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Dynamically turning off interactions in a two-component condensate
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We propose a mechanism to change the interaction strengths of a two-component condensate. It is shown
that the application ofr/2 pulses allows us to alter the effective interspecies-interaction strength as well as the
effective interaction strength between particles of the same kind. This mechanism provides a simple method to
transform spatially stable condensates into unstable ones and vice versa. It also provides a means to store a
squeezed spin state by turning off the interaction for the internal states and thus allows to gain control over
many-body entangled states.
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. INTRODUCTION where], is the z component of an angular momentum op-
The experimental achievement of atomic Bose-EinsteineratorJ {Jdy 32} given by
condensatiofBEC) [1-4] has stimulated extensive theoret- 1
ical and experimental studies in this area. One of the most Jx=§(aTb+ b'a),
impressive examples of the applications of BEC is to use
condensates with internal degrees of freedom to generate i
quantum entanglemei5—11], which is the essential ingre- J,==(bfa—a'b),
dient for many quantum-information protocdl$2]. It has V2
been shown that the coherent collisional interactions in
BECs allow to generate substantial many-particle entangle-
ment in the spin degrees of freedom of a two-component
condensat¢5] during the free evolution of the condensates.
The whole time evolution of the internal degrees of freedomiwhere a and b are bosonic destruction operators, respec-
is determined by the interaction strengths between the coriively, for particles in internal states 1 and 2 with a spatial-
densed particles. Thus it is desirable to control these interadnode functione; ). The parametey is determined by the
tion strengths by some external means since this opens tligteraction properties of the two-component condensate. We
possibility to engineer many-particle entangled states. apply w/2 Raman-laser or microwave pulses to the conden-
One possibility is to change the atomic-interaction poten-sate, which rotate the spin around ther y axis by an angle
tial directly by applying an external magnetic field, which 7/2 depending on the phase of the pulse as we will show in
changes the scattering length. If one uses Feshbach resSec. |l B. The idea is to use a sequencend® pulses that
nanceg 13—-15 this method allows for considerable changesrotatesH;,; to create contributions to the Hamiltonian given
in the interaction properties of BECs. In this paper we will by XJf andXJf, for a time{ 6t while the system evolves with
propose another method to externally control the interactiorj(Jg for a time &t.
strengths usingr/2 pulses. This will not directly change the  Time averaging leads to an effective Hamiltonian, which
interatomic-interaction potential but will rather implement ancan be written as
effectiveHamiltonian with an interaction strength depending
on exte_rnal parameters, yvhic_h can be adjusted _easily. We will ot xJ §+ @3 §+j )2() (1-0)3 §+ (32
use this effective Hamiltonian to study the influence of Hin= =y
! ; h 1+2¢ 1+2¢
changing the interaction strengths on the external wave func-
tion. Furthermore, we will be able to control the time evolu- —y . -
tion of the internal degrees of freedom, which are soIerThe operatod” is a constant of mOEE” and the Hamiltonian,
determined by the effective interaction strengths. In particutherefore, is equivalent toHf=XJ> up to a (time-
lar, we will show how to turn off the Hamiltonian for the dependentglobal phase. Thus, the application of thé2
internal states, i.e., the internal states will evolve like thosepulses effectively leads to a change in the interaction param-
in an ideal gas. eters fromy to x=x(1—)/(1+2¢). For =1 we find that
Let us briefly explain the basic idea for changing the in-the effective HamiltoniarHE! vanishes. The internal states
teraction strengths of BECs using/2 pulses: If we fix the then evolve like those in a noninteracting gas.
spatial mode function of a two-component condensate the The paper is organized as follows. In Sec. Il we will in-
dynamics of these two components is described by théoduce the model. After writing down the Hamiltonian of a
Hamiltonian[5,8] two-component condensate interacting with a classical laser
or microwave field we will define a specific series of pulses
~ applied to the condensate. Then we will calculate the time-
Hin=xJ7, (1.1 averaged Hamiltonian and determine the dependence of the

