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Theoretical analysis of third-harmonic generation via direct third-order and cascaded
second-order processes in CsLifD, crystals
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Third-harmonic generation using a single medium receives theoretical analysis and the results are applied to
CsLiBgO,q crystals. From the solutions for a full set of coupled-amplitude equations, comprehensive expres-
sion of overall-effective third-order nonlinear optical susceptibility is derived, including the contributions of
direct third-order and cascaded second-order processes. The overall-effective third-order nonlinear optical
susceptibility shows peculiar behaviors, such as oscillatory dependence on propagation distance and depen-
dence on azimuthal and polarization angles with inversion symmetry. The optimum conditions for efficient
third-harmonic generation are predicted at the phase-matching angles of second-harmonic generation, sum-
frequency generation, and third-harmonic generation.
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I. INTRODUCTION NLO properties [11,19-22, such as a relatively large
second-order NLO coefficient, wide transparency in the UV
Third-harmonic generatiofTHG) of high intensity using  region, and a high laser-damage threshdd,19. CLBO
a single nonlinear opticdNLO) medium, instead of two, has has a number of advantages over BBO and LBO. It possesses

been an appealing approach for obtaining coherent ultravidligher laser-damage threshold and wider phase-matching

let (UV) light sources. THG using a single NLO medium is .(PM) acceptance bandwidth than BE®9,23, and can sat-

s ) . . . isfy the PM conditions of fourth and fifth harmonics of a
termed “single-medium THG” throughout this paper. Single- Nd:YAG laser[6,23,24, whereas LBO cannot. In addition,

medium THG can be realized .via direct third-order a_nd CaSTLBO can be grown to a large size with a high degree of
caded second-order proces$Ery. 1(a)]. Although this idea  perfection in a short timgl1,20.

has received consideration since the beginning of nonlinear |n this paper, a full set of coupled-amplitude equations
optics[1-4], its wide application has been hindered due togoverning single-medium THG is formulated and the solu-
the facts that the magnitude of third-order NLO susceptibil-tion is obtained under the undepleted-pump approximation.
ity x® in a material is, in general, much smaller than that ofA comprehensive definition for overall-effective third-order

second-order NLO susceptibility®), and a great proportion NLO susceptibility is introduced, which is essential for pre-

of efficient NLO crystals are not transparent in the UV re-dicting PM characteristics of single-medium THG. Using the

gion. Given these hindering factors, THG of high-conversiondeﬁnition' overall-effective third-order NLO susceptibilities

efficiencies of 20—-30% has usually been achieved by wére c.a_lculated,.and t_he PM characterls_ncs and optimum PM
: : conditions are investigated for all possible PM conditions at
successive second-order NLO processes, that is, seconif—)

harmonic generatiofSHG) followed by sum-frequency gen- -064um in CLBO crystals.

eration(SFG [Fig. 1(b)][5-7], and single-medium THG has || ANALYTIC SOLUTIONS FOR THIRD-HARMONIC
been rarely utilized apart from spectroscdpy. FIELD AMPLITUDE

In recent years, borate NLO crystal9—11 of large _ _ o _ )
size and excellent quality, such a8-BaB,O, (BBO) A. Third-harmonic generation in noncentrosymmetric media

LiB3Os (LBO), and CsLiBO,o (CLBO), have become When a direct third-order NLO process, shown in Fig.
widely available. These crystals have relatively large second?(a), satisfies a PM condition along a direction in a noncen-
order NLO susceptibilities, high laser-damage thresholds,

and wide transparency ranges in the UV region. Combina- @ 3o
tions developed recently, using borate crystals and high |:>x(3)+x(2)‘x(2)'=wm
peak-power lasers, make it possible to generate UV light of ® —

O+0+0>30

significant intensity utilizing single-medium THEL2-15. oy =5 el Ty =5 B

Major efforts in this direction have been made using BBO

crystals[12—14 and a maximum THG conversion efficiency ® 20 30

of 6% was achieved14]. However, previous reports con- :> 1@ === 0 — 265

tained a number of significant errors for overall-effective ® o =
third-order NLO susceptibilities, and interpretations of the 0+o 220  0+20 30

experimental data were misleadii$2,13,16—-18 CLBO FIG. 1. Schematics of generating third-harmonic waves.

