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Three-mode squeezed vacuum state in Fock space as an entangled state
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We show that the operatorU5exp@2ir (Q1P21Q2P31Q3P1)# is a three-mode squeezing operator for the
three-mode quadratures exhibiting the standard squeezing, the corresponding squeezed vacuum state in three-
mode Fock space is derived by virtue of the technique of integration within ordered product of operators. The
entanglement involved in such a state is explained. The optical network for producing the three-mode squeezed
state is proposed.
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I. INTRODUCTION

In recent years the entangled states and entanglem
@1,2# have brought much attention and interests of physic
because of their applications in quantum communication@3#.
The two-mode squeezed state, which is composed by i
mode and signal mode resulting from a parametric do
conversion amplifier@4#, is a typical entangled state of con
tinuous variable. Theoretically, it is constructed by the tw
mode squeezing operatorS acting on the vacuum stateu00&,

Su00&5exp@l~a1a22a1
†a2

†!#u00&

5sec hl exp~2a1
†a2

†tanhl!u00&, ~1!

where l is a squeezing parameter@5#. Using the relation
between the Bose operators (ai ,ai

†) and the coordinate, mo
mentum operators

Qi5
1

A2
~ai1ai

†!, Pi5
1

iA2
~ai2ai

†!, ~2!

one can recastS into the form

S5exp@ il~Q1P21Q2P1!#. ~3!

It is now clear that the two-mode squeezing operatorSactu-
ally squeezes the entangled stateuh& @6,7#,

uh&5expS 2
1

2
uhu21ha1

†2h* a2
†1a1

†a2
†D u00&12,

h5h11 ih2 , ~4!

i.e.,

Suh&5
1

m
uh/m&, m5el. ~5!

The uh& state was constructed in Ref.@6# according to the
idea of entanglement originated from Einstein, Podolsky,
Rosen in their argument that quantum mechanics is inc
plete @8#. uh& obeys the eigenvector equation,

~Q12Q2!uh&5A2h1uh&, ~P11P2!uh&5A2h2uh&
~6!

and the orthonormal-complete relation
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p
uh&^hu51, ^h8uh&5pd~h2h8!d~h* 2h8* !.

~7!

Thus the two-mode squeezing operator has a neat and na
representation on thêhu basis,

S5
1

mE d2h

p
uh/m&^hu, m5el. ~8!

By introducing the two-mode quadrature operators as in R
@5#,

x15
1

2
~Q11Q2!, x25

1

2
~P11P2!, ~9!

we use Eq.~8! and Eq.~6! immediately derives

S†x2S5
1

m2E d2h8

p
uh8&^h8/mu E d2h

p

h2

A2m
uh/m&^hu

5E d2h

p

h2

A2m
uh&^hu5x2 /m.

The Fourier transformation of the stateuh& is

uj&5E d2h

2p
uh&e~hj* 2h* j!/2

5expS 2
1

2
uju21ja1

†1j* a2
†2a1

†a2
†D u00&12, ~10!

which obeys the eigenvector equations,

~Q11Q2!uj&5A2j1uj&, ~P12P2!uj&5A2j2uj&.

In the ^ju representationS is

S5mE d2h

p
umj&^ju.

One can easily show

S†x1S5mx1 . ~11!

The variances ofx1 and x2 in the stateSu00& are in the
standard form, i.e.,
©2002 The American Physical Society29-1
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^00uS†x2
2Su00&5^00u~x2 /m!2u00&5e22l,

^00uS†x1
2Su00&5e2l, ~12!

recall that for single-mode squeezing case, thestandard
squeezingfor the coordinate and the momentum operators
also Q1→elQ1 , P1→e2lP1. When one generalizes th
form of S to Refs.@9,10#

S85exp@2 i ~l1Q1P21l2Q2P1!#, ~13!

and using the technique of integration within an orde
product~IWOP! of operators as we did in Ref.@9#, then one
can get a one- and two-mode combined squeezed state

S8u00&5
2

AL
expH 1

L
@~a2

†22a1
†2!sinh2l sinh 2g

12 sinh 2l coshga1
†a2

†#J u00&, ~14!

where

l15leg, l25le2g, L54 cosh2l~11sinh2g tanh2l!.