(a'a—b'b), (1.2

N -

J,=

(1.3
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effective interaction strengths on parameters of the externaletermined by the evolution of the condensates duldip
field. In Sec. Il we will study possible applications of this i.e., Q,>w» and QO>Nu/ag [23]. Next we investigate the
effective Hamiltonian. We will investigate the influence of time evolution of the system while the external field is turned
changing the interaction strength on the spatial wave funcen.

tions of the condensate as well as on the evolution of the

internal atomic degrees of freedom. Section IV is devoted to 1. Interaction with the external field

the discussion of approximations and possible imperfections While H, is turned on, i.e.Q+0 it is the dominant part

in our model. We conclude in Sec. V with a discussion andOf the HamiltonianH and we neglect contributions f, . A
summary of our results.

72 pulse is characterized by

Il. MODEL Qt)=|Qt)|e', fﬁc |Q(t)|dt=m/2 (2.2

In this section we start with the Hamiltonian of a two-
component condensate interacting with an external field. We,
investigate the effect ofr/2 pulses on the condensate and
specify a specific series of pulses. We show that this specifi
choice of pulses effectively leads to a change in the interac-
tion strengths of the condensate. UZ(

ith a phasex, and it implements the following time evolu-
gon for the bosonic field operators in the Heisenberg picture:

D e M
a_ﬁ _je i 1 Wy : 2.3

The inverse transformation is given lbyZ=U;1= Ugim-

¥
o

A. Hamiltonian

We consider a two-component BEC consistindNcdtoms
in different atomic hyperfine levels 1 and 2 coupled by a 2. Spin operators

time- (t-) dependent classical field with Rabi frequency T4 get an intuitive picture of the effect af/2 pulses on

Q(t) (internal Josephson effeft6—-19). The classical field  he condensate we define the spin operate{J, ,J,,J,} by
can be realized by either a Raman laser or by a microwave

field applied to the condensate. We assuméo bex inde- L +
pendent, i.e., there is negligible momentum transfer to the Jx=§f d°X(¢pat aiha),
condensates due to the interaction with the classical field.

The Hamiltonian of this system is given bl =Hggc i

+H,, where Hgee=H;(u)+H,(u) and H, describe the Jy=§J d3X( Wi — i),
two-component condensate and the interaction of external

field and condensate, respectivgéB0—22. These terms are

. X 1
given by (with 7=1) 3=5 f d3x (gl — waiy). (2.9
+ Vz Uk + . .
Hk(u)=f d3xy| — 2—+Vk+2 7¢| | e, In the Heisenberg picture these operators are transformed by
m ! (2.1 the 7/2 pulses according to

Q) UzdUo=Jdy, U_zpdUqp=Js. (2.9
T'//Il/’ﬁ H.c.|. (21D Thus the application o), andU _, to the condensate cor-

HL: J' d3X
responds to a rotation of the splraround thex andy axis by

Here {k,I} € {1,2} andy= ¥ (X) is a bosonic field operator, an anglem/2, respectively.
which annihilates a particle at positionin hyperfine state
|k). The trapping potential for particles in stdtés denoted
by V,=V,(x) and the mass of the atomsns The interac- We want to consider a specific sequence of pulses applied
tion strengths are given hy={u;4,U,,Uq,}, where for sim-  repeatedly to the condensates. One sequence of pulses is
plicity we assumeu,;=uUx,=uU for the interaction between shown in Fig. 1a) while Fig. 1(b) shows the whole series of
atoms in the same internal state, and+#u as is the case in pulses. As can be seen from Figalthe condensate first

Na [22]. Furthermore we assume the trapping potential forevolves freely for a timest. Then an/2 pulse rotates the

the different internal states to be equal, i\¥,=V,=V.We  spin instantaneously around tlyeaxis by an angler/2 and
denote the first excitation energy ¥fby o and the size of back after a timg 6t. Immediately afterwards, we rotate the
the single-particle ground state in the potentiaby a,. spin by 7/2 around thex axis and then back after tim@st.

