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Two-photon entanglement of orbital angular momentum states
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We investigate the orbital angular momentum correlation of a photon pair created in a spontaneous para-
metric down-conversion process. We show how the conservation of the orbital angular momentum in this
process results from phase matching in the nonlinear crystal.
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Entanglement is one of the most puzzling and powerfulparametric down-conversion, phase-matching is fulfilled. Al-
properties of quantum theory and has received undiminishethough the nature of the nonlinear susceptibility constrains
attention since the earliest days of quantum mechanics. Eithe polarization of the three interacting waves, it in no way
tangled states play a crucial role in the investigation of thedetermines the orbital angular momentum of any of the
EPR paradoX1] and in the evaluation of Bell's inequality beams. The orbital angular momentum is determined solely
[2], which distinguishes between local and nonlocal formu-by the phase structure of each beam. Our analysis provides
lations of quantum mechanics. However, two-photon enthe theoretical background to a recent experiment, in which
tanglement not only poses fundamental questions to our urihe conservation of the orbital angular momentum in para-
derstanding of quantum theory, but it also plays an importanietric down-conversion has been observed for the first time
role in applications of quantum mechanics including quan{13,14.
tum cryptography, teleportatiof8,4], and quantum images  While the spin angular momentum describes the intrinsic
[5-7]. photon spin and corresponds to the optical polarization of

Parametric down-conversion has proved a reliable tool fofight, the orbital angular momentum is associated with the
the generation of pairs of entangled phot¢89]. The re- transverse phase front of a light beam. Light with an azi-
sulting spatially separated photons, usually named the “sigmuthal phase dependence ekp) carries a well-defined or-
nal” and “idler,” are entangled in their arrival times at the bital angular momentum df. per photon[15]. The associ-
respective detectofd0] and in their transverse positiof)]. ated phase discontinuity produces an intensity null on the
They can also be entangled in their polarization stf@gkl].  beam axis. Such light beams are conveniently described in
All of these effects have been studied experimentally as wellerms of Laguerre-Gaussian modes, characterized by the
as theoretically. Here we will concentrate on a further enimode indices andp, wherep+ 1 gives the number of radial
tangled property, the orbital angular momentum of the twonodes, and @+1 the mode ordeN.
generated photongl3,14. The time entanglement arises Laguerre-Gaussian beams can be generated by using ho-
from the energy conservation in the down-conversion prodograms which have the form of distorted diffraction gratings
cess, which is expressed by the frequency matching condiwith an |-pronged fork dislocation on the beam axis. The
tion. Similarly, the entanglement of the transverse position irfirst-order diffracted beam then hdsintertwined helical
the far field arises from the momentum conservation exwavefronts. Alternatively, such holograms can be used in re-
pressed by the phase-matching condition. verse to detect modes of a particular angular momentum

In this paper, we will show that the orbital angular mo- number. In this configuration, if the number of dislocations
mentum entanglement, a transverse property of the bearnt) the hologram matches the angular momentum number of
follows also directly from the phase-matching condition andthe incident beam, then the first-order diffracted beam has an
is related to the conservation of orbital angular momentumon-axis intensity which can be detected. If, however, the
Our approach differs from a recent theoretical pdaéi that  number of forks does not match the number of dislocations,
dealt with the possible conservation of the combined spirthen no on-axis intensity results.
and orbital angular momentum in relation to the susceptibil- The correlation between Laguerre-Gaussian modes was
ity of the down-conversion crystal. The nonlinear electricstudied in a recent down-conversion experin{d®,14. For
susceptibility of the crystal determines the polarization prop-a pump beam withy,,= 0, nonvanishing coincidence count
erties of the down-converted photons. In the case of type tates were measured for the detection Qf,.=2 andliger
down-conversion, the polarization of the signal and the idler= —2, whereas no significant coincidence rates were found,
photons will be identical, its direction being determined byfor example, for the detection df;g,,= +2 andlige=0.
the polarization of the pump. In the case of type Il down-This suggests that the angular momentum is conserved in the
conversion, the two down-converted photons have orthogodown-conversion process, so thagnartligier= ! pump=0-
nal polarizations. In specific setups, this can result in polar- In the following, we derive the correlation between gen-
ization entanglement in each pair of signal and idler photonseral transverse modes of the signal and idler photon. We then
For each photon pair, be it generated in type | or type llquantify these correlations for the special case of Laguerre-
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Gaussian modes and show how these are related to the con- . .
servation of the orbital angular momentum. |‘1’>:J dkof dklf dko®o(ko)az(ka)as(ky)
Here we are concerned with the transverse-mode correla-
tions between the signal and idler beams. Hence we describe X A(ky—ky) 6P (ko—ki—ky)[0). 1)