Clearly, wheneg51, sinhg50, Eq. ~14! reduces to the or-
dinary two-mode squeezed state~1!. It is proved in Ref.@9#
that when

0,tanhl,
1

11coshg
, l.0, ~15!

the stateS8u00& exhibits more stronger squeezing than t
ordinary two-mode squeezed state. Then a question natu
arises: Is the following unitary operator,

U5exp@ ir ~Q1P21Q2P31Q3P1!#, ~16!

also a squeezing operator in the three-mode Fock spac
yes, what is its corresponding squeezed vacuum state?
also an entangled state? Because Eq.~16! is more compli-
cated than Eq.~13!, and Q1P3 ,Q3P2 ,Q2P1 terms do not
make up a closed Lie algebra, it is hardly to use Lie alge
to analyzeU. To answer these questions we must first der
U8s normal product form and then analyze if the squeez
exists, and how behaves the stateUu000&. The work is ar-
ranged as: in Secs. II we use the IWOP technique to n
mally ordered expandU. In Secs. III–IV we examine the
properties of the stateUu000&, we find that it just makes the
variances of the three-mode quadrature operators behav
the same rule as shown in Eq.~12! for the two-mode case. In
Sec. V we discuss how to design an optical network to re
ize the new three-mode squeezed vacuum state.

II. NORMAL PRODUCT FORM OF U

Because operatorsQ1P2 , Q2P3, andQ3P1 neither com-
mute with each other, nor make up any close Lie alge
relation by themselves, it seems difficult to disentangleU.
Thus we must appeal to the IWOP technique. RewritingU as
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U5expF ir ~Q1 ,Q2 ,Q3!AS P1

P2

P3

D G5exp@ irQ iAi j Pj #,

A5S 0 1 0

0 0 1

1 0 0
D , i , j 51,2,3, ~17!

where the repeated indices represent the Einstein summ
notation. Using the Baker-Hausdorff formula we see

U21QkU5Qk2rQiAik1
1

2!
ir 2@QiAi j Pj ,QlAlk#1•••

5Qi~e2rA! ik5~e2rÃ!kiQi ,

U21PkU5Pk1rAk jPj1
1

2!
ir 2@Ak jPj ,QlAlmPm#1•••

5~erA!kiPi . ~18!

This implies that the action ofU on the three-mode coordi
nate eigenstateuqW & is

UuqW &5uLu1/2uLqW &, L5e2rÃ, uLu[detL, ~19!

andU has the representation

U5E d3qUuqW &^qW u5uLu1/2E d3quLqW &^qW u, U†5U21.

~20!

In fact, using Eq.~14! we have

U21QkU5uLu E d3quqW &^LqW uQkE d3q8uLqW 8&^qW 8u

5~LQ!k ,

which is consistent with Eq.~18!. Thus

U5exp@ irQ iAi j Pj #5Adete2rÃE d3que2rÃqW &^qW u.

~21!

Using

uqW &5p23/4:expF2
1

2
qW̃ qW 1A2qW̃ a†2

1

2
ã†a†G u0&; ~22!

hereã†5(a1
† ,a2

† ,a3
†) andqW̃ 5(q1 ,q2 ,q3), and

u0&^0u5:exp@2ã†a#:,

as well as the IWOP technique we can putU into normal
ordering form

U5p23/2uLu1/2E
2`

`

d3q:expF2
1

2
qW̃ ~11L̃L!qW

1A2qW̃ ~L̃a†1a!2
1

2
~ ãa1ã†a†!2ã†aG :. ~23!
9-2
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Using the mathematical formula

E
2`

`

drx exp@2 x̃Fx1 x̃v#5pn/2~detF !1/2expF1

4
ṽF21vG ,

~24!

we perform the integration in Eq.~23! and obtain the explicit
normal ordering form ofU

U5FdetLY detS 11L̃L

2
D G1/2

:expH ~L̃a†

1a!~11L̃L!21~L̃a†1a!

