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Decreasing the error probability in optical transmission lines
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We show that, for a continuous-wave input, the error probability, of bit transmission along a third-order
nonlinear line with high nonlinearity, might decrease even below its input value. Quantum fluctuations are
handled by means of the Wigner function. The resulting evolution equation is exactly solved with the Green-
function method, which permits to calculate the density-matrix elements.
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I. INTRODUCTION the observation of quantum effedi8]. Novel schemes for
obtaining high third-order nonlinearity were recently pro-

A wide variety of phenomena both classi€a] and quan- posed. They are based on the electromagnetically induced
tum [2] are produced by the interaction of the electromag-transparencyEIT) [9,10] or on the cascading nonlinearity in
netic field with a nonlinear medium. These phenomena can(® media[11,12. In EIT the high nonlinearity is obtained
be used for information manipulation and transmisdgi8h  in resonance conditions in four-level systems by using the
In order to transmit bit codified information down an optical absorbing destructive interference, combined with the con-
fiber, one should be able to control the error probability. Thisstructive interference of the nonlinear susceptibilitg]. The
is a measurement of error in codified information of the re-experiment in ultracold sodium atom gas showed a velocity
ceiver and gives a measure of the message quality at a givgfiopagation of light many orders of magnitude smaller than
distance from the sender. The optimal goal would be not onlyne light propagation in vacuum. The phase-shift measure-
controlling it but to have the possibility of reducing the error ment allowed to obtain big values of optical nonlinearity
probability. The error probability in a measurement mayeyven with very small photon fluk13]. Moreover, experi-
have classical and quantum origins. From the classical poirtents with warm atomic gas were also repofited], show-
of view the efficiency of detector, the thermal fluctuations,ing the possibility of high nonlinearities in nonextreme con-
the absorption, and the dispersion are the principal causegitions. The high nonlinearities in those media could hardly
From the quantum point of view fluctuations are the princi-pe considered useful for transmission lines, however. In cur-
pal cause. The detector efficiency and the dispersion are n@éntly available optical fibers the third-order nonlinearity, al-
considered in this paper while the thermal fluctuations ar@nhough present, is very small. Nevertheless, it could be en-
very small for optical signals. We are concerned with absorppanced by appropriately doping the fiber in nonlinear
tion and quantum fluctuations effects on the error probabilityperiodic core waveguided5].

The squeezed states in quantum optics, have the peculiar- \we shall use such nonlinearities in order to show that the
ity that the qugidrature noise of the eIectromagnetic field ingrror probability can be diminished depending upon the mea-
these states is reduced below the shot noise I¢4€l  syrement typology and on the observable to be measured. It
Squeezed states can be obtained with a nonlinear interactiQf|| become clear below that, with a high third-order nonlin-
between field and matter. With second-order optical nonlingarity with respect to the absorption, the error probability of
ear media the squeezed state is generated by a parametpigs transmission could, in principle, be reduced even below
amplification of the signal, at the expenses of a more intensge input value.
pump field[5]. As a result one of the signal quadratures The paper is organized as follows; in Sec. Il the error
together with its fluctuations is amplified while the orthogo- probability is introduced, then it is calculated for the Gauss-
nal quadrature with its fluctuations is deamplified orjan distribution and for a second-order nonlinear line as an
squeezed. The error probability is, in this case, strictly linkedexample, in this case it is directly linked to the SNR. In Sec.
to the signal-to-noise ratiéSNR) that remains constant for | the model for a third-order nonlinear line is described and
both quadratures and, therefore, also the error probabilityhe error probability calculated, then the decreasing of error
remains constant. . _ . probability is shown to be a different quantum phenomenon
~ The principal goal of this paper is to use third-order non-yith respect to the squeezing. Section IV is devoted to the
linearities. In this case the SNR is enhanced because thgng haul transmission showing the gain of nonlinear lines
signal amplitude remains practically unchanged and theyith respect to the linear ones. The conclusions are in Sec. V.

noise is squeezed, however, the error probability is nokketches of all the cumbersome calculations are reported in
strictly linked to the SNR as it will become clear below.  fiye Appendices.

Even with the modern technology of materid&| the
entity of the y(® nonlinearity is still too small, however, a
number of applications were already realiZéd by using
laser sources that have a quasimonochromatic radiation with
high photon flux. Since the coupling depends on the inten- To this purpose we shall refer to homodyne measurements
sity, one obtains a stronger nonlinear coupling that permit®f the signal quadrature.

