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Dynamically turning off interactions in a two-component condensate

D. Jaksch, J. I. Cirac, and P. Zoller
Institut für Theoretische Physik, Universita¨t Innsbruck, A–6020 Innsbruck, Austria

~Received 23 October 2001; published 1 March 2002!

We propose a mechanism to change the interaction strengths of a two-component condensate. It is shown
that the application ofp/2 pulses allows us to alter the effective interspecies-interaction strength as well as the
effective interaction strength between particles of the same kind. This mechanism provides a simple method to
transform spatially stable condensates into unstable ones and vice versa. It also provides a means to store a
squeezed spin state by turning off the interaction for the internal states and thus allows to gain control over
many-body entangled states.
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I. INTRODUCTION

The experimental achievement of atomic Bose-Einst
condensation~BEC! @1–4# has stimulated extensive theore
ical and experimental studies in this area. One of the m
impressive examples of the applications of BEC is to u
condensates with internal degrees of freedom to gene
quantum entanglement@5–11#, which is the essential ingre
dient for many quantum-information protocols@12#. It has
been shown that the coherent collisional interactions
BECs allow to generate substantial many-particle entan
ment in the spin degrees of freedom of a two-compon
condensate@5# during the free evolution of the condensate
The whole time evolution of the internal degrees of freed
is determined by the interaction strengths between the c
densed particles. Thus it is desirable to control these inte
tion strengths by some external means since this opens
possibility to engineer many-particle entangled states.

One possibility is to change the atomic-interaction pot
tial directly by applying an external magnetic field, whic
changes the scattering length. If one uses Feshbach
nances@13–15# this method allows for considerable chang
in the interaction properties of BECs. In this paper we w
propose another method to externally control the interac
strengths usingp/2 pulses. This will not directly change th
interatomic-interaction potential but will rather implement
effectiveHamiltonian with an interaction strength dependi
on external parameters, which can be adjusted easily. We
use this effective Hamiltonian to study the influence
changing the interaction strengths on the external wave fu
tion. Furthermore, we will be able to control the time evo
tion of the internal degrees of freedom, which are sol
determined by the effective interaction strengths. In parti
lar, we will show how to turn off the Hamiltonian for th
internal states, i.e., the internal states will evolve like tho
in an ideal gas.

Let us briefly explain the basic idea for changing the
teraction strengths of BECs usingp/2 pulses: If we fix the
spatial mode function of a two-component condensate
dynamics of these two components is described by
Hamiltonian@5,8#

H int5x J̃ z
2 , ~1.1!
1050-2947/2002/65~3!/033625~7!/$20.00 65 0336
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where J̃z is the z component of an angular momentum o
eratorJ̃5$J̃x ,J̃y ,J̃z% given by

J̃x5
1

2
~a†b1b†a!,

J̃y5
i

2
~b†a2a†b!,

J̃z5
1

2
~a†a2b†b!, ~1.2!

where a and b are bosonic destruction operators, resp
tively, for particles in internal states 1 and 2 with a spati
mode functionw1(2) . The parameterx is determined by the
interaction properties of the two-component condensate.
apply p/2 Raman-laser or microwave pulses to the cond
sate, which rotate the spin around thex or y axis by an angle
p/2 depending on the phase of the pulse as we will show
Sec. II B. The idea is to use a sequence ofp/2 pulses that
rotatesH int to create contributions to the Hamiltonian give
by xJx

2 andxJy
2 for a timezdt while the system evolves with

xJz
2 for a timedt.
Time averaging leads to an effective Hamiltonian, whi

can be written as

H̃ int
eff5

x J̃ z
21zx~ J̃ y

21 J̃ x
2!

112z
[x

~12z!J̃ z
21z J̃2

112z
. ~1.3!

The operatorJ̃2 is a constant of motion and the Hamiltonia
therefore, is equivalent toH int

eff5x̃ J̃ z
2 up to a ~time-

dependent! global phase. Thus, the application of thep/2
pulses effectively leads to a change in the interaction par
eters fromx to x̃5x(12z)/(112z). For z51 we find that
the effective HamiltonianH int

eff vanishes. The internal state
then evolve like those in a noninteracting gas.