crystals have been developed recently that possess excellgfihgle-medium third-harmonic generation; direct third-order and
cascaded second-order processes,(anthird-harmonic generation
using two media; a second-harmonic generation followed by a sum-
*Electronic address: csyoon@mail.kaist.ac.kr frequency generation.
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FIG. 2. Energy-level diagrams of third-harmonic generation forH
ere p represents walk-off angle andk denotes wave-
(a) direct third-order andb) cascaded second-order processes. The p Tep 9

dashed lines indicate virtual statés) Wave-vector diagram of the vector mismatch for a given coupling conflgurathéHG:pqS

direct third-order and cascaded second-order processes at the pha@Q-dXSFG:pst denote effective second-order NLO susceptibili-

matching condition for the direct third-harmonic generation pro-ties for SHG and SFG processes, respectively,)éﬁlg:pqn
cess. The numbers in subscripts of the wave vectors refer to thdenotes effective third-order NLO susceptibility for THG
order of harmonic waves and the indigesq, r, s, andt represent  process. Subscriptp, g, and r refer to polarization state
polarization states. (e.g., ordinary and extraordinary polarizations in uniaxial
crystalg of the fundamental waves, and subscriptand t
indicate the polarization states of second- and third-harmonic

trosymmetric medium, the cascaded second-order NLO proaVves, respectively. Since the subscripts, r, s, andtin

cesses represented 2 x@ [Fig. 2Ab)] also satisfy the Egs. (1)—(3) have two polarization states, the full set of

PM condition in the same direction with the same incidentequat'ons consists of a total of six equations with a total of

T ..~ 58 coupling terms. Therefore, it is almost impossible to ob-
(2) '
\k/)vave, alt?r? ugh the ;nd]:wdua} ptroces_s dgxes not. This is tain solutions for the above equations analytically. However,
ecause the amount of wave-vector mismaléyg OCCUr- e nymber of coupling terms may be greatly reduced by
ring in the first second-order proce§SHG, a)+w~>2w)- IS adopting a proper approximation, and by using symmetry
canceled out exactly by the amount of wave-vector m'smatCBroperties of a NLO medium.
Aksrg In the subsequent second-order process (8FG, \when conversion efficiency is sufficiently low, the

+20—3w) [12,29, which is depicted in Fig. @). There-  yndepleted-pump approximation can be employed. If we ap-
fore, it is expected that not only the direct third-order pro-proximate, using the assumption that

cess, but also the cascaded second-order processes, may
equally well contribute to THG as shown in Figibl [12].
However, even when the direct third-order NLO process fails
to satisfy the PM condition, an efficient THG can still be
obtained if the PM condition for either SHG or SFG is metEq. (1), the differential equation for the fundamental wave,
[Fig. 2b)], since the second-order process that satisfies thean be omitted from the set of coupled-amplitude equations,
PM condition becomes highly effective. sincedA,,/dz becomes negligible. In addition, E¢) for
This can be proved by solving coupled-amplitude equathe second-harmonic wave is reduced to
tions for THG. With the assumption that the incident wave is
a collinear, quasicontinuous, and plane wave, a full set of
coupled-amplitude equations is given by

|Ag| <[ A <[Aq], (4)

d 2s lw

dz E (2) ACALexp(il A )
NysC COSszS pq XSHG.pq 1pM1q F( kpqsz

dA]_p _ |(,0
dz  2n,,ccodpy,

[225 X(SZI-)lG:pqu;.chzs
a We can easily obtain the amplitude of the second-order
electric field by integrating Eq5), and the solution is given

Xexp—iA kpqsz) + 2% X(SzF)G:pstA;sAm by
X exp(—iAKps2) + 32 X o pqrATeAT A loxSlopaPipPiq
° gt XTHepartHaTar Aos(2)=2, ' z
DA NyeC COSPos
xexp(—iAKpgn2) | (1) X exp(i Akpqz/2)sind Ak q2/2). (6)
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TABLE |. Overall-effective third-order nonlinear optical susceptibilities for single-medium third-harmonic generation in negative
uniaxial crystals.

