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Decreasing the error probability in optical transmission lines
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We show that, for a continuous-wave input, the error probability, of bit transmission along a third-order
nonlinear line with high nonlinearity, might decrease even below its input value. Quantum fluctuations are
handled by means of the Wigner function. The resulting evolution equation is exactly solved with the Green-
function method, which permits to calculate the density-matrix elements.

DOI: 10.1103/PhysRevA.65.033815 PACS number~s!: 42.50.Ct, 42.65.Sf, 03.67.Hk, 42.50.Dv
g
ca

al
hi
re
iv
n
or
ay
oi
s
se
ci
n

ar
rp

lity
li
i

ct
lin
e

n
es
o-
or
e
r
ili

n
t

th
no

a

w
en
i

o-
ced

n

the
on-

city
an
re-

ity

n-
dly
ur-
l-

en-
ar

the
ea-
d. It
n-
of

low

ror
ss-
an
c.

nd
rror
on
the
es
. V.
d in

ents
I. INTRODUCTION

A wide variety of phenomena both classical@1# and quan-
tum @2# are produced by the interaction of the electroma
netic field with a nonlinear medium. These phenomena
be used for information manipulation and transmission@3#.
In order to transmit bit codified information down an optic
fiber, one should be able to control the error probability. T
is a measurement of error in codified information of the
ceiver and gives a measure of the message quality at a g
distance from the sender. The optimal goal would be not o
controlling it but to have the possibility of reducing the err
probability. The error probability in a measurement m
have classical and quantum origins. From the classical p
of view the efficiency of detector, the thermal fluctuation
the absorption, and the dispersion are the principal cau
From the quantum point of view fluctuations are the prin
pal cause. The detector efficiency and the dispersion are
considered in this paper while the thermal fluctuations
very small for optical signals. We are concerned with abso
tion and quantum fluctuations effects on the error probabi

The squeezed states in quantum optics, have the pecu
ity that the quadrature noise of the electromagnetic field
these states is reduced below the shot noise level@4#.
Squeezed states can be obtained with a nonlinear intera
between field and matter. With second-order optical non
ear media the squeezed state is generated by a param
amplification of the signal, at the expenses of a more inte
pump field @5#. As a result one of the signal quadratur
together with its fluctuations is amplified while the orthog
nal quadrature with its fluctuations is deamplified
squeezed. The error probability is, in this case, strictly link
to the signal-to-noise ratio~SNR! that remains constant fo
both quadratures and, therefore, also the error probab
remains constant.

The principal goal of this paper is to use third-order no
linearities. In this case the SNR is enhanced because
signal amplitude remains practically unchanged and
noise is squeezed, however, the error probability is
strictly linked to the SNR as it will become clear below.

Even with the modern technology of materials@6# the
entity of thex (3) nonlinearity is still too small, however,
number of applications were already realized@7# by using
laser sources that have a quasimonochromatic radiation
high photon flux. Since the coupling depends on the int
sity, one obtains a stronger nonlinear coupling that perm
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the observation of quantum effects@8#. Novel schemes for
obtaining high third-order nonlinearity were recently pr
posed. They are based on the electromagnetically indu
transparency~EIT! @9,10# or on the cascading nonlinearity i
x (2) media@11,12#. In EIT the high nonlinearity is obtained
in resonance conditions in four-level systems by using
absorbing destructive interference, combined with the c
structive interference of the nonlinear susceptibility@10#. The
experiment in ultracold sodium atom gas showed a velo
propagation of light many orders of magnitude smaller th
the light propagation in vacuum. The phase-shift measu
ment allowed to obtain big values of optical nonlinear
even with very small photon flux@13#. Moreover, experi-
ments with warm atomic gas were also reported@14#, show-
ing the possibility of high nonlinearities in nonextreme co
ditions. The high nonlinearities in those media could har
be considered useful for transmission lines, however. In c
rently available optical fibers the third-order nonlinearity, a
though present, is very small. Nevertheless, it could be
hanced by appropriately doping the fiber in nonline
periodic core waveguides@15#.

We shall use such nonlinearities in order to show that
error probability can be diminished depending upon the m
surement typology and on the observable to be measure
will become clear below that, with a high third-order nonli
earity with respect to the absorption, the error probability
bits transmission could, in principle, be reduced even be
the input value.

The paper is organized as follows; in Sec. II the er
probability is introduced, then it is calculated for the Gau
ian distribution and for a second-order nonlinear line as
example, in this case it is directly linked to the SNR. In Se
III the model for a third-order nonlinear line is described a
the error probability calculated, then the decreasing of e
probability is shown to be a different quantum phenomen
with respect to the squeezing. Section IV is devoted to
long haul transmission showing the gain of nonlinear lin
with respect to the linear ones. The conclusions are in Sec
Sketches of all the cumbersome calculations are reporte
five Appendices.