The paper is organized as follows. In Sec. II we will i
troduce the model. After writing down the Hamiltonian of
two-component condensate interacting with a classical la
or microwave field we will define a specific series of puls
applied to the condensate. Then we will calculate the tim
averaged Hamiltonian and determine the dependence o
©2002 The American Physical Society25-1
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effective interaction strengths on parameters of the exte
field. In Sec. III we will study possible applications of th
effective Hamiltonian. We will investigate the influence
changing the interaction strength on the spatial wave fu
tions of the condensate as well as on the evolution of
internal atomic degrees of freedom. Section IV is devoted
the discussion of approximations and possible imperfecti
in our model. We conclude in Sec. V with a discussion a
summary of our results.

II. MODEL

In this section we start with the Hamiltonian of a tw
component condensate interacting with an external field.
investigate the effect ofp/2 pulses on the condensate a
specify a specific series of pulses. We show that this spe
choice of pulses effectively leads to a change in the inte
tion strengths of the condensate.

A. Hamiltonian

We consider a two-component BEC consisting ofN atoms
in different atomic hyperfine levels 1 and 2 coupled by
time- (t-) dependent classical field with Rabi frequen
V(t) ~internal Josephson effect@16–19#!. The classical field
can be realized by either a Raman laser or by a microw
field applied to the condensate. We assumeV to bex inde-
pendent, i.e., there is negligible momentum transfer to
condensates due to the interaction with the classical fi
The Hamiltonian of this system is given byH5HBEC
1HL , where HBEC5H1(u)1H2(u) and HL describe the
two-component condensate and the interaction of exte
field and condensate, respectively@20–22#. These terms are
given by ~with \51)

Hk~u!5E d3xck
†S 2

¹2

2m
1Vk1(

l

ukl

2
c l

†c l Dck ,

~2.1a!

HL5E d3xFV~ t !

2
c1

†c21H.c.G . ~2.1b!

Here,$k,l %P$1,2% andck[ck(x) is a bosonic field operator
which annihilates a particle at positionx in hyperfine state
uk&. The trapping potential for particles in statek is denoted
by Vk[Vk(x) and the mass of the atoms ism. The interac-
tion strengths are given byu5$u11,u22,u12%, where for sim-
plicity we assumeu115u22[u for the interaction between
atoms in the same internal state, andu12Þu as is the case in
Na @22#. Furthermore we assume the trapping potential
the different internal states to be equal, i.e.,V15V2[V. We
denote the first excitation energy ofV by v and the size of
the single-particle ground state in the potentialV by a0.

HL describes the interaction of the external field with t
condensate. We assume that this external field is use
apply a sequence ofp/2 pulses to the condensates. While
is turned on, the Rabi frequency is constantV(t)5V0. The
duration of thep/2 pulses is thus given bytd5p/2V0,
which is assumed to be much shorter than the time s
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determined by the evolution of the condensates due toHk ,
i.e., V0@v and V0@Nu/a0

3 @23#. Next we investigate the
time evolution of the system while the external field is turn
on.

1. Interaction with the external field

While HL is turned on, i.e.,VÞ0 it is the dominant part
of the HamiltonianH and we neglect contributions ofHk . A
p/2 pulse is characterized by

V~ t !5uV~ t !ueia, E
2`

`

uV~ t !udt5p/2 ~2.2!

with a phasea, and it implements the following time evolu
tion for the bosonic field operators in the Heisenberg pictu

Ua
† S c1

c2
DUa5

1

A2
S 1 2 ieia

2 ie2 ia 1 D S c1

c2
D . ~2.3!

The inverse transformation is given byUa
†5Ua

215Ua1p .

2. Spin operators

To get an intuitive picture of the effect ofp/2 pulses on
the condensate we define the spin operatorJ5$Jx ,Jy ,Jz% by

Jx5
1

2E d3x~c1
†c21c2

†c1!,

Jy5
i

2E d3x~c2
†c12c1

†c2!,

Jz5
1

2E d3x~c1
†c12c2

†c2!. ~2.4!

