PHYSICAL REVIEW A, VOLUME 65, 033829

Three-mode squeezed vacuum state in Fock space as an entangled state
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We show that the operatdd =exgd —ir(Q;P,+Q,P3+Q3P,)] is a three-mode squeezing operator for the
three-mode quadratures exhibiting the standard squeezing, the corresponding squeezed vacuum state in three-
mode Fock space is derived by virtue of the technique of integration within ordered product of operators. The
entanglement involved in such a state is explained. The optical network for producing the three-mode squeezed
state is proposed.
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I. INTRODUCTION d217
J — =1, (n'[my=md(n=n")o(n*—n"").
In recent years the entangled states and entanglemen

[1,2] have brought much attention and interests of physicists @)
because of their applications in quantum communicdt&n  Thus the two-mode squeezing operator has a neat and natural
The two-mode squeezed state, which is composed by idlgepresentation on thep| basis,

mode and signal mode resulting from a parametric down

conversion amplifief4], is a typical entangled state of con- S= _J- _7’| )y, n=e. (8)
tinuous variable. Theoretically, it is constructed by the two- pJom

mode squeezing operat6racting on the vacuum stafe0), By introducing the two-mode quadrature operators as in Ref.

S|00)=exy \(a;,a,—ajal})]|00) (5],
=sec h exp(—alaltanhn)|00 1 1 1
H-agzant)joo, @) =@t Q) X=5(PtP), )
where \ is a squeezing parametfs]. Using the relation _ _ _
between the Bose operatoms; (a') and the coordinate, mo- Wwe use Eq(8) and Eq.(6) immediately derives
mentum operators

1 (d*y ‘n M
L1 Stas= 2 [ S tul [ ol
Qizﬁ(ai"‘ai), Pi:ﬁ(ai_ai)y (3] K

. ([ d*7 7,

one can recas$ into the form = - \/— | ) (nl=xz/ .
= i + .

S=exdiMQ1Po+QzPy)] @ The Fourier transformation of the stdtg) is
It is now clear that the two-mode squeezing oper&actu- 42
ally squeezes the entangled stpte [6,7], &)= f _77| ,7>e(ng*,,7* o2

2

1
|77)=exr{——|77|2+ naj—n*aj+ajal||00)s,, 1
2 =exp(—§|§|2+fa1+§*a£—a1az 00015, (10)

=i, 4
T which obeys the eigenvector equations,
ie.,
) (Qu+QO)=\2&1]8), (P1=Py)[&)=126]8).
Sin)= ;|7I/M>' n=e. ® In the (£| representatiors is
2
The | ») state was constructed in Rg6] according to the SZMJ d_77|M§><§|
idea of entanglement originated from Einstein, Podolsky, and '
Rosen in their argument that quantum mechanics is incom-
plete[8]. | ) obeys the eigenvector equation, One can easily show
o, Q
(Qu=Q|M=2m|n), (P1+P)|n)=27n,n) 6 SXqS= pxy. (1)
The variances ofk; and x, in the stateS|00) are in the
and the orthonormal-complete relation standard formi.e.,
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(001S'X5S/00)=(00) (x2 /)00y =€~ 2, b,
(00/S"x35/00)=e?*, (12) U=exp ir(Q1,Q2,Q3)A zz =exfirQ;A;P;],
3

recall that for single-mode squeezing case, #tendard

) . . 0 1 0
squeezindor the coordinate and the momentum operators is
also Q;—e*Q,, P,—e *P;. When one generalizes the A=l 0 0 1], i,j=123, (17
form of Sto Refs.[9,10] 1 0 0
S'=exf —i(MQ1P2+A:Q,P1)], 13 \where the repeated indices represent the Einstein summation

and using the technique of integration within an orderec{mtatlon' Using the Baker-Hausdorff formula we see

product(IWOP) of operators as we did in Rdf], then one . 1,
can get a one- and two-mode combined squeezed state, U QU =Qi—rQiAic+ E” [QiAi; P, QiAK]+ - - -