II. THE ERROR PROBABILITY

To this purpose we shall refer to homodyne measurem
of the signal quadrature.
©2002 The American Physical Society15-1
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Xu5
ae2 iu1a1eiu

2
, ~1!

where the phaseu is controlled by the experimenter with th
local oscillator. The probability amplitude of a homodyn
measurement of the quadratureXu on a coherent state i
obtained by@16#

^auXu&5 (
n50

`

^aun&^nuXu&

5A4 2

p
expF2x212xa* eiu2

uau2

2
2

a* 2

2
e2iuG ,

~2!

whereua&5ureiw& represents the coherent state with avera
number of photonsr 2 and phasew. The eigenvalue of the
quadrature operator defined in Eq.~1! is x, with XuuXu&
5xuXu&. The probability distribution is then the Gaussian

u^Xuua&u25A2

p
exp$22@x2r cos~u2w!#2%. ~3!

In a digital measurement, which uses the homodyne m
surement of the signal quadrature , the bits ‘‘0,1’’ are, resp
tively, given by the negative and positive values ofx @17#.
The area under the Gaussian distribution for positive val
of x represents the success probability in the measureme
the bit ‘‘1’’ while the area under the negative part ofx rep-
resents the success probability on the measure of the bit
The pointx50 represents the decision threshold. During
transmission of the bit ‘‘1’’ the Gaussian probability distr
bution has a positive mean value, Fig. 1, so the error pr
ability is just the area of the distribution tail forx<0 and can
be calculated with the error function@18#. Decreasing the
error probability is extremely important in optical digita
transmission systems. This is relevant for long haul transm
sion, but for very short haul as well. In that they are the o
sufficiently fast media for information exchange among co
puters or the various subsections of a given computer.

FIG. 1. The error probability is the area under the tail of t
Gaussian probability distribution, where the tail is the part of d
tribution on the left side of the decision thresholdXs50.
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Because of its Gaussian character the probability distri
tion ~3! can be expressed in terms of SNR@18#, showing that
the success probability degrades with SNR. That is beca
due to absorption, the field amplitude diminishes. The no
indeed, does not grow because the thermal-photon contr
tion to the total photon number is negligible at optical fr
quencies. To estimate such a degradation, as function o
various parameters of the transmission line and the field,
start from the SNR@19#. In optical transmission lines o
length z with absorption ḡ the quadrature amplitude i

^Xu(z)&5r cos(u2w)e2ḡz/2 and the variance, neglecting th
thermal contribution, isDXu

2(z)5^Xu
2(z)&2^Xu(z)&251/4

then

Ru~z!5
^Xu~z!&2

DXu
2~z!

54r 2cos2~u2w!e2ḡz, ~4!

where R is the signal-to-noise ratio. The error probabili
exponentially decays with the line length, Fig. 2, and can
obtained@18# by the error function,

Perr,u~z!5
12erf@A2r cos~u2w!e2ḡz/2#

2
. ~5!

The enhancement of error probability with the line leng
can be understood by considering the distribution~3!, one
observes that the Gaussian distribution is shifted byr (1
2e2ḡz/2)cos(u2w) toward the origin,

u^Xuuae2ḡz/2&u25A2

p
e22[x2re2ḡz/2cos(u2w)] 2

, ~6!

thus, the area under the tail of the Gaussian forx,0 grows.
In a recent paper@19#, following the Caves and Crouch ap
proach@20#, it has been shown how it could be possible th
the degradation of SNR becomes weaker along an op
transmission line with second-order nonlinearity. It is o
tained with a mixing of three fields~in, out, and driving! and
one obtains a parametric amplification of the signal along

-
FIG. 2. The error probability in a drivenx (2) nonlinear trans-

mission line~continuous line! increases very slowly with respect t
the linear case ~dashed line!. Here r o

2510 and g/c55
31025 m21.
5-2
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DECREASING THE ERROR PROBABILITY IN OPTICAL . . . PHYSICAL REVIEW A 65 033815
line with squeezing of losses at the same time. By assum
that the parametric amplification exactly compensates
loss it was shown that SNR of theu5p/2 quadrature de-
creases in a weaker way with the propagation length,

Rp/2~z!5
4r 2sin2w

11ḡz
, ~7!

The result gives a less evident enhancement of the e
probability, Fig. 2~continuous line!,

Perr,p/2~z!5
1

2 S 12erfFA2r sinw

A11ḡz
G D . ~8!