In the Heisenberg picture these operators are transforme
the p/2 pulses according to

UpJzU05Jy , U2p/2JzUp/25Jx . ~2.5!

Thus the application ofU0 andUp/2 to the condensate cor
responds to a rotation of the spinJ around thex andy axis by
an anglep/2, respectively.

3. Series ofpÕ2 pulses

We want to consider a specific sequence of pulses app
repeatedly to the condensates. One sequence of puls
shown in Fig. 1~a! while Fig. 1~b! shows the whole series o
pulses. As can be seen from Fig. 1~a! the condensate firs
evolves freely for a timedt. Then ap/2 pulse rotates the
spin instantaneously around they axis by an anglep/2 and
back after a timezdt. Immediately afterwards, we rotate th
spin byp/2 around thex axis and then back after timezdt.
This sequence ofp/2 pulses is repeated as shown in F
1~b!. Each sequence takes a timetc5(112z)dt, neglecting
the timetd needed to apply a pulse.

There are thus four time scales in this model:~i! td the
duration of ap/2 pulse;~ii ! tc , which is the time needed fo
applying a sequence ofp/2 pulses;~iii ! tBEC51/v, which
5-2
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DYNAMICALLY TURNING OFF INTERACTIONS IN A . . . PHYSICAL REVIEW A 65 033625
determines the time scale of the free evolution of the c
densates; and~iv! t int5a0

3/uN, which is the time scale set b
the interactions between the particles@23#. These four time
scales are assumed to satisfy the relationtd!tc!tBEC't int ,
which can easily be achieved by an appropriate choice
external parameters.

4. Time-averaged Hamiltonian

We now want to study the time evolution of the conde
sates when the pulses specified in Sec. II A 3 are applie
the system. The time-evolution operatorU M at time t
5Mtc , i.e., after applyingM pulse sequences is given by

U M5)
l 51

M

U, ~2.6!

where

U5Upe2 iH BECzdtU0U2p/2e
2 iH BECzdtUp/2e

2 iH BECdt

[e2 iH efftc. ~2.7!

To first order intc , we find for the effective Hamiltonian

Heff5
HBEC1z~Up/2HBECU2p/21U0HBECUp!

112z

5H1~ ũ!1H2~ ũ!, ~2.8!

whereũ5$ũ11,ũ22,ũ12% with ũ115ũ22[ũ and

ũ5
u1~u1u12!z

112z
,

ũ125
u1212uz

112z
. ~2.9!

The effective interaction strengthsũ andũ12 appearing in the
time-averaged HamiltonianHeff depend on the parameterz.
Experimentally this parameter can easily be changed by
justing laser or microwave parameters. In Fig. 2 we show
dependence of the interaction strength on the parametez.
The situationz50 corresponds to the case of applying
pulses. We have assumedu.u12, i.e., a spatially stable two
component condensate. By increasingz we find thatũ de-

FIG. 1. Schematic plot of the sequence of laser pulsesV/V0

against timet in arbitrary units.~a! Sequence ofp/2 pulsesV(t)
applied to the two-component condensate betweenntc and (n
11)tc . The anglea of the p/2 pulses is shown above the corr
sponding pulse. Graph~b! shows the whole series of pulses, whic
consists ofp/2 pulse sequences shown in~a!.
03362
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creases andũ12 increases. Atz51 the two effective interac-
tion strengths are crossing. This situation corresponds to
case where the internal HamiltonianH int

eff50 as discussed in
Sec. I.

Qualitatively we can understand how an effective chan
in the interaction strengths arises by looking at the time e
lution of a condensate with initially all the particles in sta
uk&. If no laser pulses are applied to the condensate,
phase accumulated due to the interaction during a timezdt is
proportional touzdt. However, if ap/2 pulse is applied the
condensate is put into a superposition state of the inte
statesu1& and u2& according to Eq.~2.3!. In this case the
phase accumulated during a timezdt is proportional to (u
1u12)zdt/2. Then a secondp/2 pulse brings the condensa
back to the internal stateuk&. Effectively the twop/2 pulses
thus lead to a change of the interaction strength.

