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Heisenberg-limited interferometry and photolithography with nonlinear four-wave mixing
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Maximally entangled photonic states of a two-mode field have applications in Heisenberg-limit interferom-
etry and in photolithography where they may be used to transfer images with resolutions exceeding the
Rayleigh diffraction limit. In a recent paper by one of[& C. Gerry, Phys. Rev. 81, 043811(2000] it was
shown that a nonlinear four-wave mixer could produce the requisite states for input states containing only even
photon numbers. For superpositions of even number states the output is just a superposition of maximally
entangled even states. In the present paper we extend the earlier work to consider both even coherent states and
squeezed vacuum states as inputs and study their applications to interferometry and lithography.
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Currently there is much interest in the generation of thedevice for the input even coherent states, extending our con-
so-called maximally entangled stat@dES) of a two-mode  siderations to the case of the squeezed vacuum as input
guantized electromagnetic field. For a totalngbhotons in a  states, and then apply our output states to interferometry and
two-mode field, with the modes labeledand b, the MES  quantum photolithography.
have the generic form In Fig. 1, we illustrate our prototype for interferometric

measurements with a Mach-Zehnder interferomébZI)
1 device except where the first beam splitter has been replaced
—(In)4|0)p+€?|0),|N)p). (1) by an NFWM. Assuming the two modes are degenerate in
V2 frequency, the Hamiltonian of the NFWM is given by

These states are of interest because of at least two possible QO

practical applications: they would allow optical interferom- H=fw(a'a+ bTb)+hZ(aTb+abT)z. 2
etry to be performed at the Heisenberg limit of phase uncer-

tainty [1], Apy=1/n, the greatest level of sensitivity al-

lowed by quantum theory[2], and would enable Upon expansion we have

interferometric photolithography beyond the Rayleigh dif-

fraction limit [3]. However the prospect of generating the

required states of Eq1) is nontrivial. In a recent papé#], H=fw(a'a+b'b)+# g(aT2b2+ a2bt2+2atab™
one of the present authors proposed a method involving the 4
use of a nonlinear four-wave mix¢NFWM), a device pre- +a'a+b'b). 3)

viously discussed by Yurke and Stolgs]. The interaction

involves the usual four-wave mixing term competing with a

Kerr-like term. In[5] it was shown that under certain oper- The first two interaction terms are the usual four-wave mix-
ating conditions the device would act as an even-odd filteing interactions, the third a cross-Kerr interaction, and the
with respect to photon number. But id] it was shown that last two terms give rise to a frequency shift for the two
under different operating conditions it could produce themodes. Henceforth we shall work in the interaction picture
MES of the form of Eq(1) as long as1 were even. It turns Where the Hamiltonian becomes

out that through the introduction of the Schwinger realization

of the angular momentum operators in terms of two sets of QO

Bose operators, the interaction involved has the same math- Hp="% Z(a*b+abT)2. (4)
ematical form as the nonlinear spin interaction discussed by

Mglmer and Sgrens€if] for generating MES for the inter-

nal states of a system of N two-level hot trapped ions, a | P>
scheme which has since been realized experimenfally \
For the greatest sensitivity in interferometmyshould be as NFWM

large as possible but the required input number statgs
especially for high, are generally not available. Thus[i]

