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Limits to squeezing in the degenerate optical parametric oscillator
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We develop a systematic theory of quantum fluctuations in the driven optical parametric oscillator, including
the region near threshold. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and
noise reduction in this nonequilibrium quantum phase transition. In particular, we compute the squeezing
spectrum near threshold and calculate the optimum value. We find that the optimal noise reduction occurs at
different driving fields, depending on the ratio of damping rates. The largest spectral noise reductions are
predicted to occur with a very hig@-second-harmonic cavity. Our analytic results agree well with stochastic
numerical simulations. We also compare the results obtained in the pdBitrepresentation, as a fully
guantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclas-

sical theory.
DOI: 10.1103/PhysReVvA.65.033805 PACS nuntberd2.65.Yj, 42.50.Dv
[. INTRODUCTION theory[13-15 using a many-body-theory analog of Feyn-

man diagrams.

Optical parametric oscillatof®©PQOg are one of the most The two-mode Hilbert space involved in these problems
interesting and well-characterized devices in nonlinear quartypically has a minimum dimension greater tharf,16ven
tum optics. Novel discoveries made with them include demwith only N=10% photons, and therefore would be difficult
onstrations of large amounts of squeeZifiyy and significant to solve using other methods that involve number-state
quantum intensity correlations[2] together with a expansions—either using a direct solution of the master
quadrature-correlation measurement that provided the firgquation or stochastic wave-function methods. The Hamil-
experimental demonstratiof3] of the original Einstein- tonian matrix would have f_éqoefﬁpients, unless simplified,
Podolsky-Rosen paradox. Practical applications include theif/ith @ density matrix of similar size. More typical experi-
use as highly efficient and tunable frequency converters. If’€Ntal photon numbers have at ledst 10°, with a corre-

. . . . . 2 .
the present paper, we focus on the optimum below-thresholﬁpondl'nglde_’ns'ty magl'x d|_rnhenS|onb of I‘Q—whwhha_ppears
squeezing results, which determine the limits to squeezin ompletely inaccessible with number-state techniques. An-

obtained near the critical point, where nonlinear correction ther drawback of number-state techniques is that they usu-

start to dominate. In a companion papé, the related ques- ally do not permit analytic approximations, which can give

. " ; . more physical insight.
tion of critical fluctuations at thres_holq IS tre_ated. . We therefore treat these questions using the coherent-state
The theory of quantum squeezing in the linear parametri

. . ositiveP representatiofl6], combined with an expansion
oscillator is now well-developedl5—-15. Excellent agree- (b p 116] P

; ! , ) technique valid below the critical point. Results are also veri-
ment between theory and experiment is obtaified] in the  fieq py the use of direct numerical stochastic-equation simu-

region below threshold. However, the usual theory is lineariations. We find that arN~2'3 scaling law for the optimal
ized, and therefore cannot be used in the near-threshold r8queezing predicted by Plimak and Walls4] is obtained
gion where the squeezing is largest. The drawback with linhere as well, but with a different spectrum, owing to the use
earized theories is that they predict that zero quantum noisgf more systematic expansion techniques that result from
levels are achievable at threshold. This is clearly unrealisticysing the positiveR representation method. Our analytic re-
since(by the Heisenberg uncertainty principienecessarily  sults for optimal squeezing, which occurs below the critical
requires an infinite energy in the conjugate mode. More sigthreshold, give excellent agreement with accurate numerical
nificantly, this would imply an infinite amount of phase simulations for the same parameter values. However, even
information—which is also impossible, since the coherentiarger noise reductions are predicted to occur simply by re-
pump that drives the parametric oscillator can only supply alucing the losses of the second harmonic, in which case the
finite quantity of phase information. N~2" scaling law no longer holds. In a companion paper we
While present experiments are limited by technical noiseconsider the related problem of the critical region, where the
from approaching the critical point too closely, it is reason-narrow-band squeezing is less than optimal due to the effects
able to expect that progress in integrated optics will lead t®f critical fluctuations.
more stable, highly miniaturized devices that could well op- We also compare the above results with a semiclassical
erate at the quantum limit, even near threshold. Accordinglyapproach, that is, a truncated Wigner phase-space equation.
there have been a number of investigations as to the ultimaf€his equation corresponds to a classical theory with added
limits to the squeezing spectrum of a parametric amplifieriacuum fluctuations. A comparison between the posiive-
oscillator. This has often involved using Keldysh diagrams orepresentatiofifully quantum-mechanicaland semiclassical
Wyld-Keldysh techniques[10—-12 to extend the linear theories permits us to see how far one can go and what is the
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limitation of this extended classical point of view. We find  Using standard techniqug7] to eliminate the heat bath,
that the nonlinear corrections in the semiclassical theory arere obtain the following master equation for the reduced den-
in strong disagreement with the full quantum theory far be-sity operator of the system in the interaction picture,
low threshold, but agree near threshold. This tells us that the
semiclassical theory works surprisingly well in the threshold g0 1
region, indicating that the large quantum fluctuations near »_ —[Hint.pl+ v1(2aspal —ala;p—palay)

) _ ot iptintPIT Yiledapdy T didapT pidy
threshold have a rather classical character.

+ v2(28,pa}~ ajazp — pajay). )
Il. HAMILTONIAN AND MASTER EQUATION

The model considered here is the degenerate parametr\f%hereyi are the internal-mode amplitude damping rates and

oscillator. The system of interest is an idealized interferomWe @ssume than;<1, wheren; are the mean numbers of

eter, which is resonant at two frequencies; and w, thermal photons in the input reservoir modes. Using reser-
*2;)1 It is externally driven at the larger of 1the two fre- Voir theory, itis possible to identify the coherent driving field
quencies. Both frequencies are damped due to cavity losse¥ith @ corresponding nput ﬁ]hoton flux from an (iegd'ernal co-
Down-conversion of the pump photons to resonant'€rent laser, with,=|&[%/2y;" photons/s, wheresy' is the
subharmonic-mode photons occurs due ¢4 nonlinearity input coupler decay rate. For optimum performance, we will

present inside the cavity. The Heisenberg-picture Hamilassume thaty,=v3', and similarly for the fundamental
tonian that describes this open systEFhis mode—which will be assumed to only decay through its out-

put coupling mirror. If these conditions are not satisfied, then
o o . the coupling efficiency and maximum squeezing are reduced.
H=Hgs+ > (gl +aT)+HAg, (1) At this point, we note that in the classical limit, the sys-
1=12 tem has the well-known classical equations of intracavity
parametric oscillation, where we define=(a;), and hence

where the intracavity or system Hamiltonian is given by L ) ! .
obtain, in the interaction picture