Il. THE ERROR PROBABILITY
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FIG. 1. The error probability is the area under the tail of the 2 4 Z [km] 6 8 10
Gaussian probability distribution, where the tail is the part of dis-
tribution on the left side of the decision threshd{g=0. FIG. 2. The error probability in a drivey® nonlinear trans-
mission line(continuous ling increases very slowly with respect to
ae 0+atel? the linear case (dashed ling Here r§=10 and y/lc=5

Xy=———. (1) x10°m?t
Because of its Gaussian character the probability distribu-
where the phasé is controlled by the experimenter with the tjon (3) can be expressed in terms of SINE8], showing that
local oscillator. The probability amplitude of a homodyne the success probability degrades with SNR. That is because,
measurement of the quadratuxg on a coherent state is due to absorption, the field amplitude diminishes. The noise,
obtained by{16] indeed, does not grow because the thermal-photon contribu-
tion to the total photon number is negligible at optical fre-

~ quencies. To estimate such a degradation, as function of the
<a|xo>:n§0 (a[n)(n[Xy) various parameters of the transmission line and the field, we
start from the SNR[19]. In optical transmission lines of
4 [2 ) o lal? ar? length z with absorptiony the quadrature amplitude is
=\/—exg —x*+2xa*e'’'— —— —e'’|, B 2 . .
T 2 2 (Xy(2))=r cos@—¢p)e and the variance, neglecting the
(2 thermal contribution, iSAX?(2)=(X3(2))—(X,(2))?=1/4
then
where|a)=|re'¢) represents the coherent state with average (Xy(2))2 _
number of photons? and phasep. The eigenvalue of the Ry(2)= Tz(z)z4rzco§(0— p)e 7, (4)
[4

quadrature operator defined in E€) is x, with X,|X,)

=X|X,). The probability distribution is then the Gaussian \yhere % is the signal-to-noise ratio. The error probability

5 exponentially decays with the line length, Fig. 2, and can be
obtained[18] by the error function,
Xf)it= ) 2ext— 201 cos0- o). (3 181 by ; .y
1—erffy2r cog 6—¢)e™ 774]
Perr,ﬁ(z): 2 . (5)

In a digital measurement, which uses the homodyne mea-
surement of the signal quadrature , the bits “0,1” are, respec-
tively, given by the negative and positive valuesxof17]. The enhancement of error probability with the line length
The area under the Gaussian distribution for positive value§an be understood by considering the distributi@n one

of x represents the success probability in the measurement gpserves that the Gaussian distribution is shiftedrby

the bit “1” while the area under the negative partxfep- —e™???)cos@—¢) toward the origin,

resents the success probability on the measure of the bit “0.”

The pointx=0 represents the decision threshold. During the a2 \/: —2[x—re~ 2c0s(0— ¢)]2
transmission of the bit “1” the Gaussian probability distri- [(Xolae ) We ' 6)
bution has a positive mean value, Fig. 1, so the error prob-

ability is just the area of the distribution tail fa<x0 and can  thus, the area under the tail of the Gaussianxftai0 grows.

be calculated with the error functigri8]. Decreasing the In a recent pap€gll9], following the Caves and Crouch ap-
error probability is extremely important in optical digital proach[20], it has been shown how it could be possible that
transmission systems. This is relevant for long haul transmisthe degradation of SNR becomes weaker along an optical
sion, but for very short haul as well. In that they are the onlytransmission line with second-order nonlinearity. It is ob-
sufficiently fast media for information exchange among com-tained with a mixing of three field@n, out, and driving and
puters or the various subsections of a given computer. one obtains a parametric amplification of the signal along the
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line with squeezing of losses at the same time. By assumingtochastic operator equation. In order to obtain a solution of
that the parametric amplification exactly compensates theur problem we shall reconsider it in terms of the coherent

loss it was shown that SNR of thé=m/2 quadrature de- states representation of the density mapix26]. For one

creases in a weaker way with the propagation length, cavity mode with a Kerr nonlinearity in presence of loss and
in the interaction picture, we g¢21]

Ar?sirte

Rap(2)= =
1+yz

Ll 7 ~ .
@ dap [N y N N N

o= zlHelt 5 (2apa” —atap—pata), (11
The result gives a less evident enhancement of the error

probability, Fig. 2(continuous ling, where
\/Er sing

\/1+?z . . . . . . -
is the interaction Hamiltonian. Assuming that the initial state

