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Atomic-position localization via dual measurement
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We study localization of atomic position when a three-level atom interacts with a quantized standing-wave
field in the Ramsey interferometer setup. Both the field quadrature amplitude and the atomic internal state are
measured to obtain the atomic-position information. It is found that this dual-measurement scheme produces an
interference pattern superimposed on a diffractionlike pattern in the atomic-position distribution, where the
former pattern originates from the state-selective measurement and the latter from the field measurement. The
present scheme results in a better resolution in the position localization than the field-alone measurement
schemes. We also discuss the measurement-correlated mechanical action of the standing-wave field on the
atom in the light of Popper’s test.
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I. INTRODUCTION

Atomic-position localization has been an intriguing su
ject from the early days of quantum mechanics, as see
Heisenberg’s microscope, a well-known thought experim
devised for illustrating the uncertainty principle@1#. Heisen-
berg’s microscope exploits the interaction of an atom w
light: The information on atomic position is obtained by d
tecting the scattered light. The resolution is limited rough
to half wavelength of the light due to the wave nature
light. The uncertainty in atomic momentum automatica
arises since the light imparts a mechanical momentum to
atom @2#.

In a modern version of Heisenberg’s microscope, on
other hand, one considers a quantum or classical light fi
with ‘‘standing-wave’’ mode structure in order to localize th
atom without scattering photons@3–6#. Because the strengt
of the interaction in a standing-wave field depends on
position, the observable quantities such as the phase sh
the atomic dipole, or that of the light field vary according
the atomic position. Thus, the measurements of these q
tities yield information on the atomic position. All thes
schemes can determine the atomic position only within
period ~i.e., a half wavelength! of the standing-wave struc
ture due to the translational symmetry of the interaction.

Recently, Storeyet al. have proposed to measure th
quadrature amplitudes of light interacting with a two-lev
atom at far-off resonance@3#. They also suggested tha
changing the width of a ‘‘virtual slit,’’ produced in the mea
surement of the field, by varying the phase of the field be
measured, can implement Popper’s test@7#. On the other
hand, the localization by the measurement of the phase
of the atomic dipole moment in a Ramsey interferome
setup was proposed using the classical standing-wave
@4# or the quantum field@5# and was demonstrated expe
mentally by Kunzeet al. @8#. Atomic position can also be
localized by the frequency measurement of the photons s
tered spontaneously from the atom@6#, using the fact that the
Mollow sideband spectrum in the resonance fluorescence
pends on the atomic position in the standing-wave fie
Other techniques, which do not involve the interaction w
1050-2947/2002/65~3!/033827~7!/$20.00 65 0338
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the standing-wave field, were proposed such as at
imaging methods@9#, where an inhomogeneous magne
field @10# or light intensity @11# causes a spatially varying
atomic-level shift, which correlates the atomic resonance
quency with the atomic position.

Until now, only a single observable among the vario
physical quantities involved in the atom-field dynamics h
been chosen to be measured in order to localize the ato
position. In this paper, we consider localization bydual mea-
surements, i.e., we measure two observables for the locali
tion of the atomic position. Our motivation for this scheme
twofold. First, it is based on the naive expectation that
more observables we measure, the better localization
could get. Of course, these variables should be correla
with the atomic position. Otherwise, increasing the num
of the measured observables would be of no use.

Our second motivation is more academic in which w
hope to investigate the dynamics of the system conditionea
posteriorion the measurements. Let us denote the Hermi
operators of the measured observables byÂ, B̂ (@Â,B̂#50)
and their eigenvalues byai ,bi ( i 51,2, . . . ), respectively.
We represent the system state before measurement by
wave function uC&5S ici uai& ^ uC i& and assume that th
valueam is obtained by theÂ measurement.~The statesuC i&
belong to the Hilbert spaces independent of the operatorÂ.!
Then, the state after the measurement,uCm&, is obtained by
performing the projection operatorPm5uam&^amu to uC&.
The stateuCm& can be further decomposed in terms of t
basesubi&, i.e., uCm&5S jdj ubj& ^ uf j&. If one measures in
addition the observableB̂, then each wave functionuf i& ~in-
dependent ofÂ and B̂) can be retrieved. However, if th
observableB̂ is not measured, the data collected on
throughÂ measurement would yield the state of the syst
traced over the observableB̂, only to lose information of
each wave functionuf j&. The dynamics conditioneda pos-

teriori on the measurement (B̂ measurement in this case!
could demonstrate a substantially distinguished phenome
compared with the usual averaged one@12#.