The technology is not yet mature to produce transmiss
lines with second-order nonlinearity. Furthermore, neit
the parametric amplification nor the above quoted configu
tion are able to decrease the error probability. Indeed,
parametric amplification preserves the error probability
cause it preserves the SNR while the above configuration
slows down its growing. We have already quoted that opt
media with third-order nonlinearity may produce an anis
tropic distribution of fluctuations in phase and a releva
degree of squeezing can be obtained for given values of v
ous parameters@21–25#. The effect of this interaction on th
signal is to enhance the SNR that, however, is obtained o
after given and well-defined propagation lengths and mea
ing particular quadratures. By measuring these quadratu
however, the probability distribution is no more Gauss
and the error probability is no more easily connected w
the SNR, otherwise one could surely affirm that the er
probability will decrease. That is why, one has to carefu
consider its behavior.

III. THE MODEL

In the following the absorption of fluctuations along th
line will be described with the cavity model. The system
evolution is then described by the master equation of a ca
with loss and nonlinear interaction. The equations of mot
for the boson operatora of the propagating mode, in inter
action picture, is also obtainable from the ‘‘beam splitte
model ~see Appendix A! used by Caves and Crouch@20#. It
is equivalent to that obtained with the cavity model, sett
t5z/c,

da~ t !

dt
52

g

2
a~ t !2 ixa1~ t !a2~ t !1Agans~ t !, ~9!

with

^ans&5^ans
1 &50, ^ans

1 ans&5^ansans
1 &215n̄,

^ansans&5^ans
1 ans

1 &50, ~10!

representing the noise correlations andn̄ gives the mean
thermal photon number, which at optical frequencies can
considered vanishingly small. This is a nonlinear quant
03381
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stochastic operator equation. In order to obtain a solution
our problem we shall reconsider it in terms of the coher
states representation of the density matrixr̂ @26#. For one
cavity mode with a Kerr nonlinearity in presence of loss a
in the interaction picture, we get@21#

]r̂

]t
52

i

\
@ĤI ,r̂ #1

g

2
~2ara12a1ar2ra1a!, ~11!

where

ĤI5\x~a1!2a2 ~12!

is the interaction Hamiltonian. Assuming that the initial sta
is a coherent stateua0&, at time t it will be uC(t)&. The
probability distribution of a quadratureu measurement,
u^XuuC(t)&u2, can be obtained from the density matrix@26#.
One cannot use, however, the GlauberP-representation be
cause it becomes extremely singular@2# with the x (3) non-
linearity. Using the overcompleteness of the coherent st
the probability distribution can be written as

u^XuuC~ t !&u25E E d2a1

p

d2a2

p
^Xuua1&^a1ur̂~ t !ua2&

3^a2uXu&, ~13!

where the expectation value of the density matrix can
expressed in terms of the Wigner function as shown by
hill and Glauber@26#,

^a1ur̂~ t !ua2&5E d2aW~a,t !2^a1ua2&

3exp@22~a1* 2a* !~a22a!#, ~14!

with ^a1ua2&5exp(2ua1u2/22ua2u2/21a2a1* ). The equa-
tion of motion of the density matrix is equivalent to th
equation of motion for the Wigner function that is not sing
lar with a Kerr nonlinearity. By standard methods@26,27#
and transforming in polar coordinates, we get

]

]t
W~r ,w,t !5

1

2 H gS ]

]r
r 11D1S g2

x

2

]

]w DD

12x~r 221!
]

]wJ W~r ,w,t !, ~15!

whereD represents the Laplacian operator in polar coor
nates. The solution of this equation can be obtained by us
the method of Kartner and Schenzle@27#, which consists in
calculating the Green function, and the Wigner function
z5ct is obtained in the usual way, once its initial value
given,

W~r ,w,t !5E
0

2pE
0

`

G~r ,w,t;r 8,w8,0!W~r 8,w8,0!r 8dr8dw8.

~16!
5-3
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Following @27# we obtain the Green function, the Wigner function, and the probability distribution~see Appendix B!, which
are, respectively, given by the following expressions:

G~r ,w,t;r 8,w8,0!5
1

p (
m52`

`
2bmexp@ im~w2w82xt !1gt/2#

~g1bm!sinh~bmt/2!
I m@4rr 8bm /~g1bm!sinh21~bmt/2!#

3expF2
2bm~r 21r 82!

g1bm
coth~bmt/2!2

2g~r 22r 82!

g1bm
G , ~17!

W~a,t !5
2

p
exp@22ua0u222uau2# (

m52`

`

I m@4uaouuaue2bmt/2#expF imS w2wo1
xt

2 D2uaou2~e2bmt21!S 11
g

bm
D G ,

~18!

^a1ur̂~ t !ua2&5 exp@2ua1u2/22ua2u2/2# (
m52`

` S a2

a1*
D umu/2

I m@2uaouAa1* a2e2bmt/2#

3expH 2 imS wo1
xt

2 D2uaou2Fge2bmt2 imx

bm
G J , ~19!

u^XuuC~ t !&u25A2

p
e22x2

(
n,k50

` S uaou2e2bn2kt

2 D ~n1k!/2Hn@A2x#

n!

