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Theoretical analysis of third-harmonic generation via direct third-order and cascaded
second-order processes in CsLiB6O10 crystals

Min-su Kim and Choon Sup Yoon*
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 24 September 2001; published 1 March 2002!

Third-harmonic generation using a single medium receives theoretical analysis and the results are applied to
CsLiB6O10 crystals. From the solutions for a full set of coupled-amplitude equations, comprehensive expres-
sion of overall-effective third-order nonlinear optical susceptibility is derived, including the contributions of
direct third-order and cascaded second-order processes. The overall-effective third-order nonlinear optical
susceptibility shows peculiar behaviors, such as oscillatory dependence on propagation distance and depen-
dence on azimuthal and polarization angles with inversion symmetry. The optimum conditions for efficient
third-harmonic generation are predicted at the phase-matching angles of second-harmonic generation, sum-
frequency generation, and third-harmonic generation.
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I. INTRODUCTION

Third-harmonic generation~THG! of high intensity using
a single nonlinear optical~NLO! medium, instead of two, ha
been an appealing approach for obtaining coherent ultra
let ~UV! light sources. THG using a single NLO medium
termed ‘‘single-medium THG’’ throughout this paper. Singl
medium THG can be realized via direct third-order and c
caded second-order processes@Fig. 1~a!#. Although this idea
has received consideration since the beginning of nonlin
optics @1–4#, its wide application has been hindered due
the facts that the magnitude of third-order NLO suscepti
ity x (3) in a material is, in general, much smaller than that
second-order NLO susceptibilityx (2), and a great proportion
of efficient NLO crystals are not transparent in the UV r
gion. Given these hindering factors, THG of high-convers
efficiencies of 20–30% has usually been achieved by
successive second-order NLO processes, that is, sec
harmonic generation~SHG! followed by sum-frequency gen
eration~SFG! @Fig. 1~b!# @5–7#, and single-medium THG ha
been rarely utilized apart from spectroscopy@8#.

In recent years, borate NLO crystals@9–11# of large
size and excellent quality, such asb-BaB2O4 (BBO),
LiB3O5 (LBO), and CsLiB6O10 (CLBO), have become
widely available. These crystals have relatively large seco
order NLO susceptibilities, high laser-damage thresho
and wide transparency ranges in the UV region. Combi
tions developed recently, using borate crystals and h
peak-power lasers, make it possible to generate UV ligh
significant intensity utilizing single-medium THG@12–15#.
Major efforts in this direction have been made using BB
crystals@12–14# and a maximum THG conversion efficienc
of 6% was achieved@14#. However, previous reports con
tained a number of significant errors for overall-effecti
third-order NLO susceptibilities, and interpretations of t
experimental data were misleading@12,13,16–18#. CLBO
crystals have been developed recently that possess exc
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NLO properties @11,19–22#, such as a relatively large
second-order NLO coefficient, wide transparency in the U
region, and a high laser-damage threshold@11,19#. CLBO
has a number of advantages over BBO and LBO. It posse
higher laser-damage threshold and wider phase-matc
~PM! acceptance bandwidth than BBO@19,22#, and can sat-
isfy the PM conditions of fourth and fifth harmonics of
Nd:YAG laser @6,23,24#, whereas LBO cannot. In addition
CLBO can be grown to a large size with a high degree
perfection in a short time@11,20#.

In this paper, a full set of coupled-amplitude equatio
governing single-medium THG is formulated and the so
tion is obtained under the undepleted-pump approximat
A comprehensive definition for overall-effective third-ord
NLO susceptibility is introduced, which is essential for pr
dicting PM characteristics of single-medium THG. Using t
definition, overall-effective third-order NLO susceptibilitie
are calculated, and the PM characteristics and optimum
conditions are investigated for all possible PM conditions
1.064mm in CLBO crystals.

