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Quantum description of light-pulse scattering on a single atom in waveguides

Peter Domokos,* Peter Horak,† and Helmut Ritsch
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We present a time-dependent quantum calculation of the scattering of a few-photon pulse on a single atom.
The photon wave packet is assumed to propagate in a transversely strongly confined geometry, which ensures
strong atom-light coupling and allows a quasi-one-dimensional treatment. The amplitude and phase of the
transmitted, reflected, and transversely scattered part of the wave packet strongly depend on the pulse length
~bandwidth! and energy. For a transverse mode size of the order ofl2, we find nonlinear behavior for a few
photons already, or even for a single photon. In a second step we study the collision of two such wave packets
at the atomic site and find striking differences between the Fock state and coherent state wave packets of the
same photon number.
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I. INTRODUCTION

Identifying and realizing systems with strong coupling b
tween light and matter is one of the central objectives
current research in quantum optics. In the strong-coup
regime the coherent interaction between a few atoms and
radiation field of few photons takes place on a fast time sc
and is not masked by the dissipative coupling to the envir
ment. A weak quantum field can change the internal quan
state of an atom and, vice versa, a single atom is able to h
an appreciable influence on the light field. Both effects ha
evidently, many interesting practical implications includin
single-atom detectors as well as nonlinear micro-optical
ments on the single-photon level, which are in the hear
all-optical quantum information processing schemes@1#, e.g.,
to facilitate Bell state detectors for photons@2#.

So far optical experiments in the strong-coupling regi
have been performed with atoms put in tiny high-Q cavities
@3,4#. Here the origin of the strong coupling is the sm
volume of the discrete cavity modes. The local electric fi
sustained by a single photon becomes then very large. St
coupling in the microwave regime yielded several specta
lar results@5,6#. However, the electric field enclosed in thre
dimensions allows only limited accessibility, which comp
cates direct detection of the light and limits the time sca
In addition, the scalability to a large number of such e
ments seems rather difficult.

Hence, there is still a high demand for alternative set
that allow controlled manipulation and strong~nonlinear!
coupling of single photons. It seems natural to try to lift t
confinement of the light field in one particular dimension a
consider the interaction of transversely confined propaga
fields with nonlinear optical elements. If a photon forms
very short wave packet along its propagating direction,
again get a small total volume and a high field per phot
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Conceptually the most simple nonlinear element for su
wave packets is, of course, a single atom with a reson
dipole transition. An atomic dipole can be associated with
effective radiative cross section ofsA53l2/2p. Hence, as a
first guess one would expect that it is sufficient to simp
focus a light beam down to a cross section of the same o
of magnitude assA to enter the strong-coupling regime. Th
is not too restrictive, as beams can be focused down to a
size smaller thanl2. Unfortunately, this line of argumenta
tion is too naive and a precise calculation for such a stron
focused beam shows that the light will propagate through
atom without being noticeably influenced@7#. The reason for
this can be traced back to the large range of transverse w
vectors involved in the dynamics yielding rapid variation
input phase and polarization. Another way to enhance
effective atomic cross section could, in principle, consist
using a quantum degenerate gas as an optically dense
dium @8#. Here the use of many atoms leads to quite string
practical limitations.

It is the advent of highly developed nanofabrication tec
niques that may open the way to new geometries avoid
these problems and facilitating setups to implement qu
one-dimensional scattering processes on dipoles. Minia
ized waveguides on surfaces or optical fibers can be fa
cated with cross sections of the order of the opti
wavelength square. Photons traveling within are well co
fined in the transverse direction, while the field remains u
form in the longitudinal direction of propagation. The pro
lems of the beam divergence and rapidly varying wa
vector, encountered in free space, are missing in the wa
guide setup. Hence one can hope that a single atom plac
the field of such a mode will have considerable influence
the dynamics. The investigation of the prospects of suc
setup is the subject of the present paper.

We will study the time-dependent interaction of an atom
point dipole modeled by a two-level atom and the quantiz
electromagnetic field in a single transverse mode wavegu
We use the term ‘‘waveguide’’ in a general sense, avoid
any precise geometric specification. Instead, we set u
model that accounts for the generic features of these dev
The central property is that the atom interacts with a c
tinuum of transversally confined propagating modes. A sim
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lar system has been studied to investigate the influenc
input photon statistics on single-atom absorption@9#. For this
the theory of cascaded open systems@10,11# as an extended
form of the input-output formalism was applied. In contra
to the stationary scattering scenario, we will concentrate h
on the time-dependence of the scattering process, i.e.
considerwave packetsconsisting of one or a few photon
impinging on an atom. This allows one to find the depe
dence of the atomic dynamics and the amount of scatte
on the light pulse bandwidth and energy beyond the narr
bandwidth limit considered in Ref.@9#. For very short pulses
the energy of a single photon is strongly concentrated
space and thus saturation is expected to prominently in
ence the scattering process even for weak energy inci
wave packets. As a consequence, we have to take the
quantum dynamics of the dipole into account, including sa
ration to all orders.

To treat this problem of wave-packet scattering, we
velop a method based on a set of Heisenberg-Langevin e
tions for the field and atomic operators. These equatio
relying on first principles of quantum mechanics, will b
transformed into a simplified form by means of a Marko
approximation. This approximation closely relates our a
proach to the cascaded open systems method. Neverth
we are primarily interested in the field dynamics, call
‘‘channel’’ in the scheme of cascaded systems. Hence we
keep the waveguide electric field as an explicit dynam
component of our model. Let us mention here that so
numerical examples calculating the electric field of t
propagation of a single-photon wave packet through a sin
atom have been obtained before@12#. Similarly the dynamics
of a two-dimensional~2D! one-photon wave packet an
many two-state atoms modeling a beam splitter was num
cally solved@13#.

Nevertheless, the systematic and exhaustive discussio
the parameter space by a purely numerical approach se
hopeless. Fortunately, in our method, we are able to get
plicit analytical expressions for the scattered wavegu
field. This result exhibits the scaling with the ratio of th
transverse mode size and the atomic cross section. Thu
can easily reveal how this ratio governs the energy redis
bution in a scattering process. In addition, physical insigh
the phase properties and the pulse-shape deformation
also be gained.