In this paper, we localize the atomic position by meas
©2002 The American Physical Society27-1
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NHA, LEE, CHANG, AND AN PHYSICAL REVIEW A 65 033827
ing both the quadrature amplitude of the light and the int
nal state of the atom. We consider a three-level atom in
acting with a single, quantized standing-wave field in
Ramsey interferometer setup. The atom has two hyper
ground levelsua&,ub& and one excited leveluc&. The quan-
tized field couples both the statesua& andub& to uc& at far-off
resonance with different coupling constants. The interac
Hamiltonian shows that both the field state and the ato
internal state are entangled with the atomic position.

In addition to the position localization, we investigate t
mechanical action of the standing-wave field on the ato
introduced inevitably by the localization. We show that t
momentum uncertainty caused by the mechanical action d
not hinder the Popper’s test in the localization schemes s
as the one proposed by Storeyet al. @3# and that in a certain
situation, the uncertainty can be minimized.

This paper is organized as follows. In Sec. II, we intr
duce the interaction Hamiltonian and calculate the final s
obtained after the interaction in the Raman-Nath regime.
show in Sec. III that the localization by the measurement
the near region, i.e., right after the interaction, yields a po
tion distribution that resembles an interference pattern su
imposed on a diffraction pattern. The interference patter
attributed to the measurement of the atomic internal s
while the diffraction to that of the quadrature amplitude
the light. It is found that the localization is sharper than
the single-measurement schemes, so the uncertaintyDx of
the position localization is smaller. In Sec. IV, the positi
distribution in the far region is presented and it is explain
in terms of the dipole force by the standing-wave field c
related with the measurements. Especially, we are intere
whether Popper’s test can be implemented in the meas
ment schemes exploiting the interaction with the standi
wave field in Sec. V. We summarize the results in Sec. V

II. SYSTEM SETUP AND THE HAMILTONIAN

In Fig. 1, the system configuration is depicted with t
appropriate atomic-level diagram. The atom is initially pr
pared in the stateua&. The atom first enters the microwave
field region (p/2 pulse!, where the internal state is tran
formed to the superposed one (ua&1ub&)/A2. Next, it
interacts with the standing-wave field inside the cavity

FIG. 1. Schematic diagram of the measurement setup with
energy levels of the atomic internal states. Heremw represents the
microwave fields to induce transitions between the statesua& and
ub&. Both the quadrature amplitude of the field and the internal s
of the atom are measured to obtain the position information.
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far-off resonance. The cavity frequencyvC is tuned in the
midway between the atomic transition frequenciesvca and
vcb so thatda5vC2vca,0 anddb5vC2vcb.0. If both
the detunings satisfies the conditionsudau@Ga , udbu@Gb ,
whereGa andGb are the spontaneous emission rates from
excited stateuc&, then the excited state is rarely populat
through the interaction, and thus can be ignored. For
ample, the Rb85 atom has two hyperfine ground levelsF
52 and 3 with the splitting 2p33 GHz and the decay rate
roughly 2p36 MHz, so the conditionsudau@Ga and udbu
@Gb are readily satisfied.

By the method of the adiabatic elimination@13#, the inter-
action Hamiltonian inside the cavity is then written in th
form as

H5\ sin2~k0x̂!~ga
2/daua&^au1gb

2/dbub&^bu!a†a, ~1!

wherega andgb are the vacuum Rabi frequencies associa
with the transitionsua&↔uc& and ub&↔uc&, respectively,
a†(a) is the photon creation~annihilation! operator for the
cavity mode andk052p/l is the wave vector of the
standing-wave mode. We set2ga

2/da5gb
2/db[G.0, which

can be adjusted by controlling the cavity frequency appro
ately. We neglect the kinetic energy term in the Raman-N
approximation, where the interaction time is short enough
the motional effect to be neglected.