II. ANALYTIC SOLUTIONS FOR THIRD-HARMONIC
FIELD AMPLITUDE

A. Third-harmonic generation in noncentrosymmetric media

When a direct third-order NLO process, shown in F
2~a!, satisfies a PM condition along a direction in a nonce

FIG. 1. Schematics of generating third-harmonic waves.~a!
Single-medium third-harmonic generation; direct third-order a
cascaded second-order processes, and~b! third-harmonic generation
using two media; a second-harmonic generation followed by a s
frequency generation.
©2002 The American Physical Society31-1
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trosymmetric medium, the cascaded second-order NLO
cesses represented byx (2)

•x (2) @Fig. 2~b!# also satisfy the
PM condition in the same direction with the same incide
wave, although the individualx (2) process does not. This i
because the amount of wave-vector mismatchDkSHG occur-
ring in the first second-order process~SHG, v1v→2v! is
canceled out exactly by the amount of wave-vector misma
DkSFG in the subsequent second-order process (SFGv
12v→3v) @12,25#, which is depicted in Fig. 2~c!. There-
fore, it is expected that not only the direct third-order pr
cess, but also the cascaded second-order processes,
equally well contribute to THG as shown in Fig. 1~b! @12#.
However, even when the direct third-order NLO process fa
to satisfy the PM condition, an efficient THG can still b
obtained if the PM condition for either SHG or SFG is m
@Fig. 2~b!#, since the second-order process that satisfies
PM condition becomes highly effective.

This can be proved by solving coupled-amplitude eq
tions for THG. With the assumption that the incident wave
a collinear, quasicontinuous, and plane wave, a full se
coupled-amplitude equations is given by

dA1p

dz
5

iv

2n1pc cos2r1p
F2(

qs
xSHG:pqs

(2) A1q* A2s

3exp~2 iDkpqsz!12(
st

xSFG:pst
(2) A2s* A3t

3exp~2 iDkpstz!13(
qrt

xTHG:pqrt
(3) A1q* A1r* A3t

3exp~2 iDkpqrtz!G , ~1!

FIG. 2. Energy-level diagrams of third-harmonic generation
~a! direct third-order and~b! cascaded second-order processes. T
dashed lines indicate virtual states.~c! Wave-vector diagram of the
direct third-order and cascaded second-order processes at the p
matching condition for the direct third-harmonic generation p
cess. The numbers in subscripts of the wave vectors refer to
order of harmonic waves and the indicesp, q, r, s, and t represent
polarization states.
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dA2s

dz
5

2iv

2n2sc cos2r2s
F(

pq
xSHG:pqs

(2) A1pA1qexp~ iDkpqsz!

12(
pt

xSFG:pst
(2) A1p* A3texp~2 iDkpstz!G , ~2!

dA3t

dz
5

3iv

2n3tc cos2r3t
F2(

ps
xSFG:pst

(2) A1pA2sexp~ iDkpstz!

1(
pqr

xTHG:pqrt
(3) A1pA1qA1rexp~ iDkpqrtz!G . ~3!

Here r represents walk-off angle andDk denotes wave-
vector mismatch for a given coupling configuration.xSHG:pqs

(2)

andxSFG:pst
(2) denote effective second-order NLO susceptib

ties for SHG and SFG processes, respectively, andxTHG:pqrt
(3)

denotes effective third-order NLO susceptibility for TH
process. Subscriptsp, q, and r refer to polarization state
~e.g., ordinary and extraordinary polarizations in uniax
crystals! of the fundamental waves, and subscriptss and t
indicate the polarization states of second- and third-harmo
waves, respectively. Since the subscriptsp, q, r , s, andt in
Eqs. ~1!–~3! have two polarization states, the full set
equations consists of a total of six equations with a total
58 coupling terms. Therefore, it is almost impossible to o
tain solutions for the above equations analytically. Howev
the number of coupling terms may be greatly reduced
adopting a proper approximation, and by using symme
properties of a NLO medium.

When conversion efficiency is sufficiently low, th
undepleted-pump approximation can be employed. If we
proximate, using the assumption that

uA3u!uA2u!uA1u, ~4!

Eq. ~1!, the differential equation for the fundamental wav
can be omitted from the set of coupled-amplitude equatio
sincedA1p /dz becomes negligible. In addition, Eq.~2! for
the second-harmonic wave is reduced to

dA2s

dz
5

iv

n2sc cos2r2s
(
pq

xSHG:pqs
(2) A1pA1qexp~ iDkpqsz!.

~5!

We can easily obtain the amplitude of the second-or
electric field by integrating Eq.~5!, and the solution is given
by

A2s~z!5(
pq

ivxSHG:pqs
(2) A1pA1q

n2sc cos2r2s

z

3exp~ iDkpqsz/2!sinc~Dkpqsz/2!. ~6!
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e
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TABLE I. Overall-effective third-order nonlinear optical susceptibilities for single-medium third-harmonic generation in ne
uniaxial crystals.