H_ describes the interaction of the external field with theThis sequence ofr/2 pulses is repeated as shown in Fig.
condensate. We assume that this external field is used tb). Each sequence takes a time= (1+2¢) 6t, neglecting
apply a sequence af/2 pulses to the condensates. While it the timety needed to apply a pulse.
is turned on, the Rabi frequency is constéx(t) =,. The There are thus four time scales in this modgl:ty the
duration of thew/2 pulses is thus given by,= 7/2Q), duration of am/2 pulse;(ii) t;., which is the time needed for
which is assumed to be much shorter than the time scalapplying a sequence a#/2 pulses;(iii) tgec=1/w, which

3. Series ofm/2 pulses
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FIG. 1. Schematic plot of the sequence of laser pul3ég
against timet in arbitrary units.(a) Sequence ofr/2 pulses()(t)
applied to the two-component condensate betwaénand (n

+1)t.. The anglea of the 7/2 pulses is shown above the corre-
sponding pulse. Graptb) shows the whole series of pulses, which

consists ofw/2 pulse sequences shown (&.
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FIG. 2. Interaction strength (solid curve for particles in the
same hyperfine level angj, (dashed curvefor particles in differ-

determines the time scale of the free evolution of the conent hyperfine levels as a function ¢f For {=0 we assumed that
densates; anfv) ti,=ag/uN, which is the time scale set by T_,=u,,=0.7u=0.70.

the interactions between the particl&8]. These four time
scales are assumed to satisfy the relatipRt.<tgec~tin,

creases and,, increases. At =1 the two effective interac-

which can easily be achieved by an appropriate choice ofion strengths are crossing. This situation corresponds to the

external parameters.

4. Time-averaged Hamiltonian

case where the internal Hamiltoni&tf=0 as discussed in
Sec. |
Qualitatively we can understand how an effective change

We now want to study the time evolution of the conden-in the interaction strengths arises by looking at the time evo-
sates when the pulses specified in Sec. Il A 3 are applied tlution of a condensate with initially all the particles in state

the system. The time-evolution operatof at time t
=Mt., i.e., after applying\l pulse sequences is given by

M

1/1M=|1:[1 U, (2.6)

where
U=U e Heectdy U_ e Heectdy e Heec
=g Merlc, (2.7)

To first order int., we find for the effective Hamiltonian

Hgect {(U pHgecU - 7ot UgHpecU 1)
1+27

eff—

=H,(u)+H,(u), (2.9

Wherea:{all,azz,alz} with TJM:TJZZETJ and

u+(utugyd

U=

~ Upt2uf

U12—1+—2§- (29)

The effective interaction strengthisandu,, appearing in the
time-averaged HamiltoniaH .4 depend on the parametér

Experimentally this parameter can easily be changed by ad-
justing laser or microwave parameters. In Fig. 2 we show the
dependence of the interaction strength on the parandeter

|k). If no laser pulses are applied to the condensate, the
phase accumulated due to the interaction during a tiftés
proportional tou{ 8t. However, if aw/2 pulse is applied the
condensate is put into a superposition state of the internal
states|1) and|2) according to Eq(2.3). In this case the
phase accumulated during a tingét is proportional to @
+Uy,) {6t/2. Then a second/2 pulse brings the condensate
back to the internal staté). Effectively the twom/2 pulses
thus lead to a change of the interaction strength.

B. Two-mode approximation

In this section we use the two-mode approximation for
deriving the coupled Gross-Pitaevskii equatiq@PE for
the condensate. Then we investigate the time evolution of the
internal atomic degrees of freedom.