2 1 :_7rA_:fr;&__

S'|00)= ﬁexq’t[(agz— al?)sint?\ sinh 2y Qi(e™™i=(e"wQi,
1
U P U =Py +rA P+ EurZ[Aijj QAP+ - -
+2 sinh 2 coshyala}]{|00), (14)
=(e")iP;. (18

where This implies that the action df) on the three-mode coordi-

Ni=\e”, N,=\Ae ?, L=4cosK\(1+sintPytantf)). nate eigenstatg) is
SN A V2 AR A TA —
Clearly, whene?=1, sinhy=0, Eq. (14) reduces to the or- Ula)=IAl"Ag),  A=e™™, [Al=detA, (19

dinary two-mode squeezed stdfig. It is proved in Ref[9] andU has the representation

that when
oot L o s U=f d3qU|ci><6|=|A|”2f d’glAg)al, UT=U"%

an 1+coshy’ ' (20
the stateS’|00) exhibits more stronger squeezing than the!n fact, using Eq(14) we have
ordinary two-mode squeezed state. Then a question naturally L .
arises: Is the following unitary operator, U Qu= |A|f d3q|q)<Aq|QkJ’ d3q’|Aq’}{q’|

U=exdir(Q1P>+Q2P3+Q3Py)], (16) =(AQ),,
also a squeezing operator in the three-mode Fock space?\lfich is consistent with Eq18). Thus
yes, what is its corresponding squeezed vacuum state? Is it
also an entangled state? Because @) is more compli- U=exdirO.A P.l= /dete*”if d3ale="Aq\a
cated than Eq(13), and Q;P3,Q3P,,Q,P; terms do not HIrQiA;Pj] ale”"a)(al.
make up a closed Lie algebra, it is hardly to use Lie algebra (21)
to analyzeU. To answer these questions we must first deriveU .
, : . “Using
U’s normal product form and then analyze if the squeezing
exists, and how behaves the stat000). The work is ar- - s 1~ . ~ o L
ranged as: in Secs. Il we use the IWOP technique to nor- gy =7">"ex 540+ J2da —>aa 10); (22
mally ordered expandJ. In Secs. llI-IV we examine the
properties of the statel|000), we find that it just makes the ~t ottt =
variances of the three-mode quadrature operators behave %%rea =(a1,3;,35) andq=(qs,d2,0s), and
the same rule as shown in E4-2) for the two-mode case. In |0)(0|=:exd —a'al:,
Sec. V we discuss how to design an optical network to real-
ize the new three-mode squeezed vacuum state. as well as the IWOP technique we can puitinto normal
ordering form
Il. NORMAL PRODUCT FORM OF U ” 1~
_ =32 A |12 3: — Z4(1+ A s
Because operatoi®@,P,, Q,P3, andQ;P; neither com- U=m""A] f_md d ex;{ 2q(1 AMg

mute with each other, nor make up any close Lie algebra 1
relation by themselves, it seems difficult to disentaridle ot ot Tttt Ttal
Thus we must appeal to the IWOP technique. Rewritings +\/§q(Aa +a) 2(aa+a alj—aai. (23
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Using the mathematical formula

(24)

® - - 1.
f d'xexg —xFx+xv]= w“’z(detF)”zexp{Zv F 1

we perform the integration in E€23) and obtain the explicit
normal ordering form ofJ
1/2
:exp{ (Aa'

1+AA
detA/det( 5

+a)(1+AA) YAaT+a)

U=

1. - -
- E(aTaT'f— aa)—a'a
Let N=3(AA+1), U is simplified as

1 ~
U= |A|1/2|N|—1’2exp[§aT(AN—1A— ha'

rexgal(AN!

. (25

1.
—I)a]:ex;{za(Nl—l)a
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o0

c(r)= 2>,

“ (Bnt2)!

(_r)3n+2

To determinea(r), b(r), andc(r), we takeA being 1,
e' @37 ande' 97 respectively, then we have

exp—r)=a(r)+b(r)+c(r),
exq— rei(2/3)7T) :a(r) + b(r)ei(2/3)7r+C(r)ei(4/3)7r,

exp(—re' ™) =a(r)+b(r)e' 37+ c(r)e' P,
27

Its solution is

1 i(213
a(r)= §[e"+e"e'( e

1 3
e"+2e”zcos<gr”,

3

el (43)m

]

1 : i . i
b( r ) — §[€7r T+ (4/3)77e7 re'(2/3)”+ el (2/3)7767 re'(4’3)”]

3 2
er+2e”zcos(£r+ -

2 3

Thus we see that the IWOP plays a decisive role in obtaining

Eq. (25).

