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Two-photon entanglement of orbital angular momentum states
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We investigate the orbital angular momentum correlation of a photon pair created in a spontaneous para-
metric down-conversion process. We show how the conservation of the orbital angular momentum in this
process results from phase matching in the nonlinear crystal.

DOI: 10.1103/PhysRevA.65.033823 PACS number~s!: 42.65.Ky, 42.50.Dv, 03.65.Ta
rfu
he
E

th
y
u

en
u
a
an
s

fo

sig
e

e
n

w
s
ro
nd
i

ex

o-
a
nd
m

pi
bi
ric
op
e
le
by
n
g
la
n
I

Al-
ins
ay
the
lely
ides
ich
ra-
ime

sic
of

the
zi-

the
d in
the

l

ho-
gs
he

re-
tum
ns
r of
an

the
ns,

was

t

nd,

the

n-
hen
rre-
Entanglement is one of the most puzzling and powe
properties of quantum theory and has received undiminis
attention since the earliest days of quantum mechanics.
tangled states play a crucial role in the investigation of
EPR paradox@1# and in the evaluation of Bell’s inequalit
@2#, which distinguishes between local and nonlocal form
lations of quantum mechanics. However, two-photon
tanglement not only poses fundamental questions to our
derstanding of quantum theory, but it also plays an import
role in applications of quantum mechanics including qu
tum cryptography, teleportation@3,4#, and quantum image
@5–7#.

Parametric down-conversion has proved a reliable tool
the generation of pairs of entangled photons@8,9#. The re-
sulting spatially separated photons, usually named the ‘‘
nal’’ and ‘‘idler,’’ are entangled in their arrival times at th
respective detectors@10# and in their transverse positions@6#.
They can also be entangled in their polarization states@9,11#.
All of these effects have been studied experimentally as w
as theoretically. Here we will concentrate on a further e
tangled property, the orbital angular momentum of the t
generated photons@13,14#. The time entanglement arise
from the energy conservation in the down-conversion p
cess, which is expressed by the frequency matching co
tion. Similarly, the entanglement of the transverse position
the far field arises from the momentum conservation
pressed by the phase-matching condition.

In this paper, we will show that the orbital angular m
mentum entanglement, a transverse property of the be
follows also directly from the phase-matching condition a
is related to the conservation of orbital angular momentu
Our approach differs from a recent theoretical paper@12# that
dealt with the possible conservation of the combined s
and orbital angular momentum in relation to the suscepti
ity of the down-conversion crystal. The nonlinear elect
susceptibility of the crystal determines the polarization pr
erties of the down-converted photons. In the case of typ
down-conversion, the polarization of the signal and the id
photons will be identical, its direction being determined
the polarization of the pump. In the case of type II dow
conversion, the two down-converted photons have ortho
nal polarizations. In specific setups, this can result in po
ization entanglement in each pair of signal and idler photo
For each photon pair, be it generated in type I or type
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parametric down-conversion, phase-matching is fulfilled.
though the nature of the nonlinear susceptibility constra
the polarization of the three interacting waves, it in no w
determines the orbital angular momentum of any of
beams. The orbital angular momentum is determined so
by the phase structure of each beam. Our analysis prov
the theoretical background to a recent experiment, in wh
the conservation of the orbital angular momentum in pa
metric down-conversion has been observed for the first t
@13,14#.

While the spin angular momentum describes the intrin
photon spin and corresponds to the optical polarization
light, the orbital angular momentum is associated with
transverse phase front of a light beam. Light with an a
muthal phase dependence exp(ilw) carries a well-defined or-
bital angular momentum ofl\ per photon@15#. The associ-
ated phase discontinuity produces an intensity null on
beam axis. Such light beams are conveniently describe
terms of Laguerre-Gaussian modes, characterized by
mode indicesl andp, wherep11 gives the number of radia
nodes, and 2p1 l the mode orderN.

Laguerre-Gaussian beams can be generated by using
lograms which have the form of distorted diffraction gratin
with an l-pronged fork dislocation on the beam axis. T
first-order diffracted beam then hasl intertwined helical
wavefronts. Alternatively, such holograms can be used in
verse to detect modes of a particular angular momen
number. In this configuration, if the number of dislocatio
in the hologram matches the angular momentum numbe
the incident beam, then the first-order diffracted beam has
on-axis intensity which can be detected. If, however,
number of forks does not match the number of dislocatio
then no on-axis intensity results.