~ T G T ~Agn . —iwota
Hey= fiwala +ifts(al%a,—a%al)+ih(Eew2a) da;
sys j:zl,Z w;ja;a, 2( 178, ajap) Tih( 2 W=[—71a1+)(afaz]'
—&xgloaty,). 2
d012_ 2
Here & represents the external driving field at frequency | T Y2t XAl ©

w,. The termHy describes the free evolution of the extra-

cavity modes that are the loss reservoirs of the cavity. Thd hese equations are valid in the limit of large photon num-
term y is the coupling parameter due to)d? nonlinear  ber. They are obtained by the use of a classical decorrelation

. . . - . in which all operator products are assumed to factorize, so
medium internal to the cauvity, anﬂ;r ,I'j are reservoir op- P P

ATa v~ /at\ (A 2 AN /ANA ;
erators that create and destroy photons in the loss reservdffat{(@ia;)=(aj)(a;) and(a;a;)=(a;)(a;). The solution of
coupled to the internal mode of frequenay. these equations is immediate classically, and has the property

Next, we wish to consider an interaction picture obtainedhat there is a phase transition at the critical driving field of

with the definition that E=E.= y17y-/x. For driving fields below this value, one has
~ ~NpA a]_:O!
H0=j:212ﬁwja;raj. (3)
' a2=5/’y2. (7)

In other words, the operators will evolve according to the . . . ) —
relevant mode frequency, while the states evolve accordinglirh fields above this value, the signal field is bistable,

to the rest of the system Hamiltonian. The interaction Hamil-
tonian used here then reduces to the the standarf=drier

a nondegenerate, single-mode parametric amplifier or oscil- =\ = (E— &)
lator 1 e
L X
/1= 1€ B~ 831+ X (3,817 31421 (@) _n
int 27 8l Slaxdy 2a1]. aZ_;' (8)

Herea, ,a, are now time-independent operators representing The intracavity photon number at the critical pointNg

the fundamental and second-harmonic modes, respectively: y3/x?=&2/y5. Classically, there are only second-
For simplicity, we have chosen the field mode functions scharmonic photons present at this driving field, and the input
that £,y are real. photon flux isl ;= E4/2y,= y?v,/4x?. However, a squeezed
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field—with finite intensity—is actually emitted as well. This based on the Ttstochastic calculus. However, in this case,
is not taken into account in the classical theory. either Ito or Stratonovic stochastic calculus gives identical
results[18].
IIl. OPERATOR REPRESENTATIONS

In order to treat the full quantum evolution, we now turn B. The semiclassical theory

to the methods of operator-representation theory. These tech- We can also write @&-number phase-space equation using
niques can be used to transform the density-matrix equatior&n approximate form of the Wigner representafi8h which

of motion to c-number Fokker-Planck or stochastic equa-is equivalent to stochastic electrodynamics. The characteris-
tions. tic function of the Wigner representation is written as

N k2t S L2
A. The positive-P representation xw(2)=Tr(pel? 3 +i23) = Tr( pelz" ' gizag~1272) = (1)

n the. positiveP repre.sentat|on, the density matrlx IS ex- and the Wigner distribution can be written as the Fourier
panded in terms of multimode coherent state vedtajs transform of the characteristic function

N R P (G
[ e Y@

Following standard procedures, the assumption of vanish- ] ) )
ing boundary terms allows the master equation to be rewritl the Wigner representation, the phase-space equation that

ten as a Fokker-Planck equationFPrQ&,o?*), and hence as a corresponds to the master equatiGhis
stochastic equatiofil8] with real noise. The assumption of

vanishing boundary terms is critical to this procedure, and dW(aq,a5,t) d . d N
we note here that this is generally valid when the ratio of — 07711(71“1_)(“1 az)+ E(')’lal
nonlinearity to damping is smaJiL9] (i.e., |x/ ] <1). The !
stochastic procedure is best regarded as being generally an J
asymptotic procedure, valid for smay}/ y,|—in which case —xaiaz)+ an
the boundary terms are exponentially suppressed. We check 2

4° 44"+ 1 (~ ko
dad . © W(a)=— f d’zxw(z)e 7 Feize (13
T —o00

X
Yottt Ea%—é’)

this assumption numerically here as well, and point out that 9 Y
R ; ; : B R * L N %2

the required ratio of nonlinearity to damping is extremely +— (yzaz + 5 a1 5)

well satisfied in current experiments, where the ratio is typi- da;

cally 10 © or less. Further analysis of this problem has been 9

given elsewher¢19]. Given this assumption, the following . J .
; ~2 . ’ +y1(1+2ny) + T 72(1+2ny)

stochastic equations are obtained from E&$.and (9) for dadai

any driving field&, that is, either below or above threshold:

S + X ” + 7
day=[— yia1+ xai a;]dt+yadwy(t), daydal 8\ da*lia, daldal
XW(al!a21t)' (14)

day =[— yiay + xaqa; Jdt+\xa, dwy(t),
If we truncate the third derivative of the phase-space

_|_ o equation, we get a genuine Fokker-Planck-type equation with
dep Yoot & Zxaq|dt, positive definite diffusion constant. This can be mapped into
the following Ito stoghastic differential coupled equations
1 (for simplicity we letn;=0, as beforg
day = —yzaz-i-é'— E)(afz dt. (10 I

. . . day=[—yra;+ xa asldt+yrdwi(t),
The stochastic correlations are given by

(dw(1))=0, da}=[— y.of +xaia3]1dt+ydw (1),
dwi () dwi (1)) = Sdt. 11
WL d0) =i ) day=| — yaar— 5 al+ €| dt+ Vydwy(t),

This means thatlw,(t) represents two real Gaussian and
uncorrelated stochastic processes, and the amplitude of the
stochastic fluctuations that act on the signal mode are depen-

x
dent on the pump-field dynamics. Our derivation is formally dt+ \/Zdwz (. (15

X
—y,a3 = Sai’+€

das = 5

033805-3



S. CHATURVEDI, K. DECHOUM, AND P. D. DRUMMOND PHYSICAL REVIEW A65 033805

Heredw(t) is now acomplexGaussian white noise whose  Similarly, we can define-number stochastic-quadrature

mean and variance are given by variables within the relevant representations, thus giving
<de(t)>:0, Xj=(al-+aj+),
! y]=|—(aj—aj+) (20)

The above equation is identical to the equation derived in
the positiveP representation when one discards the noise Of especial interest i§, since this is the low-noise
terms. This corresponds to the nonlinear classical equatiogl !