PM condition x 8
H T | 2 2 ; 2 ;
SHG ype ZX(SI—%G:ooecosza’ X(SF)GDeoeXF('AkSFGneoZ) n X(SF)GDeeequAkSFGDeeZ) s
3 nSOAnSFGDEO n39AnSFGDEECOSZp3
2 H 2 H
L X(SF)GeeoqulAkSFezeeoz) 4 X(SF)GeeeequAkSFGeeez) sin
o
nSOAnSFGEEO n39An5FGEeeCOSZp3
T 1 2 ; 2 ; 2 :
ype 2X(Sl36:0eesm 2w X(SF)GDeoqulAkSFGDeoZ) I X(SF)GDeequlAkSFG:oeeZ) cos
o
3 nSOAnSFGDEO n39AnSFGDe£OS’Zp3
2 H 2 H
L X(SF)GZEEOeXKIAkSFGEe(;) 4 X(SF)Geeeexp(lAkSFGeeez) sin
o
nSOAnSFGEEO n36AnSFGEeeCOSZp3
2 2 2 ; 2 H 1
SFG Type | B X(SF)G.Doecosa X(SI—%G:ooocoga X(SI—)|G:erSIn 20 X(SI—)|G:eeosmza
N2 AnSHG:ooo Ar~'SHG:oeo AnSHG:eeo ]
2 H 2 2 H 2 H 1
Type I _ X(SF)Gseoesma X(Sl—)KS:ooocosza_i_ X(SI—%G:oeosm 2 X(SI—%G:eeoSInza
Moo AnSHG:ooo AnSHG:oeo AnSHG:eeo ]
Type IlI 2 2 2 ; 2 227
yp B X(SF)GDeecosa X(SF%G:ooecosza X(Sl—)iG:oeeSIn 200 X(SI—)|G:eeeS|n2a
n2900§p2 Anspigooe Anspgoee Anspgeee ]
THG Type | 2 2 2 2
yp )((3) X(SF)GnoeX(Sl—)iG:ooo X(SF)GZOESX(SI-%GZOOG coSa
THG000e nZOAnSHGZOOO nzeAnSHG:OoeCO§p2
Type Il 2 2 2 2
yp (3) X(SF)GEoe)((SI-)!G:ooo X(SF)G:eeeX(SI-%G:ooe
3XTHG:00e6™ A +
n20 nSHGZOOO nzﬁAnSHG:OOECOS?pz
2 2 2 2
2X(SF)GZOOSX(S|3GZOEO 2)((SF)Gquatex(SI-%G:oee .
+ cogasina
nZOAnSHGZOEO nngnSHG:Oeecong
Type llI

2 2 2 2
2X(SF)GJeoe)((SI—%G:oeo " 2X(SF)GEQQX(S|-%GZOQB

nZOAnSHGZOEO nZ(,AnSHGDeeCOSsz

3
3X£I'I—%G:oeee

2 2 2 2
X(SF)GDOBX(SI-%GZEEO X(SF)GDee\/(Sl-%G:eee .
+ cosa Sirfa

nZOAnSHGZEEO nngnSHG:eeg:ngz

The ampli f the third-order electric field al n ; 2 2
e amplitude of the third-order electric field also can be E 3'wZX(SF)GrstX(SH)G;pqulpAlqur

obtained by integrating Eq3), with Eq. (6) being substi- ASH2)= >
tuted into Eq.(3). The third-order solution can be expressed pars N2sN3C2C0S p,COS P,
as L1 (ex;{i(AkpqurAkrst)z]—l
- Ak i(Akpgst Ak
As(2) :Ag'tf( Z) +Ag?$( 2), (7) pgs ( pgs rst)
exp(iAk,si2) — l] ©
whereA$'(z) andA$z) are given by i Akt ’

and Egs.(8) and (9) represent the contributions of direct

(Z)_E 3in(T?f4)e;pan1pA1qA1rZ third-order and cascaded second-order processes, respec-

dir
Ast o 2n5.c cops tively. Although Qiu and Penzkoféd 2] also derived results
' ' similar to Egs.(8) and(9), they neglected summations over
X expiAKpqriz/2)sind AKpq2/2), (8)  different polarization states of the fundamental and second-
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TABLE Il. Effective second- and third-order nonlinear optical susceptibilities of CgDiB.

NLO process Xeff

SHG (0 + 0—2w)

0,0,—0; X(SZI-%GZOOOZO

0,0,—€; X(Szl-%G:ooe: —ngl)zsin(aerz)sin 2¢

0,6,—0; ngl-%ezoeo: _X(122)35in(0+p1)5in 2¢

018,-€, XL 0ee= [ XZSINO+p)COSO+ p) + X5 c0sO+ p)sin(O+po)Jcos 2
€,6,—0; x & eeo= X12SIN(20+2p))cos 2

€166 xS eee= [2XIZSINE+ p1)cosO+p,) + X51,c0S O+ py)sin(6+py) Icos@-+py)sin 26
SFG (w+20w—3w)

0,0,—03 X(SZF)G:ooo:O

0,0,—€3 X(SZF)Gnoe: _X(321)25in('9+P3)Sin 20

€10,—03 X(SZF)GEOOZ *X(lzs)ZSin(gJFPl)Sin 2¢p

€,0,—€; X B eoe= [XZSING+p1)COSO+ps) + X5 ,c0s 0+ py)sin(6+ps) Icos 2p
0,6,—03 X(SZF)GDEOZ _Xg.zz?’_%Sin(a'i_PZ)Sin 2¢

018, €; XLooee= [XIDSINO+p2)COSO+ps) + X570+ p)sin(6-+p) Icos 2
€18,—0; XPoeeo= [ XIZL0SE+pD)SIN(E+po)+ XiFSIN(O+pr)cos@-+p,) Icos 2
e1e,—e; X$Poee= [X12£0SO+p)SIN(O+p)coSE+pg) + X{FSIN(O+ p)cOSE-+po)cOSO+ps) + X57.c0SO+py)