a superposition of even number states, in fact the even co-
herent(Schralinger cal states, states that could be obtained  fig. 1. Modified Mach-Zehnder interferometer where the first
from another NFWM operated as described5h were stud-  peam splitter has been replaced by a nonlinear four-wave mixer
ied and shown to reach the Heisenberg limit in terms of theperating under the conditions required to produce maximally en-
average photon number of the even coherent state, i.e., tangled states for an even input st&8. Detection is performed
Ag=1/n. In the present paper we reexamine the NFWMonly on the outpub mode.
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The connection to a nonlinear spin interaction arises through exp(—imdq/2)zexpimd,/2)=J,,
introducing the Schwinger operatdig]
explima) [N al)p=(—1)"[1)aln)p. (10
J,=(a'b+abh/2, 2 .
The phase uncertainty is then given by
—(ath—_ah /%
J,=(a'b—ab")/2i, \ _AO/‘?<O> w
J5=(a'a—b'b)/2 5) ¢ e |
satisfying the angular momentum algeljth,J;]=ie;;Jx, ~ Where, since 0?=1, AO=1—(0)?=sin(2me+dyy).
such that Eq(4) may be written asd,p=%QJ2, From this it easily follows that\ ¢=1/(2m), exactly the
For the input staté2m),|0),, m=0,1,2 ..., where we  Heisenberg limit. _
have taken the number states in thenode to be even, and ~ We now consider as input to the NFWM the more general
for the interaction timel yes= 7/2Q), we obtain[4] state consisting of a superposition of only the even number

photon states which we write as
|2m) yes=exp( —iH pTyes/)[2m)4|0)y

1 |¢>:mE=0 C2m|2m>a7 (12
=5(|2m>a|0>b+ e %am0),[2m)y),  (6)
and for which the average photon number is

where®,.,=(2m+1)7/2. We let the phase-shift operation o
in the upper arm of the MZI of Fig. 1 be represented by the =2, (2m)|Cyp/?.
operatorU(¢) =exp(¢a'a) and we let the beam splittéas- m=0
sumed 50:5D be represented by gs=exdim(a'b+ab')/4] .
=exp(mJ;/2) [9]. The latter operator represents a particularThe output of the NFWM is now
choice of internal phases of the beam splitter, chosen for *
convenience, the final results for the phase uncertainty being|outyyrwm= > Coml2M)umes
independent of these internal phases. Thus the output of the m=0
MZlI is 17
=— 2, Conl|2m),|0)p+e ®2m0),|2m),],
|OUt>MZ|:UBSU(QD)|2m>MES ‘/2m2:0 2m[| >a| >b | >a| >b]
Uss - 2iMe| 2m) | 0)p + e P2m0) |2 w9
=Ugs— (€ m e 'Pom m)p).
BS\Q( IO Jal2m)o) and the expectation value of the operafis then

@)

In a typical MZI experiment involving only passive beam
splitters, one generally measures the difference in the photon
numbers in the output beams of the second beam splitte&t
essentially the expectation value of the operatoof Eq. (4)
[10]. But for the states of Eq:6) we have(J;)=0. To cir-
cumvent this problem, Bollingest al.[1] suggested measur-

<O>=mZ:0|czm|2<—1>mcos(2m<p+c1>2m>. (14)

We consider as inputs two kinds of even number photon
ates as mentioned above: the even coherent states and the
squeezed vacuum states. For the former, the state is denoted
|z)ecs and the coefficients arfel 1]

ing the parity operator of one of the output modes. Choosing / ZM
the b mode, this operator may be written as Com=[cosh|z|)]~ 2 . 15
0=(-1)"P=exim(Jo—Ja)], ®

The average photon numberrigcs=|z| tanh(z]). Recall that

the photon number probability distribution is similar to that
of the Poisson distribution but with the important difference
that all the odd number states have zero probabilities. The
peak of the distribution is neamgcs. The parametee is
complex and 8<|z|<«. The even coherent state may be
ewritten as a superposition of the usual coherent states as

whereJ,=(a'a+b'b)/2 is the total number of photons in
both modes.J, commutes with all the angular momentum
operators of Eq(4). Detecting the observab(@is equivalent
to measuring the number of photong emerging in theb
mode and assigning the measurement the vak®)(». This

in turn is equivalent to measuring all the moments of th
number operatob'b. For the state of Eq(6) we have

1 2
=—(1+e 2l +l—a)), z=a? (16
(O) =z (outexdim(Jo—J3)][oudyz s ‘/2( © Metmep. z=et 08