the modes of the pump, signal, and idler by the normalized

transverse mode function®y,(x), where x is a two-  Here

dimensional vector in the plane perpendicular to the propa-

gation direction of the light; we work in the paraxial limit. 1

Quantities and operators concerning the pump, signal, and _ .

idler are indicated by the subscripts 0, 1, and 2, respectively. P(kor2= 277f dxPo, AX01 2 XMk 12 X012 (2)
For simplicity, we suppress the explicit beam propagation

and assume frequency matching to be fulfilled.

We first determine the state of the light generated by
parametric down-conversion procegds$,17). In the Schre
dinger picture, the two photons in the signal and the idle
mode are created by applying the operaibtk,)a’(k,) to )
the initial vacuum statg0), wherek , is the transverse com- At _ At e
ponent of the signal a>nd idler wave vector, respectively. A 2Ky 2= wa @ 0 e ik 2 X1 (3
Similarly, ky denotes the transverse component of the pump
beam. We assume polarization states that are in agreemeﬂging these equations, we can write the two-photon wave
with the condition imposed by the nonlinear susceptibility Offunction (1) in the positi,on representation:
the crystal. For photons in such polarization states, phase- '
matching between the down-converted photons and the
pump is satisfied. It can be described by a sinc function B X1+ Xo
T sind (ko — ky — k2);L /2], whereL | is the length of the W)= f dxy f dx®Po| —
crystal in the directions transverse to the beam propagation.

For simplicity, we assume that the transverse dimension of X A(X1—Xp) 8] (X;)a3(X2)|0). 4
the crystal is sufficiently large so that the phase-matching

condition can described by a two-dimensional delta functionrpis is the normalized wave function of the combined sys-
(k. — k. — . . .
6 “(ko—ky—kz) and that all other modes are damped Outier, of the signal and idler generated by parametric down-
[16,17. Moreover, the fact thako—k,—k,=0 is a good  ¢onyersion. It contains all necessary information about the
approximation for fields carrying orbital angular momentumtcome of single or coincidence measurements. The count
has already been experimentally verified in the frequencyaies of such measurements are proportional to the probabili-
up-conversion of Laguerre-Gaussian mofie8]. While the (o5 of detecting a photon of the signal or idler in the desired
4 function constrains the sum of the transverse signal anghode. In order to calculate these probabilities, we need to

idler wave vectors, their absolute (_jiff_ereddxq_— ko| cannot  fing the overlap of the two-photon state with the normalized
be arbitrarily large either. This is immediately apparentone-photon state of the signal or idler

within the paraxial limit, the regime in which most down-

conversion experiments are operating. More generally one

can argue that large values lof—k, require large values of P :f dxe P+ %1 AT x:)]0 5
k, and/ork, and hence of the signal and idler frequencigs V12 1801.4%1.2)81 4%1.2)(0), ®
and w,. Increasing|k;—k,| to an arbitrarily large value,

therefore, would lead to a violation of the frequency- 5sqociated with detecting a photon in the mdelg,.
matching conditionwo=w,+ w, associated with energy  The coincidence probability for finding one photon in the

conservation. Clearly, energy conservation requitks signal modeb, and one photon in the idler mode, is then
—ko|=<2m/\, where\ is the pump wavelength. We include jyen by

this constraint in our analysis by means of the purely geo-
metrical function A(k;—Kk;), normalized such that