X coS@+ p,)sin(6+ ps)Isin 24

THG (0+w+w—3w)

1 .
010101 —€3 X%’?—%G:oooe: 1 (X(la:‘L)ll_ 3)((131)22) cos@+pg)sin 4¢
0,0,8;—€3 X6 00e6= 3 (X311~ 3x 120 COSE+ p1)COS O+ pa)Sir? 2h+ Xi35L£0S 0+ p1)COSE-+p3) + X551 SIN(E+ p1)SIn(6+ p3)
016161 €; Xe0ees — 3 (X111 3x1T2) cOS(6+ p)cos@+pa)sin 4¢

harmonic waves, which causes significant errors in the refor THG, and over all possible values of the indeXWhen
sults for SHG and SFG-PM conditions. the PM condition for SFG is almost satisfietik,;— 0), EQ.
Equationg8) and(9) can be simplified further by consid- (9) is expressed as
ering the fact that the contributions of NLO interactions at
large phase-mismatched conditions are negligibly small. For
direct third-order processes, only the terms that satisfy the
PM conditions dominate the contribution to THG and, there-
fore, EqQ.(8) can be expressed by only one coupling term
with multiplication of a degeneracy factor for a set of polar- X expiAK;s1z/2)sind Ak, :2/2). (11
ization states satisfying the PM condition.
For cascaded second-order processes, three different cases N ) o
can be taken into account for PM conditions: those for SHGYhen the PM condition for SHG is almost satisfielikg,qs
SFG, and THG. When the PM condition for THG is almost —0), Ed.(9) is expressed as
satisfied QKyqst AKisi=AKpqr—0), EQ.(9) is expressed in
a simpler form

H 2 2
2 3i wZX(SF)GIstX(Sl—)iG:pqulpAlqur z
PATS)  NogNgC2c0€p,C0Sps  AKpgs

AgHT2) - -

ALY Z)= 2 3isz(SZF)G:rstX(SZI-)IG:pqulpAlqur z
* (PaD.r  NyNgc’coSp,coSpy  Akrst
xexdi(Akysi+Akpqd2)z]sind Ak, q2/2),
(12

-2 (2 2
E Siw X(SF)GrstX(SI-)IG:pqulpAlqur

Astiz) =
t (PAN.s  NpgNgC?COSL P, COS P

X

Z - -
A kpqsexm AkKpqriz/2)sind Akpq2/2),

after a little algebra. Similar but crude results were obtained
in a previous work12], but the expression near the SHG PM
was incorrectly derived, leading to the erroneous conclusion

(10

where the summation is to be performed over the permutathat efficient THG cannot be obtained when the SHG-PM
tions of the indicep, g, andr that satisfy the PM conditions condition is met.
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B. Phase-matched third-harmonic generation Ill. THIRD-HARMONIC GENERATION IN CsLiB Oy
in uniaxial crystals CRYSTALS
In Egs.(10)—(12), the summations over polarization state A. Optical properties of CLBO crystals

can be removed by introducing polarization anglef the . . o .
fundamental beam. The amplitudes of ordinary and extraor- CLBO [11’19_23'5 a negative uniaxial crystal belonging
dinary components of the fundamental wave are representd@ the tetragonal42d—42m class. The transparency of
asA;,=A;cosa andA,.=A,sina, respectively, in uniaxial CLBO crystals ranges from 180 to 2750 fiid]. Although
crystals. the UV cutoff wavelength of CLBO is slightly longer than
The total amplitudeAs(2) of the third-order electric field that of LBO, the PM property of CLBO for UV generation is
can be represented by a sum of the amplitudes of ordinarjPuch better than LBO owing to large birefringence. CLBO
and extraordinary electric fields for the direct and cascadegXhiPits a very high laser-damage threshold of 26 G_V\?/cm
contributions.As(z) is expressed, very near the THG and at 1.064 um with 1.1-ns pulse duration, which is similar to

SFG-PM conditions, as that of LBO, but much higher than that of BBQ9]. The
second-order NLO susceptibility tensor of CLBO has two
3iwX gf)(a) independent components, anddzg, and the two compo-
A3(z)=—Afzexp(iAkz/Z)sinc(Akz/Z), nents are identical under Kleinman’s symmetry condition
2ng,C coSpg [26]. The reported value azgis 0.95 pm/V at 1.064um