PM condition X eff
(3)

SHG Type I 2xSHG:ooe
(2) cos2a

3 HFxSFG:oeo
(2) exp~iDkSFG:oeoz!

n3oDnSFG:oeo
1

xSFG:oee
(2) exp~iDkSFG:oeez!

n3uDnSFG:oeecos2r3
Gcosa

1FxSFG:eeo
(2) exp~iDkSFG:eeoz!

n3oDnSFG:eeo
1

xSFG:eee
(2) exp~iDkSFG:eeez!

n3uDnSFG:eeecos2r3
GsinaJ

Type II 2xSHG:oee
(2) sin 2a

3 HFxSFG:oeo
(2) exp~iDkSFG:oeoz!

n3oDnSFG:oeo
1

xSFG:oee
(2) exp~iDkSFG:oeez!

n3uDnSFG:oeecos2r3
Gcosa

1FxSFG:eeo
(2) exp~iDkSFG:eeoz!

n3oDnSFG:eeo
1

xSFG:eee
(2) exp~iDkSFG:eeez!

n3uDnSFG:eeecos2r3
GsinaJ

SFG Type I
2

xSFG:ooe
(2) cosa

n2o
FxSHG:ooo

(2) cos2a

DnSHG:ooo
1

xSHG:oeo
(2) sin 2a

DnSHG:oeo
1

xSHG:eeo
(2) sin2a

DnSHG:eeo
G

Type II
2

xSFG:eoe
(2) sina

n2o
FxSHG:ooo

(2) cos2a

DnSHG:ooo
1

xSHG:oeo
(2) sin 2a

DnSHG:oeo
1

xSHG:eeo
(2) sin2a

DnSHG:eeo
G

Type III
2

xSFG:oee
(2) cosa

n2ucos2r2
FxSHG:ooe

(2) cos2a

DnSHG:ooe
1

xSHG:oee
(2) sin 2a

DnSHG:oee
1

xSHG:eee
(2) sin2a

DnSHG:eee
G

THG Type I FxTHG:oooe
(3) 1

xSFG:ooe
(2) xSHG:ooo

(2)

n2oDnSHG:ooo
1

xSFG:oee
(2) xSHG:ooe

(2)

n2uDnSHG:ooecos2r2
Gcos3a

Type II F3xTHG:ooee
(3) 1

xSFG:eoe
(2) xSHG:ooo

(2)

n2oDnSHG:ooo
1

xSFG:eee
(2) xSHG:ooe

(2)

n2uDnSHG:ooecos2r2

1
2xSFG:ooe

(2) xSHG:oeo
(2)

n2oDnSHG:oeo
1

2xSFG:oee
(2) xSHG:oee

(2)

n2uDnSHG:oeecos2r2
Gcos2a sina

Type III F3xTHG:oeee
(3) 1

2xSFG:eoe
(2) xSHG:oeo

(2)

n2oDnSHG:oeo
1

2xSFG:eee
(2) xSHG:oee

(2)

n2uDnSHG:oeecos2r2

1
xSFG:ooe

(2) xSHG:eeo
(2)

n2oDnSHG:eeo
1

xSFG:oee
(2) xSHG:eee

(2)

n2uDnSHG:eeecos2r2
Gcosa sin2a
be

ed

t
spec-

r
nd-
The amplitude of the third-order electric field also can
obtained by integrating Eq.~3!, with Eq. ~6! being substi-
tuted into Eq.~3!. The third-order solution can be express
as

A3t~z!5A3t
dir~z!1A3t

cas~z!, ~7!

whereA3t
dir(z) andA3t

cas(z) are given by

A3t
dir~z!5(

pqr

3ivxTHG:pqrt
(3) A1pA1qA1r

2n3tc cos2r3t

z

3exp~ iDkpqrtz/2!sinc~Dkpqrtz/2!, ~8!
03383
A3t
cas~z!5 (

pqrs

3iv2xSFG:rst
(2) xSHG:pqs

(2) A1pA1qA1r

n2sn3tc
2cos2r2scos2r3t

3
1

Dkpqs
H exp@ i ~Dkpqs1Dkrst!z#21

i ~Dkpqs1Dkrst!

2
exp~ iDkrstz!21

iDkrst
J , ~9!

and Eqs.~8! and ~9! represent the contributions of direc
third-order and cascaded second-order processes, re
tively. Although Qiu and Penzkofer@12# also derived results
similar to Eqs.~8! and ~9!, they neglected summations ove
different polarization states of the fundamental and seco
1-3
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TABLE II. Effective second- and third-order nonlinear optical susceptibilities of CsLiB6O10.