denote the normalized mode functions in Fourier space.
aSimilarly, the Fourier transformation of the creation opera-
rtors is given by

dk|A(k)|2=1. This function will be zero for large values P(®q, @) =W, W4 W)

of its argument so as to satisfy the requirement of energy

conservation. In practice, other constraints including the :fdxlf dx,®7 (X) D3 (%) D

sizes of apertures used and crystal geometry will prescribe

the precise form ofA(k;—k,). We note that this function X1 + X 2
. . . . .. 1 2

will result only in a scaling factor for the single and coinci- ( 5 )A(xl—xz) . (6)

dence count rates. It cancels in the normalized count rates

and plays no part in the derivation of orbital angular momen-

tum conservation. If we average this expression over all possible signal modes,
The two-photon wave function of the signal and idler thenthen we obtain the probability for finding a photon in the

takes the fornj19] idler mode,
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P(d,)= |<\II2|\II>|2 mode function of the idler can be expressed as the product of
the mode functions of the signal and the pump,
, ) X1+ X5
ZJ dxlj dxzj dX2(D2(X2)<D§(X2)CD3< 2 ) D,= f dyA(y) | ®d* (12)
X, X1+X2)A*(xl—X§)A(X1_X2)a (7)  Where the integral enforces the normalization of the idler
mode. This may be interpreted “backwards” or retrodictively

[20]: The measured mode functigh, is “reflected” at the
and a similar expression describes the probability of finding,(2) crystal, where it interacts with the pump modig and is
a single photon in the signal mode. modified into the idler mode function.

We recall thatA (k) is a very broad function that cuts out ~ So far our considerations have been valid for any trans-
modes with large transverse wave vectors. The mode funarerse mode function, including Hermite or Laguerre-
tions will therefore vary very little over the region where Gaussian modes. In the following, we will concentrate on
A(X1—X,), the Fourier transform oA (k), does not vanish. Laguerre-Gaussian modes and specifically investigate the

Under this assumption, E¢6) and(7) can be written as correlation of the orbital angular momentum between the
signal and the idler. The normalized Laguerre-Gaussian
2 . . 2 modes in polar coordinates are given by
P(®q,D;)= fdyA(y) deqM(X)q)z(X)@o(X) : |
® _ 2p! \/T r\/i
o= N Ty Vidl w
2
— * 2 2
P(d,)= f dyA(y) f dX| @3 () De(X)[2 (9 y L;( 2r? ) o iy, 13
w

The factor|[dyA(y)|? will in general be very small and )
limit the count rates. This is because the down-converted/nere thez-dependent phase was omitted ar{,ﬂ tenotes

photons are emitted into a wide spatial range. the associated Laguerre polynominal,
The normalized coincidence probability, however, is inde- p
pendent ofA(y): L= 20 (—1)™ChE L r™/ml. (14)
m=
N
P(®1,P2) Laguerre-Gaussian modes with an integer orbital angular
P(d,,d,) momentum ofil per photon are orthonormal solutions of the
S e paraxial wave equation. We note that these modes can be
VP(D)P(D,) defined in the same way for fractional valueslofThese

fractional modes are still normalized, but form an overcom-
* * plete set. They can be written as sums of stable Laguerre-
f dx®7 (X)®3 (X) Po(X) Gaussian modes with different integes. As each of these
= . modes has a different Gouy phase, the resulting beams with
% 2 % 2 fractionallI's are unstable and do not maintain their ampli-
\/f dx| 3 (x) @o(X)] \/f dxX| T () Do()] tude distribution upon propagation. It has been suggested,
however, that such beams can be prepared or detected by use
of holograms or phaseplatE®1] or by using nonlinear opti-

This probability can take values between 0 and 1. It become‘éal de_\/lces,_ such as th? optical parametric OSC”@Q]'

