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Quantum description of light-pulse scattering on a single atom in waveguides
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We present a time-dependent quantum calculation of the scattering of a few-photon pulse on a single atom.
The photon wave packet is assumed to propagate in a transversely strongly confined geometry, which ensures
strong atom-light coupling and allows a quasi-one-dimensional treatment. The amplitude and phase of the
transmitted, reflected, and transversely scattered part of the wave packet strongly depend on the pulse length
(bandwidth and energy. For a transverse mode size of the ordar pfve find nonlinear behavior for a few
photons already, or even for a single photon. In a second step we study the collision of two such wave packets
at the atomic site and find striking differences between the Fock state and coherent state wave packets of the
same photon number.
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I. INTRODUCTION Conceptually the most simple nonlinear element for such
wave packets is, of course, a single atom with a resonant
Identifying and realizing systems with strong coupling be-dipole transition. An atomic dipole can be associated with an
tween light and matter is one of the central objectives ofeffective radiative cross section of,=3\?/27. Hence, as a
current research in quantum optics. In the strong-couplindirst guess one would expect that it is sufficient to simply
regime the coherent interaction between a few atoms and tHecus a light beam down to a cross section of the same order
radiation field of few photons takes place on a fast time scalef magnitude as , to enter the strong-coupling regime. This
and is not masked by the dissipative coupling to the environis not too restrictive, as beams can be focused down to a spot
ment. A weak quantum field can change the internal quanturgize smaller thar2. Unfortunately, this line of argumenta-
state of an atom and, vice versa, a single atom is able to havin is too naive and a precise calculation for such a strongly
an appreciable influence on the light field. Both effects havefocused beam shows that the light will propagate through the
evidently, many interesting practical implications including atom without being noticeably influencgdl]. The reason for
single-atom detectors as well as nonlinear micro-optical elethis can be traced back to the large range of transverse wave
ments on the single-photon level, which are in the heart ofectors involved in the dynamics yielding rapid variation of
all-optical quantum information processing schefidse.g.,  input phase and polarization. Another way to enhance the
to facilitate Bell state detectors for photof$s. effective atomic cross section could, in principle, consist in
So far optical experiments in the strong-coupling regimeusing a quantum degenerate gas as an optically dense me-
have been performed with atoms put in tiny hi@heavities  dium[8]. Here the use of many atoms leads to quite stringent
[3,4]. Here the origin of the strong coupling is the small practical limitations.
volume of the discrete cavity modes. The local electric field It is the advent of highly developed nanofabrication tech-
sustained by a single photon becomes then very large. Strongques that may open the way to new geometries avoiding
coupling in the microwave regime yielded several spectacuthese problems and facilitating setups to implement quasi-
lar results]5,6]. However, the electric field enclosed in three one-dimensional scattering processes on dipoles. Miniatur-
dimensions allows only limited accessibility, which compli- ized waveguides on surfaces or optical fibers can be fabri-
cates direct detection of the light and limits the time scalescated with cross sections of the order of the optical
In addition, the scalability to a large number of such ele-wavelength square. Photons traveling within are well con-
ments seems rather difficult. fined in the transverse direction, while the field remains uni-
Hence, there is still a high demand for alternative setupgorm in the longitudinal direction of propagation. The prob-
that allow controlled manipulation and strorfgonlineaj  lems of the beam divergence and rapidly varying wave
coupling of single photons. It seems natural to try to lift thevector, encountered in free space, are missing in the wave-
confinement of the light field in one particular dimension andguide setup. Hence one can hope that a single atom placed in
consider the interaction of transversely confined propagatinghe field of such a mode will have considerable influence on
fields with nonlinear optical elements. If a photon forms athe dynamics. The investigation of the prospects of such a
very short wave packet along its propagating direction, wesetup is the subject of the present paper.
again get a small total volume and a high field per photon. We will study the time-dependent interaction of an atomic
point dipole modeled by a two-level atom and the quantized
electromagnetic field in a single transverse mode waveguide.
*On leave from Research Institute for Solid State Physics andVe use the term “waveguide” in a general sense, avoiding

Optics, Budapest, Hungary. any precise geometric specification. Instead, we set up a
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"Present address: Optoelectronics Research Centre, University dhe central property is that the atom interacts with a con-
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lar system has been studied to investigate the influence aff the wave packet. These states include coherent states and
input photon statistics on single-atom absorpfi®h For this  the single-photon Fock state. We study the role of the pulse
the theory of cascaded open systdii8,11] as an extended bandwidth in the scattering process and the saturation non-
form of the input-output formalism was applied. In contrastlinearity for multiphoton wave packets. The phase properties
to the stationary scattering scenario, we will concentrate herand the pulse-shape deformation is also discussed in this
on the time-dependence of the scattering process, i.e., weection. Then, Sec. IV is devoted to the interaction of light
considerwave packetgonsisting of one or a few photons Pulses. We conclude finally in Sec. V.

impinging on an atom. This allows one to find the depen-

dence of the atomic dynamics and the amount of scattering Il. THE MODEL

on the light pulse bandwidth and energy beyond the narrow- Let us consider a single branch of modes propagating in

bandwidth limit considered in Reff9]. For very short pulses, . the +z direction of a lossless waveguide. The longitudinal

the energy of a single photon is strongly concentrated Nwave numbek of the modes is assumed to obey the simple

space and thus saturation is expected to prominently inﬂud'spersion relationk= w/c. which is valid far from the

ence the scattering process even for weak energy incide anch threshol@16]. The effective transverse cross section
wave packets. As a consequence, we have to take the fi lfthe modes