=(—1)"cog2me+ D), (9)  which is a form of Schrdinger cat stat¢12]. Note that it
satisfies the eigenvalue relatiaf| z) yes=2z|2)yes. The out-
where we have used the results put state in this case may be written as
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0.40 -

1
|OUt>NFWM:% (12)ecsal0)6—110)al = Z)ecsp), (17)

0.35 -

an entanglement of vacuum and even coherent states. 0.30 1
For the squeezed vacuum st@té], which we denote in T
the customary way a€)sy, the coefficients are

Jvi2m)!
CZmz(coshr)*l’Z(—1)m2(m—rr:l)|(e"’tanhr)m, (18

0.25 o
0.20 +

0.15 o

Phase Uncertainty

where ¢é=e'’tanhr, 0<#<2m, O<r<w, r being the 0.10 4
squeeze parameter. The average photon number for this sta 1
is Ngy=sint?r. The corresponding photon number probabil- 0951
ity distribution is similar to that of thermal light except that, 1
again, all odd states are missing and, of course, the squeeze
vacuum states are pure. In this case we have

0.00 . T . T . T . T

Average Photon Number

1 .
loudnewm=—=(1€)sv.al0)p—10)al = E)svp)-  (19) 040
v2 ]
035 | \
As it turns out, there exist closed form expressions @y 11! \
for each of these states. For the even coherent states 0.30 'l \
. . . 11 :
(O)=—sinh(|z)cose)sin(|z|sing)/coshz|, (203 ‘g 0254 \\
5 1 .
and for the squeezed vacuum states fg’ 0209 )
> 1
(O)=sin(A/2)/(1+sink(2r)sir?( @)Y, @ 0154
& \
. . 0.10 \
—sinkPr sin(2¢)
—tan ! 1 AN
A=tan 1+2sinffrsirf ¢/ (200 0.05 N o
Notice that the results depend on the phasgl4]. For a 0.00 . ' . ' , ; . .
balanced MZlp=0. Under this condition it is easy to show 0 20 40 60 80
that A¢=1/n, n being eithemgcs or ngy. Thus for a bal- Average Photon Number

anced interferometer we obtain sensitivities at the Heisen- FIG. 2. Ph . h b
berg limit in terms of the average photon number of the inpu - 2. Phase uncertainty, versus average photon number

even state. This procedure of using an even coherent statetf% the input even coherent statésplid ling) for the phase differ-

an input, a state that is perhaps a challenge to generate in ?gce(a) ¢=m/45 and(b) ¢=m/18. The dashed lines represent the

- . - . . .Heisenberg limit I# while the dot-dashed lines represent the stan-
own right, makes it possible to approach the Heisenberg I|m|d L
L . ard quantum limit 1yn.

of sensitivity without the need for generating an even num-
ber state for the input to the NFWM. But if the MZI is not optimal level of sensitivity available with “classical” light, is
balanced, i.e., ifp#0, the phase uncertainty will generally the standard quantum limitSQL), ApsoL= 1/\/n. We in-
deviate from the Heisenberg limit but may still be improved clude the SQL phase uncertainty in our figures for the sake of
over the corresponding standard quantum limit. comparison. We notice that in Fig. 2, even wheris large

In Figs. 2 and 3 we plot the phase uncertainty versugnough to cause significant deviations from the Heisenberg
average photon number for the input even coherent stat@imit, the phase uncertainty is still lower than the standard
Figure 2a) is for ¢= /45 while Fig. 2b) is for ¢=7/18.  quantum limit.
The exact Heisenberg-limit curveey=1/n is also shown. But for the squeezed vacuum input the situation is differ-
Aside from the periodic spikes the phase uncertaintiegnt. Fore only slightly different than zero, there are signifi-
closely follow the Heisenberg-limit curve, at least for small cant deviations from the Heisenberg limit as we show in Fig.
¢. By way of comparison, the sensitivity obtained from a3 for ¢=#/90. It is evident that the phase uncertainty in this
standard MZI with a coherent state of average photon numease becomes markedly noisy as the average photon number
bern at one of the inputs, id ¢ = 1/(1/\/n sing) which ob-  increases, even exceeding that of the standard quantum limit.
viously has the greatest sensitivity fgr= /2, i.e., for an  The difference in the results obtained for these two types of
MZI having a phase difference of/2 between the arms. Of input states lies in the nature of the respective photon prob-
course, with the insertion of @2 phase shifter it is possible ability distributions. For the even coherent states, even
to effectively rebalance the interferometer. In any case the though all odd number states are missing, the photon number
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FIG. 4. Using the nonlinear four-wave mixer for photolithogra-
phy. Here¢p=2mx/\ wherex represents the lateral position across
the substrate. The substrate is assumed to absorb an even riumber
of photons.

