this tes
We hope to report on this in future work.
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