o gueezed quadrature. Here we note that the instantaneous
for the OPO system. The main difference between the thélorrelation functions of the intracavity-field operators are

sets of equations is the noise terms. In the semiclassicgl,qq the moments. Typically, they are not easily measur-

theory the noise is universal for all modes and comes from t%ble when compared to output moments or spectra, but they
the vacuum fluqtuatlons, Wh'.le in the posmi?l_eequatlo_n the are useful in that they provide a check on the accuracy of the
pump has a noiseless amplitude and the signal noise COMES| - lation of measurable spectra

from the nonlinear coupling. However, we note that the The squeezing in terms of the intracavity quadrature vari-

ng_ner equation after truncaupn IS no !onger completelyances corresponds to an instantaneous measurement of the
equivalent to quantum mechanics, since it always leads to Id moments. If such a measurements were possible, it

positive Wigner function—thus, not all quantum states C@Nyould include contributions from all frequencies. For mea-

be represented. surements averaged over a long tirie it is the low-
frequency part of the spectrum that is the relevant quantity,
C. Observable moments and spectra and we shall focus on this, as it usually determines the maxi-
The positiveP stochastic method directly reproduces themum squeezing possible. The output measured spectral vari-
normally ordered correlations and moments, while theanceV/ of a general quadrature
Wigner representation reproduces the symmetrically ordered
moments. We also have to distinguish the internal- and XP= (e~ 10pOULy it outh
external-operator moments, since measurements are nor- J ! )
mally performed on output fields that are external to thecan be written as
cavity. The technique for treating external-field spectra was
introduced by Yurkg6] and by Collett and Garding].
These external-field measurements are obtained from the
input-output relations of

Vi(w)d(w+o')=(AX(0)AX! ("), (21)

where the fluctuationd X are defined aa X/=X/—(X/)
and the frequency argument denotes a Fourier transform,

OPU(1) = V2978 (1)~ (1), (17)
Whereé)}”(t) and (i)}’“‘(t) are the input and output photon )‘(l.ﬂ(w): f ieiwt)}]ﬂ(t)_
fields, respectively, evaluated at the output-coupling mirror. V2w

The most efficient transport of squeezing is obtained if we o )
assume that all the signal losses occur through the output Since theP representation is normally ordered, it auto-
coupler, so thaty;=7°"". We will assume this to be the matically provides the normally ordered moments,

i
case. o

The crucial quadrature variables of the system have the X)X ()= (X ()xX](1)p. (22)
definitions

Also, the positiveP spectral correlations correspond to the

ah normally ordered, time-ordered operator correlations of the

' measured fields. We therefore define Fourier components of
the normalized quadratures as

y,—=i—(a,-—aT). (19
[ dw —ioty 0
Xj(t)= | —=e ‘“xj(w). (23
There are also corresponding external-quadrature field V2w

variables, defined as _ )
This leads to the following well-known result for the gen-

eral squeezing spectrum, as measured in an external homo-

o dout, Fyoutt
Xj=(®7"+ @), dyne detection scheme:

?]_:ii((i)?ut_q")?ut‘r). (19 Vi(w)d(o+wo')=1+29"(AX/(0)AX/(0"))p.

(29)
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Note that vacuum<{input) field terms do not contribute di- where N.=2l./v, is the threshold pump-photon number
rectly to this spectrum, as they have a vanishing normallyand a dimensionless decay raiip= v,/ y, is introduced. An
ordered spectrum, and are not correlated with the coheremiguivalent definition is
amplitudes in the positiv®- representation.

In the case of the Wigner representation, the correlations

and moments are given with symmetric ordering. Thus, for g= X . (29
example, (a} (t)a;(t))w={([a(t),a](1)]./2)=1/2 in the V27172

vacuum state. The normally ordered internal-field moment
are easily calculated by using equal-time commutators t
change the ordering from symmetric to normally ordered,

$his clearly determines the ratio of nonlinear-to-linear rates
Rt change. Next, we introduce a scaled time y,t and a
dimensionless driving fielgh =&/ E.= x&/ (y17y2), SO that the
equations can be expressed in terms of the three dimension-
(x/(vef(t):)y=(x/()x](t))w—1. (250 less parameters, u, 7, . Finally, we expand the scaled coor-
dinates in a power series @) to give
Similarly, the normally ordered squeezing spectrum, as

measured in an external homodyne detection scheme is ~ o
— n—
Xl_nZO g X1,

Vi(w)d(o+o)=(X/(0)X/(0)w- (26)

It is essential here to include the vacuum-field contributions yi=>, g" ly{,
from reflected input fields, as these are correlated with the n=0
internal Wigner amplitudes, and hence have a significant
contribution to the spectrum. In fact, these input fields can be 1 =
shown to correspond directly to the noise terms in the rel- Xo= Z g”‘lx(”),
evant Wigner equations, leading to the identification V27, n=0

M _ o (27) - 2 9"ty (30)

dt P 2y 0> 2
where@}“(t) is ac-number amplitude correspondiriig the The expansion given here has the property that the zeroth-

Wigner representatiorto the quantum vacuum input field. order term corresponds to the large classical fields of order
The fundamental property of the Wigner function is that1/g, while the first-order term corresponds to the quantum

the ensemble average of any polynomial of the random varifluctuations of order 1, and the higher-order terms corre-

ablea anda* weighted by the Wigner density exactly cor- spond to nonlinear corrections to the quantum fluctuations of

responds to the Hilbert-space expectation of the correspon@rderg and greater. For a given fundamental decay rgte

ing symmetrized product of the annihilation and creationthe expansion coefficiery? is inversely proportional to the

operators. Therefore, the truncated theory with a positivénput photon flux required to obtain the threshold condition.