Hk@A2x#

k!

3expF i ~k2n!S wo2u1
xt

2 D GexpH 2uaou2Fge2bn2kt2 i ~n2k!x

bn2k
G J , ~20!

wherebm5g2 imx. I m represents the modified Bessel function@28# and uao&5ur oeiwo& is the initial coherent state. Whe
x50 the probability distribution coincides with the Gaussian in Eq.~6!. The error probability is obtained by integrating E
~20! along the negative semiaxis if the bit ‘‘1’’ was sent. One gets the following expression~see Appendix C!:

Perr,u~ t !5E
2`

0

dxu^XuuC~ t !&u25
1

2
2A2

p
uaoue2gt/2 (

m51/odd

`

ReF I (m21)/2@2uaou2e2bmt#2I (m11)/2@2uaou2e2bmt#

m

3expH im~u2wo!2uaou2S ge2bmt2 imx

bm
D J G , ~21!
th
b

e

th
o
m
b

r

.
o
s

,
t

ror

ror
n
ima
ror
er

big-
r

ing.
the
of
, in

ays
wherem takes only odd integer values and Re represents
real part. Notice that the result would be the same if the
‘‘0’’ were sent. Indeed, integrating Eq.~20! along the posi-
tive semiaxis for the transmission of a bit ‘‘0,’’ it should b
shifted byp.

Let us first substitute in the above equationt5z/c and fix
the values of parametersg andx. The ratio between the two
parameters is critical to observe quantum effects. In fact,
first destroys the coherence effects produced by the sec
In a practical situation of a fiber having losses of 0.2 dB/k
in which the input is a coherent state of mean photon num
uaou25r o

2510, the effective nonlinear coefficientx/c must
be of the same order of the absorption coefficient for obse
ing quantum effects. The absorption coefficient isg/c and
corresponds to about 531025 m21 for the above fiber. Eq
~21! is plotted in Figs. 3 and 4 for the absolute minimum
the error probability. In Fig. 3 it is plotted for several ratio
x/g setting u5um . In Fig. 4 zm5609m with x/g51 is
shown, wherezm is the coordinate of the lower minimum
and u represents the quadrature angle. In these figures
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dashed-dotted horizontal lines represent the initial er
probability, that is the one of the input quadratureu50. The
continuous dark lines represent the error probability Eq.~21!,
where the sum is taken up tom553 since form.53 the
terms of the sum give very small contributions. The er
probability obtained with a linear medium with absorptio
g/c is represented by the dashed lines. The obtained min
show that the third-order nonlinearity can reduce the er
probability below the one obtained with the usual linear fib
and the same absorption coefficient. Furthermore, with a
ger ratiox/g it could become smaller than the initial erro
probability, see Fig. 3 withx/g51.4 and 10. Let us now
comment about the connection of this result with squeez
It is possible to show that the length at which one obtains
minimum of error probability does not coincide with that
the maximum obtainable squeezing. Indeed, for example
the case ofx/g510 we getzm560m for the minimum of
error probability observing the quadratureu520°, while the
maximum squeezing is obtainable atz5126m. In our case
the squeezing is, of course, present but its value is alw
5-4
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DECREASING THE ERROR PROBABILITY IN OPTICAL . . . PHYSICAL REVIEW A 65 033815
smaller than 48% at the distance where the error probab
gets its minimum. The maximum obtainable squeezing az
5126m is about 60%. The two phenomena appear differe
although connected because both are consequences of
nonlinearities.

The base10 logarithm of the ratio between the error pr
ability in the nonlinear medium and the linear one is plott
in Fig. 5. It is evident that the bigger thex/g ratio the
smaller the minimum. Then, defining the ‘‘error factor,’’

E510 log10@Perr~out!/Perr~ in!# ~22!

in decibel, we can plot the error factor vsz and compare the
linear and nonlinear transmission lines with the same ini
error probabilityPerr(in),

FIG. 3. The length-dependent error probability in a third-ord
nonlinear transmission line~continuous lines! for various ratio of
x/g, with fixed local-oscillator phase (u5um) of the homodyne
detector. Herer o

2510 photons andg/c5531025 m21. The values
of the minima are smaller than those corresponding to the e
probability of a linear line~dashed line!. If the ratio x/g.1 then
the error probability can go below the initial level~horizontal
dashed-dotted line! with an apparent paradoxical increase of info
mation.

FIG. 4. The phase quadrature of the error probability in a th
order nonlinear transmission line~continuous line! for a fixed
length z5zm5609m with r o

2510 andg/c5x/c5531025 m21.
The value of the error probability after the same length of a lin
medium with u50 is the horizontal dashed line. The horizont
dashed-dotted line withu50 represents the error probability of th
input signal.
03381
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Enl2El510 log10@Perr,nl~out!/Perr,l~out!#. ~23!