Phase Uncertainty

On the surface of the substrate the field operator for the
interfering beams i€=a+b. The deposition rate for M
photon absorption is define@i3] as A,y ,=(|dm|¥)
whered,,, =e"Me?M/(2M)! is the dosing operator. Missing
from this discussion, and also from that of Batbal. [3], is
Average Photon Number any consideration of the cross sections fovl hoton ab-
sorption. We ignore them here as their likely effect is to
FIG. 3. Same as Fig. 2 but for the input squeezed vacuum stategecrease the overall deposition rate while our main interest is
and only fore = /90. the breaching of the Rayleigh diffraction limit. Suppose for
the moment that we have a state with @ll,,=0 except for

distribution is peaked near the average photon numpeg.  Cam=1. In this case, the deposition function (@ssuming

For the squeezed vacuum the distribution is thermal-like anéhe light incident on the substrate at the grazing limit

for increasingngy becomes extremely flat. This in turn

means that a wide range of number states are contributing to Azm,y=[1+C0E2M ¢+ Dyy)]. (22

the expectation value of the operator Clearly it is not ) _ . L )

enough just to have a superposition of even number statede spatial oscillation _of this function indicates a resolution

but rather there needs to be a least some degree of localiz&t A*=A/8M, a reduction by the photon numbel2below

tion in the photon number distribution. Ideally it appears thatN€® Rayleigh limit\/4. For the more general state of Eq.

the distribution should be sub-Poissonian. Recall that for a#20). @gain assuming a substrate absorbing ol ghotons,

input even number stat@ number state being the ultimate W€ obtain

sub-Poissonian stgteéhe phase uncertainty is exactly the

Heisenberg limit with no dependence on the phasBut as

is well known, the squeezed vacuum states are super- o

Poissonian, just the opposite of the ideal input states. + 2 |Coml?
Finally, we consider applications of these states to photo- m=M+1

lithography. Diffraction effects in the masking approach to ) o
optical lithography with classical light limit the resolution of Note that states for whicm<M make no contribution and

transferred images to the Rayleigh diffraction limit)\d#, A that those for whichm>M contribute to a constant term, the
being the optical wavelength. Bogt al.[3] showed that itis ~background.

possible to breach this limit when maximally entangled light, This background term is a problem. It is independent of
say, forn photons, interfere on the surface of a substratéhe phasep and thus gives a uniform background exposure
capable of absorbindy photons. A “proof of principle” ex- 10 the substrate. To illustrate how the presence of the back-
perimental demonstration has recently been gi&sl. In  ground term effects this application of the squeezed and even
the present paper, we assume that our substrate absorbs Oﬁgherent states, we show closed-form results that can be ob-
at some even photon numbsE=2M, M=1,2,3--. We ig- tained from these states. In the case of two-photon absorp-
nore the material issues of creating appropriate substrateon (M=1), for the even coherent states we obtain

but sed 3]. We restrict ourselves to the consideration of one 122

dimensional lithography as in Rdf3]. Our proposed litho- _4 - T

graphic procedur(ga ispillzjlstrated schematicgllypin Fig. 4. Here A2y= 2! [1+sin(2¢)//cosh|z])]. 24