NLO process xeff

SHG (v1v→2v)

o1o1→o2 xSHG:ooo
(2) 50

o1o1→e2 xSHG:ooe
(2) 52x312

(2)sin(u1r2)sin 2f

o1e1→o2 xSHG:oeo
(2) 52x123

(2)sin(u1r1)sin 2f

o1e1→e2 xSHG:oee
(2) 5@x123

(2)sin(u1r1)cos(u1r2)1x312
(2)cos(u1r1)sin(u1r2)#cos 2f

e1e1→o2 xSHG:eeo
(2) 5x123

(2)sin(2u12r1)cos 2f

e1e1→e2 xSHG:eee
(2) 5@2x123

(2)sin(u1r1)cos(u1r2)1x312
(2)cos(u1r1)sin(u1r2)#cos(u1r1)sin 2f

SFG (v12v→3v)

o1o2→o3 xSFG:ooo
(2) 50

o1o2→e3 xSFG:ooe
(2) 52x312

(2)sin(u1r3)sin 2f

e1o2→o3 xSFG:eoo
(2) 52x132

(2)sin(u1r1)sin 2f

e1o2→e3 xSFG:eoe
(2) 5@x132

(2)sin(u1r1)cos(u1r3)1x312
(2)cos(u1r1)sin(u1r3)#cos 2f

o1e2→o3 xSFG:oeo
(2) 52x123

(2)sin(u1r2)sin 2f

o1e2→e3 xSFG:oee
(2) 5@x123

(2)sin(u1r2)cos(u1r3)1x312
(2)cos(u1r2)sin(u1r3)#cos 2f

e1e2→o3 xSFG:eeo
(2) 5@x123

(2)cos(u1r1)sin(u1r2)1x132
(2)sin(u1r1)cos(u1r2)#cos 2f

e1e2→e3 xSFG:eee
(2) 5@x123

(2)cos(u1r1)sin(u1r2)cos(u1r3)1x132
(2)sin(u1r1)cos(u1r2)cos(u1r3)1x312

(2)cos(u1r1)
3cos(u1r2)sin(u1r3)#sin 2f

THG (v1v1v→3v)

o1o1o1→e3 xTHG:oooe
(3) 5

1
4 (x1111

(3) 23x1122
(3) )cos(u1r3)sin 4f

o1o1e1→e3 xTHG:ooee
(3) 5

1
2 (x1111

(3) 23x1122
(3) )cos(u1r1)cos(u1r3)sin2 2f1x1122

(3) cos(u1r1)cos(u1r3)1x3311
(3) sin(u1r1)sin(u1r3)

o1e1e1→e3 xTHG:oeee
(3) 52

1
4 (x1111

(3) 23x1122
(3) )cos2(u1r1)cos(u1r3)sin 4f
r
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harmonic waves, which causes significant errors in the
sults for SHG and SFG-PM conditions.

Equations~8! and~9! can be simplified further by consid
ering the fact that the contributions of NLO interactions
large phase-mismatched conditions are negligibly small.
direct third-order processes, only the terms that satisfy
PM conditions dominate the contribution to THG and, the
fore, Eq. ~8! can be expressed by only one coupling te
with multiplication of a degeneracy factor for a set of pola
ization states satisfying the PM condition.

For cascaded second-order processes, three different
can be taken into account for PM conditions: those for SH
SFG, and THG. When the PM condition for THG is almo
satisfied (Dkpqs1Dkrst5Dkpqrt→0), Eq.~9! is expressed in
a simpler form

A3t
cas~z!5 (

(pqr),s

3iv2xSFG:rst
(2) xSHG:pqs

(2) A1pA1qA1r

n2sn3tc
2cos2r2scos2r3t

3
z

Dkpqs
exp~ iDkpqrtz/2!sinc~Dkpqrtz/2!,

~10!

where the summation is to be performed over the perm
tions of the indicesp, q, andr that satisfy the PM conditions
03383
e-

t
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e
-
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for THG, and over all possible values of the indexs. When
the PM condition for SFG is almost satisfied (Dkrst→0), Eq.
~9! is expressed as

A3t
cas~z!52 (

pq,(rs)

3iv2xSFG:rst
(2) xSHG:pqs

(2) A1pA1qA1r

n2sn3tc
2cos2r2scos2r3t

z

Dkpqs

3exp~ iDkrstz/2!sinc~Dkrstz/2!. ~11!