Let us denote the initial position distribution byf (x) and
assume that the cavity mode is in a coherent stateua&. If the
atomic internal state isCaua&1Cbub& before entering the
cavity (Ca5Cb51/A2 in our case!, the initial state of the
total system is denoted by

uC0&5E dx f~x!ux& ^ ~Caua&1Cbub&) ^ ua&. ~2!

After interacting with the standing-wave cavity field for tim
t, the state becomes

uC~t!&5e2 iH t/\uC0&5exp@ iG~ x̂!ta†a~ ua&^au2ub&

3^bu!#uC0&5E dx f~x!ux& ^ @Caua& ^ uaeiG(x)t&

1Cbub& ^ uae2 iG(x)t&], ~3!

where

G~x!5G sin2~k0x!. ~4!

In Eq. ~3!, we see that the phase of the cavity field is alter
through the interaction. If the atomic internal state isua&,
then the field state is rotated in the Wigner diagram~see Fig.
2! by the angle

Qa~x!5G~x!t. ~5!

On the other hand, if the atom is in stateub&, the rotation
angle is given by

Qb~x!52G~x!t. ~6!
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ATOMIC-POSITION LOCALIZATION VIA DUAL MEASUREMENT PHYSICAL REVIEW A 65 033827
Note that the field state after the interaction is entangled w
the internal state as well as the atomic position, as seen in
above Eqs.~5! and ~6!. If the quadrature amplitudeXu
5ae2 iu1a†eiu of the field is measured, the atomic positio
is then localized. We setGt5p and selectu50 so that the
measured quantityX0 corresponds to thex-axis value in the
Wigner diagram. When the atom is localized at the no
(k0x50), between the node and the antinode (k0x5p/4),
and at the antinode (k0x5p/2), the field state is accordingl
rotated by the angles 0,6p/2, and6p, respectively, where
6 sign refers to the case of the internal stateua& and ub&,
respectively. Then, the measured amplitudeX0 will be
roughly 2a,0,22a. Conversely, if the field amplitude i
measured to be 2a,0,22a, then the atom is localized at th
node, between the node and the antinode, and at the a
ode, respectively, via the measurement. This is how the
calization by the field measurement comes about@3#.

After interacting with the cavity field, the atom enters t
secondp/2-pulse microwave region. Thus, the final state
given by

uC f inal&5E dx f~x!ux& ^ @1/2ua& ^ ~ uaeiG(x)t&

2uae2 iG(x)t&)11/2ub& ^ ~ uaeiG(x)t&

1uae2 iG(x)t&)]. ~7!

In the following, we use the formula

uxu&5
1

4A2p
expF2

1

2
~a†eiu2xu!21

1

4
xu

2G u0&, ~8!

where uxu& is the eigenstate of the operatorXu @3# with
Xuuxu&5xuuxu&, and thus the inner product^xuuaeih& is
given by

FIG. 2. The Wigner diagram for the coherent state rotated by
angle according to the internal state through the interaction give
Eq. ~1!. The x axis denotes the amplitude of quadratureX05a
1a† and they axis that ofXp/252 i (a2a†) out of phase withX0.
The rotation anglesQa(x) andQb(x) depend on the positionx.
03382
h
he

e

tin-
o-

^xuuaeih&5expH 2F S a r2
xu

2 D 2

1 ia i~a r2xu!G J , ~9!

wherea r5Re@aei (h2u)# anda i5Im@aei (h2u)#.
Now, if the field state is measured to be found in t

eigenstateux0& after the entire interaction, it is found from
Eqs.~7! and ~9! that the system collapses to the state

uCc&}E dx f~x!ux& ^ @D~x!I a~x!ua&1D~x!I b~x!ub&],

~10!

where

D~x!5exp„2$a cos@G~x!t#2x0/2%2
… ~11!

and

I a~x!52 i sinD~x!, I b~x!5cosD~x!, ~12!

with

D~x!5a sin@G~x!t#$a cos@G~x!t#2x0%. ~13!

If we measure the atomic internal state in addition, the fi
position distribution of the atom is given by

Pa~x!}u f ~x!u2uD~x!I a~x!u2 ~14!

when the atom is found to be inua& and

Pb~x!}u f ~x!u2uD~x!I b~x!u2 ~15!

in ub&. Thus, Fa(x)5uD(x)I a(x)u2 and Fb(x)
5uD(x)I b(x)u2 may be interpreted as the filter functions f
the initial position distribution associated with our measu
ment scheme.