1 if signal and idler are perfectly correlated so that the de- By inserting the spatial mode funCtIOdsp(_),l,Z’IO,l,Z in EQ. .
tection of the signal in modé, implies that the idler is in (12 and comparing the phase factors, we find that the orbital
mode ®,, and it vanishes if signal and idler are anticorre-angular momentum of the idler is given by=1o—1,. This

2

(10

lated. signifies that the orbital angular momentum must be con-
We now need to connect the idler mode functibpwith ~ Served,
the mode functions of the down-converted signal and idler lo=1,+1,. (15)

®, ,. More precisely, we want to determine the idler mode
for a given pump mode and detected signal mode. The staM/e want to stress that we have derived this equation solely
of the idler photon collapses in{ft,)=(W¥,| V) if the sig- from the phase-matching condition for Laguerre-Gaussian
nal photon was found to be in stdtd,). We can calculate modes or other modes with the same azimuthal phase depen-
this state from Eqs4) and (5), dence. Our derivation is independent of the nature of the
nonlinear susceptibility of the down-conversion crystal.
N One example of the conservation of the orbital angular
|\I’2>:f dyA(Y)f dxo®] (x) Po(%2)8'(x2)[0), (1D yomentum can be seen in Fig. 1, where the mode profile of
the idler mode function is shown as the product of the com-
where we have evaluated the functiify) in the same way plex pump mode and the signal mode according to(E#).
as previously. In comparison with E¢), we find that the  Our derivation of Eq(15) is valid for all modes that can be
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FIG. 1. Intensity|®|? and phase arg) of the pump, signal,
and idler mode. If the pump and signal beams are prepared/ FIG. 2. The normalized coincidence probabilR)(®,,d,) for
measured in the indicated L-G modes, the idler collapses into ghe orbital angular momenta of the signal and idler photond for
mode with an amplitude proportional tho®7 . The phase struc- =0 and 1. The ratio of idler and signal waists to that of the pump
ture of the idler corresponds 1@=1,—1, and an orbital angular s W=0.4.
momentum of &.

of Laguerre-Gaussian mod¢g3) into the normalized coin-

expressed in the forriL3). We note that the conservation of cidence probability10), we find

orbital angular momentum can be fulfilled not only for inte- IRy

ger quantitiedy ; », but also for continuous values of the or- N —gi _ A

bital angular momentum numbers, PH® 1) =sincT(l1+1o=10) 7] NCH=
Equation(15) is in agreement with the experimental ob-

servation of orbital angular momentum conservation reHiere we have denoted

ported in[13,14]. To our knowledge, this is the only relevant -

experiment at the single-photon level. Classical signal and R12:J' drr a2l +loh/2g=r(1+W?r2)

idler beams consist of many photon pairs, for each of which 0

the conservatiohy=1,+1, is satisfied. Both signal and idler

beams will then exhibit modes with mixtures of varidis

rather than pure Laguerre-Gaussian md@&$ These mixed

signal and idler modes will still be correlated. However, un- :(p1+||1|)!

less we can observe each pair of photons, their correlation = * p,!

will be lost as there is no coherence between photons gener-

ated from different pump photons. This makes it very diffi- % fwdrr\|2\+\lo\e—r(1+wz)[Lllll(r)]z[Lllo\(rwz)]z

cult to demonstrate the validity of E@15) in the classical 0 P1 Po '

regime. In contrast to this, the orbital angular momentum of (18)

each photon created by a frequency-doubling process is

uniquely determined als,,=2l,,, wherel , denotes the or- and similarly forR,. Figure 2 shows the normalized coinci-

bital angular momentum of the incoming photons. Consedence probability as a function of the continuous orbital an-

quently, the conservation of orbital angular momentum cargular momenta of the signal and idler photon.

be observed in classical up-conversion experimgtgé The sinc function in Eq(15 becomes maximal if the
The | conservation entangles the angular momentunrbital angular momentum is conserved and vanishes,if (

modes of the signal and idler for a given pump mode. We set-|,—1,) is a nonzero integer. It is therefore most likely to

the waist of the idler equal to the waist of the signal,  detect a pair of signal and idler modes that conserve the