As a possible application of our model we address
problem of atom-mediated nonlinear photon-photon inter
tion. So far, significant coupling has been reached with
help of a high-Q cavity @14# or might be reached by increas
ing the number of atoms@8,15#. The waveguide-atom inter
action could be the basis of nonlinear pulse amplifiers
even that of photonic quantum gates. Here we limit the st
to a prototype interference experiment in which two wa
packets impinge simultaneously on the same atom.

The paper is organized as follows. In Sec. II we pres
the model and introduce the basic parameter describing
coupling of the atomic dipole and the waveguide, and fina
calculate the scattered electric field generally within
Markoff approximation. In Sec. III the transmitted and r
flected Poynting vectors are studied for various initial sta
03383
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of the wave packet. These states include coherent states
the single-photon Fock state. We study the role of the pu
bandwidth in the scattering process and the saturation n
linearity for multiphoton wave packets. The phase proper
and the pulse-shape deformation is also discussed in
section. Then, Sec. IV is devoted to the interaction of lig
pulses. We conclude finally in Sec. V.

II. THE MODEL

Let us consider a single branch of modes propagating
the 1z direction of a lossless waveguide. The longitudin
wave numberk of the modes is assumed to obey the sim
dispersion relationk5v/c, which is valid far from the
branch threshold@16#. The effective transverse cross secti
of the modes

A5

E dx dyu f k~x,y!u2

u f k~xa ,ya!u2
,

wheref k(x,y) is the transverse mode function and (xa ,ya) is
the position of the atom, is approximately constant in t
range of the relevant longitudinal wave numbers. The det
of the transverse mode profile do not play an important r
in the forthcoming calculations as long as the atom may
treated as pointlike. Only the value of the mode function
the position of the atom enters in the calculation. This va
has been incorporated in the definition of the effective cr
sectionA. Similarly, the polarization properties of the fiel
can also be omitted provided the field is closely unifo
across the spatial wave function of the atom. No assump
is made on the atomic position relative to the waveguide
principle, the atom can sit inside a hollow waveguide, it c
be embedded in the dielectric material of a fiber or can
even outside a dielectric interacting with the evanescent fi
close to the surface.

The continuum field quantization follows the theory pr
sented in Ref.@17#. The electric radiation field is decom
posed into positive- and negative-frequency parts

E~z,t !5E(1)~z,t !1E(2)~z,t !, ~2.1!

where

E(1)~z,t !5 i E
0

`

dvA \v

4pecA $av~ t !exp@2 iv~ t2z/c!#

1bv~ t !exp@2 iv~ t1z/c!#%. ~2.2!

We separated the modes of the two counterpropagating
rections into setsav andbv—the first corresponding to the
forward and the latter to the backward propagating mod
The electric field is given in the interaction picture. Th
field-amplitude variablesav(t) and bv(t) describe then the
time variation due to the interaction with the atom. Th
follow the usual bosonic commutation rules

@av~ t !,av8
†

~ t !#5@bv~ t !,bv8
†

~ t !#5d~v2v8!, ~2.3!

all the other commutators vanish.
The atomic dipole, again in interaction picture, reads
2-2
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QUANTUM DESCRIPTION OF LIGHT-PULSE . . . PHYSICAL REVIEW A 65 033832
d5deg~s2e2 ivAt1s1eivAt!, ~2.4!

where the operatorss6 together with sz5(s1s2

2s2s1)/2 form a pseudospin obeying the spin-1
2 algebra.

We assume that the dipole moment is oriented parallel to
field polarization at the atomic position yielding maximu
coupling.

The dipole interaction Hamiltonian in the rotating-wa
approximation is given by

HI52 i\E dvgv@s1~aveivzA /c1bve2 ivzA /c!

3e2 i (v2vA)t2H.c.#, ~2.5!

wherezA is the position of the atom, and the coupling co
stants are

gv5A v

4pe\cAdeg . ~2.6!

Note that the dimension of the coupling constantgv is not a
frequency but 1/Asec. The use of the rotating-wave appro
mation is justified as we consider light pulses with a ba
width much smaller than the frequencyvA .

The evolution of the system variables is governed by a
of coupled Heisenberg-Langevin equations@18#

d

dt
av5gvs2e2 ivzA /cei (v2vA)t, ~2.7a!

d

dt
bv5gvs2eivzA /cei (v2vA)t, ~2.7b!

d

dt
s252g0s212szE dvgv

3~aveivzA /c1bve2 ivzA /c!e2 i (v2vA)t1 ĵ2 ,

~2.7c!

d

dt
sz522g0~sz11/2!

2E dvgv@s1~aveivzA /c1bve2 ivzA /c!

3e2 i (v2vA)t1H.c.#1 ĵz . ~2.7d!

Besides the terms originating from the interaction Ham
tonian~2.5!, we account for the interaction of the atom wi
an environment. This coupling results in a dissipation p
cess with decay rateg0 and with associated noise repr
sented by the operatorsĵ. The physical role of thisg0 decay
process is that it provides a channel for the transverse s
tering, i.e., when photons are scattered by the atom out o
waveguide. The environment consists of the free-space ra
tion modes@21#. Of course, the presence of the 1D wav
guide slightly perturbs the surrounding mode structure w
respect to the simple free-space case. This effect, which
pends on the specific choice of the waveguide geometr
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neglected and, for the sake of simplicity, in the numeri
examples we will use the free-space spontaneous decay
g05vA

3deg
2 /(6pe0\c3).