III. LOCALIZATION IN THE NEAR REGION

To understand where the filter functionsD(x),I a(x), and
I b(x) originate from, we now consider the case that the Ra
sey fields are turned off and the atom remains in the sa
internal state throughout the entire interaction. We then m
sure the quadrature amplitude of the field only, as in
scheme proposed by Storeyet al. @3#. If the atomic state is
ua& and the field state is measured to beux0&, then the final
atomic state is given by

uCc&
a}E dx f~x!ux& ^ D~x!e2 iD(x)ua&. ~16!

Similarly, if the atom is inub&, the state is

uCc&
b}E dx f~x!ux& ^ D~x!eiD(x)ub&. ~17!

Note that the exponentiale7 iD(x) in the integrand has differ-
ent argument according to the internal state. In this case,
final position distribution is the same regardless of the int
nal state, given by

Pa~x!5Pb~x!}u f ~x!u2D2~x!. ~18!
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NHA, LEE, CHANG, AND AN PHYSICAL REVIEW A 65 033827
We see that the field measurement alone produces the a
tude filterD(x) with the phase filter6D(x).

In our case, on the other hand, with the Ramsey fie
turned on, the quantum interference occurs. If the final s
is found to be inua&, the possible quantum paths areua&
→ua&c→ua& and ua&→ub&c→ua&, whereua,b&c denotes the
atomic state inside the cavity.@Recall that we assumed th
initial state to beua& in deriving Eq.~10!.# Because these two
paths are indistinguishable, they interfere to givee2 iD(x)

2eiD(x)}sinD(x). Similarly, if the atom is finally found in
ub&, two pathsua&→ua&c→ub& andua&→ub&c→ub& interfere
to give e2 iD(x)1eiD(x)}cosD(x). The different signs6 of
the interference in the two cases can be traced back to
~3! and ~7!. Thus, the additional filtersI a(x), and I b(x) in
Eq. ~12! are produced by the quantum interference of
indistinguishable paths.

In Fig. 3, we plot Fa(x)5uD(x)I a(x)u2 and Fb(x)
5uD(x)Ib(x)u2 for the casesx0562a,0. The envelopes in the
figures are given byuD(x)u2, which would be produced by
the field measurement alone without the Ramsey fields.
see that the overall shapes resemble an interference pa
@ uI a(x)u2,uI b(x)u2# superimposed on a diffraction patte
@ uD(x)u2#. Such shapes are analogous to the distribution
the far-field region of a two-slit interferometer with each s
having finite width. The variancesDx of Fa(x) and Fb(x)
are smaller than that ofuD(x)u2. Thus, the localization is
improved by the dual measurement.

FIG. 3. Filter functions Fa(x)5uD(x)I a(x)u2 and Fb(x)
5uD(x)I b(x)u2 for the position distribution caused by the du
measurement for casesx0562a,0 with a52.5. The envelopes
~dotted lines! correspond to the single measurement of the fi
without the Ramsey fields. The measurement ofx052a,22a,0 of
the field quadrature amplitudeX0 roughly localizes the atom at th
node, at the antinode, and midway between the node and the
node, respectively.
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IV. LOCALIZATION IN THE FAR REGION

The localization in the near region by the dual measu
ment may be somewhat difficult to compare with that by t
field measurement alone, due to the limited resolving pow
of usual atom detectors~e.g., hot wire detector!. Note that
the localizations in the two different schemes are discern
only in the subwavelength scale. However, the results can
clearly distinguishable in the far-region position distributio
We consider first the case in which the atom initially has
flat-top distribution, i.e.,

f ~x!5H const, ux/lu<1,

0, otherwise.
~19!