When the PM condition for SHG is almost satisfied (Dkpqs
→0), Eq. ~9! is expressed as

A3t
cas~z!5 (

(pqs),r

3iv2xSFG:rst
(2) xSHG:pqs

(2) A1pA1qA1r

n2sn3tc
2cos2r2scos2r3t

z

Dkrst

3exp@ i ~Dkrst1Dkpqs/2!z#sinc~Dkpqsz/2!,

~12!

after a little algebra. Similar but crude results were obtain
in a previous work@12#, but the expression near the SHG P
was incorrectly derived, leading to the erroneous conclus
that efficient THG cannot be obtained when the SHG-P
condition is met.
1-4
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B. Phase-matched third-harmonic generation
in uniaxial crystals

In Eqs.~10!–~12!, the summations over polarization sta
can be removed by introducing polarization anglea of the
fundamental beam. The amplitudes of ordinary and extra
dinary components of the fundamental wave are represe
asA1o5A1cosa andA1e5A1sina, respectively, in uniaxial
crystals.

The total amplitudeA3(z) of the third-order electric field
can be represented by a sum of the amplitudes of ordin
and extraordinary electric fields for the direct and casca
contributions.A3(z) is expressed, very near the THG an
SFG-PM conditions, as

A3~z!5
3ivX eff

(3)~a!

2n3uc cos2r3

A1
3z exp~ iDkz/2!sinc~Dkz/2!,

~13!

and very near the SHG-PM conditions,A3(z) is expressed as

A3~z!5
3ivX eff

(3)~a!

2n2uc cos2r2

A1
3z exp~ iDkz/2!sinc~Dkz/2!.

~14!

HereX eff
(3) denotes overall-effective third-order NLO susce

tibility and Dk the wave-vector mismatch for the given P
configuration. In Eqs.~13! and~14!, niu ( i 51,2,3) was used
for the refractive index of an extraordinary wave, instead
nie(u), and r i for the walk-off angle of an extraordinar
wave, instead ofr ie , since the walk-off angler io of an or-
dinary wave is zero.

The expressions forX eff
(3) very near the PM conditions ar

listed in Table I for negative uniaxial crystals. The formul
can be readily modified for the cases of positive uniaxial a
biaxial systems. The index-mismatch parametersDnSHG:pqs
andDnSFG:rst are defined as

DnSHG:pqs[
DkSHG:pqsc

2v
5

n1p1n1q

2
2n2s , ~15!

DnSFG:rst[
DkSFG:rstc

3v
5

n1r12n2s

3
2n3t . ~16!

It is worth noting that, from Eqs.~13! and~14!, TH intensity
is proportional to a product ofuX eff

(3)u2 and sinc2(Dkz/2).
Therefore, very near the SFG and THG-PM conditions,
dependence of the TH intensity on the phase mismatch
an envelope of the square of the sinc function, but very n
the SHG-PM condition, its shape departs from the envel
of the square of the sinc function, sinceuX eff

(3)u2 contains
various phase terms very near the SHG-PM condition,
listed in Table I.
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III. THIRD-HARMONIC GENERATION IN CsLiB 6O10

CRYSTALS

A. Optical properties of CLBO crystals

CLBO @11,19–22# is a negative uniaxial crystal belongin
to the tetragonalI 4̄2d24̄2m class. The transparency o
CLBO crystals ranges from 180 to 2750 nm@11#. Although
the UV cutoff wavelength of CLBO is slightly longer tha
that of LBO, the PM property of CLBO for UV generation i
much better than LBO owing to large birefringence. CLB
exhibits a very high laser-damage threshold of 26 GW/c2

at 1.064 mm with 1.1-ns pulse duration, which is similar t
that of LBO, but much higher than that of BBO@19#. The
second-order NLO susceptibility tensor of CLBO has tw
independent componentsd14 and d36, and the two compo-
nents are identical under Kleinman’s symmetry conditi
@26#. The reported value ofd36 is 0.95 pm/V at 1.064mm
@11#. Although the effective second-order NLO coefficie
deff of CLBO is about 60% of that of BBO, CLBO possess
a number of advantages over BBO for high-intensity U
generation, such as higher laser-damage threshold, sm
walk-off angle, and larger angular, spectral, and tempera
PM acceptance bandwidths@22#. In addition, CLBO crystals
of large size and excellent quality can be grown in a sh
time @11,20#.