the relative phase shifb between the two beams is=kx

where x is the lateral distance along the substrate &nd In fact, for these states it is easy to obtain the general result
=2m/\ is the wave number. The state of the light beams jusfor a 2M-photon absorbing substrate

prior to the substrate is thus

AZM,y:|C2M|2[1+COE{2M b+ Do)l

(23

2m
2M -

|Z|2M

AZM,,/=W[1+sin(2M ¢)/\cosk|z|)]. (25

1 < ‘ .
=— > C,n[€¥™?|2m),|0)y+e ' P2m0),]2m),].
) \/2m2:o 2l [2m)lO)o 10)al2ms] For the case of the squeezed vacuum we obtain the two-
(21) photon deposition function
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be created, which can subsequently be converted into super-
positions of MES by the NFWM device. The techniques
could even be used to generate even number states that may
(For N photon absorption wittN=2M>2, closed-form ex- subsequently be converted into MES by a NFWM.
pressions for the deposition functions are more difficult to In conclusion, we have studied the generation of superpo-
obtain in the case of the squeezed vacuum inputs than for thetions of maximally entangled two-mode photonic states by
even coherent states and we do not pursue théve.may  a nonlinear four-wave mixer and their application to interfer-
characterize these results with the visibiliydefined in the  ometry and photolithography. Even numbered photon states
usual way so that for the even coherent stafecs are required for the NFWM device so we consider as inputs
=1/ycosh(z) and for the squeezed vacuum stally even coherent states and the squeezed vacuum states. We
= 1/cosRr. Obviously for high-field strengths, the visibili- have found that for the purpose of interferometry, as inputs
ties approach zero. Thus photolithography with either evefihe even coherent states are superior to the squeezed vacuum
coherent states or squeezed vacuum states will necessarily §@tes in that the former are useful over a wide range of phase
restricted to weak beams. . _ differences whereas for the latter the phase uncertainty be-
The root of the problem, as mentioned above, is the pressomes degraded even for small values of the phase differ-
ence of the background term in E@3). As the field strength  gce However, it must be said that generating the even co-
is increased, this term becomes very large, essentially wash ent states is a nontrivial task. But as pointed ofi#]rand
ing out the effects of the first term. The effect of the back-[s]' a NFWM operating under a different condition than re-

ground term may be minimized by resorting to weak ﬁelds&uired to generate the MES, coupled with state reduction

sin(2¢)

1 3
AZ’.),ZESinth 1+ Esinhzr—m . (26)

but that in turn also decreases the overall deposition rate. Ty chniques, could be used to generate such states. A number
circumvent the problem one might prepare a truncateqyt oer techniques for generating the even coherent states
single-mode field state containing only a finite number of,,,\ o peen discussed in the literat{t&]. The general prob-

even photon states such that @g, =0 for m>M. Inthe |om \yith generating the even coherent states is that some

case of anN=2M-photon-absorbing substrate the back-tqrm of nonunitary process, such as state reduction, must be
ground term in Eq(23) vanishes. Pegg, Phillips, and Barnett i\ qlved. Thus it will be difficult to produce such states con-

[16] have described a method for creating arbitrary travelingtin  osly. The squeezed vacuum states on the other hand can
wave optical states of the forey|0) +¢4|1) by a procedure  gaijly be generated through the process of degenerate para-
called the optical truncation of a state by projection synthesignatric down conversion. In low doses, required to minimize
(“quantum scissors). Villas-Boaset al. [17] have extended pq background, these states may be useful for photolithog-

the procedure to create states of the focg}0)+Ci|1)  raphy. We have shown that truncated states can be used to
+¢,|2)+---+cy|N). One could presumably truncate an .jrcumvent this difficulty.

even coherent state. Dake#aal. [18] have discussed a pro-

cedure for generating arbitrary states of a single-mode This research is supported by NSF Grant No. PHY
traveling-wave field. Thus by these procedures an appropri403350001, a grant from the Research Corporation, and a
ate quantum state containing only even number states coulgtant from PSC-CUNY.
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