Wigner function can be viewed as equivalent to a hiddenThus, the smalleg? is, the larger the required input field.

variable theory, since one can obtain quadrature-fluctuation

predictions by following an essentially classical prescription; A, Matched power equations in positiveP representation

in which even the noise terms have a classical interpretation I . . .

as corresponding to a form of zero-point fluctuation. This Here we will first be interested in the analysis of the

cannot be equivalent to quantum mechanics in general, bLiteady-state moments. Subsequently, we will calculate the

may provide similar results to quantum mechanics unde (fr?ﬁ;r?)lf t(;](grg?é'&gfio?‘f dtgse?glggfgfngﬂgﬁq;gu?ﬁ; gaﬂz'
some circumstances. : q

tions for the quadrature variables in the positReepresen-

tation are
IV. BELOW-THRESHOLD PERTURBATION THEORY

Next we wish to rescale the equations. This has the meri(FJX _
of showing explicitly how a small noise expansion can per-
mit us to use a type of perturbation theory whose zeroth- i
order solution is the classical solution, rather than the Feyn-  + VX2—iy2dw,(t)],
man approach, where the zeroth-order solution is the free-
particle case. In order to show this systematically, a formal X
perturbation expansion in powers gfis now introduced, dylz{—h)/ﬁ §(X1Y2—X2y1)}dt
where the scaling parametgris given by

dt+ \@[ VXo+iydw;(t)

X
—yi Xyt E(X1X2+Y1Y2)

i \/§[ Vxat iy 0wy (1) — Vxp—iy dwy()],

g=114lcy;=1N2Ncy,, (28)
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While we do not wish to include any effects beyond the first
dt, nonlinear corrections, it is not possible to consistently ne-
glect the third order in perturbation theory. This is because
the first nontrivial correlations arise in terms likgx(?]?),
dt. (31) which have the same formal order as terms of the type
(x®xM)y_ Therefore, to obtain a consistent expansion for the

. . . correlations that are of interest, we must compute the third-
The stochastic equations are now solved by the techniqu

X . . ) Srder terms as well. These satisfy the following equations:
of matching powers of in the corresponding time-evolution
equations. This technique can be analyzed diagrammatically,

dXZZ

X
— o~ Z(X{-yD+2€

X
dy,=|—7y2y2— §X1y1

« i » 1
and so can be termed the “stochastic-diagram” metfRilj. dx(3)=[— 1— x4+ = (xDx@ 4 D@y |4+
The zeroth-order solution is ' (I 5 0Ty Y2
1 1 (2) iv()
dx0= _X(10)+E(X(10)X(20)+y(10)y(20)) dr, + 2@[)(2 dw,(7)+iys dwy(7)], (36)
(0) (0) L (0)3(0) _ 4(0),,(0) (3) (3) ! (1)),(2) _ (2),,(1)
dy;’=|—vi +§(X1 Xz —X3'yy ) |dT, dy;”=| —(1+wp)yi +§(X1 y: —xyyy) |dr
1 1 (2) ix(2)
AX) = — o1 | X0+ S (OO -y Oy — 2| d, +m[yz dwy(7) —ixz7dwy(7)].
dy(2°)=—y,[y(2°)+x(1°)y(l°)]dr. 32 The equations of this order have a nontrivial noise term,

which depends on the second-order pump quadrature solu-

These equations are the classical nonlinear equations f&°"-
the cavity, expressed in terms of the quadrature amplitudes of

dimensionless scaled fields. The steady-state solution below Operator moments

threshold is well known and is given by We now wish to calculate the operator moments. To pro-
ceed further, we use ltoalculus to derive stochastic equa-
X(lo):y(lo):y(zo):(), X(QO)IZM- (33 tions for quantities of interest, which in the present calcula-

tion are y{Vy(t) and y{Vy{¥. These equations contain
With no loss of generality, we can set all odd orders ofquantities involving variables lower down in the hierarchy,
xiM v and all even orders of{”,y{" to zero, since one as well as terms generated from the noise correlations. Fi-
can set these to zero initially, and these orders do not changelly, we compute the steady-state averages of the quantities

in time. To first order, the equations are given by of interest, so that the noise terms vanish. In the present case,
this yields
dx{P=—(1— w)x{Pdr+ V2 udw(7),
1 Dy x@Py=—
dy{=—(1+ w)y{dr—iv2udw,(7), (34) 2 1— 2’
where,dwx(y)(r)=[dw1(r)idwz(r)]/\/§. These equations
are the ones that are normally used to predict squeezing. M

1 1

They are nonclassical, but correspond to a very simple form (yiyi)=- 1+u’
of linear, nonclassical fluctuation, which has a Gaussian qua-
siprobability distribution. In other words, if no higher-order
terms existed, the result would be an ideal squeezed state in (x§{PxMy = L
the subharmonic mode, together with an ideal coherent state 1-u
in the pump.

Of more interest to the present paper is the behavior in the
next order. This is the first order where nonlinear corrections  (y{Vy(®)= S
to ideal squeezed-state behavior will occur. We find the fol- 4(1+p)(1—p?)

lowing:
g pye  y(1-ptp)+2(1+4 )
7’r+2 (1+M){7r+2(1+ﬂ)}

1
2 = — 3 2+ 2 (X —y Py D) g,

2
"

1—pu?

L),y "
X g
Ay = — 5, [y P+ xPyPdr. (35 VY= 1) )

. (37)
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]
X
AXo=| — yoXp— Z(x"{—y§)+25 dt
0.9
+ 1y dwa(t) +dws (1)],
Ao.s-
) X .
Vorl | dy2=[—y2y2— S Xaya|dt=ivy[dw,(t) —dw3 (1)].
(39
08 In the new scaled time, the correlation function of the
‘ . . . . noise terms is
0% 0.2 0.4 0.6 0.8 1
# (E(OE (U ))y= (&l yD) & (7' 1y1))=y168(T— 1)
FIG. 1. Squeezing momex¥?) versus driving fieldu with g2 =y (&N E (7)), (40)
=0.001,y,=0.5.

where we have written the Wiener increment aw(t)

The first quantity above is related to the depletion of the_, g(t)dt‘. Next, we re_:deflne th_e white noise that drives the
. . stochastic semiclassical equations as
pump that supplies the energy for the subharmonic mode.

The following two quantities are the squeezed and enhanced

x
guadratures normally obtained in the linearized theory, while [dwy(z)(7) +dWp)(7)]

. . . . : AWy (2)(7) = :
the fourth one is the first correction to the linearized calcu- \/5
lation. The last one is the steady-state triple-quadrature cor-
relation. This quantity has bee_n sugge_sted previousl_y as a [dwl(z)(r)—dw’{(z)(r)]
way to test quantum mechanics against a local hidden- dwy2)(7)= : ) (41)
variable theony21]. iV2

The steady-state intracavity squeezed-quadrature fluctua-

tions are obtained as The dimensionless driving field is introduced as before,

and the Wiener incrementsw;(7) have the same properties
2 as defined in Eq(16), except for changing to the dimen-
gu ; : :
= sionless scaled time. Next, we use the same technique of
(I+p) 201+ p)2(1—p) matching the powers ofy in the corresponding time-
evolution equations. The zeroth-order equations are
pye | vi(l—ptp?)+2(1+p) d a

<§/i>ss: 1+<:9§:>

. (39
+2 1+ +2(1+
r (14 w)fyr+2(1+ p)} dx0)— _X(10)+E(X(lO)X(ZO)er(lO)y(ZO)) dr,
The intracavity squeezing quadrature near threshold is not 2
perfectly squeezed, as the nonlinear correction is divergent
near this point. This is shown in Fig. 1. It is clear that the 1
. . (0) — | — \/(0) 1 — 4(0)y,(0) _(0),,(0)
nonlinear corrections to the overall moment scaleg@41 dyi —[ yi't 2(X1 y2 =x37yr) |dT,

—w), and hence only give large corrections extremely close
to threshold, withu~1—g2.