The correlation between Laguerre-Gaussian modes
studied in a recent down-conversion experiment@13,14#. For
a pump beam withl pump50, nonvanishing coincidence coun
rates were measured for the detection ofl signal52 and l idler
522, whereas no significant coincidence rates were fou
for example, for the detection ofl signal562 and l idler50.
This suggests that the angular momentum is conserved in
down-conversion process, so thatl signal1 l idler5 l pump50.

In the following, we derive the correlation between ge
eral transverse modes of the signal and idler photon. We t
quantify these correlations for the special case of Lague
©2002 The American Physical Society23-1
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Gaussian modes and show how these are related to the
servation of the orbital angular momentum.

Here we are concerned with the transverse-mode corr
tions between the signal and idler beams. Hence we desc
the modes of the pump, signal, and idler by the normali
transverse mode functionsF0,1,2(x), where x is a two-
dimensional vector in the plane perpendicular to the pro
gation direction of the light; we work in the paraxial limi
Quantities and operators concerning the pump, signal,
idler are indicated by the subscripts 0, 1, and 2, respectiv
For simplicity, we suppress the explicit beam propagat
and assume frequency matching to be fulfilled.

We first determine the state of the light generated b
parametric down-conversion process@16,17#. In the Schro¨-
dinger picture, the two photons in the signal and the id
mode are created by applying the operatorâ†(k1)â†(k2) to
the initial vacuum stateu0&, wherek1,2 is the transverse com
ponent of the signal and idler wave vector, respective
Similarly, k0 denotes the transverse component of the pu
beam. We assume polarization states that are in agree
with the condition imposed by the nonlinear susceptibility
the crystal. For photons in such polarization states, ph
matching between the down-converted photons and
pump is satisfied. It can be described by a sinc funct
P j 5x,ysinc@(k02k12k2) jL j /2#, whereL j is the length of the
crystal in the directions transverse to the beam propaga
For simplicity, we assume that the transverse dimension
the crystal is sufficiently large so that the phase-match
condition can described by a two-dimensional delta funct
d (2)(k02k12k2) and that all other modes are damped o
@16,17#. Moreover, the fact thatk02k12k250 is a good
approximation for fields carrying orbital angular momentu
has already been experimentally verified in the freque
up-conversion of Laguerre-Gaussian modes@18#. While the
d function constrains the sum of the transverse signal
idler wave vectors, their absolute differenceuk12k2u cannot
be arbitrarily large either. This is immediately appare
within the paraxial limit, the regime in which most down
conversion experiments are operating. More generally
can argue that large values ofk12k2 require large values o
k1 and/ork2 and hence of the signal and idler frequenciesv1
and v2. Increasinguk12k2u to an arbitrarily large value
therefore, would lead to a violation of the frequenc
matching conditionv0.v11v2 associated with energ
conservation. Clearly, energy conservation requiresuk1
2k2u<2p/l, wherel is the pump wavelength. We includ
this constraint in our analysis by means of the purely g
metrical function D(k12k2), normalized such tha
*dkuD(k)u251. This function will be zero for large value
of its argument so as to satisfy the requirement of ene
conservation. In practice, other constraints including
sizes of apertures used and crystal geometry will presc
the precise form ofD(k12k2). We note that this function
will result only in a scaling factor for the single and coinc
dence count rates. It cancels in the normalized count r
and plays no part in the derivation of orbital angular mom
tum conservation.

The two-photon wave function of the signal and idler th
takes the form@19#
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uC&5E dk0E dk1E dk2F0~k0!â2
†~k2!â1

†~k1!

3D~k12k2!d (2)~k02k12k2!u0&. ~1!

Here

F~k0,1,2!5
1

2pE dxF0,1,2~x0,1,2!exp~ ik0,1,2•x0,1,2! ~2!

denote the normalized mode functions in Fourier spa
Similarly, the Fourier transformation of the creation ope
tors is given by

â1,2
† ~k1,2!5

1

2pE dxâ1,2
† ~x1,2!exp~2 ik1,2•x1,2!. ~3!