Ill. THE NEW THREE-MODE SQUEEZED VACUUM
STATE

Note A®=I, the unit 3x3 matrix, from the Cayley-

1 : i2R)r i(4/3)m
c(r)= §[e— M4 i (2B)mg— re' +e (4/3)7re—re' ]

V3 4
—r r/2 _
e "+2e cos( > r+37-r

3 . (28

Hamilton theorem we know that the expanding form ofIt then follows

exp(~rA) must be
A=exp—rA)=a(r)l +b(r)A+c(r)A?, (26)

wherea(r) is

* (_r)Sn * (_r)3n+1
an=2 “gar b= G
1 3
U=Cexp{
6(1+e")(1+e?)

1
X:ex -
IO3(1+ef)(1+e2f)[

+2e'2

+2e"?

6(1+e")(1+e?)

(e'=1)%2 al?+4(1-€*) > afa
=1 i<j

3r 4
e’2(1+e")+2(1+ ezr)cos<\/_7+ 37

3r 2
e"2(1+e)+2(1+ ezr)co{\/_T+ 37

3 3
(€ —1)%> a?+4(1-e%)>, a3
=1 =

f
1. 1
N:E(AA+I):6 g ) f=3+672r+26r,
g

Q -~ «Q
- Q «

g=e 2—¢. (29

Substituting Eqs(26), (28), and(29) into Eq. (25) yields

3

J

Brile
3+e+e” +3e% —de%(1+e”)cog —-| |2 afa
=1

(ala,+alas+ala;)

(alag+ala,+ala,):

3

] : (30
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where

C=|A|YIN|"Y2=2[(1+€")Je "coshr].  (31)

OperatingU in Eqg. (30) on the three-mode vacuum state

leads to the new three-mode squeezed vacuum state

1
6(1+e")(1+e?)

(e'—1)3

U|000)=Cexp{

3 3
X > al?+4(1-e%), aiTajT]|OOO). (32
=1 =

Especially, where'—0,

3 3
-2 a/*+4> alal
=1 =

] |000= | )s.
(33

1
U|OOO>|H_QC~[expé

We can check the validity of in the following way. Let

(1-€"?
(1+e)(1+e*)’

_ (1-e)
2 (1+e)(1+e?)’

and
)\1 _2)\2 _2)\2
M=—— _2)\2 )\1 —2)\2 ,
=2\, —2)\, N

thenC, the normalization coefficient, can be alternately ca
culated by

1=(000U'U|000
=|C|*(000explaMalexp{a’Ma'}|000).

explacajexpa’ra’}
de< !

—20
|

—20

Using the operator identity15] which is derived by the
IWOP technique

—27
|

(8w
-

—1/2

—-1/2
. oAt
.[expz(a a)

-2
I

we obtain

—2M

(ooqutulooo =|C|? |

|
de( _oM

64e4r
(1+e")%(1+e*)?

CJ?

which coincides with Eq(31).

PHYSICAL REVIEW A 65 033829

It is interesting to observe thdb; is just the common
eigenvectol 16] of the three compatible Jacobian operators
in three-body case with zero eigenvalues, i.e.,

Q2+ u3Q
(P1+Py+P3)|)s=0 (%‘Ql% )s=0,
(Q3—Q2)])s=0 (34
as
Q2+ u3Q
[<P1+P2+P3>, %—Qlko,
[Q3—Q2,(P1+Py+P3)]=0. (35

Since the common eigenvector of three compatible Jacobian
operators is an entangled state, the stateis also an en-
tangled state.