1. External degrees of freedom

We assume that the condensate can be described using
only one spatial-mode function for each component, i.e.,

and ¢2(X,t):b¢2(x,t),
(2.10

where ¢\ (X,t) is the spatial wave function of condenste
anda (b) is the bosonic annihilation operator for particles in
condensate 12). We put this ansatz into the Hamiltonian
(2.8); assume the state of the condensate to be

P (x,t)=api(Xx,t)

B (aT)Nl(bT)Nz

——ﬁjiirﬁo% (2.11

)

The situation/=0 corresponds to the case of applying nojth N, particles in condensate N, particles in condensate
pulses. We have assumedru;,, i.e., a spatially stable two- 2 and|0) being the vacuum state. Minimizing the expres-

component condensate. By increasifigve find thatu de-

sion
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6

. d
MIE—Heﬁ ¢> (2.12
0
with respect to the wave functiong; (x), we find the aﬂ

coupled GPE equations P

6

01 v? ~ ~
|7=(—ﬁ+V+UN1 @12+ UNy| 02| 1, )=
7 ap
Nar ~ ~
IWZ(—ﬁ‘FV"‘UNz @72+ UiNy | @1|? | 02, 0 6
2.13 I —————————
~ ~ ) ¢ ]
where ¢; = @1 J(X,t) andu andu,, are time dependent. ]
0 15 30
2. Internal degrees of freedom wt
We want to simplify the model further by assumihg FIG. 3. Condensate wave functiops and ¢, as a function of

—N, being of O( \/N) and settingp, = ¢,=¢ in the ansatz time and spatial coordinates andx, are shown in graph&) and

for the bosonic field operators. Minimizing the terms of (b), respectively. Light regions indicate large condensate density,
O(N) in expression2.12 we find the GPE dark regions do not contain condensed partidlesParameter as

a function of time. The parameters a¥g= 5200, N,=4800, trap-
ping frequencyw=2mx40 Hz, the interaction strength is assumed

® (214 to be A,=u=3x103wa,.

= — = +V+N

— = 2
at 2m 2

2
¢

for the wave function. Ifp fulfills the above GPE, the terms gpove. First we show how stable condensates can be desta-
of O(VN) vanish in Eq(2.12 and the time evolution of the bjlized and vice versa. Then we investigate how a squeezed
internal atomic degrees of freedom is given by the Hamil-state of a two-component condensate can be preserved by
tonian (up to a global phage turning off the interactions for the internal states.

HEM="32, (2.15

A. (Un)stabilizing a two-component condensate
where

The properties of multicomponent condensates such as
~_ 4 ) _ 3 14 spin-domain formation have been studied extensively both
X=XT1527 with X_(U_UH)J’ d*x|¢|*. experimentally[20,24—27 and theoretically{19,28—-3Q in
(2.16 the last few years for constant interaction strengths. Here, we

study the effect of varyind and thus changing the interac-
At =1 the parametey=0. There will thus be no dynamics tion strengths between the condensed particles on the con-
of the internal degrees of freedom even M{#N,. The  densate wave functiong, and the spatial stability. Fou
internal spin operatod is obtained fromJ by using ansatz >, two initially overlapping condensates should remain

(2.10 _and is explicitly given in Eq(1.2). A physlcal Inter- spatially stable while fou<Uuj,, they separate.
pretation of the evolution of the internal atomic states was : ; o .
We solve numerically Eq2.13 in one spatial dimension.

already given in the Introduction. . S
Putting the two-mode ansatz2.10) into the time- The tzrazpplng potential 1S assumed to be harmoM¢x)
evolution operatot/™ we find =mw-X-/2, where o is the trap frequency anda,
=h/Mmw is the ground-state size. Figure&@® show the
Mo ‘ o , ~ . condensate wave functiong,; and ¢,, respectively. We
UMFH [U e Mind?UoU_ e Himéoy e~ Hind], change((t) as shown in Fig. ®). Initially ¢(0)=0 and we
=t (2.17 assume thati>u,,, i.e., the two condensates are strongly
overlapping. Wheni(t)>1 the repulsion between atoms in
whereU , is obtained fromJ , by replacing the bosonic field d'ifferent hyperfine states separates the cpndensates in space
operatorsy;, (1,) with the corresponding annihilation op- Since thenu;;>u (as can be seen from Fig).AAs soon as
eratorsa (b). {(t) becomes smaller than 1 again, the two condensates be-
come overlapping again. Note that the time scale for the
Il APPLICATIONS separation of the two condensates depends also on the im-
balance of the condensate particle numbiks-N,. For
In this section we study possible applications of changing\N; =N, the two condensates do not separate for the param-
the interaction strength between the condensate discusseters chosen in Fig. 3.
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B. Spin-squeezed condensate states a) 1