13 [11]. Although the effective second-order NLO coefficient
des Of CLBO is about 60% of that of BBO, CLBO possesses
a number of advantages over BBO for high-intensity UV
generation, such as higher laser-damage threshold, smaller
walk-off angle, and larger angular, spectral, and temperature

and very near the SHG-PM conditiors;(z) is expressed as

3in(%)(a) PM acceptance bandwidth22]. In addition, CLBO crystals
Ay(2)= —eAiz exp(iAkz/2)sind Akz/2). of large size and excellent quality can be grown in a short
2N,,C COSp, time [11,20.
(14 The dispersion of the principal refractive indices of
CLBO is represented by a set of Sellmeier equatidrs,
Herex {3) denotes overall-effective third-order NLO suscep- 1.10259¢ 102
tibility and Ak the wave-vector mismatch for the given PM  n2=2.20490+ 5 — —6.95625¢ 1075)2,
configuration. In Egs(13) and(14), n;, (i=1,2,3) was used A“—1.1811%10
for the refractive index of an extraordinary wave, instead of (179
ni.(#), and p; for the walk-off angle of an extraordinary 8.64948¢ 10-3
wave, msteaq 0pie, Since the walk-off angle;, of an or- n§=2.05936+ . —2.67532 10 5\2,
dinary wave is zero. N2—1.28929< 10 2
The expressions fot’ 5;?2 very near the PM conditions are (18a

listed in Table | for negative uniaxial crystals. The formulas

can be readily modified for the cases of positive uniaxial andvhere\, the wavelength ium, lies between 0.24Qum and
biaxial systems. The index-mismatch paramet®ngyg,qs  0-633 um, and

andAngrg,s; are defined as

) 1.58749% 10 * s
n0:2.1431&—m—6.23750< 107 *\4,
AKspgpg Nipt Ny '
AnSHG:pqu zwpq = p2 q_nzsy (15 (17b)
5 2.73245¢10 2 s
Ne=2.04195 — — —3.42718<10° "\,
AKspgrstC  Nir+ 2N N“+2.86672< 10
Angpgrst= 3w = 3 —Nz;. (16) (18b)

where\ lies between 0.633wm and 1.064 um. Although a
. : . . number of Sellmeier equations for CLBO crystals have been
It is worth noting that, from Eq913) and(14), TH intensity reported by several au(iho[r$l,19,21,22,2]4 thyose given by

is proportional to a product of (e?f)|2 and siné(AkﬂZ). Egs.(17) and (18) agree best with our measured PM angles
Therefore, very near the SFG and THG-PM conditions, th 2q7]..( 7 (18 ag ¢

dependence of the TH intensity on the phase mismatch has
an envelope of the square of the sinc function, but very near h ical deration for sinal dium THG in CLBO
the SHG-PM condition, its shape departs from the envelop& 1"€oretical consideration for single-medium n

of the square of the sinc function, sin¢& (|2 contains The third-order NLO susceptibility tens:;yﬁ(fk)I of CLBO
various phase terms very near the SHG-PM condition, ablas 21 nonzero components, of which only 11 are indepen-
listed in Table I. dent. Since three interacting frequencies are degenerate in
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TABLE IIl. Characteristic parameters for phase-matched single-medium third-harmonic generation at

1.064 pm in CsLiBsO4q.

PM condition NLO process 6py A6L pP1 P2 P3 n, ny An Ak
(deg (deg mm (deg (deg (deg (mm™)

SHG

Type | 0,0,—€, 29.63 0584 170 178 1.87 1.4852 0 0
0,6,—€; 1.5029 —0.0177 —314.13
€6, €; 15029 —0.0219 —388.57
0,6, 05 15171 —0.0319 —565.31
e,8,0s 15171 —0.0361 —639.75

Type II 0,6,—e, 4328 0980 195 204 214 1.4732 0 0
0,6, € 1.4902 —0.0130 —230.04
€18y, 1.4902 —0.0210 —371.48
01,05 15171 —0.0399 —706.75
e,8,—0; 15171 —0.0479 —848.18

SFG

Type | 0,0,—e5 39.27 0327 192 201 211 14941 0 0
0,00, 1.4985 ~0.0133 —157.32
0,6,—0, 1.4985 ~0.0236 —278.32
e,e,—0, 1.4985 —0.0338 —399.33

Type II e0,—e; 4934 0471 191 2.00 2.10 14843 0 0
0,0,—0, 1.4985 ~0.0133 —157.32
0,6,—0, 1.4985 —0.0279 —329.56
€,6,-0, 1.4985 ~0.0425 —501.80

THG

Type | 0,0,0,—€; 4845 0329 192 201 2.11 14852 0 0
{0,0,—6y; 1.4685 0.0167 197.05
0,8, €5) 1.4852 —0.0111 —197.05
{0,0,—05; 1.4985 —0.0133 —157.32
0,0p— €3} 14852 0.0089  157.32