IV. VARIANCES OF THE THREE-MODE QUADRATURES
IN|)s

The quadratures in the three-mode case should be defined
as

Q1 +Q2+Q;
J6

Pi+P,+P;y

V6

= 2:

, [lexz]:%-
(36)

X1

The expectation values of the quadratures in the $tatés
(X1)=(X,)=0 and using Eq¥.28), (36), and(25)—(26) we
|.see that the corresponding variance is

(AX1)2:s<|X§|>s

1 s
5(000U"X}U|000)

1 ~ 1
=132 (AA)y=ge?, (37)

1 ~ 1
(8%)?=(IXs=15 2 (AR)y'=7e". (38

which has the similar standard form to the two-mode case as
shown in Eq(12). Equationg37)—(38) clearly indicates that

U is the correct three-mode squeezing operator for the three-
mode quadrature36).

V. OPTICAL NETWORK FOR PRODUCING THE STATE
(29

In Refs.[11,17 it is pointed out that the basic operations
of optical devicegbeam splitters, mirrors, optical fibre, and
phase shifterbased on quantum optics components is the
transformation of a set of incoming states into another set by
a unitary transformation. Such transformations are performed
by using optical networks. The linear networks can be real-
ized by use of passive optical elements. In other cases, one
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may need to include active elements, amplifiers, or paramethen from Eq.(41) we see thaG must satisfies the matrix
ric mixers. We recall that a two-mode entangled state can bequation

produced when the symmetric 50:50 beam-splitter operation

on a pair of input mode$l]: one is the zero-momentum GEG=B. (43)
eigenstatgp=0), and the other is the zero-position eigen-

state [x=0),, (they can be considered as two light fields |ts solution is an orthogonal matrix,

maximally squeezed i and X direction, respectively In

this section we hope to design such an optical network that 13 143 143

the light beams(one mode of zero-position eigenstdte

=0), and two modes of zero-momentum eigenstapes G= 0 1N2 -1N2 (44)
=0),®|p=0)3) entering the three input ports of this net- —\J2/13 1N6 1n6

work will be changed into a tripartite entangled state. In

another word, we hope that the network plays the role ofA question of interest is to ask which types of mode interac-
transforming three single-mode squeezed stét@s light tions are necessary to obtain the optical transfer evolution in
fields maximally squeezed iR direction and one light field Eqgs.(41) and(42). We need to know the Hamiltonians char-
in X direction incident on the network to the entangled stateacterizing the interaction between the modes of light entering
| )s in Eq. (33). In Fock spacédx=0); and|p=0); are ex- an appropriate network realized by the use of passive optical

|0} (39

pressed as elements. In another words, We want to extract an interacting
Hamiltonian from the unitary transformatiqdl) or (42) of
|x=0>-~exp<_—1a-*2 o), quantum states. Recall in Refd.3,14 we have proposed a

: 2 v systematic prescription for obtaining Hamiltonian for preas-

signed unitary transformations of quantum states. That is by

1., mapping the classicalnumber transformation in a coherent

[p=0);~ex Sa state basis onto quantum-mechanical operators of Fock space

and using the IWOP technique to find the Hamiltonian. Here
Hence this optical network, whose function is represented byve start from the transformatiam (which possesses the co-
a unitary operatoR, should meet the following requirement, herent statelz;) as its eigenvectpr-a/=RaR = Gjja;
(which possesses eigenvec{@;; ,}) to construct the fol-
R|x=0)1®|p=0)2®|p=0)3—>| )s lowing ket-bra integral operator in the coherent state repre-

sentation
{exp— 2 aT2+42 ala }lOOO), (40)
as Eq.(33) indicated. Combining Eqe39) and (40), and JH |G|]zj)<z| (45)
letting
1 0 0 Then preforming the integration with the IWOP technique
E={0 -1 o |, we have
0 0 -1
H — exp[z (—|z|2+2 alGjjz,
we see thaR should engender the transformation,
R(al’~a}’~al>)R '=Ra'Ea’R* +zi*ai—ai’rai} =:expla’(G—1)a'}.. (46)
3 3
_21 a?2+4i2<j ala Using relation
~3'Bal, (41 galhal= eallel-hal,
where we can put Eq(46) into
-1 2 R= 2t U
1 ) =exp{a’(InG)a'}. (47)
B=> - :
3 2 -1 Let InG=itK, with K'=K, then the time-evolution operator
is R(t)=explita’Ka'}, the corresponding Hermitian Hamil-
Supposing tonian is
Ra'R '=a'G, RaR '=Gja;=4a/, (42 H=-a'Ka'. (48
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Experimentally, we can design a multiport optical network that can transform the inputansal®utput moden; . SinceG
is an orthogonal matrix, from the general form of such matrix,