Considerations related to optimal squeezing will be  dx{®=—,
treated later, in the frequency domain.

dr,

1
0+ 5 PPy 2

B. Matched power equations in semiclassical theory dy(20): - 7r[y(20)+xg_0)y5_0)]d7- (42

We can scale the quadratures variables in semiclassicals iy the positiveP case, the steady-state solution below
theory in the same way as before. First, the equations for thg,.ashold is given by

guadratures are

) » . xV=yO=yO=0, xO=24. (43)
dxy = | YXat §(x1x2+y1y2)_dt To first order, the equations are given by
+\ys[dwy(t) +dwi (1)], D= — (1 ) xPdr+ V2dwyy(7),
dy;= - YY1t g(xl)/z— X2Y1)- dt dyfV=—(1+p)y{dr+ 2dwy (1),
— iyl dwy(t) +dwi (1], dx$P = — y,xd 7+ 2y, dwyo( 7),
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dy§)= = yy§ldr+ 2y dwiy(7). (44) oo L v | 1
_ , , _ VIvI=313 2o
While the zeroth-order equations are essentially classical, r (1-u%)
in this first-order set the noise appears as a quantum effect.
This is still a linear approximation, as all nonlinear correc- + Tr
tions come from the next orders. 201+ w)  y,+2(1+w)]’
The second-order equations are
XD = | — (1= )X @+ = (xOxD 4 yOyD) 7 Y Y —
1 1 2 1 72 1 Y2 ’ 4(1_'_’“)(1_“2)
- 2—pn)+2(1+
(2) (2) 1 (1),(1) _ 4 (1)y,(1) U 7 2 ( ) J'
dyi”=| —(+wyr "+ 5 (Xgyz ' —x37y1 ) |d7, vwt2 (I+wly+2(1+u)]
dx@ = — | x@+ }(X(l)x(l)_y(l)y(l)) dr (xPyy@y— L
2 r| A2 2\ 1°Y1 ) 1Y1Ys vit2 1_,“2,
dyg?= = #ly? +x{yldr. (45) , .
1),,(1),,(2 2), (1), (I _ | &

We need to go beyond this order in perturbation theory to (YY) + (xPyPys) = ye+2/\ 1= 2]
compute the first nonlinear corrections. The third-order equa- ' . 47)
tions are

1 The main difference in these calculation compared with
dx(13)=[—(1—ﬂ)x(13)+ = (x{IxEA) + x{PxH the positiveP result, appears in the nonlinear correction for
2 the subharmonic squeezed quadrature. Up to second order in
g we have

+yPyP+y Py |dr,

“ 1
o U (yD =5 [gXyPyM) +gXyPyP) + 204y My )]
dy;”’=| —(1+w)yy +§(X1 Yo XY 9

_ 1 g’
—xgy P —xy) [dr, Lru 21+ p)(1-p?)
, o o Ye(1+2pu—2u?) +2u(1+ )
A6 = =y X6+ (X -y Py 1dr, yt2 Lty 21t p)]
dy(23) 3 1),,(2 2),,(1 (48)
4 = Ty ey HPydn (48

The similarities and disagreement between this result and
the positiveP expression for the same quantity deserve fur-
Operator moments ther comments given in the conclusion section. In particular,
The steady-state averages of the quantities of interest caie notice that while the linear term agrees, the nonlinear
now be calculated using the truncated Wigner distributionterm is not in agreement well below threshold.
therefore obtaining the symmetrically ordered correlation This comparison is shown in Fig. 2, which compares the
functions, nonlinear parts of the moment in the two representations.
Just below threshold both theories give nonlinear correc-
tions that are essentially identicg22]. There is also good

<X(22)>— I ' agreement in the limit ofy,—0, wherey,<v,; but for vy,
1—p? >0 and driving fields below threshold, there is substantial
disagreement in the nonlinear corrections to the squeezing
1 between the two representations. This can be attributed to the
<y(11)y(11)>= m neglect of third-order quantum correlations in the truncated

Wigner representation, which results in the appearance of

nonlinear squeezing effects even in the limit of zero driving

(x(xDy = 1 field. Such effects are due to the semiclassical vacuum in-
S 1-u’ puts, which do not appear in the positiPerepresentation.
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107 . ‘ ‘ ‘ (1) First order:
~ V2ué(Q)
XD (Q) =BT
(iIQ+1—pw)
A
el ~u I2ug,0)
R yPQ)=—- ——r——, (52)
(iQ+1+uw)
_________________ (2) Second order:
o \ ‘ 2= y[XPxP -y Py Q)
' wo ' 2 2(i0+y,) !
FIG. 2. Nonlinear correction to the squeezing momghy?) SO TEA TP
versus driving fieldu with g?=0.001,7,=0.1,1,10. The solid line 9(2)(9): _ y[XT Y1) (52)
corresponds to the positivie-representation, the dashed line to the 2 (iQ+vy,)
Wigner representation. Best squeezing occurs with the smallest
value of y, . (3) Third order:
XP(Q)

V. SPECTRAL CORRELATIONS

Next, we proceed to analyze the problem in the frequency  [x$* (X{M+ & /V2u) +y2 (Y +ig, 1V2u)1(Q)
space by taking the Fourier decomposition of the fields in ~ 2(i0+1—p) '
order to understand the role of the first nonlinear correction (53)
in the squeezing spectrum. It is important to stress that most
of the measurements are performed in Fourier space.

)

The nonlinear corrections to the spectrum have a stnkyl
ingly different behavior than the case of the squeezing mo-
ments. The reason for this is that the nonlinear corrections — [y52% (x{V+ &, /v2u) =X (Y +i €, /\2u1)1(Q)
are due to low-frequency, narrow-band critical fluctuations. ~— 2(0Q+1+p) :
These have a very small effect on the moments, which cor-
respond to an integral of the spectrum over all frequencies,
unless extremely close to threshold. However, they can have
a very large and disruptive effect on the very important zero- We now calculate the spectrum of the squeezed figld
frequency component of the squeezing spectrum, where thehich is given by(y,(Q)y1(Q,)). Thus, we obtain
guantum noise is at its lowest level.