The waveguide modes form a one-dimensional c
tinuum. The above equations can be transformed then in
much simpler form by means of a Markoff approximatio
On integrating Eq.~2.7a!, the waveguide-field amplitude
arise in a form decomposed into a free field part and int
part radiated by the atom@18#

av~ t !5av~ t0!1gve2 ivzA /cE
t0

t

dt8s2~ t8!ei (v2vA)t8,

~2.8!

respectively. The back-propagating modes are decompo
analogously. The Markoff approximation is invoked to d
scribe the back action of the second term on the atom. It
be applied because the continuum is broadband around
atomic frequency. The free-field term is usually identifi
with a Langevin-type noise source. In the waveguide we c
not make this step, since we will consider initial field stat
different from the vacuum. Altogether, the atom is subject
the effect of the free field and to a relaxation into the wav
guide continuum. The polarization operators2 , for ex-
ample, follows

d

dt
s252~g01g1!s212szE dvgv@av~ t0!eivzA /c

1bv~ t0!e2 ivzA /c#e2 i (v2vA)t1 ĵ2 , ~2.9!

where a new damping rateg1 appears, and the second ter
contains the free-field contributions. The vacuum frequen
shift induced by the waveguide modes, accompanying
relaxation, is assumed to be already incorporated in a re
malized atomic frequencyvA . The rate of spontaneou
emission into the waveguide modes is given by

g152pgvA

2 5
1

2

sA

A g0 , ~2.10!

where the second expression directly exhibits the sca
with the transverse extension of the waveguide. It is rela
to the atomic radiative cross sectionsA53l2/2p. A natural
lower bound on the transverse mode size is at abouA
;(l/2)2 ~cf. lowest-order mode in hollow metallic wave
guide!, implying a maximum achievable coupling rati
g1 /g0;1. In the rangesA;A, one has a strong waveguide
atom coupling, which is manifested by the fact that the at
dissipates its energy equally into the waveguide and the f
space ‘‘lossy’’ modes. This situation could turn out to be
suitable basis to construct single-atom detectors or effic
light-emitting diodes.

For the following, it is convenient to introduce the ‘‘free
pulse’’ operators

gv0
a0~ t !5E

0

`

dvgvav~ t0!e2 i (v2v0)t, ~2.11!

and the same forb0(t), wherev0 can be any frequency an
will later be identified with the central frequency of the wa
packet. The evolution of the atomic operators is given by
equations
2-3
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d

dt
s252gs212szgv0

@a0~ t2zA /c!eiv0zA /c

1b0~ t1zA /c!e2 iv0zA /c#e2 i ~v02vA!t1 ĵ2

~2.12a!

d

dt
sz522g~sz11/2!2gv0

$s1@a0~ t2zA /c!eiv0zA /c

1b0~ t1zA /c!e2 iv0zA /c#e2 i (v02vA)t1H.c.%1 ĵz ,

~2.12b!

whereg5g01g1 is the total decay rate of the atomic dipol
This is the generalization of the Bloch equations for t
atomic dipole operators to describe the effect of a tim
dependent external excitation in the case of a quantum d
ing field. For certain quantum states of the field, a closed
of equations can be derived from the above operator eq
tions to calculate the matrix elements of the atomic ope
tors. Note that only the free field appears in the dynamics
the atomic-dipole operators. This is a direct consequenc
the Markoff approximation, which implies that any chan
of the electromagnetic field by the atom cannot act back o
the atom. In other words, a photon emitted by the atom i
the waveguide leaves the interaction region immediately
cannot be reabsorbed. There is no feedback mechanis
provided by the mirror in cavities. Hence the strong coupl
between the atom and waveguide yields a different dynam
with respect to the case of ordinary cavity QED.

On inserting the solution of Eq.~2.12a! into Eq.~2.8!, the
field operator can be obtained in the form

av~ t !5av~ t0!1av
scat~ t !1av

back~ t !1av
rad~ t !1av

noise~ t !,
~2.13!

where the five terms represent, respectively, the free field
field forward and backward scattered by the atom, the fi
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radiated by an initially excited atom, and finally the vacuu
noise that is coupled into the waveguide via the atomic
pole. They read

av
scat~ t !5gvgv0

e2 i ~v2v0!zA /cE
0

t

dt8ei ~v2vA1 ig!t8

3E
0

t8
dt9e2 i ~v2vA1 ig!t92sz~ t9!a0~ t92zA /c!,

~2.14a!

av
back~ t !5gvgv0

e2 i ~v1v0!zA /cE
0

t

dt8ei ~v2vA1 ig!t8

3E
0

t8
dt9e2 i ~v2vA1 ig!t92sz~ t9!b0~ t91zA /c!,

~2.14b!

av
rad~ t !5gve2 ivzA /cE

0

t

dt8 exp@ i ~v2vA1 ig!t8#s2~ t0!,

~2.14c!

av
noise~ t !5gve2 ivzA /cE

0

t

dt8

3exp@ i ~v2vA1 ig!t8#E
0

t8
dt9egt9ĵ2~ t9!.

~2.14d!

We have set the initial timet050. Nevertheless, we still will
uset0 sometimes in order to explicitly mark the initial valu
of the operators evolving in the Heisenberg picture. In
double-time integrals, the order can be exchanged to c
out one of them. Substituting the solution in the electric-fie
decomposition~2.2!, the integral over the frequencyv can
also be performed. In this latter step, the lower bound of
frequency integration is extended to2`. For ct.z2zA ,
i.e., a light pulse has enough time to travel to the atom,
finds the following result for the waveguide electric field
the half spacez.zA :
finally the
rimental
as naively
E(1)~t!5 iA \v0

4pecAe2 iv0tFa0~t!1
1

2

sA

A g0E
0

t1zA /c

dt8 exp@ i ~v02vA1 ig!~t1zA /c2t8!#2sz~ t8!a0~ t82zA /c!

1
1

2

sA

A g0e22iv0zA /cE
0

t1zA /c

dt8exp@ i ~v02vA1 ig!~t1zA /c2t8!#2sz~ t8!b0~ t81zA /c!G
1 iA \vA

4pecA2pgvA
exp@2~ ivA1g!~t1zA /c!#Fs2~ t0!1E

0

t1zA /c

dt8egt8ĵ2~ t8!G , ~2.15!

wheret5t2z/c, and only the modesav are considered as we are interested in the field outgoing in the1z direction (z
.zA). In the subsequent terms one gets the free, the forward, the backward scattered, then the directly radiated and
noise field. This is the central result that we use in the following to calculate measurable quantities in various expe
scenarios. One can draw a general conclusion already at this stage that the scattered terms are proportional,
expected, to the ratiosA /A.
2-4
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III. SCATTERING OF A SINGLE LIGHT PULSE

In this section we study the scattering process of a sin
light-wave packet off a ground-state atom. We calculate h
the photons carried by the wave packet are redistribu
among the forward, backward, and transverse directions.
relevant quantity to be calculated is the expectation value
the Poynting vector defined as

S~z,t !5
A

\v0

1

m0
^C0uB(2)E(1)1E(2)B(1)uC0&,

~3.1!

given in units of photon current in the forward and backwa
direction after the scattering event. In the present sc
model the magnetic field is just proportional to the elect
field. The initial stateuC0& is a simple product state of th
waveguide field state, the atomic ground state, and the e
ronment

uC0&5uca&u0b&ug&u0e&. ~3.2!