2
1

2
~ ã†a†1ãa!2ã†aJ :.

Let N5 1
2 (L̃L1I ), U is simplified as

U5uLu1/2uNu21/2expF1

2
ã†~LN21L̃2I !a†G :exp@ ã†~LN21

2I !a#:expF1

2
ã~N212I !aG . ~25!

Thus we see that the IWOP plays a decisive role in obtain
Eq. ~25!.

III. THE NEW THREE-MODE SQUEEZED VACUUM
STATE

Note A35I , the unit 333 matrix, from the Cayley-
Hamilton theorem we know that the expanding form
exp(2rA) must be

L̃5exp~2rA !5a~r !I 1b~r !A1c~r !A2, ~26!

wherea(r ) is

a~r !5 (
n50

`
~2r !3n

~3n!!
, b~r !5 (

n50

`
~2r !3n11

~3n11!!
,

03382
g

f

c~r !5 (
n50

`
~2r !3n12

~3n12!!
.

To determinea(r ), b(r ), and c(r ), we take A being 1,
ei (2/3)p, andei (4/3)p, respectively, then we have

exp~2r !5a~r !1b~r !1c~r !,

exp~2rei (2/3)p!5a~r !1b~r !ei (2/3)p1c~r !ei (4/3)p,

exp~2rei (4/3)p!5a~r !1b~r !ei (4/3)p1c~r !ei (2/3)p.
~27!

Its solution is

a~r !5
1

3
@e2r1e2rei (2/3)p

1e2rei (4/3)p
#

5
1

3 Fe2r12er /2cosSA3

2
r D G ,

b~r !5
1

3
@e2r1ei (4/3)pe2rei (2/3)p

1ei (2/3)pe2rei (4/3)p
#

5
1

3 Fe2r12er /2cosSA3

2
r 1

2

3
p D G ,

c~r !5
1

3
@e2r1ei (2/3)pe2rei (2/3)p

1ei (4/3)pe2rei (4/3)p
#

5
1

3 Fe2r12er /2cosSA3

2
r 1

4

3
p D G . ~28!

It then follows

N5
1

2
~L̃L1I !5

1

6 S f g g

g f g

g g f
D , f 531e22r12er ,

g5e22r2er . ~29!

Substituting Eqs.~26!, ~28!, and~29! into Eq. ~25! yields
U5C expH 1

6~11er !~11e2r !
F ~er21!3(

i 51

3

ai
†214~12e3r !(

i , j

3

ai
†aj

†G J
3:exp

1

3~11er !~11e2r !
H 2F31er1e2r13e3r24er /2~11e2r !cosSA3r

2 D G(
i 51

3

ai
†aiJ

12er /2Fer /2~11er !12~11e2r !cosSA3r

2
1

4

3
p D G~a1

†a21a2
†a31a3

†a1!

12er /2Fer /2~11er !12~11e2r !cosSA3r

2
1

2

3
p D G~a1

†a31a3
†a21a2

†a1!:

3expH 21

6~11er !~11e2r !
F ~er21!3(

i 51

3

ai
214~12e3r !(

i , j

3

aiaj G J , ~30!
9-3
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HONGYI FAN AND GUICHUAN YU PHYSICAL REVIEW A 65 033829
where

C5uLu1/2uNu21/252/@~11er !Ae2rcoshr #. ~31!