Type II 0,0,6,—e; 6402 0607 150 1.57 165 14717 0 0
(0,0, €, 1.4558 00294 347.23
€18, e5) 1.4717 —0.0196 —347.23
(01,6 1.4558 00092 108.18
0,8,—€3) 1.4717 —0.0061 —108.18
{0,0,—05; 1.4985 ~0.0133 —157.32
€,0,—e3} 1.4717  0.0089 157.32
(0,6, 05 1.4985 ~0.0336 —396.36
0,0,— €3} 14717 0.0224  396.36

THG processes, only{¥;, xZh, xBha xSy, andxEh;  Using Egs.(19) and (20), the effective second-order NLO

remain independent, due to the permutation symmetry of insusceptibilities for SHG and SFG, and the effective third-

dicesj,k, andl. The second-order NLO susceptibiligf?)
CLBO has two independent component$) (=2d,,) and
x5, (=2d5¢ for SHG, and three independent components

xi2%, x12%, and x2) for SFG. In a uniaxial crystal, th

larization unit vectors for ordinary and extraordinary
are expressed in polar coordinates as

of

e po-
waves_ (2)

order NLO susceptibility for THG of CLBO are represented
in Table 1.
The effective second-order NLO susceptibility can be cal-
culated if all the components of the second-order NLO sus-
ceptibility tensor are known. Among the values)gf, only

Xx31» for SHG is reported, which is 1.90 pm/V at 1.064m

[11]. All the other tensor componentg{2; for SHG, x{2;

and x{2, for SFG, are identical tg{3} for SHG and SFG,
respectively, if we apply Kleinman’s symmetry condition,
which is based on the assumption that the dispersion of non-
linearity is negligible. This condition is well satisfied for
CLBO, since the UV cutoff wavelength (0.18@m) of

e,=(sin¢,—cos¢,0), (19

€= (—coq 0+ p)cosp,—cog 6+ p)sing,sin(0+p)).
(20
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TABLE IV. Overall-effective third-order nonlinear optical susceptibilities for single-medium third-
harmonic generation at 1.064m in CsLiBgOyj.

PM condition x 3(pntIv?)
SHG Type | —0.660%[21.96 expt-565.3z)sir’ 2¢—34.11 expt-314.1iz) sin 4p]cosa
—[16.55 exp-639.82)sin 44+ 70.55 exp-388.62) sirf24]sin ajcosa
Type Il 1.267[11.98 expt 706.82)sin 4¢p—105.6 expt-230.0z) co$24]cosa
—[28.08 exp{-848.42) cog2¢+34.47 expt-371.52) sin 4p]sin ajsin 2o
SFG Type l 0.4500106.2 sif2¢ cosa—27.84 sin 4p sin aJsin 2o
Type I —1.32853.09 sin 4p cosa—43.65 co&2¢ sin aJsirfa
THG Type | [0.1588(3),— 3x$3),) —59.94sin 4 coSa
Type I {329.4+0.512 %)+ 2.488 ),

—[495.7-0.25614 3, 3x{%)) Isi2pjcoda sina

CLBO is much shorter than the fundamental (1.06#) the optimum PM conditions for single-medium THG. Figure
and harmonic (0.532um and 0.355xm) wavelengths. In 3 exhibits the dependence |6t | on propagation distance
addition, {2}, for SFG can be obtained using Miller’s rule at the PM angledpy=29.6° of type-lI SHG. Ate=0° and
[28,29 ¢=45°, which gives the optimum PM condition for type-I
SHG, | X )| has a constant valusolid curve in Fig. 8)].
dij(@3;01,02) = SijxiP(@a) X (0D Xi(@2), (2D However, ¥ &) becomes zero whed is 0° or 90°. In gen-
where the Miller's 5, is determined by usingy2) el’f_i|, |°X ) sfows ;’;\n osqllatory behavior. For example, at
- @) a=0° and¢$=22.5°, the interference of two nonzero ampli-
=1.90 pm/V for SHG. x3y; for SFG of 1.064um and ,qeq with different phase factors gives rise to a sinusoidal
0.532 um is calculated to be 2.04 pm/V. However, itis not ,qejjiation with a period of about 25:m [dashed curve in
possible to calculate the effective third-order NLO susceptlFig_ 3(@)]. Thus even a minute change in sample length or

ili (3) _ di (3) (3) . ; . L L
bility x7iie directly from xijy; because noyjiy values of  nropagation direction can lead to a significant variation of
CLBO are available. Nevertheless, the effective third-ordethe TH intensity by up to a factor of 4, because of the sen-