The waveguide field describes a wave packet propagatin
the direction1z, i.e., only the modesav are excited with
th
th

nc
e

e
a
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state uca&, while the counterpropagating modesbv are in
vacuum stateu0b&. As for the initial stateuca& we will use
Fourier-transform-limited Gaussian pulses in a coherent s
or in a single-photon Fock state, respectively. The me
Poynting vector of a free pulse is then

S0~z,t !5Na

V

A2p
expF2

1

2
V2~ t2z/c!2G , ~3.3!

whereNa is the mean photon number carried by the wa
packet andV is the pulse bandwidth.

As no field is radiated from an atom in the ground sta
there is no contribution from the fourth term of Eq.~2.15! to
the Poynting vector. Similarly the free-space environmen
well as the backward-propagating modes are in vacu
state. Therefore, all the terms containing the noise oper
ĵ2 or bv(t0) on the right-most side will vanish acting on th
initial stateuC0&. Thus the mean Poynting vector in the fo
ward directionz.zA is formed from the superposition of th
original light pulse and the one forward scattered by
atom
S~t!5
V

A2p
e2V2t2/2F ^u~t!uu~t!&1

sA

A g0E
0

t1zA /c

dt8 Re$F~t,t8!^u~t!u2sz~ t8!uu~ t82zA /c!&%

1 S sA

2A g0D 2E
0

t1zA /c

dt8F * ~t,t8!E
0

t1zA /c

dt9F~t,t9!^u~ t82zA /c!u4sz~ t8!sz~ t9!uu~ t92zA /c!&G ,
~3.4!
-

ng
nt
be

re
tate
wheret5t2z/c and

F~t,t8!5expS V2

4
~t1t82zA /c!~t1zA /c2t8!

1 i ~v02vA1 ig!~t1zA /c2t8! D . ~3.5!

The Poynting vector is expressed in a product form with
original pulse-shape function separated in a first term. To
end, we defined an auxiliary state

uu~ t !&5~2pV2!21/4eV2t2/4a0~ t !uC0&. ~3.6!

As we work in the Heisenberg picture, the time depende
of this auxiliary state does not describe a dynamical proc
but follows from its definition.

The reflected field in the domainz,zA results from the
light backscattered by the atom~and additional quantum
noise!. As for the atomic radiation the two directions in th
waveguide are equivalent, one gets an expression form
identical to the third term of Eq.~3.4!
e
is

e
ss

lly

S(back)~t8!5
V

A2p
e2V2t82/2S sA

2Ag0D 2

3E
0

t81zA /c
dt8F * ~t8,t8!E

0

t81zA /c
dt9F~t8,t9!

3^u~ t82zA /c!u4sz~ t8!sz~ t9!uu~ t92zA /c!&,

~3.7!

where t85t2(2zA2z)/c, expressing that the field propa
gates now in the2z direction.

A. Coherent-state light pulse

In the following, we present how to evaluate the Poynti
vector~3.4! in the case of wave packets initially in a cohere
state. A definition of multimode coherent-state pulses can
found in Ref. @17#. They have the property that they a
eigenstates of the annihilation operators. A coherent-s
pulse of bandwidthV, centered initially atz50, can be de-
fined through the eigenvalue equation

av~ t0!uca&5ANaS 2

pV2D 1/4

exp@2~v2v0!2/V2#uca&,

~3.8!
2-5
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where Na is the initial mean photon number in the wav
packet. Its photon statistics is Poissonian around the m
Na with varianceANa.

It follows that uC0& is an eigenstate of the free-pulse o
eratora0(t) and we have

uu~ t !&5ANauC0&. ~3.9!

To evaluate the Poynting vector Eq.~3.4!, we need the one
time and the two-time averages of the population invers
operator. An equation of motion for^sz(t)& can be directly
obtained by taking the mean of the Eqs.~2.12!. Using again
that uC0& is an eigenstate of the free-pulse operators,
usual form of the optical Bloch equations is found. W
present it in the Appendix. However, when the evolution
^sz(t)sz(t8)& as a function oft is calculated from Eq.~2.12!,
the operatorsz(t8) stands in between the free-pulse opera
and the stateuC0&. We prove in the same Appendix tha
a0(t2zA /c) ands(t8) commute fort.t8 and, therefore, the
action of the pulse operator on its eigenstate can be ea
carried out. This lemma allows the use of a form of t
quantum regression theorem to calculate the two-time a
age^sz(t)sz(t8)&.

As it is shown in the Appendix, an effective single-phot
Rabi frequencygeff5gv0

(2pV2)1/4 can be identified in the
Bloch equations. This coupling constant suggests that
wave packet has an effective ‘‘volume’’ ofA2pcA/V. For
larger bandwidthsV, we get a stronger field per photo
which is a central quantity in cavity QED. However, th
interaction time between the atom and the transform-limi
pulses gets simultaneously shorter, limiting the possibility
coherent operations on the atomic states.

The photon numberNa multiplies all the terms in the
Poynting vector~3.4!. Beyond this simple linear dependenc
the photon number has an influence on the evolution of
atomic population. Through this term, the atomic saturat
introduces a nonlinear behavior into the Poynting vec
which can be a noticeable effect in the strong-coupling
gime even for relatively small photon numbersNa .

B. Fock-state light pulse

Now let us turn to a second example and study a w
packet of precisely one photon. The single-photon Fock s
is defined by

u1a&5E
0

`

dvS 2

pV2D 1/4

exp@2~v2v0!2/V2#av
† ~ t0!u0a&.

~3.10!