OperatingU in Eq. ~30! on the three-mode vacuum sta
leads to the new three-mode squeezed vacuum state

Uu000&5C expH 1

6~11er !~11e2r !
F ~er21!3

3(
i 51

3

ai
†214~12e3r !(

i , j

3

ai
†aj

†J u000&. ~32!

Especially, whener→0,

Uu000&ur→2`;H exp
1

6 F2(
i 51

3

ai
†214(

i , j

3

ai
†aj

†G J u000&[ u &s.

~33!

We can check the validity ofC in the following way. Let

l15
~12er !3

~11er !~11e2r !
, l25

~12e3r !

~11er !~11e2r !
,

and

M52
1

6 S l1 22l2 22l2

22l2 l1 22l2

22l2 22l2 l1

D ,

thenC, the normalization coefficient, can be alternately c
culated by

15^000uU†Uu000&

5uCu2^000uexp$aMã%exp$a†Mã†%u000&.

Using the operator identity@15# which is derived by the
IWOP technique

exp$asã%exp$a†tã†%

5FdetS I 22t

22s I D G21/2

:H exp
1

2
~a†a!

3S I 22t

22s I D 21S a

a†D 2a†aJ :,

we obtain

^000uU†Uu000&5uCu2FdetS I 22M

22M I D G21/2

5uCu2F 64e4r

~11er !4~11e2r !2G21/2

51,

which coincides with Eq.~31!.
03382
-

It is interesting to observe thatu &s is just the common
eigenvector@16# of the three compatible Jacobian operato
in three-body case with zero eigenvalues, i.e.,

~P11P21P3!u &s50 S m2Q21m3Q3

m21m3
2Q1D u &s50,

~Q32Q2!u &s50 ~34!

as

F ~P11P21P3!,
m2Q21m3Q3

m21m3
2Q1G50,

@Q32Q2 ,~P11P21P3!#50. ~35!

Since the common eigenvector of three compatible Jaco
operators is an entangled state, the stateu &s is also an en-
tangled state.

IV. VARIANCES OF THE THREE-MODE QUADRATURES
IN z ‹s

The quadratures in the three-mode case should be de
as

X15
Q11Q21Q3

A6
, X25

P11P21P3

A6
, @X1 ,X2#5

i

2
.

~36!

The expectation values of the quadratures in the stateu &s is
^X1&5^X2&50 and using Eqs.~28!, ~36!, and~25!–~26! we
see that the corresponding variance is

~DX1!25s^ux1
2u&s

5
1

6
^000uU†X1

2Uu000&

5
1

12 (
j i

~LL̃! i j 5
1

4
e22r , ~37!

~DX2!25s^uX2
2u&s5

1

12 (
j i

~LL̃! i j
215

1

4
e2r , ~38!

which has the similar standard form to the two-mode case
shown in Eq.~12!. Equations~37!–~38! clearly indicates that
U is the correct three-mode squeezing operator for the th
mode quadratures~36!.

V. OPTICAL NETWORK FOR PRODUCING THE STATE
„25…

In Refs.@11,12# it is pointed out that the basic operation
of optical devices~beam splitters, mirrors, optical fibre, an
phase shifter! based on quantum optics components is
transformation of a set of incoming states into another se
a unitary transformation. Such transformations are perform
by using optical networks. The linear networks can be re
ized by use of passive optical elements. In other cases,
9-4
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may need to include active elements, amplifiers, or param
ric mixers. We recall that a two-mode entangled state can
produced when the symmetric 50:50 beam-splitter opera
on a pair of input modes@1#: one is the zero-momentum
eigenstateup50&1 and the other is the zero-position eige
state ux50&2, ~they can be considered as two light fiel
maximally squeezed inP and X direction, respectively!. In
this section we hope to design such an optical network
the light beams~one mode of zero-position eigenstateux
50&1 and two modes of zero-momentum eigenstatesp
50&2^ up50&3) entering the three input ports of this ne
work will be changed into a tripartite entangled state.
another word, we hope that the network plays the role
transforming three single-mode squeezed states~two light
fields maximally squeezed inP direction and one light field
in X direction! incident on the network to the entangled sta
u &s in Eq. ~33!. In Fock spaceux50& i and up50& i are ex-
pressed as

ux50& i;expS 21

2
ai

†2D u0& i ,

up50& i;expS 1

2
ai

†2D u0& i . ~39!