Next we want to consider the behavior of the internal ,
degrees of freedom and show that by choogirdl and thus ¢
making the internal HamiltoniaH;,;=0 we can store a spin-
squeezed state.

1. The squeezing parameter

The entanglement properties of the atoms can be ex-
pressed in terms of the variances and expectation values of

the angular momentum operatalsOf particular interest is

the squeezing parametét defined by[5] 0 0.1 Xt l 02
_ FIG. 4. (a) Squeezing parametgf as a function of time. The
N(A\]nl)2 dotted line shows the minimum squeezing paramétgachievable
§2= minﬁ, (3.) by one-axis squeezing as defined in the text. The solid curve shows
"1,2,3<Jn2> + <Jn3> the squeezing parameter obtained by solving the Siihger equa-

tion using the effective HamiltoniaHﬁ,f{ defined in Eq(2.15. The
_ _ dashed curve shows the squeezing parameter obtained from the
whereJ,=n-J and then, , 3 are mutually orthogonal unit time-evolution operatoi/}y with xt.=5x10"3. (b) Parameter,
vectors. If¢2<1 the state of the atoms is nonseparabke,  (solid curve and resulting relative interaction strengih(dashed
entangled as has been shown, e.g.,[B]. The parametegz curve as functions of time. The numerical calculation was done for
thus characterizes the atomic entanglement, and the statds 50.

with £2<1 are often referred to as “spin-squeezed states”
[31]. IV. DISCUSSION

There are two different kinds of approximations in our
scheme. First, the Hamiltonidi.4 we use is time averaged
We assume an initial state of the form over the duration of a sequence of pulsgsnd second, we

use a two-mode description of the two-component conden-
sate for describing the dynamics of the internal states. We
|0) (3.2 will Qiscuss these two approximations sepgrately sin_cg they
are independent of each other. Also, experimentally it is not
possible to exactly realizer/2 pulses. Therefore, we will
also discuss the influence of imperfections in #@ pulses.
created by applying a&/2 pulse witha = 7/2 to a condensate
of particles in internal statgl). The evolution of this initial

state according to the Hamiltonia#" with constanty has A. Approximations

been studied extensively [5] and leads to one-axis squeez- 1. Time averaging

ing as defined in31]. Initially £2=1 and is then rapidly ) ) ) )
reduced. After reaching a minimum value, the entanglement While H,is tumed on, we neglect the free time evolution

paramete? increases again. Our aim is to control the inter-Of the condensate due ksec completely. Typically the time

. ~ 2 . .. evolution due to the applied/2 pulses will take place on a
action parameteg such that afteg™ has reached its mini time scalety of a few nanoseconds while the typical time

mum value, further evolut_lon of the system is su_ppres_sed. Ir%cale for the free evolution of the condensiig: is of the
Fig. 4 we show a comparison of the time evolution with the

. . M . o order of milliseconds. The neglect of the free evolution of
tlrzﬂe-evolunon opgratouint and the'effectlve .Hanlultonlan the condensates during a pulse will lead to an error of the
Hit- The squeezing parametéf(t) is shown in Fig. 48)  (rder oft, /taee~10-4 and is thus well justified. The second
and the t|2me dependence oft) is shown in Fig. 40). AS  gen in calculating the effective Hamiltonian is to average
soon asé” has reached its minimum valué,goes rapidly