The definition in Eq.~3.6! leads to

uu~ t !&5u0a&u0b&ug&u0e&, ~3.11!

which, similar to the coherent-state case Eq.~3.9!, is time
independent. We now need the diagonal matrix eleme
^0,gusz(t)u0,g& and ^0,gusz(t)sz(t8)u0,g& where 0 stands
for both modesa and b and for the environment. Equatio
~2.12! implies that^0,gusz(t)u0,g&521/2 for arbitrary time
t. In fact, this value is the initial condition itself that make
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the right-hand side of the generalized Bloch equations v
ish. Using again the commutation of the operato
a0(t2zA /c) and s(t8), one can show tha
^0,gusz(t)sz(t8)u0,g&51/4 independently oft and t8. We
get such simple solutions because we consider, formally,
Bloch equations when the atom is driven by a ‘‘vacuu
pulse.’’

Having the exact solutions for the one-time and two-tim
averages, the integrals in Eq.~3.4! can be analytically evalu-
ated. The integration invokes the complex error function a
the result itself is not very instructive. We omit this rath
long formula here and only show typical results graphica
in the figures of the following section.

C. Single-atom transmittance and reflectance

We continue the discussion of light-pulse scattering o
single atom by means of numerical examples. For this
evaluate the Poynting-vector expressions~3.4! and ~3.7! to
determine how much of a light pulse is transmitted and
flected back by the atom. We introduce the transmittan
i.e., the transmitted mean energy~photon number! divided by
the mean energy of the impinging wave packet. For an a
being on resonance with the pulse-carrier frequencyvA
5v0, we expect the strongest scattering. In the forthcom
examples the waveguide cross section is set tosA5A.

In Fig. 1 the single-atom transmittance is presented a
function of the pulse bandwidth on a logarithmic scale.

The overall shape of the transmittance curve is very si
lar for a pulse initially in a coherent state withNa51 ~solid
line! or if it is in a single-photon Fock state~dashed line!.
The difference is manifest for bandwidths close to the tr
sition linewidth,V'g0. Apparently the effective saturatio
is reduced if exactly one photon is present instead of a
tribution with mean one.

As the incoming mean photon number is now 1 in th
example, the transmittance gives directly the mean trans
ted photon number. The atom presents an ‘‘obstacle’’ p
vided the pulse length is of the order of the natural lifetim

FIG. 1. Resonant single-atom transmittance as a function of
pulse bandwidth for pulses initially in coherent state with me
photon numberNa51 ~solid line! and in single-photon Fock stat
~dashed line!. The parameters arevA5v0 ~resonant pulse! and
sA5A.
2-6
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QUANTUM DESCRIPTION OF LIGHT-PULSE . . . PHYSICAL REVIEW A 65 033832
or longer, i.e., forV,g0. The single-atom effect on th
transmittance is approximately constant up to pulse leng
of few times the atomic lifetime. In this range the transmitt
power is less than the half of the incoming one. The low
bound in the monochromatic limit is given by

T 5122
g1

g
1S g1

g D 2

, ~3.12!

which is 4/9'0.44 in the example. There is an intermedia
regimeg0,V,10g0 where the transmittance changes ra
idly and it is noticeably smaller for a Fock-state pulse th
for a coherent state. Finally, short light pulses,V@g0, pass
through the atom almost without being appreciably affect
realizing a sort of short-pulse filter. A simple explanation
that a large spectral part of a broadband pulse is far a
from the atomic resonance, which reduces the effective c
pling strength. Figure 1, therefore, suggests that in situat
where temporal resolution is required, for example in a
tection scheme, the best choice for the bandwidth isV'g0
where relatively short light pulses still experience significa
attenuation. Longer pulses provide less temporal resolu
without much improvement of the signal, whereas sho
pulses experience a significantly smaller change.

FIG. 2. Transmittance as a function of the mean photon num
Na of the initial coherent-state pulse. Curves~i!, ~ii !, ~iii !, and~iv!
are associated with the pulse bandwidthsV5g0/100, g0/10, g0,
and 10g0, respectively.
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Let us note briefly that the part of the impinging pulse th
is not transmitted, is either reflected or, most probably, sc
tered in the transverse lossy modes. The reflectance ha
upper bound, which is reached again in the monochrom
limit. It is ( g1 /g)251/9'0.11 in the numerical example
considered for Fig. 1, that is at least with probability 4/9 t
photon is lost from the waveguide.

Due to saturation, there is a nonlinear effect in the tra
mittance. The more photons the light pulse carries, the m
the atom gets excited. Population in the upper state of
atom reduces effectively the dipole strength, as follows fr
the term^sz& in the Eq.~3.4!, which amounts, therefore, to
decrease in the amount of scattering. This effect is exhib
in Fig. 2 where the transmittance is plotted against the m
photon numberNa of the initial coherent-state pulse for var
ous pulse bandwidths. Parameters are the same as in F
The starting points of the curves atNa51 correspond to four
different points on the curve of Fig. 1. For longer pulses, s
the curve~i! or ~ii ! in the figure, the saturation effect is sma
This is because the effective coupling strengthgeff decreases
with the pulse length. Or, alternatively, one can view t
same effect as a consequence of the photons arriving m
distributed in time. For short pulses, on the other hand,
coupling constant becomes large enough to reach satura
even with weak incident light pulses. For example, curve~iii !
corresponding toV5g0 manifests a drastic nonlinear beha
ior even for photon numbers around 1.

Figure 3 shows transmitted and reflected photon numb
for V5g0/10 @same as in curve~ii ! of Fig. 2# depending on
the mean photon number of the pulse. The square root of
mean photon number is shown with error bars, represen
the inherent quantum noise associated with coherent st
In order to detect the single-atom scatterer with high pr
ability, the change in the photon number~reflected or trans-
mitted! must be larger than the noise. The figure reveals
minimum necessary photon number of the probe pulse
achieve the required operation regime. Photon number
about 20 in the probe pulse are sufficient to get a high qu
tum efficiency for the detector.

D. Phase shift and pulse deformation

When the carrier frequency is detuned from atomic re
nance, the pulse can undergo a phase shift~dispersive scat-

er
n
e
h

FIG. 3. Transmitted~a! and re-
flected~b! number of photons as a
function of the initial mean pho-
ton numberNa . Error bars indi-
cate the square root of the mea
signal corresponding to the nois
in a coherent state. The bandwidt
is setV50.1g0.
2-7
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PETER DOMOKOS, PETER HORAK, AND HELMUT RITSCH PHYSICAL REVIEW A65 033832
tering!. This phase shift can be the basis of a single-at
birefringence in waveguides. This happens if the atomic
pole is parallel to one of the polarization modes and ortho
nal to the other one. Only the first polarization mode ex
riences a phase shift whose magnitude will be estima
based on Eq.~2.15!, in this section.