In Fig. 5 the continuous line isEnl2El while the dashed line
corresponds to the input error factor. It is possible to sh
that always isPerr,nl /Perr,l>1/2, thusEnl2El>23dB for a
third-order nonlinearity. It means that the error factor for
nonlinear line could be smaller than the linear one but
difference between them is limited by 3 dB. The value of t
input error probability chosen isPerr,0(0)51.27310210.
With the usual linear transmission line it becom
Perr,l(zm)51.35310210, while with the nonlinear medium
with the same absorption at the same distance beco
Perr,nl(zm)57310211 for um.19°. This result could appea
odd if one calculates the information losses in such a chan
@18#. Indeed, it would result an enhancement of informati
with the propagation length. This apparent oddness der
from the channel definition, which is strictly connected wi
the measurement scheme used. The homodyne measure
only selects one signal quadrature while the information
on all quadratures; that is on the whole phase space of
field. One can understand that the effect of the third-or
nonlinearity is to redistribute the information on the pha
space with an enhancement of information in some sig
quadratures and a consequent loss of information in other
we, however, consider the total entropyS(t)
52KBTr@ r̂(t)ln r̂(t)#, which is shown in Appendix D, (KB
is the Boltzman constant! we obtain that it grows as i
should. In Fig. 6 the entropy,

S~ t !52KB$@Tr r̂2~ t !21#2@Tr r̂3~ t !22 Tr r̂2~ t !11#/2

1@Tr r̂4~ t !13Trr̂3~ t !13 Tr r̂2~ t !21#/31•••%,

~24!

is plotted considering the first two terms of the series, sin
the next terms are much smaller. Thus, the total informat
summed on all signal quadratures will decrease. This is w
one should expect because the loss absorbs part of the s
irreversibly destroying part of information.

r

or

-

r

FIG. 5. The plots show the improvement of the error probabi
for various x/g ratios by the best phase measurement. The b
error probability is whenenl2e l<0. We observe that this improve
ment increases withx/g, but it is alwaysPerr,nl /Perr,l>1/2.
5-5
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IV. LONG HAUL TRANSMISSION

We can now think to an optical transmission line where
piece of nonlinear optical fiber is placed before the line
one, and we ask: how much longer could be this transmis
line to have at the output the same error probability of a l
made by a linear only medium? It is not possible to calcul
such a quantity with the error function as in Eq.~5! because
of the distribution at the input of the linear piece is no mo
Gaussian. The state of the quantum field, indeed, is not
coherent state because of the interaction with the nonlin
medium. It is then necessary to propagate the Wigner fu
tion, which we have at the end of the nonlinear piece, do
the linear medium. This is possible by rewriting the Gre
function ~17!, then recalculating Eqs.~18!, ~19!, ~20!, and
~21! ~see Appendix E!. By measuring the quadratureum
520° of the output field from the above optical line, wi
r o

2510, x/c510g/c510gx /c5531024 m21, wheregx /c
the absorption coefficient for the nonlinear medium~i.e., we
assume they have equal absorption!, zx559.26m and setting
the maximally accepted error probabilityPerr51.5310210

we obtainzg5350m. In the above expressions we have us
zx andzg , respectively, for the length of the nonlinear fib
and the linear one, both having the same absorption co
cient. The samePerr51.5310210 is obtained measuring th
u50 quadrature of the output field from the linear fiber w
the same absorption coefficient as before but at a sho
lengthzl5160m ~Fig. 7!. Thus, with equal output error prob
ability, we obtain a gain

G5
zx1zg

zl
52.56, ~25!

equal to 4 dB. Whenever high nonlinear optical media w
be available, it will be possible to think of transmission lin
made of many pieces of nonlinear-linear media, thus impr
ing the transmission more and more. Indeed, after the
linear piece, the distribution of fluctuations in phase sp
becomes almost uniform so that a new nonlinear interac

FIG. 6. The entropy of the system increases even if the e
probability decreases in one quadrature with the length of the th
order nonlinear transmission line. Herer o

2510 andg/c5x/c55
31025 m21.
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will produce another minimum. The error probability is ca
culated in the same way applying the Green function~5!
many times and then Eqs.~18!, ~19!, ~20!, and ~21! ~see
Appendix E!. The result is,

Perr,u~zN1hN!5
1

2
2A2

p
r oexp@2~1/2!~gxhN1gzN!#

3 (
m51/odd

`
1

m
ReS eim(u2wo)@ I (m21)/2

3~2r o
2«N,m!2I (m11)/2~2r o

2«N,m!#

3expH 2r o
2F«N,m1

imx

bm

3 (
k51

N

~e2bmtxk21!«k21,mG J D . ~26!

where zN5c(k51
N tgk

is the sum of the linear pieces wit

absorption coefficientg,hN5c(k51
N txk

is the sum of the

nonlinear ones with absorptiongx and «k,m5exp(2bmhk
2gzk) with gx in bm .