Using these equations, we can write the two-photon w
function ~1! in the position representation:

uC&5E dx1E dx2F0S x11x2

2 D
3D~x12x2!â1

†~x1!â2
†~x2!u0&. ~4!

This is the normalized wave function of the combined s
tem of the signal and idler generated by parametric dow
conversion. It contains all necessary information about
outcome of single or coincidence measurements. The co
rates of such measurements are proportional to the proba
ties of detecting a photon of the signal or idler in the desi
mode. In order to calculate these probabilities, we need
find the overlap of the two-photon state with the normaliz
one-photon state of the signal or idler,

uC1,2&5E dx1,2F1,2~x1,2!â1,2
† ~x1,2!u0&, ~5!

associated with detecting a photon in the modeF1,2.
The coincidence probability for finding one photon in th

signal modeF1 and one photon in the idler modeF2 is then
given by

P~F1 ,F2!5 z^C2 ,C1uC& z2

5U E dx1E dx2F1* ~x1!F2* ~x2!F0

3S x11x2

2 DD~x12x2!U2

. ~6!

If we average this expression over all possible signal mod
then we obtain the probability for finding a photon in th
idler mode,
3-2
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TWO-PHOTON ENTANGLEMENT OF ORBITAL ANGULAR . . . PHYSICAL REVIEW A 65 033823
P~F2!5 z^C2uC& z2

5E dx1E dx2E dx28F2~x28!F2* ~x2!F0* S x11x28

2 D
3F0S x11x2

2 DD* ~x12x28!D~x12x2!, ~7!

and a similar expression describes the probability of find
a single photon in the signal mode.

We recall thatD(k) is a very broad function that cuts ou
modes with large transverse wave vectors. The mode fu
tions will therefore vary very little over the region whe
D(x12x2), the Fourier transform ofD(k), does not vanish
Under this assumption, Eq.~6! and ~7! can be written as

P~F1 ,F2!5U E dyD~y!U2U E dxF1* ~x!F2* ~x!F0~x!U2

,

~8!

P~F2!5U E dyD~y!U2E dxuF2* ~x!F0~x!u2. ~9!

The factor u*dyD(y)u2 will in general be very small and
limit the count rates. This is because the down-conver
photons are emitted into a wide spatial range.

The normalized coincidence probability, however, is ind
pendent ofD(y):

P~F1 ,F2!N

5
P~F1 ,F2!

AP~F1!P~F2!

5

U E dxF1* ~x!F2* ~x!F0~x!U2

AE dxuF2* ~x!F0~x!u2AE dxuF1* ~x!F0~x!u2
.

~10!

This probability can take values between 0 and 1. It becom
1 if signal and idler are perfectly correlated so that the
tection of the signal in modeF1 implies that the idler is in
modeF2, and it vanishes if signal and idler are anticorr
lated.

We now need to connect the idler mode functionF0 with
the mode functions of the down-converted signal and id
F1,2. More precisely, we want to determine the idler mo
for a given pump mode and detected signal mode. The s
of the idler photon collapses intouC2&5^C1uC& if the sig-
nal photon was found to be in stateuC1&. We can calculate
this state from Eqs.~4! and ~5!,

uC2&5E dyD~y!E dx2F1* ~x2!F0~x2!â†~x2!u0&, ~11!

where we have evaluated the functionD(y) in the same way
as previously. In comparison with Eq.~5!, we find that the
03382
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mode function of the idler can be expressed as the produc
the mode functions of the signal and the pump,

F25S E dyD~y! DF0F1* , ~12!

where the integral enforces the normalization of the id
mode. This may be interpreted ‘‘backwards’’ or retrodictive
@20#: The measured mode functionF2 is ‘‘reflected’’ at the
x (2) crystal, where it interacts with the pump modeF0 and is
modified into the idler mode function.

So far our considerations have been valid for any tra
verse mode function, including Hermite or Laguerr
Gaussian modes. In the following, we will concentrate
Laguerre-Gaussian modes and specifically investigate
correlation of the orbital angular momentum between
signal and the idler. The normalized Laguerre-Gauss
modes in polar coordinates are given by

Fp,l~r ,w!5A 2p!

p~ u l u1p!!
A1

wS rA2

w D u l u

3 Lp
u l uS 2r 2

w2 D e2r 2/w2
e2 i l w, ~13!

where thez-dependent phase was omitted and Lp
u l u denotes

the associated Laguerre polynominal,

Lp
l 5 (

m50

p

~21!mCp2m
p1 l r m/m!. ~14!