COSa COSB COSy—Sina siny —COSa CoSB Siny—sina cosy Ccosa Sinf

G(a,B,y)=| SinacosBcosy+cosasiny —sinacospBsiny+cosacosy sinasing (49
—sinB cosy singBsiny cosp
and comparing Eq44) with Eqg. (49) we identify
cosa=+2/5 sina=-+3/5, cosB=+1/6, sinB=+5/6,
cosy= 2/J§, siny= 1/\/5. (50)
From the general form of orthogonal mati&( «,3,y) we can calculate its logarithfii 6]
_aty B a—y
0 i~ = cos—n
icos2 sin— tsm2 cos—
) B . aty B a—vy
=\ F — 0 + —
INnG(a,B,7) 5 +cos2 sin 5 _S|n25|n 5 , (51
sinz
2\ __ B _a-y _ B _a-y 0
+sinz cos——  Fsin sin——
|
where ate the time evolution of the standard three-mode squeezing
N transformation|q)|,—o—|A (t)|[Y3A(t)q)|; as indicated by
o — cos? | cosX Y , Eq. (19). For this purpose we differentiaté(t) with respect
2 2 2 to timet,
¢ B ,at+y]"?
sin = 1—co§§co§ > , (52) du(

t) dr
— = QiAiijU(t)a- (53

dt
and the sign+, respectively, corresponds to whether eos(
+y)/2>0, or <0. Then

1y /2

It is easily seen that (I6)"=—InG, an antisymmetric ma-
trix.

When r in Eq. (16) is time dependenty—r(t), U Thus the system that undergoes the required squeezing has
—U(t), we seek the interaction Hamiltonian that can generthe Hamiltonian in the Schdinger picture

Recasting Eq(53) in the standard form for the equation of
motion in an interaction picture

<

N

cosy =~

we obtain the Hamiltonian in the interaction picture that gov-
erns the time evolution,

dr

Hip()=~QiAPi 5¢

I dr ot ot
=5 a[(alaz_ a1a,) +(aza,—azay)

ToT T T T T
+(aza; —azay) +(a1a,— a,a;) +(azaz—aag)

+(afa;—asal)]. (54)
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3 i dr _ linear interaction between modeandj, i # j. This dynamic
sz wiai’raﬁr Ea[(alaze'(wl*“'Z)t—H.c.) mechanism may be realized in a combined setup including
=1 both parametric amplifiers fabricated from second-opgdét

+ (aza,e' (@3t @t —H c)+ (aza, e (s Dt —H.c)] susceptibility materials and nonlinear symmetric directional

coupler that is composed of optical waveguides.

In summary, we have shown that the operatdr
=exd —ir(Q.P,+Q,P;+Q3P,)] is a three-mode squeezing
T TP operator for Fhe three-mode qua_tdratures exhibiting the stan-

+(azaze" 3" @2 —H.c) + (aga "1 ¥ —H.c)], dard squeezing, the corresponding squeezed vacuum state in
(55) three-mode Fock space is derived by virtue of the IWOP
technique. The entanglement involved in this state is ana-
where H.c. denotes the Hermitian conjugate,are the un- lyzed. The optical network for producing such an ideal
coupled modes frequencies, add/2dt represents the cou- squeezed state is constructed and the system Hamiltonian for
pling constant. The Hamiltonian describes two-photon paragenerating the squeezing evolution is derived. The three-
metric processwith creation or annihilation of the pairing of mode squeezed state and entangled state may have potential
modesi andj, i#j) through the interaction with classical uses in theoretically analyzing tripartite quantum teleporta-
pumping mode, simultaneously, as well as the process dfon.

i dr .
- T i(wp—wq)t_
+ 5 dt[(alaze H.c)
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