NLO susceptibility can be estimated from a measuredse dependence oﬁ'g’f) on the propagation distance.
overall-effective third-order NLO susceptibility () and the
amount of contributions of cascaded second-order processes,

which can be calculated using?, as reported in previous (@) 304w o nu i nh s A s AR

works [12-18. R HHE R
For single-medium THG at 1.064m in CLBO, there o 20"

exist six types of possible PM conditions: type-I and type-I| 2 WAy y ui

SHG, type-l and type-ll SFG, and type-l and type-Il THG. g L R L L ALE LIS R

No PM angle is available for type-Ill SFG and type-1ll THG. o 104

PM angle, walk-off angle, and other related parameters for = 5]

each PM condition were calculated using EdS) and(18),

which are listed in Table Ill, wherépy, and A 6L represent 00.0 01 02 03 04 05

the PM angle and angular acceptance bandwidth, respec-
tively, with L being the sample length. Using the parameters
in Table 1ll, X & for different types of PM conditions are
represented for single-medium THG at 1.0¢¢m, with the
unknown () components(Table V). It should be noted
that X ) for SHG PM has a dependence on propagation
distancez, in millimeter. Sincel 3, | X (|2, the TH inten-

sity depends on polarization angleand azimuthal angleé.
Therefore, we can predict the optimum PM conditions that
produce the maximum TH intensity.

IV. NUMERICAL CALCULATIONS
OF x{2 AND DISCUSSIONS

FIG. 3. Dependence okg?f) on propagation distance at the
For SHG-PM conditions, the expressions far) in  phase-matching angle of type-I second-harmonic generation with
Table IV are rather complicated, which are functions of(a) a=0° and(b) «=45°. The solid curves represent values ob-
propagation distance Therefore, it is not easy to determine tained at¢=45° and the dashed curves at=22.5°.
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FIG. 4. Dependence oft ) on propagation distance at the
phase-matching angle of type-ll second-harmonic generation with
a=45°. The solid curve represents values obtainegat0° and
the dashed curve at=22.5°.

Nonetheless, the condition @f=0° and ¢=22.5° always
produces more efficient single-medium THG than the condi-
tion of a=0°, ¢=45°, due to the largeft | value ata
=0°, ¢=22.5°. Taking another example, the case in which
a=45° and ¢=45° yields a sinusoidal oscillation with a
period of 35 um [solid curve in Fig. 8)]. On the other
hand, in the case ak=45°, ¢=22.5°, the interference of
four nonzero amplitudes with different phase factors causes
|x )| to show a complicated oscillatory behaviatashed
curve in Fig. 3b)]. Figure 4 shows the dependenced &ty

on propagation distance at the PM angledpy=43.3 of FIG. 5. Three-dimensional contour maps ¢! at the phase-

type-ll SHG with «=45°, ¢=0° (solid curvg and « matching angles of sum-frequency generation(&rtype | and(b)
=45°, ¢=22.5° (dashed curve The overall features are ype .

very similar to those of Fig. ®), but the oscillation periods
are much shorter and the maximum values| 3| are
much larger. We have investigated theoretically the characteristics of
The three-dimensional contour maps 6ty as functions PM and third-order NLO susceptibility for single-medium
of @ and ¢ are shown for the PM conditions of type-l SFG THG via direct and cascaded processes in CLBO. A full set
(0py=39.3°) [Fig. 5@)] and type-ll SFG @py=49.3°) of coupled-amplitude equations for the general case of

[Fig. 5(b)]. It is noteworthy that the distribution ot )  single-medium THG were setup and solutions for the TH

in each contour map is, in fact, the inversion center, which igusceptibility. X' & was defined, which is essential for pre-
very unlike the features of second-order NLO processes. Théicting the TH intensity. Numerical analysis shows tha§)
optimum PM conditions for single-medium THG can be near SHG-PM conditions is expressed as an oscillatory func-
achieved ate~36°,~50° for type-l SFG PM, and a& tion of propagation distance. Nevertheless, lakf§) values
=90°, $=0° for type-ll SFG PM, and thet ) values of about 70 to 120 pAiV? can be obtained for type-Ii
reach up to 38 pRiIV2 and 58 pri/V?, respectively. SHG-PM conditions. For SFG-PM conditiong; 3 as a

In Table IV, it is easy to see that the optimum PM condi-function of & and ¢ shows an inversion symmetry with re-
tion for type-1 THG (0py=48.5°) of 1.064 um is «=0°, spect toa=0°, ¢=0°, and the optimum PM conditions for
¢=22.5° or 67.5°, regardless of the value g} . For  single-medium THG ar@=39.3°, ¢~50°, anda~36° for
type-ll THG PM (fpy=64.0°), the optimum value of is  type-l SFG PM, and§=49.3°, $=0°, and a=90° for
also easily determined as 35.3°. However, the optimuniype-ll SFG PM. The optimum PM condition for type-l THG
value of ¢ depends on the values gf;) components. The is §=48.5°, $=22.5°, andx=0°, and that for type-Il THG
dependence of¢ (3) on ¢ can be expressed in the form of 1S #=64.0°, «=35.3°, and$=0° or 45°, depending on the
(A—B sir?2¢)?, where the parametefsandB are expressed magnltl(Jges of the third-order NLO susceptibility compo-
with linear combinations of{}) . The optimum value ofp is ~ NeNtSXiji -
0° for A/B>0.5, and 45° folA/B<<0.5. If we consider only
cascaded second-order contributionstt¢? , A/B is calcu-
lated to be 0.665 and thu¥ &) may have the maximum at  This work was supported in part by the HAN project and
¢=0°. in part by the basic research fund of KAIST.