In Fig. 4, we plot the momentum distribution right after th
localization by the dual measurement in the near regi
which corresponds to the position distribution in the far
gion. We see that the distributionPa(p) with the atom in
state ua& is complementary toPb(p) with the atom inub&
state, that is, they are out of phase with respect to each o
The spacings in the distributionsPa(p) and Pb(p) are the
same, 4\k, because both the filter functionsFa(x) and
Fb(x) have thel/4 periodic structure~See Fig. 3!. Note that
the sum ofPa(p) andPb(p) gives exactlyP(p), the distri-
bution that results from the field measurement alone with
the Ramsey fields. Also note thatP(p) does not depend on
the internal state of the atom in this case. At first sight, th
results may seem quite natural, but they are not always
case, as seen below.

d

ti-

FIG. 4. Momentum distributions after the dual measureme
which corresponds to the position distribution in the far regio
when the field quadrature is measured to be atx050 with a52.5.
The distributionsPa(p) andPb(p) denote the distributions that ar
obtained when the internal state is measured to be inua& and ub&,
respectively. For comparison, the momentum distributionP(p) in
the single measurement of the field quadrature amplitude with
the Ramsey fields is presented. The initial position distribut
@ f (x) in Eq. ~9!# was assumed to be flat over the rangeux/lu<1.
7-4
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ATOMIC-POSITION LOCALIZATION VIA DUAL MEASUREMENT PHYSICAL REVIEW A 65 033827
Dipole force induced by the field measurement

The localization in the measurement scheme using
standing-wave field is always accompanied by the mech
cal action on the atom. This is because the standing-w
field at far-off resonance exerts the dipole force to the loc
ized atom. When the cavity mode is in the coherent stateua&,
the potential that the atom experiences is roughly given

Ua,b~x!57\Ga2 sin2~k0x̂!, ~20!

with a†a→a2 inserted into Eq.~1!, where2(1) sign refers
to the case of the internal stateua& (ub&).

To see the effect of the dipole force more clearly, let
assume that the initial distributionf (x) is a well-localized
Gaussian. In Fig. 5, for example,f (x) is assumed to be

f ~x!5
1

~2ps2!1/4
expF2

~x2x0!2

4s2 G , ~21!

with x0 /l51/4 ~located in the midway between the nod
and the antinode! andDx5s50.1l. It becomes more local
ized by the measurement withx050 as shown in the figure
The solid~dotted! line corresponds to the case that the at
is measured to be inua& (ub&) with the Ramsey fields on
Now, when the far-region distribution is observed,P(p) in
the single measurement scheme without the Ramsey fiel
not the same as the sum ofPa(p) and Pb(p) any more.
Moreover, P(p) does depend on the internal state of t
atom. We can explain such distributions in terms of the
pole force correlated with the position localization.

FIG. 5. ~a! Probability densityP(x) of the localization by the
dual measurement with the potentialUa,b(x) drawn together. The
solid ~dotted! line corresponds to the case where the atom is m
sured to be inua& (ub&), with the field measured to be atx050. The
initial position distributionf (x) was assumed to be a Gaussian as
Eq. ~21!, with x0 /l51/4 ands50.1l. On the right side, the mo
mentum distributionsP(p) with the Ramsey fields are plotted i
~b!, andP(p) without the Ramsey fields plotted in~c!, respectively,
corresponding to the localizations shown in~a!. In ~b! and ~c!, the
solid/dotted lines are for the internal stateua&/ub&.
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To begin with, we first consider the case of the field me
surement alone without the Ramsey fields@Fig. 5~c!#. The
localized position distribution in this case has largely thr
parts~not shown!, similar to Fig. 5~a!. If the atom enters the
cavity region in stateua&, it experiences the potential give
by Ua(x). The two small outer parts in the distribution e
perience the force in the negativex direction, and thus are
brought together to generate the interference pattern in
far region due to the coherence of the initial Gaussian w
packet. The large central part experiences the force in
opposite direction to make the diffraction pattern in the
region. The peak position of the momentum distributi
marked in the figure can be calculated using Eq.~22! in the
following section as pt5\k0Gta2'19.6\k0 with Gt
5p,a52.5, andk0x5p/4. Similar argument can be give
to the atom inub&. This explains the distributionsPa(p) and
Pb(p) @see Fig. 5~c!#.