Strictly speaking the study of the phase properties ne
sitates the definition of a phase operator and the investiga
of its time evolution. Here we will adopt a simplified trea
ment that allows perhaps a more instructive insight into
phase properties. Initially a coherent-state pulse, define
Eq. ~3.8!, is taken with the phase 0, i.e., the amplitude of
the components is real. We assume that the state stays a
a coherent state all along the evolution. This is fulfilled wh
the pulse induces little atomic population excitation. Th
formally, the inversion operatorsz can be replaced by
21/2 times the unity operator, and the stateuC0& is indeed
an eigenstate of the electric field operator, Eq.~2.15!, at any
time. The phase can be described by the argument of
corresponding complex eigenvalue, which we can write a

E(1)~t!uC0&5 iA \v0

4pecAe2 iv0ta0~t!„11h~t!…uC0&,

~3.13!

where a0(t)5ANa(2pV2)1/4exp(2V2t2/4) describes the
initial Gaussian pulse shape. The radiated and the back
tered terms, the third and the fourth terms in Eq.~2.15!,
vanish because of the choice of the initial condition. T
noise term is negligible as it is proportional to the atom
excitation, which is supposed to be small. Thus, the te
h(t) stems exclusively from forward scattering. It can
generated in a simple form by changing the integration v
able in Eq.~2.15! as t8→t1zA /c2t8. One gets

h~t!52
1

2

sA

A g0E
0

t1zA /c

dt8exp@ i ~v02vA!t8#

3exp@2~g2V2t/2!t8#e2V2t82/4. ~3.14!

On inspecting Eqs.~3.13! and ~3.14!, two effects of the for-
ward scattering on the coherent-state amplitude can be
ticed. First of all, the coherent-state amplitude is shifted w
a relative amount ofh(t). Second, this shift depends ont
5t2z/c, which yields a deformation with respect to the in
tial Gaussian pulse shape. The upper integration boun
Eq. ~3.14! can be extended to infinity if the distancezA be-
tween the initial pulse and the atom is very large compa
to the pulse extensionc/V. Hence, the only dependence ont
derives from the termg2V2t/2 in the exponent. Ast varies
within 61/V in the pulse, the ratio ofg andV decides how
much the pulse shape is distorted.

For very long pulses~quasimonochromatic excitatio
limit ! the exponential decay withg dominates the integrand
The other exponentials can be neglected and the integral
ders the well-known Lorentzian form of the single-atom s
ceptibility x5(sA/2A)/@(v02vA)1 ig#. Evidently, in this
limit the result does not depend ont. For general relation
betweenV and g, the integral has to be evaluated nume
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cally. Let us first study the change of the coherent-state
plitude as a function of the detuning, and then its depende
on t.

For the first case, we fixt50 and plot the numerica
solution of h(t50) in Fig. 4. We show the real and th
imaginary parts ofh(0) as a function of the detuningv0
2vA for two bandwidth values,V5g0 and V50.1g0. By
analogy with the susceptibility, the real and imaginary pa
can be regarded as an absorption and a dispersionlike cu
respectively. For reference, the Lorentzian function ass
ated with the quasimonochromatic excitation limit~linewidth
g, oscillator strengthsA/2A) is also plotted with dashed
lines. The three curves merge asymptotically for very la
detunings. The reason is that the frequency component
the pulse are more or less uniformly detuned from the ato
frequency, much like in the monochromatic limit. Hence, t
phase shift can be well approximated from the analy
Lorentzian solution. Otherwise, for moderate detunings,
bandwidth dependence of the change in the coherent-s
amplitude is quite apparent in the figure. The narrower

FIG. 4. Change of the coherent-state amplitude as a functio
the pulse-carrier frequency detuning from the atomic resona
Both the ‘‘absorption’’ Re$h(0)% and the ‘‘dispersion’’ Im$h(0)%
curves are plotted with solid lines forV5g0 andV50.1g0. This
latter corresponds to the largerh(0) values. Dashed curves sho
the Lorentzian shape for reference.

FIG. 5. Phase shift as a function of the pulse positionVt. For
narrow enough bandwidth the phase shift gets independent ot.
Parameters arev02vA54g0 , sA /A51.
2-8
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QUANTUM DESCRIPTION OF LIGHT-PULSE . . . PHYSICAL REVIEW A 65 033832
bandwidth, the larger the phase shift obtained.
When the change in the coherent-state amplitudeh(t) is

small with respect to 1 and approximately proportional toi,
that is, forv02vA@g0, it directly gives the rotation angle in
phase space, i.e., the phase shift. The phase shift as a
tion of t is presented in Fig. 5. The detuning is chosenv0
2vA54g0 where the absorption is well reduced and t
pulse power is almost completely transmitted through
atom. One can see in the figure that rotation angles in
range of 0.11 rad'6° are induced by a single atom fo
sA5A. Note that forV50.1g0 the phase shift is almos
uniform, while it changes considerably forV5g0. In both
cases the deformation is asymmetric, showing that the f
and the back of the pulse interact with an atom in a differ
state.

IV. INTERFERENCE OF LIGHT PULSES

One possible application of such a setup is nonlinear p
tonics, i.e., doing optics with few photons beyond be
splitters and mirrors@19#. As a prototype of this dynamics
let us study now the ‘‘collision’’ of two pulses propagating
opposite directions. Instead of considering the modesbv(t0)
initially in vacuum state, we will properly define an initia
state that describes a wave packet centered atz52zA . Then,
this backward propagating wave packet and the forw
propagating one encounter in the position of the atom az
5zA , where the atomic dipole can mediate an interact
p
om
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between them. The calculations are based on the genera
sult presented in Eq.~2.15!, which holds for any initial con-
dition.