guantum dynamics of the dipole into account, including satu-
ration to all orders. 2
To treat this problem of wave-packet scattering, we de- J dx dyffi(x.y)|
velop a method based on a set of Heisenberg-Langevin equa- - f(Xa,Ya)|2
tions for the field and atomic operators. These equations, K% a
relying on first principles of quantum mechanics, will be wheref (x,y) is the transverse mode function ang (y.) is
transformed into a simplified form by means of a Markoff the position of the atom, is approximately constant in the
approximation. This approximation closely relates our aprange of the relevant longitudinal wave numbers. The details
proach to the cascaded open systems method. Neverthelesisthe transverse mode profile do not play an important role
we are primarily interested in the field dynamics, calledin the forthcoming calculations as long as the atom may be
“channel”in the scheme of cascaded systems. Hence we willreated as pointlike. Only the value of the mode function at
keep the waveguide electric field as an explicit dynamicthe position of the atom enters in the calculation. This value
component of our model. Let us mention here that someéas been incorporated in the definition of the effective cross
numerical examples calculating the electric field of thesection.4. Similarly, the polarization properties of the field
propagation of a single-photon wave packet through a singlgan also be omitted provided the field is closely uniform
atom have been obtained beffe]. Similarly the dynamics  across the spatial wave function of the atom. No assumption
of a two-dimensional(2D) one-photon wave packet and js made on the atomic position relative to the waveguide. In
many two-state atoms modeling a beam splitter was numerpyrinciple, the atom can sit inside a hollow waveguide, it can
cally solved[13]. be embedded in the dielectric material of a fiber or can be
Nevertheless, the systematic and exhaustive discussion gfen outside a dielectric interacting with the evanescent field
the parameter space by a purely numerical approach seempse to the surface.
hopeless. Fortunately, in our method, we are able to get ex- The continuum field quantization follows the theory pre-
plicit analytical expressions for the scattered waveguidesented in Ref[17]. The electric radiation field is decom-
field. This result exhibits the scaling with the ratio of the posed into positive- and negative-frequency parts
transverse mode size and the atomic cross section. Thus we E(zt)=EM)(zt) +EC) (1) 2.1
can easily reveal how this ratio governs the energy redistri- ' ' e '
bution in a scattering process. In addition, physical insight inynere
the phase properties and the pulse-shape deformation can
also be gained. EC)(2t) =] j“’dw
As a possible application of our model we address the ' 0
problem of atom-mediated nonlinear photon-photon interac-
tion. So far, significant coupling has been reached with the +b,(t)exd —iw(t+2z/c)]}. (2.2
help of a high@ cavity [14] or might be reached by increas-
ing the number of atomf8,15]. The waveguide-atom inter-
action could be the basis of nonlinear pulse amplifiers o .
even that of photonic quantum gates. Here we limit the studforWard aqd the Ia_tter 'to th? backvyard prppaga}tlng modes.
to a prototype interference experiment in which two Wave.he eIectpc field IS given 1n the mteractlon_ picture. The
packets impinge simultaneously on the same atom. f!eld—ampht_ude vanableaw(_t) and t.)w(t) Qescnbe then the
The paper is organized as follows. In Sec. Il we presenfMe variation due to the interaction with the atom. They

the model and introduce the basic parameter describing t QIIOW the usual bosonic commutation rules

coupling of the atomic dipole and the waveguide, and finally, [a,(1).a], () ]=[b,(1),b] ,()]=8(w—w'), (2.3
calculate the scattered electric field generally within a

Markoff approximation. In Sec. Il the transmitted and re- all the other commutators vanish.

flected Poynting vectors are studied for various initial states The atomic dipole, again in interaction picture, reads

ho
AmecA

{a,(t)exd —iw(t—2z/c)]

We separated the modes of the two counterpropagating di-
[rections into sets, andb, —the first corresponding to the
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d:deg(g-_e_iwAt+o-+ei“’At)’ (2.9 neglected and, for the sake of simplicity, in the numerical
examples we will use the free-space spontaneous decay rate
where the operatorso. together with o,=(o,o.  Yo=@adag (6meghc?). _ _
—o_0.)/2 form a pseudospin obeying the sgiralgebra. The waveguide modes form a one-dimensional con-

We assume that the dipole moment is oriented parallel to thnuum. The above equations can be transformed then into a
field polarization at the atomic position yielding maximum Much simpler form by means of a Markoff approximation.
coupling. On integrating Eq.(2.739, the waveguide-field amplitudes

The dipole interaction Hamiltonian in the rotating-wave arse in a form decomposed into a free field part and into a
approximation is given by part radiated by the atofi8]

' t . ,
aw(t)=aw(to)+gwe"“’ZA/°J dt'o_ ()€ eat’,
to
(2.8

respectively. The back-propagating modes are decomposed
) N ] analogously. The Markoff approximation is invoked to de-
wherez, is the position of the atom, and the coupling con-scribe the back action of the second term on the atom. It can
stants are be applied because the continuum is broadband around the
° atomic frequency. The free-field term is usually identified
9,=\ /—deg- (2.6)  with a Langevin-type noise source. In the waveguide we can-
4mehcA not make this step, since we will consider initial field states

different from the vacuum. Altogether, the atom is subject to

Note that the dimension of the coupling constgptis nota e effect of the free field and to a relaxation into the wave-
frequency but 1ysec. The use of the rotating-wave approxi- gjide continuum. The polarization operator_, for ex-
mation is justified as we consider light pulses with a ba”d'ample follows

width much smaller than the frequeney . d
The evolution of the system variables is governed by aset —,; — _(y +y,)o_+ 20’2J’ dwg,[a,(ty)e /e
of coupled Heisenberg-Langevin equatigs] dt e

H= —mf dog,[o,(a,e“C+b, e %)

xe (@-elt_Hc], (2.5

dgaw=gwa_e’i“’ZA’Cei(‘”"”A)t, 273 +bw(to)e_inA/C]e—i(w—mA)t_I_g_ ’ (2.9
t where a new damping ratg, appears, and the second term
_ _ contains the free-field contributions. The vacuum frequency
—b,=g,0_e“ncemont, (2.7b  shift induced by the waveguide modes, accompanying the
dt

relaxation, is assumed to be already incorporated in a renor-

d malized atomic frequencyw,. The rate of spontaneous
=" 700'7"'20'1] dwg, emission into the waveguide modes is given by
) . . A 2 1 O
% (awelsz/c+ bwe—la)ZA/C)e—l(w—wA)t+ g, ylzzwgwA: 5 j'YO- (2.10