The technology is not yet mature to produce transmissiof§ & coherent statgag), at timet it will be [W(t)). The
lines with second-order nonlinearity. Furthermore, neithefrobability distribution of a quadratur¢y measurement,
the parametric amplification nor the above quoted configural{Xs| ¥ (t))|?, can be obtained from the density matf26].
tion are able to decrease the error probability. Indeed, th@ne cannot use, however, the GlauBerepresentation be-
parametric amplification preserves the error probability because it becomes extremely singulat with the x(®) non-
cause it preserves the SNR while the above configuration judinearity. Using the overcompleteness of the coherent states
slows down its growing. We have already quoted that opticathe probability distribution can be written as
media with third-order nonlinearity may produce an aniso- 5 5
tropic distribution of fluctuations in phase and a relevant P de; d
de f H b btai H i |<X6|\I’(t)>| _J’ f

gree of squeezing can be obtained for given values of vari

! 0= +
Perr,'n—/z(z):§< 1—erf ) (8) H,=#Ay(a*)%a? (12

C(z A
- (Xglap)(a|p(t)]az)

ous parameter®21—-25. The effect of this interaction on the
signal is to enhance the SNR that, however, is obtained only X(a@z|X), (13
after given and well-defined propagation lengths and measur- ) ) _
ing particular quadratures. By measuring these quadrature¥€re the expectation value of the density matrix can be
however, the probability distribution is no more GaussianXPressed in terms of the Wigner function as shown by Ca-
and the error probability is no more easily connected withll @nd Glauber26],
the SNR, otherwise one could surely affirm that the error
probability will decrease. That is why, one has to carefully <a1|;)(t)|a2>=f d2aW(a,t)2( | ay)
consider its behavior.
xXexg —2(aj —a*)(ar—a)], (14
IIl. THE MODEL

In the following the absorption of fluctuations along the With <“1|“%>29Xp(_|a1|2/2f|“2|2/2f" aaj). The equa-
line will be described with the cavity model. The system'stion of motion of the density matrix is equivalent to the
evolution is then described by the master equation of a cavitfauation of motion for the Wigner function that is not singu-
with loss and nonlinear interaction. The equations of motiof@” With @ Kerr nonlinearity. By standard methofi26,27
for the boson operataa of the propagating mode, in inter- and transforming in polar coordinates, we get
action picture, is also obtainable from the “beam splitter”

model (see Appendix Aused by Caves and Crou¢R0]. It J 1 J X d
is equivalent to that obtained with the cavity model, setting —W(r,go,t)=§ Yo +1)+ y— 290 A
t=7lc, ot ar de
+2x(r’—1 J W t (15)
da(t) y R x(r )8(p (r,e.t),
G = zah-ixat(hai )+ Vyat), (9
where A represents the Laplacian operator in polar coordi-
with nates. The solution of this equation can be obtained by using
- the method of Kartner and SchenzR¥7], which consists in
(ang=(a,9=0, (a an=(a,aro—1=n, calculating the Green function, and the Wigner function in
z=ct is obtained in the usual way, once its initial value is
(@nsng) = (ansng =0, (10 given,

. . . — - 27 (oo
representing the noise correlations amdgives the mean v . ¢ :J' f Girotr o OWr' o 0r'dr'de’
thermal photon number, which at optical frequencies can be (re.) o Jo (e tir,e" OW(r", ¢".0) e
considered vanishingly small. This is a nonlinear quantum (16
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Following [27] we obtain the Green function, the Wigner function, and the probability distribsiea Appendix B which
are, respectively, given by the following expressions:

Z 2Bnexdim(e— ¢ — xt)+ yt/2
D BmeXdim(e— ¢’ — xt) + yt/2]

m==e (y+ Bp)sinh( Bt/2) Ll 47" Bl (y+ Br)Sinh X Bit/2)]

G(r,(p,t;r',qo’,O):;