We calculate the Poynting vector in the rangez.zA after
the pulse collision. Here the field is composed of the init
pulse in the modesav and its forward-scattered part, supe
imposed with the backscattered part of the pulse in
modesbv . One gets an expression quite similar to the res
in Eq. ~3.4!

FIG. 6. Mean photon numberN1 outgoing in the1z direction
as a function of the relative phasew of two identical counterpropa-
gating coherent-state pulses. The mean photon numbers arNa

5Nb51, the bandwidth isV50.3g0, andsA /A51.
S~t!5
V

A2p
e2V2t2/2F ^u~t!uu~t!&1

sA

2Ag0E
0

t1zA /c

dt82 Re$F~t,t8!^u~t!u2sz~ t8!uv~ t82zA /c!&%

1S sA

2Ag0D 2E
0

t1zA/c

dt8F * ~t,t8!E
0

t1zA /c

dt9F~t,t9!^v~ t82zA /c!u4sz~ t8!sz~ t9!uv~ t92zA /c!&G , ~4.1!
the

the

to

en-
have
e
ing
two
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he
just we needed to introduce a second stateuv(t)&, which is
defined by

uv~ t !&5~2pV2!21/4eV2t2/4@a0~ t !1e2iv0zA /c

3b0~ t12zA /c!#uC0&. ~4.2!

Let us consider first the case when the two counterpro
gating pulses are in a coherent state. The initial state is c
posed of the stateuca& as defined in Eq.~3.8!, while the
back-propagating modes are in the stateucb& where

bv~ t0!ucb&5ANbeiwS 2

pV2D 1/4

3exp@2~v2v0!2/V2#e2ivzA /cucb&.

~4.3!
a-
-

The last exponential term ensures that the position of
pulse is z52zA at t5t0. The stateuv(t)& is proportional
again to the initial state

uv~ t !&5~ANa1eiwANb!uC0&. ~4.4!

One can immediately recognize that the appearance of
stateuv(t)& in the second and third terms of Eq.~4.1! gives
rise to intriguing interferometric phenomena. Compared
the simple scattering scenario given by Eq.~3.4!, the second
term, which is responsible for the absorption, can be
hanced. To this end, the counterpropagating pulses must
the same phase, i.e.,w50. Then the forward-scattered puls
and the backscattered pulse interfere constructively yield
a reduced transmitted signal. On the other hand, the
pulses can interfere destructively when they black out e
other in the position of the scatterer, i.e., forNa5Nb andw
5p. The atom being in dark, this situation looks as if t
2-9
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PETER DOMOKOS, PETER HORAK, AND HELMUT RITSCH PHYSICAL REVIEW A65 033832
atom were absent and the pulses propagate freely.
simple example demonstrates that there is indeed a nontr
interaction between the pulses mediated by a single at
Since the transverse scattering is missing, the outcom
definitely different from the coherent sum of the outcom
obtained with two single pulses. In between the extre
cases the outgoing mean photon number in the1z direction,
denoted byN1 varies as a function of the phasew. This is
shown in Fig. 6 where a difference of almost 80% is obtain
for a bandwidth V50.3g0 and a beam cross sectio
sA /A51.

Assume that we have a mean photon numberNa fixed,
e.g., Na51. Then the photon numberN1 outgoing in the
forward 1z direction can be tuned by varying the photo
number Nb . This effect is represented in the Fig. 7. Th
well-pronounced minimum results from the concurrence
the second term of Eq.~4.1!, which scales asANb and re-
duces the outgoing photon number, and the third term, wh
is linear inNb and increases the photon flux due to backsc
tered light. The manifest deviation from the linear behav
is due to atomic saturation.

Let us finally consider the collision of two Fock-sta
pulses on the atom. The initial state isuC0&
5u1a&u1b&ug&u0e&, whereu1b& is defined by

u1b&5E
0

`

dvS 2

pV2D 1/4

3exp@2~v2v0!2/V2#e2ivzA /cbv
† ~ t0!u0b&.

~4.5!

Initially there is no quantum correlation between the tw
Fock-state wave packets. As the phase in Fock states is c
pletely undefined, one expects that the interference is m
ing in this case. This is true and can be formally traced b
to the fact that for the auxiliary state of Eq.~4.1!,

uv~ t !&5u0a,1b&1u1a,0b&, ~4.6!

the contribution ofa0(t82zA /c) ~‘‘forward-scattered pho-
ton’’ ! and the contribution ofb0(t81zA /c) ~‘‘back-reflected

FIG. 7. Mean photon numberN1 outgoing in the1z direction
as a function of the mean photon numberNb of the pulse incoming
from the backward2z direction. Parameters are as in Fig. 6.
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photon’’! do not add up algebraically. Note that for cohere
state pulses this was different, the second ‘‘absorption’’ te
of Eq. ~4.1! got a factorANa1eiwANb and the Bloch equa-
tions had to be solved only for the mean of atomic operato
Here, for Fock states, one has to solve a specific realiza
of the generalized Bloch equations~see the Appendix!. How-
ever, these equations are inhomogeneous and the soluti
far from being the sum of two terms, one originating
u0a,1b& and the other inu1a,0b&. The numerically obtained
result for the mean photon number outgoing in the1z di-
rection is, however, very similar to the one obtained with o
single impinging pulse. No interferometric enhancement
reduction of the outgoing photon number can be observed
pulses initially in Fock states.

V. CONCLUSION

For a field transversally confined in a tiny waveguide
single atom is able to have a significant effect on a lig
wave packet traveling across the atom. As limiting cases
the time-dependent 1D scattering, one finds a transmitta
reduction below 50%, strong nonlinearity in the transm
tance even for very low energy pulses, and interferome
coupling of two wave packets with a visibility of up to 80%
All these effects clearly demonstrate that miniaturiz
waveguides or fibers coupled to an atomic dipole can be u
as efficient single-atom detectors, or photon-photon coupl
As one might be able to control a single-atom state on
quantum level, this could pave the way to genuine quant
devices for optics, as, e.g., a quantum switch for light@20#.
Similarly one could envisage to construct single-photon B
state analyzers, as they would be needed for improved q
tum cryptography or quantum teleportation setups.