(2.70

where the second expression directly exhibits the scaling
with the transverse extension of the waveguide. It is related
Gi9z= ~2%(0+112) to the atomic radiative cross section=3\2%/27. A natural
lower bound on the transverse mode size is at abdut
~(N\/2)? (cf. lowest-order mode in hollow metallic wave-
guide, implying a maximum achievable coupling ratio
v11vo~1. In the rangerp~ A, one has a strong waveguide-
xe oAty H e ]+ &, . (2.70  atom coupling, which is manifested by the fact that the atom
dissipates its energy equally into the waveguide and the free-
Besides the terms originating from the interaction Hamil-space “lossy” modes. This situation could turn out to be a
tonian(2.5), we account for the interaction of the atom with suitable basis to construct single-atom detectors or efficient
an environment. This coupling results in a dissipation prodight-emitting diodes.
cess with decay rate,, and with associated noise repre- For the following, it is convenient to introduce the “free-

sented by the operatogs The physical role of thig, decay  Pulse” operators

process is that it provides a channel for the transverse scat- (™ i(w—ag)t

tering, i.e., when photons are scattered by the atom out of the Gu,20(t) = fo dog,a,(to)e o (2.13
waveguide. The environment consists of the free-space radia-

tion modes[21]. Of course, the presence of the 1D wave-and the same faoy(t), wherew, can be any frequency and
guide slightly perturbs the surrounding mode structure withwill later be identified with the central frequency of the wave
respect to the simple free-space case. This effect, which dgacket. The evolution of the atomic operators is given by the
pends on the specific choice of the waveguide geometry, iequations

_J dwgw[(r+(awei“’ZA’°+ bwe—inA/C)
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d A ) radiated by an initially excited atom, and finally the vacuum
i =" Yo +20,9,[a(t—2za/c)e 0%l noise that is coupled into the waveguide via the atomic di-
pole. They read

—iwgzplCla—i(wg—wp)t | 7 . t i i ,
+bo(t+2za/c)e wzalCle i (@omwally & azcatt):gwgwoefI(wfwO)ZA/Cfodt!el(wfwAJrl'y)t

(2.123
t’ : B ”
d . xf dt’e ' (@m @AtV 4 (t)ag(t"—zalC),
&O'Z:—2'y(0'z+1/2)—gwo{au,[ao('[—ZA/C)e"”OZA/C 0 A1) 2ol A/¢)
_ _ R (2.14a
+bg(t+2za/c)e 1@0?alClem i (@om oAt L H o 4 &, .
bac _ —i(w+wg)z /Cf I al(w—op+iyt’
a, “(t)=9,9,.€ 0)2a dt'e A
(2.12h p2t)=g,9 0 .
wh'ergy: Yo+ v1is the tptal decay rate of the atqmic dipole. % ft,dtnefi(wfwAJriy)t"zo_z(trr)bo(t/r+ZA/C),
This is the generalization of the Bloch equations for the 0
atomic dipole operators to describe the effect of a time- (2.14b

dependent external excitation in the case of a quantum driv- t

ing field. For certain quantum states of the field, a closed set _rad/, _ —iwzplc , . CANE

of equations can be derived from the above operator equa—a‘“d(t)_g“‘e g fodt exi(0=watiy)t']o-(to),
tions to calculate the matrix elements of the atomic opera- (2.140
tors. Note that only the free field appears in the dynamics of t

the atomic-dipole operators. This is a direct consequence of aQ,Oise(t)zgwe*i“ZA’cf dt’

the Markoff approximation, which implies that any change 0

of the electromagnetic field by the atom cannot act back onto v .

the atom. In other words, a photon emitted by the atom into XeX[:[i(w—wA-i-i'y)t']f dt”th"g_(t”).

the waveguide leaves the interaction region immediately and 0

cannot be reabsorbed. There is no feedback mechanism as (2.149
provided by the mirror in cavities. Hence the strong coupling o o
between the atom and waveguide yields a different dynamic¥/é have set the initial timg=0. Nevertheless, we still will
with respect to the case of ordinary cavity QED. uset, sometimes in order to explicitly mark the initial value

On inserting the solution of Eq2.123 into Eq.(2.8), the of the operators evolving in the Heisenberg picture. In the
field operator can be obtained in the form double-time integrals, the order can be exchanged to carry

out one of them. Substituting the solution in the electric-field
decomposition2.2), the integral over the frequenay can
also be performed. In this latter step, the lower bound of the
frequency integration is extended teo. For ct>z—z,,

i.e., a light pulse has enough time to travel to the atom, one
where the five terms represent, respectively, the free field, théinds the following result for the waveguide electric field in
field forward and backward scattered by the atom, the fieldhe half spaceg>z,:

a,(t)=a,(to) +as(t) +aP2Kt) +arqt) +a*qt),
(2.13

(+) i hrag —iwqT] A teale ' ; i ’ ' ’
EY)(7r)=i 47TECAe 0 ao(r)+§7yo . dt’ exdi(wg—watiy)(7+zalc—1t")]20,(t")ag(t’ —zp/cC)

1 oa TtZp

+_ - e*ZinZA/CJ
2 A Yo o

. hwp .
+i 4776(;,42779% exd —(iwa+ y)(7+2za/C)]

where r=t—z/c, and only the modes,, are considered as we are interested in the field outgoing intthelirection

>z,). In the subsequent terms one gets the free, the forward, the backward scattered, then the directly radiated and finally the
noise field. This is the central result that we use in the following to calculate measurable quantities in various experimental
scenarios. One can draw a general conclusion already at this stage that the scattered terms are proportional, as naively
expected, to the ratio, / A.