Hence this optical network, whose function is represented
a unitary operatorR, should meet the following requiremen

Rux50&1^ up50&2^ up50&3→u &s

5H exp
1

6 F2(
i 51

3

ai
†214(

i , j

3

ai
†aj

†G J u000&, ~40!

as Eq.~33! indicated. Combining Eqs.~39! and ~40!, and
letting

E5S 1 0 0

0 21 0

0 0 21
D ,

we see thatR should engender the transformation,

R~a1
†22a2

†22a3
†2!R215Rã†Ea†R21

5
1

3 F2(
i 51

3

ai
†214(

i , j

3

ai
†aj

†G
5ã†Ba†, ~41!

where

B5
1

3 S 21 2 2

2 21 2

2 2 21
D .

Supposing

Rã†R215ã†G̃, RaiR
215Gi j aj5ai8 , ~42!
03382
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then from Eq.~41! we see thatG must satisfies the matrix
equation

G̃EG5B. ~43!

Its solution is an orthogonal matrix,

G5S 1/A3 1/A3 1/A3

0 1/A2 21/A2

2A2/3 1/A6 1/A6
D . ~44!

A question of interest is to ask which types of mode inter
tions are necessary to obtain the optical transfer evolutio
Eqs.~41! and~42!. We need to know the Hamiltonians cha
acterizing the interaction between the modes of light enter
an appropriate network realized by the use of passive op
elements. In another words, We want to extract an interac
Hamiltonian from the unitary transformation~41! or ~42! of
quantum states. Recall in Refs.@13,14# we have proposed a
systematic prescription for obtaining Hamiltonian for prea
signed unitary transformations of quantum states. That is
mapping the classicalc-number transformation in a cohere
state basis onto quantum-mechanical operators of Fock s
and using the IWOP technique to find the Hamiltonian. He
we start from the transformationai ~which possesses the co
herent stateuzi& as its eigenvector!→ai8[RaiR

215Gi j aj

~which possesses eigenvectoruGi j zj&), to construct the fol-
lowing ket-bra integral operator in the coherent state rep
sentation

R5E )
i 51

3
d2zi

p
uGi j zj&^zi u. ~45!

Then preforming the integration with the IWOP techniq
we have

R5E )
i 51

3
d2zi

p
:expH(

i
S 2uzi u21(

j
ai

†Gi j zj D
1zi* ai2ai

†ai Jª:exp$ã†~G2I !a†%:. ~46!

Using relation

eã†La†
5:eã†(eL2I )a†

:,

we can put Eq.~46! into

R5exp$ã†~ ln G!a†%. ~47!

Let lnG5itK, with K†5K, then the time-evolution operato
is R(t)5exp$itã†Ka†%, the corresponding Hermitian Hamil
tonian is

H52ã†Ka†. ~48!
9-5
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Experimentally, we can design a multiport optical network that can transform the input modeai to output modeai8 . SinceG
is an orthogonal matrix, from the general form of such matrix,

G~a,b,g!5S cosa cosb cosg2sina sing 2cosa cosb sing2sina cosg cosa sinb

sina cosb cosg1cosa sing 2sina cosb sing1cosa cosg sina sinb

2sinb cosg sinb sing cosb
D ~49!

and comparing Eq.~44! with Eq. ~49! we identify

cosa5A2/5 sina52A3/5, cosb5A1/6, sinb5A5/6,

cosg52/A5, sing51/A5. ~50!