> ! J over one sequence of pulses. This will typically lead to an
towards 1 and thus prohibits further evolution &t The  error of the order of, /tgec. In Fig. 4 we compare the time
squeezing parametéf remains at its minimum value, which  eyolytion according to the time-averaged Hamiltonian with

is close to the minimum valug?=(3/N)?%2 that can be  the time evolution given by™ for t.y=5x10"2 and find

reached by one-axis squeezifgf]. Note that the minimum 5 yery small deviation between the two results.
squeezing parameter that is reached by the evolution accord-

ing to umt is smaller than expected from the Hamiltonian
Her as long ast.<tggc is fulfilled (cf. Fig. 4. We find,
however, that this difference is always very small and van- The form of the effective Hamiltoniahl .4 is equivalent
ishes if we further decreasg compared to the value used in to the standard form of the Hamiltonian for two-component
Fig. 4. BECs. Therefore we expect the same range of validity for

2. Preserving a spin-squeezed condensate state

(at+bhHN

=

2. Two-mode approximation
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1 y . : y lead to a qualitatively different behavior of the system. For
some of the realizations we obtain a smaller squeezing pa-
& rameteré£? than expected from one-axis squeezing. In this
N case the error in ther/2 pulses leads to some two-axis
16'l NN~ — squeezing, v_vhich yieIgis a smaller squeezing parameter than
 — 0,1 ........................ 0,2 ........... pure one-axis squeezn[@l].
1, .

FIG. 5. Squeezing parametéf as a function of time. The dot- V. CONCLUSIONS

ted line shows the minimum squeezing paraméfeachievable by In this paper we have introduced a method to change the
one-axis squeezing as defined in the text. The solid curve shows thgteraction strength of a two-component condensaterl®/
squeezing parameter obtained by solving the Jiinger equation 1, jses We have shown that applying a specific series of
using the effective Hamiltoniam;y defined in Eq.(2.15. The 1505 19 the condensate leads to an effective time-averaged
dashed curve is obtained by calculating the time-evolution accordHamiItonian which is of the form of the original two-

. : ; M\ — -3 0 . . . . .
Ing to.the time evo.lm'on operatdfiy with xt;=5x10"*and a 1% component Hamiltonian with an interaction strength depend-
error in the intensity of ther/2 pulses. The ensemble average over. -
B R ing on parameters of the external field.
R=2000 realizations is shown. The other parameters are equal to S .
i As applications of this scheme we have proposed to use
those chosen in Fig. 4. . ) . . .
this Hamiltonian for turning a stable condensate into an un-
stable one and vice versa. We have also shown that it is
possible to store a spin-squeezed state of a condensate for, at
least, in principle, an arbitrarily long time.
Finally, we want to point out that the method to change
B. Imperfect «/2 pulses the interaction strengths of BECs discussed in this paper can
experimentally be realized with current technology. It is in-

It is experimentally possible to adjust the phasef the tended t 100l t in further insiaht into th
/2 pulses very precisely, while it is much harder to exactly ended o serve as a ool to gain further insignt into the prop-
erties of BECs as well as to aid in engineering many-particle

fulfill the integral condition in Eq(2.2). Therefore we inves-

tigate the influence of a violation of this condition on the entangled states.
time evolution of our system. We assume a random Gaussian
error of 1% in the value of the integral in E(.2) for each
pulse applied to the condensate and calculate the resulting We thank Lu-Ming Duan and F. Schmidt-Kaler for stimu-
time evolution in the two-mode approximation. Figure 5 lating discussions. This work was supported by the Austrian
shows the result for the squeezing parameter averaged ov8cience FoundatioriProject No. Z30-TPH, Wittgenstein-
R=2000 different realizations. As can be seen from Fig. 5Preis and SFB “Control and measurement of Coherent
an error in the duration and intensity of the pulses does noQuantum Systemg’

Hei as for the original Hamiltoniatd. This also applies to
the two-mode approximation introduced in Sec. Il B.
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