2Bm(r2+r'2) 2y(r2—r’2)}
X expg — —————coth But/2) — ———|, 1
F{ Y+ Bm "(Bnt/2) Y+ Bm a7
2 2 2 < — B tI2 : xt 20 - Bt Y
Wi t)= S e —2lacl~2lal?) 3 1nfaacllale e im| ¢ ot % | ~lao%e =1 1+ 7 |
=—0o m
(18
. =gy Imi2
(Vo) = exst— P22 3 [ Z2] Vo2l VT age o
=—0o0 1
_ xt ye Pmt—imy
><exp{—|m(<po+7 —|ay|? R ] (19
2 . Ze~ Aait) (MFR2H [2x] Hyf V2x
|<X9|\P(t))|2:\ﬁe2"22 (laol ) o[ V2x] Hl V2x]
™ nfo 2 n! k!
) xt ) ye Pr-—i(n—k)y
xexpi(k—n) Po— O+ 5| |ex — || 5 , (20
e

where B,=y—imy. |, represents the modified Bessel funct{@8] and|a0)=|r0ei‘°°> is the initial coherent state. When
x=0 the probability distribution coincides with the Gaussian in &). The error probability is obtained by integrating Eq.
(20) along the negative semiaxis if the bit “1” was sent. One gets the following expressemAppendix €

0 1 2 ” e —|a,|?e™ Pmt]—| — |, |?e™ Pmt
Perr,o(1)= f dx|<X0|\P(t))|2=——\/:|a0|e‘7“2 > Re{ -y ZJro e eyl e e )
: e 2 T m=T/odd

m
|
Bm '

xexp,’im<o—%>—|ao|2( 1

wherem takes only odd integer values and Re represents thdashed-dotted horizontal lines represent the initial error
real part. Notice that the result would be the same if the biprobability, that is the one of the input quadratére 0. The
“0” were sent. Indeed, integrating Eq20) along the posi- continuous dark lines represent the error probability (2d)),
tive semiaxis for the transmission of a bit “0,” it should be where the sum is taken up =53 since form>53 the
shifted by . terms of the sum give very small contributions. The error
Let us first substitute in the above equatienz/c and fix  probability obtained with a linear medium with absorption
the values of parametersand y. The ratio between the two vy/c is represented by the dashed lines. The obtained minima
parameters is critical to observe quantum effects. In fact, thehow that the third-order nonlinearity can reduce the error
first destroys the coherence effects produced by the seconpobability below the one obtained with the usual linear fiber
In a practical situation of a fiber having losses of 0.2 dB/km,and the same absorption coefficient. Furthermore, with a big-
in which the input is a coherent state of mean photon numbeger ratio x/y it could become smaller than the initial error
|ao|?=r2=10, the effective nonlinear coefficientc must  probability, see Fig. 3 withy/y=1.4 and 10. Let us now
be of the same order of the absorption coefficient for observeomment about the connection of this result with squeezing.
ing quantum effects. The absorption coefficientyi€ and It is possible to show that the length at which one obtains the
corresponds to about>610 ° m™? for the above fiber. Eq. minimum of error probability does not coincide with that of
(21) is plotted in Figs. 3 and 4 for the absolute minimum of the maximum obtainable squeezing. Indeed, for example, in
the error probability. In Fig. 3 it is plotted for several ratios the case ofy/y=10 we getz,,=60m for the minimum of
x!y setting 6=6,,. In Fig. 4 z,,=609m with x/y=1 is  error probability observing the quadratuie- 20°, while the
shown, wherez,, is the coordinate of the lower minimum, maximum squeezing is obtainable zt 126m. In our case
and 6 represents the quadrature angle. In these figures thbe squeezing is, of course, present but its value is always
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FIG. 5. The plots show the improvement of the error probability

FIG. 3. The length-dependent error probability in a third-orderfor various x/y ratios by the best phase measurement. The best

nonlinear transmission linécontinuous linesfor various ratio of  error probability is where, — ¢,<0. We observe that this improve-

x!v, with fixed local-oscillator phaseé 6,,) of the homodyne ment increases witly/y, but it is alwaysPe, | /Per (=1/2.

detector. Here2=10 photons and/c=5Xx10"° m~'. The values

of the _rr_winima are smgller than thpse correspc_mding to the error En—&=10logd Per ni(0U/ Py ((0UY]. (23

probability of a linear line(dashed ling If the ratio y/y>1 then

the error probability can go below the initial levéhorizontal

dashed-dotted linewith an apparent paradoxical increase of infor-

mation.