Ic
dt’exq'(wo_a)A+|'y)(T+ ZA/C_t,)]ZO'Z(t’)bo(t, +ZA/C)

T+zplc

o_(tg)+ f

0

dt’th'%_(t’)}, (2.15
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. SCATTERING OF A SINGLE LIGHT PULSE state|,), while the counterpropagating modeg are in

vacuum statg0,). As for the initial statgi,) we will use

In this section we study the scattering process of a sing| : e . ,
. ourier-transform-limited Gaussian pulses in a coherent state
light-wave packet off a ground-state atom. We calculate how " . \
r in a single-photon Fock state, respectively. The mean

the photons carried by the wave packet are redistribute ovnting vector of a free pulse is then
among the forward, backward, and transverse directions. The ynting P
relevant quantity to be calculated is the expectation value of

the Poynting vector defined as , (3.3

So(z,t)=N o exp{ 192(t z/c)?
A1 o Vem Tl 2
S(z.t)= 7— —(¥ BOEM+ECIBM|w ),
@o Ko 3.1) where N, is the mean photon number carried by the wave
' packet and is the pulse bandwidth.
given in units of photon current in the forward and backward As no field is radiated from an atom in the ground state,
direction after the scattering event. In the present scalaihere is no contribution from the fourth term of EQ.15 to
model the magnetic field is just proportional to the electricthe Poynting vector. Similarly the free-space environment as
field. The initial statd W) is a simple product state of the Well as the backward-propagating modes are in vacuum
waveguide field state, the atomic ground state, and the envgtate. Therefore, all the terms containing the noise operator
ronment 7§_ or b,(tg) on the right-most side will vanish acting on the
|Wo) =) 0p)| )| Oe). (3.2  initial state|W,). Thus the mean Poynting vector in the for-
ward directionz>z, is formed from the superposition of the
The waveguide field describes a wave packet propagating iariginal light pulse and the one forward scattered by the
the direction+z, i.e., only the modes,, are excited with atom

o T+zplc
S(r)= ie—ilzfz’z <u<7)\u(r)>+7?yof dt’ Re[F(7,t )u(7)|20,(t ) u(t’ —z4 /c))}
N2 0
(U'A )ZJ‘T+ZA/C Jr+zA/c
+ Y dt' F*(rt") dt" F(r,t")(u(t’ —zplc)|do,(t")o,(t")|u(t" =25 /C)) |,
24 70] . . A A (3_4)
I
wherer=t—z/c and Q 2
(back) 1\ — —0272 9A
S (T ) \/Ee (2./4 Yo
QZ
]—'(r,t’)zex;{—(rﬂ’—zA/c)(7+zA/c—t’) P tzal 2 zal
4 xf * Cdt’]—"*(T’,t’)f A v A )
0 0
Ti(wg—watiy)(t+zalc=t')|. (3.9 X(U(t' —zalC)|da,(t") o (t")|u(t" —zalC)),
3.7

The Poynting vector is expressed in a product form with thewhere 7' =t—(2z,—z)/c, expressing that the field propa-
original pulse-shape function separated in a first term. To thigates now in the-z direction.

end, we defined an auxiliary state
A. Coherent-state light pulse

In the following, we present how to evaluate the Poynting
vector(3.4) in the case of wave packets initially in a coherent
state. A definition of multimode coherent-state pulses can be
As we work in the Heisenberg picture, the time dependencfPund in Ref.[17]. They have the property that they are
of this auxiliary state does not describe a dynamical proces@igenstates of the annihilation operators. A coherent-state
but follows from its definition. pulse of bandwidtH}, centered initially az=0, can be de-

The reflected field in the domain<z, results from the fined through the eigenvalue equation
light backscattered by the atorfand additional quantum

u(t)) = (2702~ Y2 ay(t)| W) (3.6

1/4
noise. As for the atomic radiation the two directions in the a (t - JN extd — (w— w202
waveguide are equivalent, one gets an expression formally o(to)l ) \/_a w02 - (w=wo) 1),
identical to the third term of E(¢.3.4) (3.9
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where N, is the initial mean photon number in the wave
packet. Its photon statistics is Poissonian around the meal
N, with varianceN,.

It follows that|W¥,) is an eigenstate of the free-pulse op-
eratoray(t) and we have

lu(t))= VN ). (3.9

To evaluate the Poynting vector E@®.4), we need the one-
time and the two-time averages of the population inversion
operator. An equation of motion fdir,(t)) can be directly : : : : :
obtained by taking the mean of the E¢8.12. Using again G0l 001 o1 | 0 100 1000
that |W,) is an eigenstate of the free-pulse operators, the Q [units of

usual form of the optical Bloch equations is found. We u Yol

present it ,'n the Appen_dlx. prever, when the evolution of FIG. 1. Resonant single-atom transmittance as a function of the
(o(t)o(t")) asa function ot is calculated from Eq2.12,  ,se bandwidth for pulses initially in coherent state with mean
the operatowr,(t') stands in between the free-pulse operatolphoton numbeN,=1 (solid line) and in single-photon Fock state

and the statgW,). We prove in the same Appendix that (dashed ling The parameters are,=w, (resonant pulseand
ag(t—2za/c) ando(t’) commute fot>t’ and, therefore, the 4,=A.

action of the pulse operator on its eigenstate can be easily

carried out. This lemma allows the use of a form of they,q viant hand side of the generalized Bloch equations van-

guantum regression theorem to calculate the two-time averg, Using again the commutation of the operators

age(a,() o,(1)). . L ag(t—za/c) and o(t'), one can show that
A§ it is shown in the Appenzdm an effecpve s_lngle.-photon<0,g|02(t)az(t,)|0,g>: 1/4 independently ot andt’. We

Rabi frequencyger=9.,,(27€17)™ can be identified in the gq's\ ch’simple solutions because we consider, formally, the

Bloch equations. This coupling constant suggests that thgloch equations when the atom is driven by a “vacuum

wave packet has an effective “volume” af2wcA/Q. For  pulse.”

larger bandwidths(}, we get a stronger field per photon,  Having the exact solutions for the one-time and two-time

which is a central quantity in cavity QED. However, the averages, the integrals in EQ.4) can be analytically evalu-

interaction time between the atom and the transform-limitecated. The integration invokes the complex error function and

pulses gets simultaneously shorter, limiting the possibility ofthe result itself is not very instructive. We omit this rather

coherent operations on the atomic states. long formula here and only show typical results graphically
The photon numbeN, multiplies all the terms in the in the figures of the following section.