V. CONCLUSIONS

We have shown that the error probability of bit transm
sion in an optical channel could be reduced even below
sender value, when a particular quadrature of the signa
measured at the output. This effect is interestingper seand is
the manifestation of a quantum effect. In the classical c
one could not observe the decreasing of error probability
the quantum case one can have an enhancement of info
tion in one particular quadrature with loss of information

r
d-

FIG. 7. The error function vs the length of propagation in tw
different media one followed by the other~continuous line!, where
the first is nonlinear and cut atzx5zm , while the second is linear. I
is confronted with the error function in a linear medium~coarse
grained dashed line!. The accepted error probability~fine grained
dashed line! is fixed atPerr51.5310210. We observe a gain of the
length of the transmission line. In the nonlinear-linear transmiss
line, theum520° quadrature is measured and in the linear fibe
measured the quadratureum50°. Here x/g510, g/c55
31025 m21, andr o

2510.
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all other quadratures of the signal. This counter-intuitive
sult is a manifestation of the phase modulation due to
Kerr nonlinearity of the optical fiber and is not a mere co
sequence of squeezing. We have shown that to obtain
interesting result one should consider fibers with the ra
x/g of the order of the unity or even bigger. For the Ke
nonlinearity this requiresx (3).1026 m2/V2 that is very
high demanding when one considers the usual SiO2 glass
fibers with x (3).4.5310220 m2/V2 @30#. However, many
new materials are under consideration at present. In am
phous Si/SiO2 superlatticies nonlinearities of x (3)

.10216 m2/V2 are reachable@31#. By using metal nano-
clusters, obtained by implanting Ag ions in LiNbO3, one
obtainsx (3).10214 m2/V2 @32#, albeit the above high non
linearities are obtained in a frequency range far from
fiber optics transmission frequency, which has a band w
at circa 1560 nm with loss as small as 0.2 dB/km. A rece
theoretical esteem in nonlinear periodic core wavegui
givesx (3).10211 m2/V2 @15#. These values are still too fa
from the order of magnitude we need to obtain the ab
enhancement of transmission length at equal error proba
ity. However, the search for higherx (3) nonlinearity is in
progress and, hopefully, an increment of six order of mag
tude could be obtained. If such a result could also be
tained at the frequency range of the usual optical fibers,
present proposal could have a great impact in the realiza
of long haul bits transmission with controllable error pro
ability. The proposed scheme of multipieces transmiss
lines needs very low loss at the connections between lin
and nonlinear pieces, i.e., the spline loss. One should
course, consider fibers like the recently realized large ef
tive area fibers, with the negligible spline loss of 6
31023 dB @33#.
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APPENDIX A

Using the Caves and Crouch method@20#, we start by
calculating the constitutive relations for the electric field
terms of the displacement fieldD for a correct canonica
approach@29#

E0s
(1)5n0

22D0s
(1)23pn0

28x (3)~D0s
(1)2

D0s
(2)1D0s

(1)D0s
(2)D0s

(1)

1D0s
(2)D0s

(1)2
!, ~A1!

where for the symmetry of the nonlinear mediumx (3)

5x1111 and wheren(v)5n01Dn(v) is the frequency-
dependent refraction index in the dispersive case. Now, f
the Maxwell equations c21]D0s

(1)/]t52]B0s
(1)/]j and

]E0s
(1)/]j52c21]B0s

(1)/]t, it is possible to obtain the equa
tion of motion for the quantum operators defining the po
tive components of the field on the spectrum of frequencyBs
of width Ds ,
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B0s
(1)5E

Bs

dv

2p
B0s~v,j!exp@ i ~koj2vt !#, ~A2!

and k05vn0 /c while B0s(v,j)
5(2pn0\v/cs)1/2a0s(v,j). The absorption and dispersio
are introduced by beams splitters between the slabs of n
linear and ideal medium, assuming that the slabs are s
ciently thin we obtain the spatial differential equation for t
signal

das~v,z!

dz
52

g~v!

2
as~v,z!1Ag~v!bs~v,z!

2
3ix (3)\

4n0e0c2s
as~v,z!E

Bs

dv8v8

3H Ds@v8as~v8,z!as
1~v8,z!

1vas
1~v8,z!as~v8,z!#1E

Bs

dv9Av9

v8

3@~2v82v9!eik(v8,v9)zas~v8,z!as
1~v9,z!