In Fig. 5 the continuous line i§,,— & while the dashed line
corresponds to the input error factor. It is possible to show
that always P g n/Perr 1 =1/2, thusé, — £=—3dB for a
smaller than 48% at the distance where the error probabilityhird-order nonlinearity. It means that the error factor for a
gets its minimum. The maximum obtainable squeezing at honlinear line could be smaller than the linear one but the
=126m is about 60%. The two phenomena appear differentdifference between them is limited by 3 dB. The value of the
although connected because both are consequences of Kétput error probability chosen %, o(0)=1.27x10"*°
nonlinearities. With the usual linear transmission line it becomes
The base10 logarithm of the ratio between the error probPerr,1(Zm) =1.35x 10, while with the nonlinear medium
ability in the nonlinear medium and the linear one is plottedwith the same absorption at the same distance becomes
in Fig. 5. It is evident that the bigger the/y ratio the  Perr.ni(Zm)=7x10""for 6,,=19°. This result could appear

smaller the minimum. Then, defining the “error factor,” odd if one calculates the information losses in such a channel
) [18]. Indeed, it would result an enhancement of information
E=10logyd Perr(out)/Pe(in) ] (22)  with the propagation length. This apparent oddness derives

from the channel definition, which is strictly connected with
Fhe measurement scheme used. The homodyne measurement
only selects one signal quadrature while the information is
on all quadratures; that is on the whole phase space of the
field. One can understand that the effect of the third-order
nonlinearity is to redistribute the information on the phase
space with an enhancement of information in some signal
quadratures and a consequent loss of information in others. If
we, however, consider the total entropyS(t)
=—KgTr[p(t)In p(t)], which is shown in Appendix D,Kg

is the Boltzman constantwe obtain that it grows as it
should. In Fig. 6 the entropy,

in decibel, we can plot the error factor z@and compare the
linear and nonlinear transmission lines with the same initial
error probabilityP,(in),

S(t)=—Kg{[ Trp?(t)— 11— [Tr p3(t)— 2 Trp?(t) + 1]/2

02 0225 025 0275 03 0325 035

6 [rad] +[Trp(t)+3Trp%(t) +3 Trp2(H) — 11/3+ - - -},
FIG. 4. The phase quadrature of the error probability in a third- (24)
order nonlinear transmission linkcontinuous ling for a fixed ) o _ . _
length z=z,,=609m with r2=10 andy/c=x/c=5x10"% m™1, is plotted considering the first two terms of the series, since

The value of the error probability after the same length of a lineathe next terms are much smaller. Thus, the total information
medium with #=0 is the horizontal dashed line. The horizontal Summed on all signal quadratures will decrease. This is what
dashed-dotted line witlhi=0 represents the error probability of the one should expect because the loss absorbs part of the signal
input signal. irreversibly destroying part of information.
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_ _ FIG. 7. The error function vs the length of propagation in two
FIG. 6. The entropy of the system increases even if the errogifferent media one followed by the oth@ontinuous ling where
probability decreases in one quadrature with the length of the thirdthe first is nonlinear and cut aj=z,,, while the second is linear. It

order nonlinear transmission line. Herg=10 andy/c=x/c=5 s confronted with the error function in a linear mediuizoarse
X107° m™ %, grained dashed line The accepted error probabiliffine grained
dashed lingis fixed atP,,,=1.5x 10" 1°. We observe a gain of the
IV. LONG HAUL TRANSMISSION length of the transmission line. In the nonlinear-linear transmission

. . L . line, the ,,=20° quadrature is measured and in the linear fiber is
We can now think to an optical transmission line where a_ - " ihe quadratur@, =0°. Here y/y=10, ylc=5
m . 1

piece of nonlinear optical fiber is placed before the linear, 145 -1 Jndr2=10
one, and we ask: how much longer could be this transmission ’ ©

line to have at the output the same error probability of a ling,;, produce another minimum. The error probability is cal-

made by a linear only medium? It is not possible to calculatg,|ated in the same way applying the Green functih
such a quantity with the error function as in Ef) because many times and then Eqgl8), (19), (20), and (21) (see
of the distribution at the input of the linear piece is no mOreapnendix B. The result is

Gaussian. The state of the quantum field, indeed, is not the

coherent state because of the interaction with the nonlinear 1 2

medium. It is then necessary to propagate the Wigner func- Perr,o(Sn+ 7n) =75 — \[;roexd—(l/Z)(nnw ¥in)]
tion, which we have at the end of the nonlinear piece, down

the linear medium. This is possible by rewriting the Green 1 _

function (17), then recalculating Eqg18), (19), (20), and X > —Re( O | P
(21) (see Appendix E By measuring the quadraturé,, m=1jodd M