Poynting vectoK3.4). Beyond this simple linear dependence,

the photon number has an influence on the evolution of the ) .

atomic population. Through this term, the atomic saturation C. Single-atom transmittance and reflectance

introduces a nonlinear behavior into the Poynting vector, We continue the discussion of light-pulse scattering on a

which can be a noticeable effect in the strong-coupling resingle atom by means of numerical examples. For this we

Transmittance

gime even for relatively small photon numbeg. evaluate the Poynting-vector expressidasi) and (3.7) to
determine how much of a light pulse is transmitted and re-
B. Fock-state light pulse flected back by the atom. We introduce the transmittance,

.e., the transmitted mean energghoton numberdivided by

Now let us turn to a second example and study a wav f the impinai o ket F to
packet of precisely one photon. The single-photon Fock stat € mean energy of the Impinging wave packet. -or an atom
eing on resonance with the pulse-carrier frequeiagy

's defined by = wg, We expect the strongest scattering. In the forthcoming
w o \ V4 examples the waveguide cross section is setie A.
|1a>:f dw(—) exd — (0 — wg)2/Q%]al (t)]|0,). In Fig. 1 the single-atom transmittance is presented as a
0 () function of the pulse bandwidth on a logarithmic scale.
(3.10 The overall shape of the transmittance curve is very simi-

lar for a pulse initially in a coherent state witt,=1 (solid

line) or if it is in a single-photon Fock stat@ashed ling
[u(t))=04)|05)|9}|06), (3.1)  The difference is manifest for bandwidths close to the tran-

sition linewidth, =~ y,. Apparently the effective saturation

which, similar to the coherent-state case E3}9), is time is reduced if exactly one photon is present instead of a dis-

independent. We now need the diagonal matrix elementgibution with mean one.

(09]a,(t)|0,g) and (0,g|o,(t)o,(t')|0,g) where O stands As the incoming mean photon number is now 1 in this

for both modesa andb and for the environment. Equation example, the transmittance gives directly the mean transmit-

(2.12 implies that(0,g|o,(t)|0,g)= — 1/2 for arbitrary time ted photon number. The atom presents an “obstacle” pro-

t. In fact, this value is the initial condition itself that makes vided the pulse length is of the order of the natural lifetime

The definition in Eq(3.6) leads to
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Let us note briefly that the part of the impinging pulse that
is not transmitted, is either reflected or, most probably, scat-

1

059 tered in the transverse lossy modes. The reflectance has an
2 os upper bqund, which is reached_ again in the _monochromatic
g " limit. 1t is (7y,/v)?=1/9~0.11 in the numerical example
E 07 considered for Fig. 1, that is at least with probability 4/9 the
g photon is lost from the waveguide.
S 06 Due to saturation, there is a nonlinear effect in the trans-
= mittance. The more photons the light pulse carries, the more
0.5 the atom gets excited. Population in the upper state of the
e atom reduces effectively the dipole strength, as follows from
04 0 20 30 a0 0 6 70 8 9 100 the term(a,) in the Eq.(3.4), which amounts, therefore, to a
decrease in the amount of scattering. This effect is exhibited
N, in Fig. 2 where the transmittance is plotted against the mean

FIG. 2. Transmittance as a function of the mean photon numbePhOtOn numbeN, of the initial coherent-state pulse for vari-
Ce 16 mean p . ous pulse bandwidths. Parameters are the same as in Fig. 1.
N, of the initial coherent-state pulse. Curv@s (ii), (iii ), and(iv) The starti ints of th =1 dtof
are associated with the pulse bandwidfbs- v,/100, v,/10, 7o, . e star lng paints of the Curves. 5= 1 correspond to four
- different points on the curve of Fig. 1. For longer pulses, see
and 10y,, respectively. . - . . -
the curve(i) or (ii) in the figure, the saturation effect is small.

or longer, i.e., forQ<wy,. The single-atom effect on the This is because the effective coupling strength decreases

transmittance is approximately constant up to pulse length&ith the pulse length. Or, alternatively, one can view the
of few times the atomic lifetime. In this range the transmittedS@Me effect as a consequence of the photons arriving more

power is less than the half of the incoming one. The |Owe,distriputed in time. For short pulses, on the other hand, the
bound in the monochromatic limit is given by coupling constant becomes large enough to reach saturation

even with weak incident light pulses. For example, cuiive
v [y1\? corresponding té) = y, manifests a drastic nonlinear behav-
721—27+ Mk (3.12  jor even for photon numbers around 1.
Figure 3 shows transmitted and reflected photon numbers

which is 4/9<0.44 in the example. There is an intermediatefor 2= y/10 [same as in curvéi) of Fig. 2] depending on
regime y,< Q< 10y, where the transmittance changes rap-the mean photon numk?er of the pL_JIse. The square root of Fhe
idly and it is noticeably smaller for a Fock-state pulse thanmMean photon number is shown with error bars, representing
for a coherent state. Finally, short light puls€ss y,, pass the inherent quantum noise associated with cpher_ent states.
through the atom almost without being appreciably affected!n order to detect the single-atom scatterer with high prob-
realizing a sort of short-pulse filter. A simple explanation isability, the change in the photon numbseeflected or trans-
that a large spectral part of a broadband pulse is far awamitted) must be larger than the noise. The figure reveals the
from the atomic resonance, which reduces the effective couninimum necessary photon number of the probe pulse to
pling strength. Figure 1, therefore, suggests that in situationgchieve the required operation regime. Photon numbers at
where temporal resolution is required, for example in a de@bout 20 in the probe pulse are sufficient to get a high quan-
tection scheme, the best choice for the bandwidthiisy,  tum efficiency for the detector.

where relatively short light pulses still experience significant
attenuation. Longer pulses provide less temporal resolution
without much improvement of the signal, whereas shorter When the carrier frequency is detuned from atomic reso-

D. Phase shift and pulse deformation

pulses experience a significantly smaller change. nance, the pulse can undergo a phase $tlifpersive scat-
«, 100 T T T T 10
2 e 5
= : (a) £
5 80 ......................................... E 8
= =
g é FIG. 3. Transmitteda) and re-
B 60 [t - g6 flected(b) number of photons as a
_a E function of the initial mean pho-
o o, ton numberN,. Error bars indi-
Qo 40 e el 3 4 cate the square root of the mean
é D signal corresponding to the noise
17PN g 1 O é’ 2 in a coherent state. The bandwidth
g : : Q“a’ is setQ=0.1y,.
= & .