The dispersion of the principal refractive indices
CLBO is represented by a set of Sellmeier equations@19#,

no
252.204901

1.1025931022

l221.1811931022
26.9562531025l2,

~17a!

ne
252.059361

8.6494831023

l221.2892931022
22.6753231025l2,

~18a!

wherel, the wavelength inmm, lies between 0.240mm and
0.633 mm, and

no
252.143181

1.5874931021

l211.37559
26.2375031024l2,

~17b!

ne
252.041951

2.7324531022

l212.8667231021
23.4271831024l2,

~18b!

wherel lies between 0.633mm and 1.064mm. Although a
number of Sellmeier equations for CLBO crystals have be
reported by several authors@11,19,21,22,24#, those given by
Eqs.~17! and ~18! agree best with our measured PM ang
@27#.

B. Theoretical consideration for single-medium THG in CLBO

The third-order NLO susceptibility tensorx i jkl
(3) of CLBO

has 21 nonzero components, of which only 11 are indep
dent. Since three interacting frequencies are degenera
1-5
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TABLE III. Characteristic parameters for phase-matched single-medium third-harmonic generat
1.064 mm in CsLiB6O10.

PM condition NLO process uPM DuL r1 r2 r3 n2 n3 Dn Dk
~deg! ~deg mm! ~deg! ~deg! ~deg! (mm21)

SHG
Type I o1o1→e2 29.63 0.584 1.70 1.78 1.87 1.4852 0 0

o1e2→e3 1.5029 20.0177 2314.13
e1e2→e3 1.5029 20.0219 2388.57
o1e2→o3 1.5171 20.0319 2565.31
e1e2→o3 1.5171 20.0361 2639.75

Type II o1e1→e2 43.28 0.980 1.95 2.04 2.14 1.4732 0 0
o1e2→e3 1.4902 20.0130 2230.04
e1e2→e3 1.4902 20.0210 2371.48
o1e2→o3 1.5171 20.0399 2706.75
e1e2→o3 1.5171 20.0479 2848.18

SFG
Type I o1o2→e3 39.27 0.327 1.92 2.01 2.11 1.4941 0 0

o1o1→o2 1.4985 20.0133 2157.32
o1e1→o2 1.4985 20.0236 2278.32
e1e1→o2 1.4985 20.0338 2399.33

Type II e1o2→e3 49.34 0.471 1.91 2.00 2.10 1.4843 0 0
o1o1→o2 1.4985 20.0133 2157.32
o1e1→o2 1.4985 20.0279 2329.56
e1e1→o2 1.4985 20.0425 2501.80

THG
Type I o1o1o1→e3 48.45 0.329 1.92 2.01 2.11 1.4852 0 0

$o1o1→e2 ; 1.4685 0.0167 197.05
o1e2→e3% 1.4852 20.0111 2197.05

$o1o1→o2 ; 1.4985 20.0133 2157.32
o1o2→e3% 1.4852 0.0089 157.32

Type II o1o1e1→e3 64.02 0.607 1.50 1.57 1.65 1.4717 0 0
$o1o1→e2 ; 1.4558 0.0294 347.23
e1e2→e3% 1.4717 20.0196 2347.23
$o1e1→e2 ; 1.4558 0.0092 108.18
o1e2→e3% 1.4717 20.0061 2108.18

$o1o1→o2 ; 1.4985 20.0133 2157.32
e1o2→e3% 1.4717 0.0089 157.32
$o1e1→o2 ; 1.4985 20.0336 2396.36
o1o2→e3% 1.4717 0.0224 396.36
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THG processes, onlyx1111
(3) , x1122

(3) , x1133
(3) , x3311

(3) , and x3333
(3)

remain independent, due to the permutation symmetry of
dicesj ,k, andl. The second-order NLO susceptibilityx i jk

(2) of
CLBO has two independent componentsx123

(2) (52d14) and
x312

(2) (52d36) for SHG, and three independent compone
x123

(2) , x132
(2) , andx312

(2) for SFG. In a uniaxial crystal, the po
larization unit vectors for ordinary and extraordinary wav
are expressed in polar coordinates as

eo5~sinf,2cosf,0!, ~19!

ee5„2cos~u1r!cosf,2cos~u1r!sinf,sin~u1r!….
~20!
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Using Eqs.~19! and ~20!, the effective second-order NLO
susceptibilities for SHG and SFG, and the effective thi
order NLO susceptibility for THG of CLBO are represente
in Table II.