=20° of the output field from the above optical line, with X (—r2 - —r2
r5=10, xy/c=10y/c=10y,/c=5X10"* m %, wherey,/c (=roenm =l il o nm)]
the absorption coefficient for the nonlinear meditra., we ) imy

assume they have equal absorptiar=59.26n and setting X exp{ —rolenmt E

the maximally accepted error probabilif,,=1.5x 10 1°

we obtainz,=350m. In the above expressions we have used N

z, andz,, respectively, for the length of the nonlinear fiber ><k§_:1 (eiﬁmtxk_l)gkfl,m
and the linear one, both having the same absorption coeffi- -

cient. The sam@,,,=1.5X 10*1(_’ is obtained measuring th_e where ZN=CEE=1'[7 is the sum of the linear pieces with
6=0 quadrature of the output field from the linear fiber with . |k N .

the same absorption coefficient as before but at a shorté@PSorption coefficienty, 7y=cZyt,, is the sum of the
lengthz, = 160m (Fig. 7). Thus, with equal output error prob- nonlinear ones with absorptiony, and &y m=exp(—Bmx
ability, we obtain a gain =4 With v, in B,

) o

7z +7 V. CONCLUSIONS
G=2—2=256, (25) B , _
Z We have shown that the error probability of bit transmis-

sion in an optical channel could be reduced even below the
equal to 4 dB. Whenever high nonlinear optical media willsender value, when a particular quadrature of the signal is
be available, it will be possible to think of transmission linesmeasured at the output. This effect is interespregseand is
made of many pieces of nonlinear-linear media, thus improvthe manifestation of a quantum effect. In the classical case
ing the transmission more and more. Indeed, after the firsbne could not observe the decreasing of error probability. In
linear piece, the distribution of fluctuations in phase spacehe quantum case one can have an enhancement of informa-
becomes almost uniform so that a new nonlinear interactiotion in one particular quadrature with loss of information in
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all other quadratures of the signal. This counter-intuitive re- dow

sult is a manifestation of the phase modulation due to the Bé§)=f 5 ,B0s(@, §)exli(keé—wt)], (A2)
Kerr nonlinearity of the optical fiber and is not a mere con- Bs

sequence of squeezing. We have shown that to obtain thigng ko=wng/C while Bos(®, &)

interesting result one should consider fibers with the ratio= (27n % w/co)¥2ay(w,£). The absorption and dispersion

X!y of the order of the unity or even bigger. For the Ker are introduced by beams splitters between the slabs of non-
nonlinearity this requiresy!®=10"% m?/V? that is very Jinear and ideal medium, assuming that the slabs are suffi-

high demanding when one considers the usual,Si@ss ciently thin we obtain the spatial differential equation for the
fibers with x(®¥=4.5x10"2° m?V? [30]. However, many signal

new materials are under consideration at present. In amor-

phous Si/SiQ superlatticies nonlinearities of () dag(w,2)  y(w) —

=101 m?/V? are reachabl¢31]. By using metal nano- az 7 aletir(e)b(wz?)

clusters, obtained by implanting Ag ions in LiNgOone

obtainsy®=10"1* m?/Vv? [32], albeit the above high non- 3ix i ,,

linearities are obtained in a frequency range far from the T Anee ngas(w,z) J'B do'w
0€0 S

fiber optics transmission frequency, which has a band width

at circa 1560 nm with loss as small as 0.2 dB/km. A recent

theoretical esteem in nonlinear periodic core waveguides X{Afw'agw',2)al (o',2)

gives x®=10" m?/V? [15]. These values are still too far

from the order of magnitude we need to obtain the above o
_enhancement of transmission Iength at equ_al error _prc_)babll— +wa§(w’,z)as(w’,z)]+J do” \/:
ity. However, the search for higher™® nonlinearity is in By o'
progress and, hopefully, an increment of six order of magni-

tude could be obtained. If such a result could also be ob- X[(20' - w")e " )% (o' z)a] (0" 2)
tained at the frequency range of the usual optical fibers, the o

present proposal could have a great impact in the realization +H(o—o'+o")e K02

of long haul bits transmission with controllable error prob-

ability. The proposed scheme of muItip_ieces transmis_sion xa*(a)’,z)as(w”,z)]], (A3)
lines needs very low loss at the connections between linear S

and nonlinear pieces, i.e., the spline loss. One should, of o, ’ ’ o _
course, consider fibers like the recently realized large effecwhere k(o’, 0")=[w'n(»") — 0"n(w")]/c, and the noise

tive area fibers, with the negligible spline loss of 6.80peratorsbs(w,z) has the usual statistical properties as in
%102 dB[33]. Eq. (10). By considering a narrow bandwidth of frequencies