0 20 40 60 80 100
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tering. This phase shift can be the basis of a single-atom
birefringence in waveguides. This happens if the atomic di-
pole is parallel to one of the polarization modes and orthogo—g
nal to the other one. Only the first polarization mode expe-=
riences a phase shift whose magnitude will be estimated‘E‘ 0
based on Eq(2.15), in this section. =
Strictly speaking the study of the phase properties neces=
sitates the definition of a phase operator and the investigatior=
of its time evolution. Here we will adopt a simplified treat- %
ment that allows perhaps a more instructive insight into thef&
phase properties. Initially a coherent-state pulse, defined ir
Eq. (3.9), is taken with the phase 0, i.e., the amplitude of all =05
the components is real. We assume that the state stays almc
a coherent state all along the evolution. This is fulfilled when
the pulse induces little atomic population excitation. Then,

0.3 T T T T T
0.2

0.1

=5 0 5

@, — @) [units of y

FIG. 4. Change of the coherent-state amplitude as a function of

formally, the inversion operatoo, can be replaced by
—1/2 times the unity operator, and the stfd&,) is indeed
an eigenstate of the electric field operator, Ef15), at any

the pulse-carrier frequency detuning from the atomic resonance.
Both the “absorption” R¢h(0)} and the “dispersion” Infh(0)}
curves are plotted with solid lines f&2 =y, and ) =0.1y,. This

time. The phase can be described by the argument of thatter corresponds to the largh(0) values. Dashed curves show
corresponding complex eigenvalue, which we can write as the Lorentzian shape for reference.
. hog cally. Let us first study the change of the coherent-state am-

EC)(n)[Wo)=i N ZrecA® () (L+N(7)| W), plitude as a function of the detuning, and then its dependence
(3.13 on .

For the first case, we fix=0 and plot the numerical
where ag(7)=N,(27Q?)Yexp(—Q?7/4) describes the solution of h(r=0) in Fig. 4. We show the real and the
initial Gaussian pulse shape. The radiated and the backscataginary parts oh(0) as a function of the detuning,
tered terms, the third and the fourth terms in ER.19, —w, for two bandwidth values()=y, and 2=0.1y,. By
vanish because of the choice of the initial condition. Theanalogy with the susceptibility, the real and imaginary parts
noise term is negligible as it is proportional to the atomiccan be regarded as an absorption and a dispersionlike curve,
excitation, which is supposed to be small. Thus, the termrespectively. For reference, the Lorentzian function associ-
h(7) stems exclusively from forward scattering. It can beated with the quasimonochromatic excitation liiinewidth
generated in a simple form by changing the integration vari-y, oscillator strengtho,/2A4) is also plotted with dashed
able in Eq.(2.15 ast’—7+z,/c—t'. One gets lines. The three curves merge asymptotically for very large

detunings. The reason is that the frequency components of
the pulse are more or less uniformly detuned from the atomic
frequency, much like in the monochromatic limit. Hence, the
phase shift can be well approximated from the analytic
(3.149 Lorentzian solution. Otherwise, for moderate detunings, the
bandwidth dependence of the change in the coherent-state
On inspecting Eqs(3.13 and(3.14), two effects of the for- amplitude is quite apparent in the figure. The narrower the
ward scattering on the coherent-state amplitude can be no-
ticed. First of all, the coherent-state amplitude is shifted with
a relative amount oh(7). Second, this shift depends an
=t—2z/c, which yields a deformation with respect to the ini-
tial Gaussian pulse shape. The upper integration bound irﬁ 0,09
Eq. (3.14 can be extended to infinity if the distanzg be- =
tween the initial pulse and the atom is very large comparedg,
to the pulse extensioe/ (). Hence, the only dependence on
derives from the termy— Q27/2 in the exponent. As varies
within =1/Q) in the pulse, the ratio of and() decides how
much the pulse shape is distorted.

For very long pulses(quasimonochromatic excitation
limit) the exponential decay witlh dominates the integrand.
The other exponentials can be neglected and the integral rer
ders the well-known Lorentzian form of the single-atom sus-
ceptibility x=(oa/2A)/[(wo—wa) +iy]. Evidently, in this FIG. 5. Phase shift as a function of the pulse positibn For
limit the result does not depend an For general relation narrow enough bandwidth the phase shift gets independent of
between() and vy, the integral has to be evaluated numeri- Parameters areqg— wa=47y,, oal A=1.

1 aa T+zplC

h(n=-5=2%|  dteqli(wo-wat']

xex — (y—Q2ri2)t'Je” ¥,

-0.07 T T T T T T T

-0.08

-0.1

2]
<
=
& _0.11

-0.12

-0.13
4
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bandwidth, the larger the phase shift obtained.

When the change in the coherent-state amplitug is
small with respect to 1 and approximately proportional,to
that is, forwg— wpa> vy, it directly gives the rotation angle in
phase space, i.e., the phase shift. The phase shift as a fun
tion of 7 is presented in Fig. 5. The detuning is chosen
—wp=4y, where the absorption is well reduced and the
pulse power is almost completely transmitted through the
atom. One can see in the figure that rotation angles in the
range of 0.11 raet6° are induced by a single atom for
oa=A. Note that for(2=0.1ly, the phase shift is almost

uniform, while it changes considerably fér= y,. In both 00 ' i ' \ ' i
cases the deformation is asymmetric, showing that the fron

and the back of the pulse interact with an atom in a different ¥

state.