1. Squeezing correlation spectrum

(Y1(Q1)y1(Q2)) = (¥ (Q1)y(Q,))

2/y(1) v(3)
The spectrum can be calculated directly from the Fourier +g%(y{(Q)y P (Q1) +[0,-Q,])
transform of the stochastic equations. We also represent the +o. (54)
white noise that drives the stochastic equations by its Fourier

transform¢, (2, where the spectral moments of the sto-The contribution from the first-order perturbation theory is

A. PositiveP representation

chastic processes are the usual linearized squeezing result, given in this case by
(£a(2))=0,
2ud(Q1+Q5)
YP(Q)YP( Q) =~ le (55)
(£a(Q)E(Q))= 8p8(Q+Q). (49 [Q3+ (14 w)7]

It is also useful to introduce a standard convolution notationSimilarly, the complementarfunsqueezedspectrum is
where
- - 28(Q+ Q)
RQ)XM Q)= rrrrEme
[A*B](Q)= f A(Q’)B(Q Q. (50) 1 K
Also, we can obtain the next-order contribution to the

The stochastic equations may now be rewritten in the fresqueezing, by calculatlng/(3)(ﬂ1)y(1)((22)>. To check the
guency domain as follows. results, we can compare with the moment calculations, since
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e ——
YOOYI))ss f\r—fJ—xyPuz (02). ‘\\\\\\\\\\////////’”
(57

Using these results, we find that the internal spectrum of the
squeezed quadrature, to this order, is given by &
>

(V1(Q1)¥1(05)) = 8(Q1+ Q5)S(Qy), (58

and the squeezing spectrum is calculated to be

_ 2.2 2,.4_,2 , .
SQ)= 2 N 29°u Y, (Q°+1—pu%) r: = o ; >
Q%+ (1+p)®  [Q%+(1+wp)?)% | 2pyr(1—p?)
FIG. 3. Total OPO squeezing spectrum wigft=0.001,y,
: | | o
(I-p+y)(1+u)—Q =0.5. Theu values plotted are 0.1,0.3,0.5,0.7,0.9; larger values of
_ 2 _ 2 4 give the most squeezingpwest spectral varian
(1= Q2+ (1= pty)7] ive th ingp | variange
(14 p+ y)(1+p)— Q2
- (14 )[Q%+ (1+ p+ 7] : (59) Substituting from the first-order spectrum, the final result
r

to this order is obtained to be
The corresponding external squeezing spectrum is then

P YP(Q)YP ()

4p
(V=1- s
Q4+ (1+w)
Aply IN278(Q+ O+ Q3) 63
4 2. 2 QZ+1_ 2 = — .
[929“%2F|( ) (103+ Y[ OF+ (1= w23+ (1+ )]
(14 w)1° ( 2uyr(1—p)
(1=t y)(1+ ) — 02 To check this result, we can evaluate moments,
r

(1= wQ2+ (1= p+y)?]

C (Atpty)Q+p)-02
(1+ W[ Q%+ (1+pu+v)2)

dQ dQ dQ
(1) (1) (2) 1 2 3
X5/(t f
(X7 (t)yy (1))ss= 5r) om o

X exiQ+Q,+ Q4]

(60)

This equation gives the complete linear and nonlinear ~1) ~) ~2)
squeezing spectrum, including all the nonlinear correction XX (Q2) Y1 (Q2)y5 7 (23)).
terms that contribute to ordgf or 1N. An illustration of the (64)
behavior of the total spectrum is given in Fig. 3.

Figure 4 shows how the nonlinear contribution change
with driving field, giving just the portion of the spectrum
proportional tog?.

on integrating, we obtain the same result as in our moment
calculation given above.

. . -3
2. Triple spectral correlations x10

Next, we can calculate the triple spectral correlations, giv-
ing as in the moment calculations, 3

AV(Q)
N

(X1(QD)Y1(Q2)Y2(03)) = g(x Q) Y(Q)YE(Q3)).

Solving fory{?), we have (())\g /////
2 > / 2
~ 03 -0

ZMQ)YP(Q)YP(Q3))

B -2 o
(1) Ve) S(Dxy(L)
X3 (€ Qo) [ Xy /* Q
__T 4 (@0)ys (D2 ¥i'1(Qs)) . (62 FIG. 4. Nonlinear OPO squeezing spectrum witly
(iQ3+ ) =0.001,y,=0.5. The maximuny value plotted isu=0.95.
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B. Semiclassical theory <y1(Ql)y1(Q ))= <y(1)(91)y(1) Q,))
We will now compare these results with the correspond-

ing results calculated in the semiclassical theory. Some dif- +92{<y(2)(91)y(z) Q2))
ferences between them could be an interesting test compar- B0,
ing quantum-mechanical predictions with a hidden-variable +<y (Q2))
theory. RO 68
Again, the spectral correlations are calculated from the (y (Q)}+---. (68)
Fourier transform of the stochastic equations. In the fre-
guency domain, the equations are written as follows. The first-order perturbation theory generates the usual lin-
(2) First order: earized squeezed result as in quantum theory,
()= (fix—i(m) G,y 220t 0 ©
i - =
M y 1)Y 2 Qi-ﬁ-(l-’—,u,)z
- V26,1(Q)
(1) _ yl L L .
yi(Q) —(i9+1+,u)’ and, similarly, for the amplified fluctuation quadrature
~ 2yr&x(Q)) ~ 26(Qy+Q))
(1) r=x (1) (1) —
X5(Q)= ————, X X;i(Qp))y=—F—""—">, 70
2 (Q) (i1Q+y) (X3(Q1)x77(£22)) 021 (1-p)? (70)
"9(1)(9): 2?’r§y2(9) _ (65) and for the pump quadratures, there is no first-order squeez-
2 (iQ+v) ing,
(2) Second order: . . .
o (U Q)x(Q2)) = (Y50 (00)¥57(Q2))
()= XX+ y Py Q) 4y?
! 2(i0+1-p) = —5—58Q:+Q,). (7D
Q7+ 7r
KOFE-FOH) )
Y2(Q)= - o fi ;
Q)= 200+ 1+ ) , The next contribution to the squeezing field quadrature is
X2 (Q)=- rXoE Yyl Py (Q,) = Kbt Ml ot D)
2 2(iQ+y,) ' Q24 (1+p)?
T(1),T(1) 1—pt+y,
~ Y [X37*yi71(Q) X
(2) - 72
) e T SV (66) (1= w03+ (1-p+ )’
(3) Third order(subharmonic fielgd N 1+uty
- (1+ [0+ (1+ p+ )]
x2(Q)
i (72
B R Rt A et kel (O N
2(iQ+1—p) '
Q) YPQDYP(Q))+ (Y (@)Y Q)
2
| [XPRTR + KDY y(l)*x(z)](()) _2py 6+ Qr) | A+ (A-pty) -
= 2001+ p) [QI+ 1+ | A-w[03+(1-p+y)?]
6
©7 A+pepty)=0F  aw | oo
Squeezing correlation spectrum I+ w[Q2+ A+ u+y)?] w(1-ud)]’
The spectrum of the fields are given, for instance, for the
squeezed quadratuyg by The internal(symmetrically orderedsqueezing spectrum is
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92%

_ N 2pdtp) (A=pt Q2+ [(A+ p)?+ 2p(1+ ) J(1+ p+ )
Q%+ (1+p)?  [Q%+(1+w)?)?