A and defininga(t,z) as
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APPENDIX A iz Sazh-i EXa(Z,t)—Ixa+(Z,t)a2(z,t)
Using the Caves and Crouch methf®D], we start by +yb(z,t) (A5)

calculating the constitutive relations for the electric field in
terms of the displacement field for a correct canonical where the second term of the right-hand side of &) is a

approacH 29| linear phase factor and can be neglected for the evolution in
one-mode propagation, by redefining the signal frequency.
E(D=n;2D{) - 37n, 8y(D{) D)+ DELIDS, DS Now x=3x®'%h w?/2ngeoc?a. SinceA is small then the op-
erator a(z,t)=a(z) is almost constant in time while the
+ Dg;)D(();)z), (A1)  phase velocity is equal to the group velocity. Thus E&p)
becomes
where for the symmetry of the nonlinear mediugt® '
. da(t) c'y ] )
=x1111 and wheren(w)=ny+An(w) is the frequency- 5 z—Ta(t)—lc’Xa*(t)a (t)+c’\/§b(t),
dependent refraction index in the dispersive case. Now, from t

the Maxwell equationsc™ 29D )/ot=—0B{)/9¢ and (AG)

IE 1 a¢=—c19B(;) ot, it is possible to obtain the equa- wheret=z/c’ andc’=c/n,. To obtain a ratioy/y=1, with
tion of motion for the quantum operators defining the posi-optical frequenciesw=10'® s, ny=1.45, and o=47
tive components of the field on the spectrum of frequeicy <102 m?, we have to dispose of a fiber with a nonlinear
of width Ag, susceptibilityy®=4.5x10"° m?/V2.
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APPENDIX B o )
j e “H,(x)H(x)dx=H,(0)H,_1(0)+2n

Following the Kartner’'s and Schenzle's meth@&¥] we
set in their Eqs(41), (42), and (43) the quantities:<2]=(y

0

—imy)/y,  Qu=(2y=imx)/(4y),  Np=[vxn(2n X J e Hy_1(00H,_1(x)dx,
+|m|+1)— y+2imy]/2 and then write the Green function. 0
To calculate the Wigner function with E(L6) it is necessary (C1)

to know the initial function at=0, in polar coordinates it

can be expressed with the modified Bessel funct[@7$ using fe*XZHk(x)dx: —e*XZHk_l(x) obtained from the

definition of Hermite polynomiald28] and the property

©

2 o .2 o H/(x)=2nH,_;(x). We can now repeat the same procedure
W(“on):;e 22 ;x [ 4rro]eM(e™¢0), by interchanging the indexes of integrated functions
(B1)
e H () H(X)dx=H,_1(0)H(0) + 2k
the angular part of the integral in E¢L6) produce a Kro- 0
necker delta for then's indexes in bothG andW(r, ¢,0), the ©
radial integral is of the form XJ e “H,_1(X)Hi_1(x)dx.
0
fw ) [br]l forlrdr = ;{bz%zl be 2
e mbr]lferjrdr=—exg ——/lml 5=|
0 2a 4a 2a (B2 Subtracting Eq(C2) from Eq. (C1)

. Hn(0)Hy-1(0) =Hp-1(0)H(0) +2(n—k)
with Rga]=0.

The integral in Eq(14) is also of the same form and must % jm 2 _
be solved with the same procedure as well as for (E6). 0 ° Hn-100Hi1(x)dx=0. ©3
Equation(20) is obtained by using Edq2) expressed in terms

of Hermite polynomials Then increasing the indexes by one

H n
rel(¢*9|"H x]

V2 n!

? 2 _ Hp(0)Hy1(0) —Hy11(0)H(0)
foe H,(X)H (x)dx= 2(—K) .

(B3) (C4

2 oo
(a|Xgy= <ﬁexp( —x%2-1%2) >,
™ n=0

: T Now, it is possible to use the formulaH,,(0)
The integrals on the angular parts still give the Kronecker:(_1)n2n(2n_1),, and H,,, . 1(0)=0 in the right-hand
I n

delta that cancels two indexes, while it is necessary to eXside of Eq.(C4) conveniently changing the indexes. The
pand the modified Bessel function in series to solve the a5 obability 61‘ error is '
dial part of the integral