FIG. 6. Mean photon numbeé\ , outgoing in the+z direction
as a function of the relative phageof two identical counterpropa-
IV. INTERFERENCE OF LIGHT PULSES gating coherent-state pulses. The mean photon numberd are

One possible application of such a setup is nonlinear pho= Nb=1, the bandwidth i€} =0.3y,, andos/A=1.

tonics, i.e., doing optics with few photons beyond beampetween them. The calculations are based on the general re-
splitters and mirrorg19]. As a prototype of this dynamics, sult presented in Eq2.15), which holds for any initial con-

let us study now the “collision” of two pulses propagating in dition.

opposite directions. Instead of considering the mdulgs,) We calculate the Poynting vector in the rargez, after
initially in vacuum state, we will properly define an initial the pulse collision. Here the field is composed of the initial
state that describes a wave packet centered=&z, . Then,  pulse in the modes,, and its forward-scattered part, super-
this backward propagating wave packet and the forwardmposed with the backscattered part of the pulse in the
propagating one encounter in the position of the atom at modesb, . One gets an expression quite similar to the result
=z, where the atomic dipole can mediate an interactionin Eq. (3.4

[0} 2 T+zplC
S(7)=— \/E e 7 ’2{(u(r)|u 7))+ ZAYOJ' dt’2 R A7t ){(u(7)|20,(t")|v(t' —zalC))}
UA 2 ™ ZA/C ’ * ! " ZA /C " n ! ! 4 n
+ ﬂyo) JO dt' F*(rt )fo dt" A r,t") (v (t' —zalC)|4a(t" ) o (t")|v(t"—2zalC)) |, (4.1

just we needed to introduce a second statg)), which is  The last exponential term ensures that the position of the
defined by pulse isz=2z, at t=t,. The state|v(t)) is proportional
again to the initial state

lv(t))= (270?) l/4e02t2/4[a (1) + e?iwozale

byt 22410) ][ ¥ ). 2 [o(0))=(VNa+€Np) | Wo). (4.4)

ider first th hen th One can immediately recognize that the appearance of the
Let us consider first the case when the two COlmterlorOp""state|v(t)) in the second and third terms of E@.1 gives

gating pulses are in a coherent state. The initial state is COMysq 15 intriguing interferometric phenomena. Compared to
posed of the statey,) as defined in Eq(3.8), while the o simple scattering scenario given by E&14), the second
back-propagating modes are in the statg) where term, which is responsible for the absorption, can be en-
hanced. To this end, the counterpropagating pulses must have
)1/4 the same phase, i.ep,=0. Then the forward-scattered pulse

and the backscattered pulse interfere constructively yielding
a reduced transmitted signal. On the other hand, the two
pulses can interfere destructively when they black out each
other in the position of the scatterer, i.e., =N, and ¢

4.3 =. The atom being in dark, this situation looks as if the

_ 2
b =/N.e'?
w(t0)| l//b> b€ ( 7TQZ

Xexg — (o— wg)2/02]e? 2|y, ).
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12 g g g g g photon”) do not add up algebraically. Note that for coherent-

; ' ' ' ' state pulses this was different, the second “absorption” term
of Eq. (4.1) got a factor\N,+¢€'¢\/N, and the Bloch equa-
tions had to be solved only for the mean of atomic operators.
Here, for Fock states, one has to solve a specific realization
of the generalized Bloch equatiofsee the Appendjx How-
ever, these equations are inhomogeneous and the solution is
far from being the sum of two terms, one originating in
|0,,1,) and the other in1,,0,). The numerically obtained
result for the mean photon number outgoing in the di-
rection is, however, very similar to the one obtained with one
single impinging pulse. No interferometric enhancement or
reduction of the outgoing photon number can be observed for
pulses initially in Fock states.

FIG. 7. Mean photon numbeé\, outgoing in the+z direction
as a function of the mean photon numbgy of the pulse incoming
from the backward-z direction. Parameters are as in Fig. 6.

V. CONCLUSION
atom were absent and the pulses propagate freely. This . i . . .
simple example demonstrates that there is indeed a nontrivial For a field transversally confined in a tiny waveguide, a

interaction between the pulses mediated by a single atonyN9I€ atom is able to have a significant effect on a light
Since the transverse scattering is missing, the outcome (¥@ve packet traveling across the atom. As limiting cases of

definitely different from the coherent sum of the outcomesth€ time-dependent 1D scattering, one finds a transmittance
obtained with two single pulses. In between the extremdeduction below 50%, strong nonlinearity in the transmit-
cases the outgoing mean photon number in-ttredirection, ~ tance even for very low energy pulses, and interferometric
denoted byN, varies as a function of the phage This is  coupling of two wave packets with a visibility of up to 80%.
shown in Fig. 6 where a difference of almost 80% is obtained\ll these effects clearly demonstrate that miniaturized
for a bandwidth Q=0.3y, and a beam cross section waveguides or fibers coupled to an atomic dipole can be used
opal A=1. as efficient single-atom detectors, or photon-photon couplers.
Assume that we have a mean photon numiigrfixed, ~As one might be able to control a single-atom state on the
e.g.,N,=1. Then the photon numbeX, outgoing in the quantum level, this could pave the way to genuine quantum
forward +z direction can be tuned by varying the photon devices for optics, as, e.g., a quantum switch for lig@l.
numberN,. This effect is represented in the Fig. 7. The Similarly one could envisage to construct single-photon Bell
well-pronounced minimum results from the concurrence ofstate analyzers, as they would be needed for improved quan-
the second term of Eq4.1), which scales as/N, and re-  tum cryptography or quantum teleportation setups.
duces the outgoing photon number, and the third term, which In our model, we aimed at studying the fundamental na-
is linear inN, and increases the photon flux due to backscatture of the interaction of a single atom with a waveguide
tered light. The manifest deviation from the linear behaviorfie|d. A regime that can be referred to as “strong-coupling
is due to atomic saturation. regime” occurs when the transverse extension of the wave-
Let us finally consider the collision of two Fock-state guide modes is close to the single-atom radiative cross sec-
pulses on the atom. The initial state i§%o)  tion. The coherent interaction between the field and the atom