Laguerre-Gaussian modes with an integer orbital ang
momentum of\ l per photon are orthonormal solutions of th
paraxial wave equation. We note that these modes can
defined in the same way for fractional values ofl. These
fractional modes are still normalized, but form an overco
plete set. They can be written as sums of stable Lague
Gaussian modes with different integerl ’s. As each of these
modes has a different Gouy phase, the resulting beams
fractional l ’s are unstable and do not maintain their amp
tude distribution upon propagation. It has been sugges
however, that such beams can be prepared or detected b
of holograms or phaseplates@21# or by using nonlinear opti-
cal devices, such as the optical parametric oscillator@22#.

By inserting the spatial mode functionsFp0,1,2,l 0,1,2
in Eq.

~12! and comparing the phase factors, we find that the orb
angular momentum of the idler is given byl 25 l 02 l 1. This
signifies that the orbital angular momentum must be c
served,

l 05 l 11 l 2 . ~15!

We want to stress that we have derived this equation so
from the phase-matching condition for Laguerre-Gauss
modes or other modes with the same azimuthal phase de
dence. Our derivation is independent of the nature of
nonlinear susceptibility of the down-conversion crystal.

One example of the conservation of the orbital angu
momentum can be seen in Fig. 1, where the mode profile
the idler mode function is shown as the product of the co
plex pump mode and the signal mode according to Eq.~12!.
Our derivation of Eq.~15! is valid for all modes that can be
3-3
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FRANKE-ARNOLD, BARNETT, PADGETT, AND ALLEN PHYSICAL REVIEW A65 033823
expressed in the form~13!. We note that the conservation o
orbital angular momentum can be fulfilled not only for int
ger quantitiesl 0,1,2 but also for continuous values of the o
bital angular momentum numbers.

Equation~15! is in agreement with the experimental o
servation of orbital angular momentum conservation
ported in@13,14#. To our knowledge, this is the only releva
experiment at the single-photon level. Classical signal
idler beams consist of many photon pairs, for each of wh
the conservationl 05 l 11 l 2 is satisfied. Both signal and idle
beams will then exhibit modes with mixtures of variousl ’s
rather than pure Laguerre-Gaussian modes@23#. These mixed
signal and idler modes will still be correlated. However, u
less we can observe each pair of photons, their correla
will be lost as there is no coherence between photons ge
ated from different pump photons. This makes it very dif
cult to demonstrate the validity of Eq.~15! in the classical
regime. In contrast to this, the orbital angular momentum
each photon created by a frequency-doubling proces
uniquely determined asl 2v52l v , wherel v denotes the or-
bital angular momentum of the incoming photons. Con
quently, the conservation of orbital angular momentum c
be observed in classical up-conversion experiments@18#.

The l conservation entangles the angular moment
modes of the signal and idler for a given pump mode. We
the waist of the idler equal to the waist of the signal,w1
5w25w, and denote the fraction of the signal and id
waist to the pump waist byW5w/w0. By inserting the form

FIG. 1. IntensityuFu2 and phase arg(F) of the pump, signal,
and idler mode. If the pump and signal beams are prepa
measured in the indicated L-G modes, the idler collapses in
mode with an amplitude proportional toF0F1* . The phase struc-
ture of the idler corresponds tol 25 l 02 l 1 and an orbital angular
momentum of 3\.
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of Laguerre-Gaussian modes~13! into the normalized coin-
cidence probability~10!, we find

PN~F1 ,F2!5sinc2@~ l 11 l 22 l 0!p#
uR12u2

AR2R1

. ~16!

Here we have denoted

R125E
0

`

drr (u l 1u1u l 2u1u l 0u)/2e2r (11W2/2)

3 Lp1

u l 1u
~r !Lp1

u l 2u
~r !Lp0

u l 0u
~rW2!, ~17!

R15
~p11u l 1u!!

p1!

3E
0

`

drr u l 2u1u l 0ue2r (11W2)@Lp1

u l 1u
~r !#2@Lp0

u l 0u
~rW2!#2,

~18!

and similarly forR2. Figure 2 shows the normalized coinc
dence probability as a function of the continuous orbital a
gular momenta of the signal and idler photon.