On the other hand, when the Ramsey fields are turned
the internal state inside the cavity is the superposition ofua&
and ub&. Thus, all the three parts in the position distributio
of Fig. 5~a! experience the force both in the positive a
negative directions simultaneously. This results in the in
ference patterns in the left and the right side of the far-reg
distributions @see Fig. 5~b!#. The distributionsPa(p) and
Pb(p) are different from each other since they result fro
different superpositions of indistinguishable quantum pat
as explained in Sec. III. Of course, the sum ofPa(p) and
Pb(p) is the same as that ofPa(p) andPb(p).

In this manner, the far-region distributions in all cases c
be explained in terms of the dipole force correlated with
localization by the measurement.

V. POPPER’S TEST

In this section, we explore whether the present du
measurement scheme can implement Popper’s test@7#. Pop-
per’s test is intended to answer the question whether
knowledge itself of the position can increase the moment
uncertaintywithout mechanical momentum transfer~Copen-
hagen interpretation!, contrary to the Heisenberg’s micro
scope.

To this end, Storeyet al. proposed that changing th
width of the ‘‘virtual slit,’’ produced in the measurement o
the field by varying the phase of the field being measur
implement Popper’s test@3#. In their scheme one compare
the result of theX-quadrature measurement with that of t
Y-quadrature measurement. Suppose that the two mea
ments yield different uncertainties (Dx)X.(Dx)Y of the po-
sition distribution. If the far-region position distribution
which corresponds to the momentum distribution in the n
region, shows that (Dp)X,(Dp)Y in the absence of any me
chanical action, the Copenhagen interpretation is th
proved. Even in the presence of the mechanical action,
above inequality of momentum uncertainty still proves t
Copenhagen interpretation as long as the mechanical ac
does not favor the momentum inequality in the same way.
we have seen in the preceding section, the localization
ploiting the interaction with the standing-wave field inevit
bly introduces the mechanical action, i.e., the dipole for

a-
7-5
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NHA, LEE, CHANG, AND AN PHYSICAL REVIEW A 65 033827
Therefore, it is necessary to examine the mechanical ac
in more detail.

A. The distribution of the momentum transferred to the atom
by the dipole force

If the atom is located at the positionx like a point particle,
the impulse given to the atom for time durationt due to the
dipole force is given by

pt~x!5~ force!3t52¹U~x!3t56\k0Gta2sin~2k0x!.
~22!

Note that the transferred momentumpt depends on the posi
tion x. When the atomic position has a distribution other th
the d function, thenpt is not single valued but distribute
over some range. If the atom is localized by the measurem
to have the probability densityP(x), the uncertainty of the
momentum transferred by the dipole force^(Dpt)

2&5^pt
2&

2^pt&
2 is calculated as

^~Dpt!
2&

~\k0!2
5~Gta2!2F E dxP~x!sin2~2k0x!

2S E dxP~x!sin~2k0x! D 2G . ~23!

Let us assume that the measurement localizes the at
wave packet as a Gaussian, like in Eq.~21!, with P(x)
5u f (x)u2. Then, it is easily obtained that

^~Dpt!
2&

~\k0!2
5

~Gta2!2

2
@12e28(k0s)2

cos~4k0x0!

22e24(k0s)2
sin2~2k0x0!#. ~24!

When the atom is localized well (k0s!1), Eq.~24! becomes

A^~Dpt!
2&

\k0
'2~Gta2!~k0s!ucos~2k0x0!u. ~25!

The momentum uncertainty is smaller for the narrower d
tribution, as seen in Eq.~25!, whereA^(Dpt)

2& is propor-
tional to s. Due to this fact, although the mechanical acti
is inevitably accompanied in the localization, Popper’s t
can nevertheless be implemented in the measurem
schemes using the standing-wave field, as explained be