In our model, we aimed at studying the fundamental n
ture of the interaction of a single atom with a wavegui
field. A regime that can be referred to as ‘‘strong-coupli
regime’’ occurs when the transverse extension of the wa
guide modes is close to the single-atom radiative cross
tion. The coherent interaction between the field and the a
can dominate damping. In contrast to cavity QED, howev
the waveguide-atom coupling yields a dissipationlike evo
tion of the atom since the waveguide modes form a bro
band continuum, similar to the reservoir composed of
free-space radiation modes. On one hand, a single a
within the waveguide field becomes a significant scatterer
featured by the effects presented in the paper. On the o
hand, it is questionable if a weak quantum field can perfo
coherent population transfer in an atom. This is becaus
large effective single-atom Rabi frequency (geff) is accom-
panied by the presence of a large damping rate (g1) in the
Bloch equations. In addition to this, the Rabi frequency d
pends on the interaction time defined by the pulse length.
example, for adiabatic passage techniques long interac
time is required, which inevitably leads to the reduction
the coupling constant. Our model equations provide a s
able ground to further study the dynamics of atoms coup
to one-dimensional continua of modes.
2-10
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APPENDIX: DERIVATION OF VARIOUS MATRIX
ELEMENTS OF THE ATOMIC OPERATORS

We prove in this appendix that the free-pulse opera
a0(t2zA /c) commutes with the population inversion oper
tor sz(t8) for times t.t8. This lemma allows the derivation
of a closed set of linear differential equations for the requi
matrix elements of the population inversion operator and
that of the two-time productsz(t)sz(t8). We briefly present
these equations, which are formally very similar to the Blo
equations, and the ones obtained by the quantum regres
theorem in the case of driving an atomic dipole transit
with a classical field.

By definition

C[@a0~ t12zA /c!,sz~ t2!#

5E dv exp@2 i ~v2v0!~ t12zA /c!#@ âv~ t0!,sz~ t2!#

5E dv exp@2 i ~v2v0!~ t12zA /c!#H @ âv~ t2!,sz~ t2!#

2gve2 ivzA /cE
0

t2
dt8ei (v2vA)t8@s2~ t8!,sz~ t2!#J ,

~A1!

where in the second step we used Eq.~2.8!. Atomic and field
operators, taken at the same time, commute, hence the
term vanishes. In the second term one can change the o
of the integrals
n
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C52e2 iv0zA /cE
0

t2
dt8 exp@ i ~v02vA!t8#

3@s2~ t8!,sz~ t2!#E dvgv exp@2 i ~v2v0!~ t12t8!#.

~A2!

The coupling constantgv being a slowly varying function of
v around the given optical frequencyv0 can be taken out of
the integral. The remaining inner integral amounts to
Dirac-delta function and

C52e2 iv0zA /cE
0

t2
dt8 exp@ i ~v02vA!t8#

3@s2~ t8!,sz~ t2!#2pgv0
d~ t82t1!

522pgv0
e2 iv0zA /c exp@ i ~v02vA!t1#

3@s2~ t1!,sz~ t2!#Q~ t22t1!, ~A3!

whereQ is the Heaviside step function, which proves o
conjecture.

The time-dependent effect of the light pulse on t
atomic-dipole operators can be determined from the
~2.12!. Depending on the initial state of the pulses, vario
matrix elements have to be calculated and inserted in
expressions for the Poynting vector Eqs.~3.4!, ~3.7!, and
~4.1!. In all the present cases, the required variables obe
set of linear differential equations that can be written in t
form

ṡ5B•s1b. ~A4!

When the initial pulses are in coherent states, the evo
tion of the quantum mean of the population inversion ope
tor is needed. It can be obtained by integrating the ab
differential equation with

s5S ^ŝz&

Re$^ŝ18 &%

Im$^ŝ18 &%
D , b5S 2g

0

0
D ,
B5S 22g 22~ANa1ANb cosw!g~ t ! 2ANb sinwg~ t !

2~ANa1ANb cosw!g~ t ! 2g v02vA

22ANb sinwg~ t ! vA2v0 2g
D , ~A5!
ent
ncy
where

ŝ18 ~ t !5ŝ1~ t !eiv0zA /c exp@2 i ~v02vA!t#. ~A6!

Formally, this equation is equivalent to the Bloch equatio
 s

obtained for an atom driven by a classical time-depend
excitation. The corresponding single-photon Rabi freque
reads

g~ t !5geff expF2
1

4
V2~ t2zA /c!2G , ~A7!
2-11
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with geff5gv0
(2pV2)1/4.

The two-time averages in Eq.~3.4! can be obtained by
using the quantum regression theorem. For a fixed timet8
prior to time t, the variables

s~ t !5S ^ŝz~ t !ŝz~ t8!&

^Re$ŝ18 ~ t !%ŝz~ t8!&

^Im$ŝ18 ~ t !%ŝz~ t8!&
D ~A8!

obey the linear differential equation given in the Eq.~A4!
with bT5(2g^sz(t8)&,0,0).

When the counterpropagating pulses are initially
single-photon Fock-states, the matrix eleme
^0a,1busz(t8)u1&, where u1&5u0a,1b&1u1a,0b&, is needed.
For symmetry reasons, the required element is just the ha
^1usz(t8)u1&, which can be obtained from the solution of E
~A4! with

s~ t !5S ^1uŝzu1&

Re$^0uŝ28 u1&%

Im$^0uŝ28 u1&%
D , b5S 2g

2g~ t !

0
D ,
tu

J

M

r,

03383
t

of

B5S 22g 24g~ t ! 0

0 2g v02vA

0 vA2v0 2g
D . ~A9!

Note that nondiagonal matrix elements are involved in t
set of equations. One can easily see that closed sets cou
derived with increasing number of equations for higher ph
ton number states, i.e., the presented approach is suitab
describe many other initial states as well. Finally, one g
for the necessary two-time average

s~ t !5S ^1uŝz~ t !ŝz~ t8!u1&

^0uŝ28 ~ t !ŝz~ t8!u1&

^1uŝ18 ~ t !ŝz~ t8!u0&
D , b5S 2g^1usz~ t8!u1&

g~ t !

g~ t !
D ,

B5S 22g 22g~ t ! 22g~ t !

0 i ~v02vA!2g 0

0 0 i ~vA2v0!2g
D .

~A10!
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