From the general form of orthogonal matrixG(a,b,g) we can calculate its logarithm@16#

ln G~a,b,g!5
f

sin
f

2
S 0 6cos

b

2
sin

a1g

2
6sin

b

2
cos

a2g

2

7cos
b

2
sin

a1g

2
0 6sin

b

2
sin

a2g

2

7sin
b

2
cos

a2g

2
7sin

b

2
sin

a2g

2
0

D , ~51!
(

e

zing

f

v-

has
where

cos
f

2
5cos

b

2 Ucos
a1g

2 U,
sin

f

2
5F12cos2

b

2
cos2

a1g

2 G1/2

, ~52!

and the sign7, respectively, corresponds to whether cosa
1g)/2.0, or ,0. Then

sin
a

2
5AS 12A2

5
D Y2,

cos
a

2
52AS 11A2

5DY2,

sin
b

2
5AS 12

1

A6
D Y2,

cos
b

2
5AS 11

1

A6
D Y2, sin

g

2
5AS 12

2

A5
D Y 2,

cos
g

2
5AS 11

2

A5
D Y2.

It is easily seen that (lnG)†52ln G, an antisymmetric ma-
trix.

When r in Eq. ~16! is time dependent,r→r (t), U
→U(t), we seek the interaction Hamiltonian that can gen
03382
r-

ate the time evolution of the standard three-mode squee
transformationuqW &u t50→uL(t)u1/2uL(t)qW &u t as indicated by
Eq. ~19!. For this purpose we differentiateU(t) with respect
to time t,

dU~ t !

dt
5 iQiAi j PjU~ t !

dr

dt
. ~53!

Recasting Eq.~53! in the standard form for the equation o
motion in an interaction picture

i ]U~ t !/]t5HIP~ t !U~ t !,

we obtain the Hamiltonian in the interaction picture that go
erns the time evolution,

HIP~ t !52QiAi j Pj

dr

dt

5
i

2

dr

dt
@~a1a22a1

†a2
†!1~a3a22a3

†a2
†!

1~a3a12a3
†a1

†!1~a1
†a22a1a2

†!1~a2
†a32a2a3

†!

1~a3
†a12a3a1

†!#. ~54!

Thus the system that undergoes the required squeezing
the Hamiltonian in the Schro¨dinger picture
9-6
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H5(
i 51

3

v iai
†ai1

i

2

dr

dt
@~a1a2ei (v11v2)t2H.c.!

1~a3a2ei (v31v2)t2H.c.!1~a3a1ei (v31v1)t2H.c.!#

1
i

2

dr

dt
@~a1

†a2ei (v22v1)t2H.c.!

1~a2
†a3ei (v32v2)t2H.c.!1~a3

†a1ei (v12v3)t2H.c.!#,

~55!

where H.c. denotes the Hermitian conjugate,v i are the un-
coupled modes frequencies, anddr/2dt represents the cou
pling constant. The Hamiltonian describes two-photon pa
metric process~with creation or annihilation of the pairing o
modesi and j, iÞ j ) through the interaction with classica
pumping mode, simultaneously, as well as the process
m
,

f.

e,

03382
-

of

linear interaction between modesi and j, iÞ j . This dynamic
mechanism may be realized in a combined setup includ
both parametric amplifiers fabricated from second-orderx (2)

susceptibility materials and nonlinear symmetric directio
coupler that is composed of optical waveguides.

In summary, we have shown that the operatorU
5exp@2ir (Q1P21Q2P31Q3P1)# is a three-mode squeezin
operator for the three-mode quadratures exhibiting the s
dard squeezing, the corresponding squeezed vacuum sta
three-mode Fock space is derived by virtue of the IWO
technique. The entanglement involved in this state is a
lyzed. The optical network for producing such an ide
squeezed state is constructed and the system Hamiltonia
generating the squeezing evolution is derived. The thr
mode squeezed state and entangled state may have pot
uses in theoretically analyzing tripartite quantum telepor
tion.
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