=w,=w, and denote the fraction of the signal and idlerpump angular momentum and it is impossible to find com-

waist to the pump waist bW=w/w,. By inserting the form  binations of signal and idler modes that violate angular mo-

(16)

X Ly L dew?), (17
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mentum conservation by an integer. Secondary maxima adngular momentum, states, we would therefore anticipate a
the sinc function near half-integer values dg€1,—15) maximum violation of Bell’s inequality to be obtained for
seem to imply that there is a violation of the conservation ofmeasurements of superpositions of Laguerre-Gaussian and
orbital angular momentum. This is not the case, as the beant¢ermite-Gaussian modes of mode order 1 separated by 45°
of fractional | may be expressed in terms of modes withdegree on the Poincasphere. For larger values of orbital
integer |, some of which satisfy the conservation require-angular momentum, this analogy breaks down due to the
ment. This is due to the fact that the fractiohahodes are higher number of possible states. The quantum correlations,
overcomplete. While this structure is determined by thehowever, persist and offer the prospect of novel demonstra-
phase dependence of the L-G modes, we find additional dipsons and applications of entanglement.
along the diagonals of maximum coincidencd at|,=1,. Another approach has been proposed by Maial. [14],
These are related to the radial mode profile in 8d@) and  whereby a hologram displaced from its on-axis position no
again arise from the finite overlap of the fractional modeslonger produces or detects a pure Laguerre-Gaussian mode
(12). There is no equivalent to this in polarization correla-but a complicated superposition of modes with differing in-
tions. However, it should be stressed that this additionatlices. This situation can be modeled by a numerical evalua-
structure arises from the radial structure of the mode. If thigion of Eq. (10), which we will report elsewherg27]. In
radial structure is ignored, as in a detection process that megeneral, the coincidence rate is maximized for hologram off-
sures onlyl, then this detailed structure disappears. sets, which result in mode combinations with high contribu-
Compared with the spin angular momentum, orbital angutions by mode pairs which satisfy the conservation of orbital
lar momentum offers a far richer structure. The spin angulaangular momentuni15), namelyl =1,+1,.
momentum can only take values betweefh and 1 for right In this paper, we have considered the correlation between
and left circularly polarized light, respectively. The orbital Laguerre-Gaussian modes of the signal and idler with vary-
angular momentum is in principle unlimited, and there existdng amounts of orbital angular momentum. The finite mode
an infinite number of Laguerre-Gaussian modes. While the@verlap between modes differing by a fractional numbelr of
spin angular momentum modes are defined in a twois to some extent reminiscent of the finite overlap between
dimensional Hilbert space, the orbital angular momentunmonorthogonal polarization states, as they are used for testing
modes occupy different Hilbert spaces depending on th8ell's inequality. This suggests the possibility of observing a
mode ordeMN =1+ 2p with dimensionalityN+ 1 [24]. violation of Bell's inequality for measurements of angular
Orbital angular momentum states with mode orber 1 momentum states differing by fractional valueslofSuch
are exactly analogous to spin angular momentum states. Imeasurements may be possible with the use of holograms
each case they can be depicted on the Poingainerg[25].  that impose a fractional change of the orbital angular mo-
Any two diametrically opposed points on the Poincarementum by means of a fractional change of the phase step.
sphere correspond to orthogonal states. For the polarization
states these are left and right circular polarization, and hori- We are grateful to Alois Mair for useful discussions and
zontal and vertical linear polarization. For the orbital angularfor providing us with invaluable information about his ex-
momentum states these are Laguerre-Gaussian modes wjtkeriment on orbital angular momentum conservation. We
positive and negative phase, vertical and horizontal Hermitewould like to acknowledge the enthusiastic encouragement
Gaussian modes, or superpositions of such modes. It is welif the late Alan J. Duncan. This work was supported by the
known[26] that maximum violation of Bell's inequality oc- TMR program of the Commission of the European Union
curs between any two measurements made for polarizatiotihrough the Quantum Structures Network and by the Lever-
states separated by 45° on the Poincghere. For orbital hulme Trust.
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