1~v2v81v9!e2 ik(v8,v9)z

3as
1~v8,z!as~v9,z!#J , ~A3!

where k(v8,v9)5@v8n(v8)2v9n(v9)#/c, and the noise
operatorsbs(v,z) has the usual statistical properties as
Eq. ~10!. By considering a narrow bandwidth of frequenci
D and defininga(t,z) as

a~z,t !5E
D
dvas~v,z!eivt, ~A4!

Eq. ~A3! becomes

da~z,t !

dz
52

g

2
a~z,t !2 i

3

2
xa~z,t !2 ixa1~z,t !a2~z,t !

1Agb~z,t !, ~A5!

where the second term of the right-hand side of Eq.~A5! is a
linear phase factor and can be neglected for the evolutio
one-mode propagation, by redefining the signal frequen
Now x53x (3)\v2/2n0e0c2s. SinceD is small then the op-
erator a(z,t).a(z) is almost constant in time while th
phase velocity is equal to the group velocity. Thus Eq.~A5!
becomes

da~ t !

dt
52

c8g

2
a~ t !2 ic8xa1~ t !a2~ t !1c8Agb~ t !,

~A6!

wheret5z/c8 andc85c/no . To obtain a ratiox/g51, with
optical frequenciesv51015 s21, n051.45, and s54p
310212 m2, we have to dispose of a fiber with a nonline
susceptibilityx (3)54.531026 m2/V2.
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APPENDIX B

Following the Kartner’s and Schenzle’s method@27# we
set in their Eqs.~41!, ~42!, and ~43! the quantitieskm

0 5(g
2 imx)/g, Qm

0 5(2g2 imx)/(4g), lnm
0 5@gkm

0 (2n
1umu11)2g12imx#/2 and then write the Green function
To calculate the Wigner function with Eq.~16! it is necessary
to know the initial function att50, in polar coordinates it
can be expressed with the modified Bessel functions@27#

W~r ,w,0!5
2

p
e22r 222r o

2

(
m52`

`

I m@4rr o#eim(w2wo),

~B1!

the angular part of the integral in Eq.~16! produce a Kro-
necker delta for them’s indexes in bothG andW(r ,w,0), the
radial integral is of the form

E
0

`

e2ar2
I m@br#I m@cr#rdr 5

1

2a
expFb21c2

4a G I mFbc

2aG ,
~B2!

with Re@a#>0.
The integral in Eq.~14! is also of the same form and mu

be solved with the same procedure as well as for Eq.~19!.
Equation~20! is obtained by using Eq.~2! expressed in terms
of Hermite polynomials

^auXu&5A4 2

p
exp~2x2/22r 2/2! (

n50

` F rei (w1u)

A2
G n

Hn@x#

n!
.

~B3!

The integrals on the angular parts still give the Kronec
delta that cancels two indexes, while it is necessary to
pand the modified Bessel function in series to solve the
dial part of the integral

I m$4r oe2bmtAr 1r 2 exp@2 i ~w12w2!/2#%

5 (
n50

`
~2r oAr 1r 2e2bmt!m12nexp@2 i ~m/21n!~w12w2!#

n! ~m1n!!
,

~B4!

obtaining

E
0

`

r 2n11e2r 2
dr5

n!

2
. ~B5!

APPENDIX C

Integrating by parts it is possible to obtain the integ
recurrence formula,
03381
r
x-
-

l

E
0

`

e2x2
Hn~x!Hk~x!dx5Hn~0!Hk21~0!12n

3E
0

`

e2x2
Hn21~x!Hk21~x!dx,

~C1!

using *e2x2
Hk(x)dx52e2x2

Hk21(x) obtained from the
definition of Hermite polynomials@28# and the property
Hn8(x)52nHn21(x). We can now repeat the same procedu
by interchanging the indexes of integrated functions

E
0

`

e2x2
Hn~x!Hk~x!dx5Hn21~0!Hk~0!12k

3E
0

`

e2x2
Hn21~x!Hk21~x!dx.

~C2!

Subtracting Eq.~C2! from Eq. ~C1!

Hn~0!Hk21~0!2Hn21~0!Hk~0!12~n2k!

3E
0

`

e2x2
Hn21~x!Hk21~x!dx50. ~C3!

Then increasing the indexes by one

E
0

`

e2x2
Hn~x!Hk~x!dx5

Hn~0!Hk11~0!2Hn11~0!Hk~0!

2~n2k!
.

~C4!