B. Two-mode approximation

In this section we use the two-mode approximation
deriving the coupled Gross-Pitaevskii equations~GPE! for
the condensate. Then we investigate the time evolution of
internal atomic degrees of freedom.

1. External degrees of freedom

We assume that the condensate can be described u
only one spatial-mode function for each component, i.e.,

c1~x,t !5aw1~x,t ! and c2~x,t !5bw2~x,t !,
~2.10!

wherewk(x,t) is the spatial wave function of condensatek
anda ~b! is the bosonic annihilation operator for particles
condensate 1~2!. We put this ansatz into the Hamiltonia
~2.8!; assume the state of the condensate to be

uc&5
~a†!N1~b†!N2

AN1!N2!
u0&, ~2.11!

with N1 particles in condensate 1,N2 particles in condensate
2, and u0& being the vacuum state. Minimizing the expre
sion

FIG. 2. Interaction strengthũ ~solid curve! for particles in the

same hyperfine level andũ12 ~dashed curve! for particles in differ-
ent hyperfine levels as a function ofz. For z50 we assumed tha

ũ125u1250.7u50.7ũ.
5-3
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K cU i ]

]t
2HeffUc L ~2.12!

with respect to the wave functionsw1,2(x), we find the
coupled GPE equations

i
]w1

]t
5S 2

¹2

2m
1V1ũN1Uw1U21ũ12N2Uw2U2Dw1 ,

i
]w2

]t
5S 2

¹2

2m
1V1ũN2Uw2U21ũ12N1Uw1U2Dw2 ,

~2.13!

wherew1,2[w1,2(x,t) and ũ and ũ12 are time dependent.

2. Internal degrees of freedom

We want to simplify the model further by assumingN1

2N2 being ofO(AN) and settingw15w2[w in the ansatz
for the bosonic field operators. Minimizing the terms
O(N) in expression~2.12! we find the GPE

i
]w

]t
5S 2

¹2

2m
1V1N

ũ1ũ12

2
UwU2Dw ~2.14!

for the wave function. Ifw fulfills the above GPE, the term
of O(AN) vanish in Eq.~2.12! and the time evolution of the
internal atomic degrees of freedom is given by the Ham
tonian ~up to a global phase!

H int
eff5x̃ J̃z

2 , ~2.15!

where

x̃5x
12z

112z
with x5~u2u12!E d3xuwu4.

~2.16!

At z51 the parameterx̃50. There will thus be no dynamic
of the internal degrees of freedom even forN1ÞN2. The
internal spin operatorJ̃ is obtained fromJ by using ansatz
~2.10! and is explicitly given in Eq.~1.2!. A physical inter-
pretation of the evolution of the internal atomic states w
already given in the Introduction.

Putting the two-mode ansatz~2.10! into the time-
evolution operatorU M we find

U int
M 5)

l 51

M

@Ũpe2 iH intzdtŨ0Ũ2p/2e
2 iH intzdtŨp/2e

2 iH intdt#,

~2.17!

whereŨa is obtained fromUa by replacing the bosonic field
operatorsc1 , (c2) with the corresponding annihilation op
eratorsa (b).

III. APPLICATIONS

In this section we study possible applications of chang
the interaction strength between the condensate discu
03362
-
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above. First we show how stable condensates can be d
bilized and vice versa. Then we investigate how a squee
state of a two-component condensate can be preserve
turning off the interactions for the internal states.