Y (1—u?) (1+w[Q%+ (14 p+y,)?]
. <1+u+%)92+<1—u2><1—u+m]
(1- [ Q%+ (1— p+9,)?%]

S(Q)

(74)

Of greater interest is the external squeezing spectrum, which is obtained by including both internal fields and the correlated

reflected vacuum-noise terms,
w(1+Q%=u?)
¥ (1—u?)
A-p-pr ¥) = 2pP 10+ [1- ut+ y [ 1+ p+ u?+ u®]
(1= w[Q%+(1—u+ )%
A+t ps Y +2pP1Q%+[1+ u+ y [ 1+3u+ p?— p®]
(1+ [ Q%+ (1+ u+y,)?]

4 2%
QP+ (1+p)?  [Q*+(1+p)?)?

V(Q)=1-

(79

This semiclassical spectrum is quite different fromwhich means that the truncation approximation used for the
positiveP calculation whenu—0 but gives a compatible semiclassical calculation is more reliable.
result near threshold, that is in the limit—1. A detailed
comparison of the zero-frequency behavior is shown in C. Optimal squeezing

Fig. 5 i ) ) It is interesting to evaluate the squeezing or low-noise
This means that even when the pump is off, semiclassicgjyantum correlations in the limit of zero frequency, that is, in
theory gives a distorted vacuum spectrum due to the presne resonance regime, which is generally the frequency of

ence of the nonlinear crystal. This happens because in thigaximum squeezing. We obtain from the positReesult,
theory the vacuum fluctuations are taken as real, and then

two vacuum modes can interact inside the crystal as real

) L vy 29?
fields. In the limit of y,— 0, the two spectra become com- V(0)=1- 5+ 2
patible again, as the semiclassical theory decouples the 1+ (I+pw)
second-harmonic mode from its vacuum input in this limit. 2
; ; 4y pu(y+2)
In the case of threshold fluctuations, we can interpret the ) (76)
agreement as due to the large photon numbers involved— (1= w)[(1+ y) %= 2]

Near threshold, wherge~1, we can seju=1+ 4, and
expand in powers 065<0. Minimizing this result with re-
spect tos, we find that, to leading order ig, the optimal
driving field is the solution to the following equation:

é\3(25_{' 7r[7r+2])22927r(7r+2)(45_ YLy +2]).

This is a quintic equation, but it has simple closed-form
solutions in two limits, depending on whether>g?* or
v:<9g?". In the first case, the variance can be rewritten as

(77)

Minimizing this result with respect t®, we find that the
inimum level of internal fluctuations occurs in a narrow

FIG. 5. Comparison of zero-frequency nonlinear squeezin o ; .
requency range nea® =0, at a driving field just below

spectrum between the positiVe{solid lineg and Wigner(dashed

SR
line) methods, withg2=0.001. Values ofy,=0.01,0.1,1,10,100 are threshold, with5=—g** so that
used for the different lines plotted, with the lowest valuesypf
giving the smallest nonlinear correction. Bop=1—0g%2 (79
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V()
V(Q)

3

0.75 08 085 0.9 0.95 1 1045 o1 0 01 0.2
u Q

10

FIG. 6. Optimization of zero-frequency squeezing spectrum ver-  FIG. 7. Optimal zero-frequency squeezing spectrum versus fre-
sus driving field using the positive-method, withg?=0.001. Val-  quency using the positivB- method with g?=0.001,y,=0.01.
ues ofy,=0.001,0.01,0.1,1,10 are used for the different lines plot-Driving fields of ©=0.9,0.93,0.96 are used for the different lines
ted, with the lowest values ofy, giving the best results for plotted, with the higher driving fields giving the best results for
squeezing. squeezing, except at zero frequency.

To leading order irg, the corresponding spectral variance is This result can be much smaller than predicted by the calcu-
lation of Plimak and Wall$14], since the damping ratio can
3 s be reducedat least, in principlgto an arbitrarily low level—
Vopi(0)= Zg ' (79) although still bounded below by?, in order for perturbation
theory to be applicable, so that we do not expect to obtain

This result of arN~?3 scaling confirms an approximate cal- VOpt(Q)<92- Of course, there are experimental limitations
culation of Plimak and Walls[14], although the self- ©ON this due to absorption losses in the nonlinear medium at

consistent method used by these authors makes it difficult 810"t wavelengths. Thus, for example, with the same value of
obtain the relevant driving field. g°=0.001 as previously, but witk, =0.01, we find that the
The physics of this is clearly that the onset of critical Minimum spectral noise is predicted to occur ata driving
fluctuations starts to spoil the noise reduction even before th#€ld of x=0.93 with a squeezing variance of X20", or
critical point is reached at.=1. For example, withy,~1 about 27 dB below shot noise—about 6 dB lower than be-
and x=0.9, we find that/(0)=0.7x 102, or about 21 d8  fore. , , _
below shot noise, as predicted from the analytic theory. This 1hiS operating regime also has the property that the opti-
can also be seen from the way that the third-order term in™Um frequency of noise reduction moves away from zero
cludes contributions from the critical fluctuations xg. A frequency as the driving field is increased above the opti-
direct calculation from the full spectrum shows that this is aMUm value, towards threshold. At slightly higher driving
true minimum for all frequencies, even includifig>0. fields than the optimum point, a bifurcation to a spectrum
However, the situation clearly changes as—0, in with two minima occurs, although with similar levels of

which case much greater levels of spectral noise reductiof©iSe reduction, as shown in Fig. 7. In this regime the results
are possible. This is plotted in Fig. 6. of the perturbation theory need to be checked by a full simu-

Analytically, this limit gives the following result, pro- lation of the s.tochasti.c equations. We.have .carried this out
vided thatg?< y,<g?% (see next sectigrand find that the full simulations do agree
' very well with the analytic predictions, even with this small

) ) damping ratio.