The sinc function in Eq.~15! becomes maximal if the
orbital angular momentum is conserved and vanishes ifl 0
2 l 12 l 2) is a nonzero integer. It is therefore most likely
detect a pair of signal and idler modes that conserve
pump angular momentum and it is impossible to find co
binations of signal and idler modes that violate angular m

d/
a

FIG. 2. The normalized coincidence probabilityPN(F1 ,F2) for
the orbital angular momenta of the signal and idler photons fol 0

50 and 1. The ratio of idler and signal waists to that of the pu
is W50.4.
3-4
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TWO-PHOTON ENTANGLEMENT OF ORBITAL ANGULAR . . . PHYSICAL REVIEW A 65 033823
mentum conservation by an integer. Secondary maxima
the sinc function near half-integer values of (l 02 l 12 l 2)
seem to imply that there is a violation of the conservation
orbital angular momentum. This is not the case, as the be
of fractional l may be expressed in terms of modes w
integer l, some of which satisfy the conservation requir
ment. This is due to the fact that the fractionall modes are
overcomplete. While this structure is determined by
phase dependence of the L-G modes, we find additional
along the diagonals of maximum coincidence atl 11 l 25 l 0.
These are related to the radial mode profile in Eq.~16! and
again arise from the finite overlap of the fractional mod
~12!. There is no equivalent to this in polarization corre
tions. However, it should be stressed that this additio
structure arises from the radial structure of the mode. If t
radial structure is ignored, as in a detection process that m
sures onlyl, then this detailed structure disappears.

Compared with the spin angular momentum, orbital an
lar momentum offers a far richer structure. The spin angu
momentum can only take values between21 and 1 for right
and left circularly polarized light, respectively. The orbit
angular momentum is in principle unlimited, and there exi
an infinite number of Laguerre-Gaussian modes. While
spin angular momentum modes are defined in a tw
dimensional Hilbert space, the orbital angular moment
modes occupy different Hilbert spaces depending on
mode orderN5 l 12p with dimensionalityN11 @24#.

Orbital angular momentum states with mode orderN51
are exactly analogous to spin angular momentum states
each case they can be depicted on the Poincare´ sphere@25#.
Any two diametrically opposed points on the Poinca´
sphere correspond to orthogonal states. For the polariza
states these are left and right circular polarization, and h
zontal and vertical linear polarization. For the orbital angu
momentum states these are Laguerre-Gaussian modes
positive and negative phase, vertical and horizontal Herm
Gaussian modes, or superpositions of such modes. It is
known @26# that maximum violation of Bell’s inequality oc
curs between any two measurements made for polariza
states separated by 45° on the Poincare´ sphere. For orbital
r,

,

o,
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angular momentum, states, we would therefore anticipa
maximum violation of Bell’s inequality to be obtained fo
measurements of superpositions of Laguerre-Gaussian
Hermite-Gaussian modes of mode order 1 separated by
degree on the Poincare´ sphere. For larger values of orbita
angular momentum, this analogy breaks down due to
higher number of possible states. The quantum correlati
however, persist and offer the prospect of novel demons
tions and applications of entanglement.

Another approach has been proposed by Mairet al. @14#,
whereby a hologram displaced from its on-axis position
longer produces or detects a pure Laguerre-Gaussian m
but a complicated superposition of modes with differing
dices. This situation can be modeled by a numerical eva
tion of Eq. ~10!, which we will report elsewhere@27#. In
general, the coincidence rate is maximized for hologram
sets, which result in mode combinations with high contrib
tions by mode pairs which satisfy the conservation of orb
angular momentum~15!, namelyl 05 l 11 l 2.

In this paper, we have considered the correlation betw
Laguerre-Gaussian modes of the signal and idler with va
ing amounts of orbital angular momentum. The finite mo
overlap between modes differing by a fractional number ol
is to some extent reminiscent of the finite overlap betwe
nonorthogonal polarization states, as they are used for tes
Bell’s inequality. This suggests the possibility of observing
violation of Bell’s inequality for measurements of angul
momentum states differing by fractional values ofl. Such
measurements may be possible with the use of hologr
that impose a fractional change of the orbital angular m
mentum by means of a fractional change of the phase s
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