A. „Un…stabilizing a two-component condensate

The properties of multicomponent condensates such
spin-domain formation have been studied extensively b
experimentally@20,24–27# and theoretically@19,28–30# in
the last few years for constant interaction strengths. Here
study the effect of varyingz and thus changing the interac
tion strengths between the condensed particles on the

densate wave functionswk and the spatial stability. Forũ

.ũ12 two initially overlapping condensates should rema

spatially stable while forũ,ũ12 they separate.
We solve numerically Eq.~2.13! in one spatial dimension

The trapping potential is assumed to be harmonic,V(x)
5mv2x2/2, where v is the trap frequency anda0

5A\/mv is the ground-state size. Figures 3~a,b! show the
condensate wave functionsw1 and w2, respectively. We
changez(t) as shown in Fig. 3~c!. Initially z(0)50 and we
assume thatu.u12, i.e., the two condensates are strong
overlapping. Whenz(t).1 the repulsion between atoms
different hyperfine states separates the condensates in s
since thenu12.u ~as can be seen from Fig. 2!. As soon as
z(t) becomes smaller than 1 again, the two condensates
come overlapping again. Note that the time scale for
separation of the two condensates depends also on the
balance of the condensate particle numbersN12N2. For
N15N2 the two condensates do not separate for the par
eters chosen in Fig. 3.

FIG. 3. Condensate wave functionsw1 andw2 as a function of
time and spatial coordinatesx1 andx2 are shown in graphs~a! and
~b!, respectively. Light regions indicate large condensate den
dark regions do not contain condensed particles.~c! Parameterz as
a function of time. The parameters areN155200, N254800, trap-
ping frequencyv52p340 Hz, the interaction strength is assum
to be 2u125u5331023va0.
5-4
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B. Spin-squeezed condensate states

Next we want to consider the behavior of the intern
degrees of freedom and show that by choosingz51 and thus
making the internal HamiltonianH int50 we can store a spin
squeezed state.

1. The squeezing parameter

The entanglement properties of the atoms can be
pressed in terms of the variances and expectation value
the angular momentum operatorsJ̃. Of particular interest is
the squeezing parameterj2 defined by@5#

j25min
n1,2,3

N~D J̃n1
!2

^J̃n2
&21^J̃n3

&2
, ~3.1!

where J̃n[n• J̃ and then1,2,3 are mutually orthogonal uni
vectors. Ifj2,1 the state of the atoms is nonseparable~i.e.,
entangled! as has been shown, e.g., in@5#. The parameterj2

thus characterizes the atomic entanglement, and the s
with j2,1 are often referred to as ‘‘spin-squeezed stat
@31#.

2. Preserving a spin-squeezed condensate state

We assume an initial state of the form

uc&5
~a†1b†!N

AN!
u0& ~3.2!

created by applying ap/2 pulse witha5p/2 to a condensate
of particles in internal stateu1&. The evolution of this initial
state according to the HamiltonianH int

eff with constantx̃ has
been studied extensively in@5# and leads to one-axis squee
ing as defined in@31#. Initially j251 and is then rapidly
reduced. After reaching a minimum value, the entanglem
parameterj2 increases again. Our aim is to control the int
action parameterx̃ such that afterj2 has reached its mini
mum value, further evolution of the system is suppressed
Fig. 4 we show a comparison of the time evolution with t
time-evolution operatorU int

M and the effective Hamiltonian
H int

eff . The squeezing parameterj2(t) is shown in Fig. 4~a!
and the time dependence ofz(t) is shown in Fig. 4~b!. As
soon asj2 has reached its minimum value,z goes rapidly
towards 1 and thus prohibits further evolution ofj2. The
squeezing parameterj2 remains at its minimum value, whic
is close to the minimum valuejm

2 5(3/N)2/3/2 that can be
reached by one-axis squeezing@31#. Note that the minimum
squeezing parameter that is reached by the evolution acc
ing to U int

M is smaller than expected from the Hamiltonia
Heff as long astc!tBEC is fulfilled ~cf. Fig. 4!. We find,
however, that this difference is always very small and v
ishes if we further decreasetc compared to the value used
Fig. 4.
03362
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IV. DISCUSSION

There are two different kinds of approximations in o
scheme. First, the HamiltonianHeff we use is time average
over the duration of a sequence of pulsestc and second, we
use a two-mode description of the two-component cond
sate for describing the dynamics of the internal states.
will discuss these two approximations separately since t
are independent of each other. Also, experimentally it is
possible to exactly realizep/2 pulses. Therefore, we wil
also discuss the influence of imperfections in thep/2 pulses.