o (pm*/V?)

V. CONCLUSIONS

ACKNOWLEDGMENTS

033831-8



THEORETICAL ANALYSIS OF THIRD-HARMONIC . .. PHYSICAL REVIEW A 65 033831

[1] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pers{16] S. A. Akhmanov, L. B. M&ner, S. T. Parinov, S. M. Saltiel,

han, Phys. Rev127, 1918(1962. and V. G. Tunkin, Zh.’Esp. Teor. Fiz73, 1710(1977 [Sov.
[2] R. W. Terhune, P. D. Maker, and C. M. Savage, Appl. Phys. Phys. JETR6, 898 (1977)].

Lett. 2, 54 (1963. [17] G. R. Meredith, Phys. Rev. B4, 5522(1981).
[3] P. D. Maker and R. W. Terhune, Phys. R&87, A801(1965. [18] C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier,
[4] C. C. Wang and E. L. Baardsen, Appl. Phys. Ldtf, 396 Phys. Rev. B61, 10 688(2000.

(1969. [19] Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, Jpn.
[5] B. Wu, N. Chen, C. Chen, D. Deng, and Z. Xu, Opt. Lé#, J. Appl. Phys., Part 34, L296 (1995.

1080(1989. [20] T. Sasaki, Y. Mori, I. Kuroda, S. Nakajima, K. Yamaguchi, and
[6] T. Zhang, Y. Motoki, L. B. Sharma, H. Daido, Y. Kato, Y. S. Watanabe, Acta Crystallogr., Sect. C: Cryst. Struct. Com-

Mori, and T. Sasaki, Electron. LetB2, 452(1996. mun. C51, 2222(1995.

[7] Z. Wang, K. Fu, X. Xu, X. Sun, H. Jiang, R. Song, J. Liu, J. [21] G. Ryu, C. S. Yoon, T. P. J. Han, and H. G. Gallagher, J. Cryst.
Wang, Y. Liu, J. Wei, and Z. Shao, Appl. Phys. B: Lasers Opt. Growth 191, 492(1998.

72, 839(2002). ] [22] T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Ka-
[8] S. A. Akhmanov and N. I. Koroteev, Zh.kBp. Teor. Fiz67, mimura, Mater. Sci. Eng., B0, 1 (2000.
1306(1974 [Sov. Phys. JETRO, 650(1975)]. [23] Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki,
[9] D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Opt. Lett.21, 1348(1996.
Appl. Phys.62, 1968(1987). [24] N. Umemura and K. Kato, Appl. Op86, 6794(1997).
[10] D. N. Nikogosyan, Appl. Phys. A: Solids Sufig, 181(1994). [25] S. A. Akhmanov, A. I. Kovrygin, and A. P. Sukhorukov, in
[11] Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, Appl. Quantum Electronics: A Treatisedited by H. Rabin and C. L.
Phys. Lett.67, 1818(1995. Tang (Academic, New York, 1975 \Vol. |, Part B, Chap. 8.
[12] P. Qiu and A. Penzkofer, Appl. Phys. B: Photophys. Laser[26] D. A. Kleinman, Phys. Rev126, 1977(1962.

Chem.45, 225 (1988. [27] M. -s. Kim and C. S. Yoon, ifCLEO/Pacific Rim 2001Tech-
[13] I. V. Tomov, B. Van Wonterghem, and P.M. Rentzepis, Appl. nical Digest of the 4th Pacific Rim Conference on Lasers and
Opt. 31, 4172(1992. Electro-Optics, Chiba, JapatEEE, Piscataway, 200,1\ol. I,

[14] P. S. Banks, M. D. Feit, and M. D. Perry, Opt. Le?4, 4 p. 398.
(1999. [28] R. C. Miller, Appl. Phys. Lett5, 17 (1964.

[15] B. Boulanger, J. P. Re, P. Delarue, |. Rousseau, and G. [29] C. G. B. Garrett and F. N. H. Robinson, IEEE J. Quantum
Marnier, J. Phys. BB2, 475(1999. Electron.2, 328 (1966.

033831-9