The momentum uncertaintyDp results from two sources
if we follow the Copenhagen interpretation. One is t
knowledge itself of the position (Dpk), and the other is the
mechanical action by the dipole force in the standing-wa
field @Dpt in Eq. ~25!#, so thatDp;Dpk1Dpt . Let us as-
sume that two different measurement schemes~e.g., two dif-
ferent quadrature measurements in Storey’s scheme! yield
the position localization asDx1.Dx2. Since the uncertainty
caused by the dipole force is smaller in the narrower dis
bution, we haveDpt1.Dpt2. If the far-region distribution is
broader in the case of the narrower localization, i.e.,Dp1
,Dp2, we should conclude that the momentum uncertai
caused by the ‘‘knowledge’’ is much larger in the narrow
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distribution, i.e.,Dpk1,Dpk2. Moreover, the uncertainty by
the mechanical action of the dipole force can be elimina
when the measurement localizes the atom in the midw
between the node and the antinode@Dpt'0 with x0 /l
51/8 in Eq.~25!#. This is also the case even when the po
tion distributionP(x) is not a Gaussian as assumed in E
~25! as long as the atom is well localized aroundx0 /l
51/8. Therefore, we conclude that the proposal by Sto
et al.can implement Popper’s test even when the mechan
action due to the dipole force of the standing-wave field
included in the localization.

B. When the atomic internal state is the superposed one
inside the cavity

In the above, we considered the case that the atom
definitely in one internal state. When the Ramsey fields
turned on, the internal state of the atom inside the cavity
the superposed one. Then, even when the atom is treated
a point particle@i.e., s50 in Eq. ~21!#, a mechanical mo-
mentum uncertainty arises because the mechanical mom
tum delivered to the atom in stateua& is in the opposite
direction to the momentum delivered to the atom in stateub&.
For this reason the mechanical momentum uncertainty in
dual measurement (Dpd,t) becomes always larger than th
in the field measurement only (Dpf ,t). We have shown in
Sec. III that the uncertaintyDxd of the position localization
in the dual-measurement scheme is less thanDxf in the field
measurement only. However, even if we get the resultDpd

.Dpf , this does not prove the Copenhagen interpretat
sinceDpd,t.Dpf ,t , i.e., there is additional momentum un
certainty caused by the indefiniteness of the atomic inte
state in our dual-measurement scheme.

For example, let us assume that the field measurem
alone gives the Gaussian localizationP(x,s1)
51/(2ps1

2)1/2exp@2(x2x0)
2/2s1

2#, whereas the dual mea
surement givesP(x,s2)51/(2ps2

2)1/2exp@2(x2x0)
2/2s2

2#
aroundx0 /l51/8. ~This localization may correspond to th
dotted line in Fig. 5~a! neglecting the two small outer parts
which can be realized when the initial position distribution
much narrower thans50.1l used in the figure.! Then, we
haveDxd,Dxf with k0s2,k0s1!1. The mechanical mo-
mentum uncertainty in the field measurement alone is ca
lated asDpf ,t'A8(\k0Gta2)(k0s1)2 in Eq. ~24!. In the
dual measurement, on the other hand, theua& state portion
gets the mechanical momentumpt51\k0Gta2 while the
ub& state portion getspt52\k0Gta2, as seen in Eq.~22!.
Thus, the average momentum delivered to the atom is z
and the momentum uncertainty is roughly given byDpd,t
'(\k0Gta2), since the atom is populated equally inua& and
ub& state. Then, we haveDpf ,t!Dpd,t . Although we have
better localization in the dual-measurement scheme, the
mentum uncertainty by themechanical action of the
standing-wave field becomes larger due to the internal s
superposition. Therefore, the comparison of the result of
dual measurement with that of the field measurement al
does not constitute Popper’s test.
7-6



io
an
fi
n
o

im
t

t
e
g

n of
ess
nal
we
ay
the

es

ATOMIC-POSITION LOCALIZATION VIA DUAL MEASUREMENT PHYSICAL REVIEW A 65 033827
VI. SUMMARY

In this paper, we have investigated the atomic-posit
localization by the dual measurement, i.e., both the field
the atomic internal state measurements, compared to the
measurement alone. We have also discussed the mecha
action of the light field, correlated with the measurement,
the atom. We began by showing that the localization is
proved by the dual-measurement scheme compared with
field-alone measurement scheme. We then showed tha
though the localization exploiting the interaction with th
standing-wave field at far-off resonance inevitably brin
t

iry

ics
-
o
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about the momentum uncertainty by the mechanical actio
the dipole force origin, Popper’s test can be neverthel
implemented in the schemes in which the atomic inter
state is definite inside the standing-wave field. Moreover,
have found that it is better to localize the atom in the midw
between the node and the antinode in order to minimize
momentum uncertainty.
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