A. Approximations

1. Time averaging

While HL is turned on, we neglect the free time evolutio
of the condensate due toHBEC completely. Typically the time
evolution due to the appliedp/2 pulses will take place on a
time scaletd of a few nanoseconds while the typical tim
scale for the free evolution of the condensatetBEC is of the
order of milliseconds. The neglect of the free evolution
the condensates during a pulse will lead to an error of
order oftd /tBEC'1024 and is thus well justified. The secon
step in calculating the effective Hamiltonian is to avera
over one sequence of pulses. This will typically lead to
error of the order oftc /tBEC. In Fig. 4 we compare the time
evolution according to the time-averaged Hamiltonian w
the time evolution given byU int

M for tcx5531023 and find
a very small deviation between the two results.

2. Two-mode approximation

The form of the effective HamiltonianHeff is equivalent
to the standard form of the Hamiltonian for two-compone
BECs. Therefore we expect the same range of validity

FIG. 4. ~a! Squeezing parameterj2 as a function of time. The
dotted line shows the minimum squeezing parameterjm

2 achievable
by one-axis squeezing as defined in the text. The solid curve sh
the squeezing parameter obtained by solving the Schro¨dinger equa-
tion using the effective HamiltonianH int

eff defined in Eq.~2.15!. The
dashed curve shows the squeezing parameter obtained from
time-evolution operatorU int

M with xtc5531023. ~b! Parameterz
~solid curve! and resulting relative interaction strengthx̃ ~dashed
curve! as functions of time. The numerical calculation was done
N550.
5-5
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Heff as for the original HamiltonianH. This also applies to
the two-mode approximation introduced in Sec. II B.

B. Imperfect pÕ2 pulses

It is experimentally possible to adjust the phasea of the
p/2 pulses very precisely, while it is much harder to exac
fulfill the integral condition in Eq.~2.2!. Therefore we inves-
tigate the influence of a violation of this condition on th
time evolution of our system. We assume a random Gaus
error of 1% in the value of the integral in Eq.~2.2! for each
pulse applied to the condensate and calculate the resu
time evolution in the two-mode approximation. Figure
shows the result for the squeezing parameter averaged
R52000 different realizations. As can be seen from Fig.
an error in the duration and intensity of the pulses does

FIG. 5. Squeezing parameterj2 as a function of time. The dot
ted line shows the minimum squeezing parameterjm

2 achievable by
one-axis squeezing as defined in the text. The solid curve show
squeezing parameter obtained by solving the Schro¨dinger equation
using the effective HamiltonianH int

eff defined in Eq.~2.15!. The
dashed curve is obtained by calculating the time-evolution acc
ing to the time evolution operatorU int

M with xtc5531023 and a 1%
error in the intensity of thep/2 pulses. The ensemble average ov
R52000 realizations is shown. The other parameters are equ
those chosen in Fig. 4.
an

n,

v.
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lead to a qualitatively different behavior of the system. F
some of the realizations we obtain a smaller squeezing
rameterj2 than expected from one-axis squeezing. In t
case the error in thep/2 pulses leads to some two-ax
squeezing, which yields a smaller squeezing parameter
pure one-axis squeezing@31#.

V. CONCLUSIONS

In this paper we have introduced a method to change
interaction strength of a two-component condensate byp/2
pulses. We have shown that applying a specific series
pulses to the condensate leads to an effective time-aver
Hamiltonian, which is of the form of the original two
component Hamiltonian with an interaction strength depe
ing on parameters of the external field.

As applications of this scheme we have proposed to
this Hamiltonian for turning a stable condensate into an
stable one and vice versa. We have also shown that
possible to store a spin-squeezed state of a condensate f
least, in principle, an arbitrarily long time.

Finally, we want to point out that the method to chan
the interaction strengths of BECs discussed in this paper
experimentally be realized with current technology. It is i
tended to serve as a tool to gain further insight into the pr
erties of BECs as well as to aid in engineering many-part
entangled states.
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