=[12)|1p)9)|0¢), where|1,) is defined by can dominate damping. In contrast to cavity QED, however,
14 the waveguide-atom coupling yields a dissipationlike evolu-

1.)— °°d 2 tion of the atom since the waveguide modes form a broad-
|10)= 0 ¢ 702 band continuum, similar to the reservoir composed of the

free-space radiation modes. On one hand, a single atom
Xexf — (w— wg) 2 Q?]e??a /b (t,)|0p). within the waveguide field becomes a significant scatterer, as
4.5 featured by the effects presented in the paper. On the other
' hand, it is questionable if a weak quantum field can perform
Initially there is no quantum correlation between the twocoherent population transfer in an atom. This is because a
Fock-state wave packets. As the phase in Fock states is cor@9€ effective single-atom Rabi frequenay.f) is accom-
pletely undefined, one expects that the interference is misganied by the presence of a large damping ratg (n the
ing in this case. This is true and can be formally traced baciloch equations. In addition to this, the Rabi frequency de-

to the fact that for the auxiliary state of Egt.1), pends on the interaction time defined by the pulse length. For
example, for adiabatic passage techniques long interaction
lv(t))=1]04,1p) +]14,0), (4.6)  time is required, which inevitably leads to the reduction of

the coupling constant. Our model equations provide a suit-
the contribution ofay(t’ —z,/c) (“forward-scattered pho- able ground to further study the dynamics of atoms coupled
ton”) and the contribution oby(t’ +2z5/c) (“back-reflected to one-dimensional continua of modes.
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APPENDIX: DERIVATION OF VARIOUS MATRIX Dirac-delta function and
ELEMENTS OF THE ATOMIC OPERATORS

) to

We prove in this appendix that the free-pulse operator C=-e 'wOZA/CfO dt’ exfli(wo—wa)t’]
ag(t—z4/c) commutes with the population inversion opera-
tor o,(t') for timest>t’. This lemma allows the derivation X[o_(t"),0,(ty)]12mg, o(t"—ty)
of a closed set of linear differential equations for the required Ciwre e )
matrix elements of the population inversion operator and for =—2mg,e T exdi(wo— wa)tq]
that of the two-time produatr,(t) o,(t"). We briefly present
these equations, which are formally very similar to the Bloch X[o-(t1),0,(12) 1O (t,~1y), (A3)

equations, and the ones obtained by the quantum regressigfhere @ is the Heaviside step function, which proves our
theorem in the case of driving an atomic dipole transitioncopjecture.

with a classical field. The time-dependent effect of the light pulse on the

By definition atomic-dipole operators can be determined from the Eq.
(2.12. Depending on the initial state of the pulses, various
C=[ag(ty—za/C),0,(t5)] matrix elements have to be calculated and inserted in the
expressions for the Poynting vector Ed8.4), (3.7), and
_ YO -~ 2 (4.1). In all the present cases, the required variables obey a
f do exfl ~i(w = wo)(t1=2a/C) ][3u(to), 72(t2)] set of linear differential equations that can be written in the
form
- f dwexp[—i(w—woxtl—zA/c)]{[awaz),oz(tz)] “B.sth, (Ad)

. tp . , When the initial pulses are in coherent states, the evolu-
_gwe—usz/cL dt’el(e”en)t [U—(t’),Uz(tz)]}, tion of the quantum mean of the population inversion opera-
tor is needed. It can be obtained by integrating the above

(A1) differential equation with

where in the second step we used Exj8). Atomic and field (02) Y
operators, taken at the same time, commute, hence the first s=| Re(a)} |, b=| O [,
term vanishes. In the second term one can change the order -, 0
of the integrals Im{(c’, )}
-2y —2(VNa+ VN cose)g(t) - 2VNpsineg(t)
B=| 2(\Na+ Ny cose)g(t) —y wo—wa |, (A5)
— 2Ny sineg(t) wp— Wo -
|
where obtained for an atom driven by a classical time-dependent
excitation. The corresponding single-photon Rabi frequency
reads

ol ()=c,(1)e o Cexg —i(wo— wp)t].  (AB)

1
— 02t _ 2
Formally, this equation is equivalent to the Bloch equations 9(1) = Qe ex;{ 4Q (t=2za/c)7), (A7)
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With gef =0, (20

The two-time averages in E¢3.4) can be obtained by
using the quantum regression theorem. For a fixed time
prior to timet, the variables

(TADa(t")
(Re{o, (D} ot"))
(Im{o’, (O} o(t"))
obey the linear differential equation given in the EA4)
with bT=(—y(o,(t")),0,0).

When the counterpropagating pulses are initially in

single-photon Fock-states, the  matrix  element
(04, 1p|o5(t")|1), where |1)=]0,,1,)+]1,,0y), is needed.

s(t)= (A8)

For symmetry reasons, the required element is just the half o

(1|o,(t")|1), which can be obtained from the solution of Eq.
(A4) with

(Llo]|1)

Re[(0]c" [1)}
Im{(0]o" [1)}

4
29(t)
0

s(t)= b

PHYSICAL REVIEW 85 033832

-2y —4g(1) 0
B=| O -y  wg—wa (A9)
0 WpA™ Wo -

Note that nondiagonal matrix elements are involved in this
set of equations. One can easily see that closed sets could be
derived with increasing number of equations for higher pho-
ton number states, i.e., the presented approach is suitable to
describe many other initial states as well. Finally, one gets
for the necessary two-time average

(1o (o (t)]1)
s(t)= (Ola” (Do t)H]1)y |, b

—¥(1ot)]1)
9(t)

(1|0, (t)o,(t)]0) g(t)
-2y —2g(t) —2g(t)
B= 0 i(wp—wp)—y 0
0 0 i(wp—wo)—y

(A10)
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