0
2
{41 e PriTar; exil — (g1~ ¢2)/2]} J_deKXf)"I’(W'
:i (2 g1 1o~ Ar) ™ 2exd —i(m/2+n) (@1~ ¢5)] 1 ree ™t & (—rg2e )"
n=0 n!'(m+n)! ’ =5t 227 n%o n'k!
B4
B4) xexp[2i(n—k)[(n+k)xt— 6]}
obtaining y expli[(n+k)xt—68]—r2f(n—k+1/2)}
n—k+1/2
f‘”rz”“e’rzdh nz_‘ 85) explil6—(n+k)xt]-r3f(n—k-1/2)} cs
0 n—k—1/2 ’
APPENDIX C where f(n—k=1/2)= (yexp{—[y—2i(n—kx1/2)x]t}

—=2i(n—k=12)x)/[ y—2i(n—k=*1/2)x]. With some alge-
Integrating by parts it is possible to obtain the integralbra and changing the indexin m=n—Kk it is possible to
recurrence formula, sum onk in the modified Bessel functions to get
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0
| 10w ax

: \/5 w
=—+4\/—r.e M
2 7Tr0e m;—oc

X ((m+1/2) exdi 6—r2f(m—1/2)]

(_ 1)me—2im0

1—-4m?

X1 mfr2exd — yt+2i(m—1/2) xt]} — (m—1/2)

X @10 rof(m=1/2) mir2exy — yt+ 2i(m+1/2) xt1}).
(C6)

Changing the indexin 2m+1, i.e., summing only on odd
m and writing the first terms of the series fom

PHYSICAL REVIEW A 65 033815

the same factorial for the integral of the radial part. For ex-

ample, with them=3
o (rge—'yt)k1+k2+k3

Trpdh= >
K ko ka=0 7oKyl Kyl kgl
~Pro-kt— i (kp—ky)
e |
x ex _rg Y 2" ( 2 X
Br,—k,

'}/e_ﬁksszt_ i (k3_ kz)X

Brs—k,

’yeiﬁkszt— i (kl_ ks)X
B, —kq

] . (D4)

Then, writing the general expression for amyand substi-

=—-3,-1,1,3, it is possible to collect the coefficients of the tuting in Eq.(D3) we obtain the entropy

modified Bessel functions; observing at the end that for o
negativem the terms of the series are the complex conjugate

of terms with positivem it is possible to obtain Eg21).

APPENDIX D

For the entropy it is possible to calculate the trace of the
density operator on the coherent states with the completeness

relation
S(t)=—KgTr[p(t)Inp(t)]

d?a d? - -
ko[ [ XSl lB)BI p(0) ),
(DY)

whereKg is the Boltzman constant and the first expectationwe obtain the propagator for the Wigner function in a linear

SH=KsS LS (i)m(mfl)

n=1Nm=1\ 7

(r287 'yt)E]m:lkj

oy

m

tyexp— B, -kt 1Kk x

x| 2
=1 B 1—k;
e Pkt —i(ky—k
+7 1 (kg —km)x . (D5)
Bk,
APPENDIX E

Settingy =0 in the expressiolil7) and summing ovem,

value is calculated in Eq19). For the second expectation medium at timet,

value it is necessary to develop the log function and the

binomial (p—1)" in series[28]

. o lg ~
(Blinp(t)|a)=— 2, HE (—1)m(:1)<ﬁ|pm(t)la>-
n=1llm=0
(D2)

With the completeness relation on tljgevariables, and in-
creasing them index by one we get

“ o1 d2a .
s=—ke 3 23 -1 " | [ T alimola).
03

G !/ !0_2 1
AT byt e" 0= 2o

-2
xXexpp ———[r?+r'%e "y
l-e "y

—2rr’e7‘vlzcos(<p—<p’)]].
(ED

The Wigner function is calculated starting from E9)
W(r,cp,tX—i-ty):fOZWJ':G(r,cp,ty;r’,go’,O)W(r’,go’,tX)

Xr'dr'de’. (E2)

The integral is transformed by using the completeness rela-
tion m—1 times and developing the modified Bessel func-Now repeating Eq(E2) for more stepgnonlinear-linearit is
tion Eq.(19) in series. At this point it is possible to integrate possible to obtain the Wigner function after tN&h step and

the angular part to obtain Kroneckérfunctions and obtain

then the probability distribution on thé, quadrature
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2 2 - rczj n—m (nemrz . Hp, \/EX Hm \/Ex

n,m=

. _ N
xexr{ - rg{s,\, nem+ |(n—m))(2 [e Pn-mby— 1]sk1an , (E3
' Bn-m k=1 '

Wheretm:tXO:O andeg,_m=0.
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