The effective second-order NLO susceptibility can be c
culated if all the components of the second-order NLO s
ceptibility tensor are known. Among the values ofx i jk

(2) , only
x312

(2) for SHG is reported, which is 1.90 pm/V at 1.064mm
@11#. All the other tensor components,x123

(2) for SHG, x123
(2)

and x132
(2) for SFG, are identical tox312

(2) for SHG and SFG,
respectively, if we apply Kleinman’s symmetry conditio
which is based on the assumption that the dispersion of n
linearity is negligible. This condition is well satisfied fo
CLBO, since the UV cutoff wavelength (0.180mm) of
1-6
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TABLE IV. Overall-effective third-order nonlinear optical susceptibilities for single-medium th
harmonic generation at 1.064mm in CsLiB6O10.

PM condition X eff
(3)(pm2/V2)

SHG Type I 20.6601$@21.96 exp(2565.3iz)sin2 2f234.11 exp(2314.1iz)sin 4f#cosa
2@16.55 exp(2639.8iz)sin 4f170.55 exp(2388.6iz)sin22f#sina%cos2a

Type II 1.267$@11.98 exp(2706.8iz)sin 4f2105.6 exp(2230.0iz)cos22f#cosa
2@28.08 exp(2848.2iz)cos22f134.47 exp(2371.5iz)sin 4f#sina%sin 2a

SFG Type I 0.4500@106.2 sin22f cosa227.84 sin 4f sina#sin 2a
Type II 21.328@53.09 sin 4f cosa243.65 cos22f sina#sin2a

THG Type I @0.1588(x1111
(3) 23x1122

(3) )259.94#sin 4f cos3a
Type II $329.410.5122x1122

(3) 12.488x3311
(3)

2@495.720.2561(x1111
(3) 23x1122

(3) )#sin22f%cos2a sina
e
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CLBO is much shorter than the fundamental (1.064mm)
and harmonic (0.532mm and 0.355mm) wavelengths. In
addition, x312

(2) for SFG can be obtained using Miller’s rul
@28,29#

di jk~v3 ;v1 ,v2!5d i jkx i i
(1)~v3!x j j

(1)~v1!xkk
(1)~v2!, ~21!

where the Miller’s d i jk is determined by usingx312
(2)

51.90 pm/V for SHG.x312
(2) for SFG of 1.064mm and

0.532 mm is calculated to be 2.04 pm/V. However, it is n
possible to calculate the effective third-order NLO susce
bility xTHG

(3) directly from x i jkl
(3) because nox i jkl

(3) values of
CLBO are available. Nevertheless, the effective third-or
NLO susceptibility can be estimated from a measu
overall-effective third-order NLO susceptibilityX eff

(3) and the
amount of contributions of cascaded second-order proces
which can be calculated usingx i jk

(2) , as reported in previous
works @12–18#.

For single-medium THG at 1.064mm in CLBO, there
exist six types of possible PM conditions: type-I and type
SHG, type-I and type-II SFG, and type-I and type-II THG
No PM angle is available for type-III SFG and type-III THG
PM angle, walk-off angle, and other related parameters
each PM condition were calculated using Eqs.~17! and~18!,
which are listed in Table III, whereuPM andDuL represent
the PM angle and angular acceptance bandwidth, res
tively, with L being the sample length. Using the paramet
in Table III, X eff

(3) for different types of PM conditions ar
represented for single-medium THG at 1.064mm, with the
unknown x i jkl

(3) components~Table IV!. It should be noted
that X eff

(3) for SHG PM has a dependence on propagat
distancez, in millimeter. SinceI 3v}uX eff

(3)u2, the TH inten-
sity depends on polarization anglea and azimuthal anglef.
Therefore, we can predict the optimum PM conditions t
produce the maximum TH intensity.

IV. NUMERICAL CALCULATIONS
OF xeff

„3… AND DISCUSSIONS

For SHG-PM conditions, the expressions forX eff
(3) in

Table IV are rather complicated, which are functions
propagation distancez. Therefore, it is not easy to determin
03383
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the optimum PM conditions for single-medium THG. Figu
3 exhibits the dependence ofuX eff

(3)u on propagation distance
at the PM angleuPM529.6° of type-I SHG. Ata50° and
f545°, which gives the optimum PM condition for type
SHG, uX eff

(3)u has a constant value@solid curve in Fig. 3~a!#.
However,X eff

(3) becomes zero whenf is 0° or 90°. In gen-
eral, uX eff

(3)u shows an oscillatory behavior. For example,
a50° andf522.5°, the interference of two nonzero amp
tudes with different phase factors gives rise to a sinuso
oscillation with a period of about 25mm @dashed curve in
Fig. 3~a!#. Thus even a minute change in sample length
propagation direction can lead to a significant variation
the TH intensity by up to a factor of 4, because of the s
sitive dependence ofX eff