Now, it is possible to use the formulaH2n(0)
5(21)n2n(2n21)!! and H2n11(0)50 in the right-hand
side of Eq. ~C4! conveniently changing the indexes. Th
probability of error is

E
2`

0

dxu^XuuC~ t !&u2

5
1

2
1

r oe2gt

2A2p
(

n,k50

`
~2r o/2e2gt!

n!k!

n1k

3exp$2i ~n2k!@~n1k!xt2u#%

3S exp$ i @~n1k!xt2u#2r o
2f ~n2k11/2!%

n2k11/2

2
exp$ i @u2~n1k!xt#2r o

2f ~n2k21/2!%

n2k21/2 D , ~C5!

where f (n2k61/2)5„g exp$2@g22i(n2k61/2)x#t%
22i (n2k61/2)x…/@g22i (n2k61/2)x#. With some alge-
bra and changing the indexn in m5n2k it is possible to
sum onk in the modified Bessel functions to get
5-8



e
fo
at

th
ne

io
n
th

el
c

te

x-

ar

DECREASING THE ERROR PROBABILITY IN OPTICAL . . . PHYSICAL REVIEW A 65 033815
E
2`

0

u^XuuC~ t !&u2dx

5
1

2
1A2

p
r oe2gt (

m52`

`
~21!me22imu

124m2

3„~m11/2! exp@ iu2r o
2f ~m21/2!#

3I m$r o
2exp@2gt12i ~m21/2!xt#%2~m21/2!

3e2 iu2r o
2f (m21/2)I m$r o

2exp@2gt12i ~m11/2!xt#%….

~C6!

Changing the indexm in 2m11, i.e., summing only on odd
m and writing the first terms of the series form
523,21,1,3, it is possible to collect the coefficients of th
modified Bessel functions; observing at the end that
negativem the terms of the series are the complex conjug
of terms with positivem it is possible to obtain Eq.~21!.

APPENDIX D

For the entropy it is possible to calculate the trace of
density operator on the coherent states with the complete
relation

S~ t !52KBTr@ r̂~ t !ln r̂~ t !#

52KBE E d2a

p

d2b

p
^aur̂~ t !ub&^bu ln r̂~ t !ua&,

~D1!

whereKB is the Boltzman constant and the first expectat
value is calculated in Eq.~19!. For the second expectatio
value it is necessary to develop the log function and
binomial (r̂21)n in series@28#

^bu ln r̂~ t !ua&52 (
n51

`
1

n (
m50

n

~21!mS n
mD ^bur̂m~ t !ua&.

~D2!

With the completeness relation on theb variables, and in-
creasing them index by one we get

S~ t !52KB(
n51

`
1

n (
m51

n11

~21!mS n
m21D E d2a

p
^aur̂m~ t !ua&.

~D3!

The integral is transformed by using the completeness r
tion m21 times and developing the modified Bessel fun
tion Eq.~19! in series. At this point it is possible to integra
the angular part to obtain Kroneckerd functions and obtain
03381
r
e

e
ss

n

e

a-
-

the same factorial for the integral of the radial part. For e
ample, with them53

Tr r̂3~ t !5 (
k1 ,k2 ,k350

`
~r o

2e2gt!k11k21k3

p3k1!k2!k3!

3expH 2r o
2Fge2bk22k1

t2 i ~k22k1!x

bk22k1

1
ge2bk32k2

t2 i ~k32k2!x

bk32k2

1
ge2bk12k3

t2 i ~k12k3!x

bk12k3
G J . ~D4!

Then, writing the general expression for anym and substi-
tuting in Eq.~D3! we obtain the entropy

S~ t !52KB(
n51

`
1

n (
m51

n11 S 21

p D mS n
m21D

3 (
k1 , . . . ,km50

`
~r o

2e2gt!

)
j 51

m

kj !

( j 51
m kj

expH 2r o
2

3F (
j 51

m21 g exp~2bkj 112kj
t !2 i ~kj 112kj !x

bkj 112kj

1
ge2bk12km

t2 i ~k12km!x

bk12km

G J . ~D5!

APPENDIX E

Settingx50 in the expression~17! and summing overm,
we obtain the propagator for the Wigner function in a line
medium at timetg

Gg~r ,w,tg ;r 8,w8,0!5
2

p

1

12e2gtg

3expH 22

12e2gtg
@r 21r 82e2gtg

22rr 8e2gtg/2cos~w2w8!#J .

~E1!

The Wigner function is calculated starting from Eq.~19!

W~r ,w,tx1tg!5E
0

2pE
0

`

G~r ,w,tg ;r 8,w8,0!W~r 8,w8,tx!

3r 8dr8dw8. ~E2!

Now repeating Eq.~E2! for more steps~nonlinear-linear! it is
possible to obtain the Wigner function after theN’th step and
then the probability distribution on theXu quadrature
5-9
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u^XuuC~zN1hN!&u25A2

p
e22x2

(
n,m50

` S r o
2«N,n2m

2 D ~n1m!/2

expF i ~m2n!S wo2u1
x

2
hND GHn@A2x#

n!

Hm@A2x#

k!

3expH 2r o
2F«N,n2m1

i ~n2m!x

bn2m
(
k51

N

@e2bn2mtxk21#«k21,n2mG J , ~E3!

wheretg0
5tx0

50 and«0,n2m50.
,

s
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