1 2
VO)=;|s2+ L 42T (80)
4 2 52 . - .
D. Numerical simulations
Minimizing this result with respect t@, we find that the The value of the nonlinear correction to the spectrum of
minimum level of internal fluctuations occurs at a driving the squeezed quadratug(2) can be worked out from a full
field very close to threshold, with numerical simulatiorj23] of the relevant nonlinear stochas-

tic equations. The optimal squeezing in the zero-frequency
—1—g¥2(2y) Y 81) part of the squeezing spectrum is predicted to scal‘é‘a7_é3
Hopt 9 Yr with roughly equal values of decay rates. For the simula-
tions, we chose values &f=g~?=10°, v,=0.5. The simu-
lations used a total dimensionless time interval 0f,y
=1000. To ensure equilibrium, only the last 500 time units
Vopi(0) =gy, /2<g*?, (82)  were utilized in the Fourier transforms. Time steps of

The corresponding variance is therefore:
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x10° . . . . 1.2

0 . . - - - Yo 5 0 5 10
45 A o5 o 05 1 15 Q

. . . ) . FIG. 9. Numerically simulated optimum nonlinear squeezing
FIG. 8. Numerically simulated optimum nonlinear squeezing,ith 9%=0.001,7,=0.01, x=0.93. Solid line is the positive:
. » Jr . 3 . .

o . o it oo S

with g°=0.001,7,=0.5, x=0.9. Solid line is the positivé simu-  gimyjation result, dashed line is the analytic prediction from

lation result, dashed line is the analytic prediction from perturbation, ositivep perturbation theoryresults are identical with the Wigner

theory, dashed-dotted line is the Wigner prediction. prediction. Analytic predictions in this case are very close to
numerical-simulation results.

A7=0.1 and A7=0.2 were compared to ensure conver- ) ) )

gence. The algorithmic technique is described elsewhergimulation ior 7r:0-01'/i:0-93 with 7p4,= 2000, tlmie
[24], it uses a semi-implicit central-partial-difference tech-St€Ps 0fA7=0.05 andA7=0.1 for error checking, and 10
nique. To obtain the small nonlinear corrections near the oplfajéctories. The results show that the analytic predictions
timum squeezing, we simulated the difference between thand numerical simulations are almost indistinguishable in
linear and nonlinear forms of the stochastic equation, in oriNiS regime. The sampling error was relatively larger, possi-
der to minimize sampling errors. It was also useful to initial- Py dué to the fact that the absolute noise levels are lower
ize thex quadratures with a Gaussian ensemble close to thBere: The agreement indicates that the perturbation theory is
known steady-state variance, in order to reduce the tim&" excellent approximation to the full nonlinear equations
taken to achieve equilibrium. Typically, the relative error in With these parameters.

the correlations due to finite step size was around*ith
these step sizes. VI. CONCLUSION

For these parameters the optimal driving field is predicted -y have calculated the nonlinear guantum fluctuations in

to occur atu=0.9, or approximately 80% of the critical 5 parametric oscillator below the classical threshold, using a
intensity. We used fOtrajectories to improve the relative oninear stochastic positivie-theory, with both asymptotic
error dug to samp!lng with a f|n|te-traject9ry population, giv- approximations and a numerical technique. There is excellent
ing relative sampling errors of less than £0 . _agreement between numerical and analytic calculations. Cor-
The calculated squeezing moment from the stochastic difrggnonding results for the Keldysh-diagram method require a
ferential equation simulations was(y?)+0.5=0.0271  summation over infinite sets of diagrams, in order to fully
+107% This is in excellent agreement with the below- include the reservoirs. The advantage of the present method
threshold expansion, which givé¥7)+0.5=0.0272, as this is due to the fact that the coherent-state basis is a more natu-
is just outside the critical region. ral basis set for an open system, since it allows the damping
We find that the spectral predictions are also well verifiedreservoirs to be treated nonperturbatively.
by the simulations. These resulted in a value, for the nonlin- Optimal squeezing in the output spectra corresponding to
ear correction to the zero-frequency spectrum,Adf(0)  these moments were estimated. We found that the best
=V(0)—V1)(0)=3.75x 10 3+ 0.02x10 3. By compari- squeezing in the zero-frequency part of the squeezing spec-
son, the analytic theory, worked to fourth ordergngives  trum scales likeN =2 just below thresholdprovided the two
the prediction that\V(0)=4.02x 10" 3. The residual differ- fields have similar damping rateB other words, at the true
ence of about 5%—which is significant compared to sam<critical threshold—where the linear squeezing is
pling error—can be attributed to the fact that there areoptimized—the nonlinear corrections are too large to give
higher-order corrections that are not included in the analytithe lowest overall zero-frequency squeezing. Instead, one
theory, and these are more significant in the zero-frequencghould operate below the critical point to optimize the spec-
spectrum than they are in the moment calculation. Figure &al squeezing. Using an entirely different method, a calcula-
shows the detailed results of the simulation. tion by Plimak and Wall§14] also predicted that the opti-
In the analytic theory, we found that a smaller decay ratanum zero-frequency squeezing spectrum scalesNiké”®,
for the second harmonic is predicted to yield a better squeeor equivalently, ag ~ 2 for a given input fluxl. Our general
ing optimum as a function of the driving field. In Fig. 9 we scaling results agree with theirs, except with a different spec-
verify this to be the case by carrying out a full numerical trum. We attribute the difference to the systematic posikve-
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stochastic-diagram procedure used here to calculate the spatassical technique, was also carried out. Well below thresh-
trum, rather than the Feynman-diagram method—which ineold, we found that while the linear terms agreed with full
volves additional approximations. quantum calculation, nonlinear corrections and higher-order
We also found a new regime in which the lower limit to correlations tended to disagree, especially for high second-
the spectral noise reduction depends on the decay rate of th@rmonic losses. However, near the critical point, the situa-
second-harmonic field, which can be reduced to an arbitrarilyion changed. Here, even though the dominant terms are non-
low level. This has a reasonable physical interpretation, sincknear, we found excellent agreement between the two
the second-harmonic losses are essentially parasitic lossesgthods.
which do not contribute to the desired squeezing output. The
ultimate limit to squeezing in this regime is set by even
higher-order terms in perturbation theory. We conjecture that
optimization of both the driving field and the relative decay = We acknowledge the financial support of FAPEBFazil)
rate may result in a final squeezing variance scaling aand the Australian Research Council. One of the authors
yolle. (K.D.) would like to acknowledge the hospitality of the Uni-
A calculation with the truncated Wigner method, or semi-versity of Queensland.
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