(3) on the propagation distance

FIG. 3. Dependence ofX eff
(3) on propagation distance at th

phase-matching angle of type-I second-harmonic generation
~a! a50° and ~b! a545°. The solid curves represent values o
tained atf545° and the dashed curves atf522.5°.
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Nonetheless, the condition ofa50° andf522.5° always
produces more efficient single-medium THG than the con
tion of a50°, f545°, due to the largeruX eff

(3)u value ata
50°, f522.5°. Taking another example, the case in wh
a545° andf545° yields a sinusoidal oscillation with
period of 35 mm @solid curve in Fig. 3~b!#. On the other
hand, in the case ofa545°, f522.5°, the interference o
four nonzero amplitudes with different phase factors cau
uX eff

(3)u to show a complicated oscillatory behavior@dashed
curve in Fig. 3~b!#. Figure 4 shows the dependence ofuX eff

(3)u
on propagation distancez at the PM angleuPM543.3° of
type-II SHG with a545°, f50° ~solid curve! and a
545°, f522.5° ~dashed curve!. The overall features are
very similar to those of Fig. 3~b!, but the oscillation periods
are much shorter and the maximum values ofuX eff

(3)u are
much larger.

The three-dimensional contour maps ofX eff
(3) as functions

of a andf are shown for the PM conditions of type-I SF
(uPM539.3°) @Fig. 5~a!# and type-II SFG (uPM549.3°)
@Fig. 5~b!#. It is noteworthy that the distribution ofX eff

(3)

values is asymmetric with respect toa andf, and the origin
in each contour map is, in fact, the inversion center, which
very unlike the features of second-order NLO processes.
optimum PM conditions for single-medium THG can b
achieved ata'36°,f'50° for type-I SFG PM, and ata
590°, f50° for type-II SFG PM, and theX eff

(3) values
reach up to 38 pm2/V2 and 58 pm2/V2, respectively.

In Table IV, it is easy to see that the optimum PM con
tion for type-I THG (uPM548.5°) of 1.064mm is a50°,
f522.5° or 67.5°, regardless of the value ofx i jkl

(3) . For
type-II THG PM (uPM564.0°), the optimum value ofa is
also easily determined as 35.3°. However, the optim
value off depends on the values ofx i jkl

(3) components. The
dependence ofX eff

(3) on f can be expressed in the form o
(A2B sin22f)2, where the parametersA andB are expressed
with linear combinations ofx i jkl

(3) . The optimum value off is
0° for A/B.0.5, and 45° forA/B,0.5. If we consider only
cascaded second-order contributions toX eff

(3) , A/B is calcu-
lated to be 0.665 and thusX eff

(3) may have the maximum a
f50°.

FIG. 4. Dependence ofX eff
(3) on propagation distance at th

phase-matching angle of type-II second-harmonic generation
a545°. The solid curve represents values obtained atf50° and
the dashed curve atf522.5°.
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V. CONCLUSIONS

We have investigated theoretically the characteristics
PM and third-order NLO susceptibility for single-mediu
THG via direct and cascaded processes in CLBO. A full
of coupled-amplitude equations for the general case
single-medium THG were setup and solutions for the T
amplitude was derived. An overall-effective third-order NL
susceptibilityX eff

(3) was defined, which is essential for pre
dicting the TH intensity. Numerical analysis shows thatX eff

(3)

near SHG-PM conditions is expressed as an oscillatory fu
tion of propagation distance. Nevertheless, largeX eff

(3) values
of about 70 to 120 pm2/V2 can be obtained for type-I
SHG-PM conditions. For SFG-PM conditions,X eff

(3) as a
function of a andf shows an inversion symmetry with re
spect toa50°, f50°, and the optimum PM conditions fo
single-medium THG areu539.3°, f'50°, anda'36° for
type-I SFG PM, andu549.3°, f50°, and a590° for
type-II SFG PM. The optimum PM condition for type-I THG
is u548.5°, f522.5°, anda50°, and that for type-II THG
is u564.0°, a535.3°, andf50° or 45°, depending on the
magnitudes of the third-order NLO susceptibility comp
nentsx i jkl

(3) .
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FIG. 5. Three-dimensional contour maps ofxeff
(3) at the phase-

matching angles of sum-frequency generation for~a! type I and~b!
type II.
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