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Sum rule for the optical spectrum of a trapped gas
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We develop an exact sum rule that relates the spectral shift of a trapped gas undergoing cold collisions to
measurable quantities of the system. The method demonstrates the dependence of the cold collision frequency
shift on the quantum degeneracy of the gas and facilitates extracting scattering lengths from the data. To
illustrate the method, we consider optical shift for the Thomas-Fermi model of Bose-Einstein condensate in a
harmonic optical trap.
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The broadening and shifting of spectral lines of a gas
collisions was among the earliest discoveries in the deve
ment of high-precision spectroscopy@1#. The pressure shift
which originates in interatomic perturbations@2#, is particu-
larly simple to interpret at low temperatures where the th
mal de Broglie wavelengthLT[h/mvT5h/(2mkBT)1/2 is
much larger than the scattering lengtha @3,4# and the inter-
actions arise only throughs-wave scattering. In thiscold col-
lision regime, the typical frequency shift (4p\/m)an with n
the gas density is much larger than the collisional le
broadening 4pa2vTn @5#.

The theory of the cold collision shift@6–8# has been de-
veloped to interpret hyperfine transitions in cryogenic hyd
gen masers and laser cooled atomic fountains@9–13#. In this
paper, we study the shift for optical excitation in a syste
that can be fully or partially quantum degenerate, and ap
the results to a Thomas-Fermi model of Bose-Einstein c
densate~BEC! in an optical trap. We also consider the ca
of fermions and demonstrate that the density shift disapp
in the cold collision regime, well above Fermi degenera
temperature.

For the case of a homogeneous sample of densityn, and a
coherent, weak excitation that couples two inner states of
atoms, we find

\Dvcoll5g2~l122l11!n, lab5~4p\2/m!aab . ~1!

Hereg2 is the equal point value of the second-order corre
tion function @14,15#, g2[g(2)(r50), the state 1~2! is the
ground ~excited! state, andaab is the s-wave scattering
length fora2b collisions.

Equation~1! shows that quantum correlations in the sy
tem are manifest in the collision shift. For a uniform Bo
gas in thermal equilibriumg2522(nBEC/n)2 @16#, where
nBEC is the density of condensed atoms. Above the cond
sation temperature, whennBEC50, g2 equals two, in which
case Eq.~1! is in agreement with previous work@6–8#. At
zero temperature, for a pure condensate withnBEC5n, the
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collision shift is half of the shift for a noncondensed ga
Equation ~1! generalizes the result of Refs.@6–8# to T
,TBEC and relates the spectral shift to the condensate f
tion.

It is quite remarkable that the factorg2 in Eq. ~1! multi-
plies both l12 and l11. This results from correlations be
tween an excited atom and other atoms. During the exc
tion, the internal states of the atoms are rotated: cosu(t)u1S&
1e2if(t)sinu(t)u2S&. The anglesu(t), f(t) depend on laser
power and on the atom’s trajectory in the laser field, spec
for each atom. However, for small excitation power, t
angleu(t) is small, and thus the internal states of all atom
remain nearly identical while the laser is on, even if t
excitation field is spatially nonuniform. Therefore, during t
excitation the atoms interact as identical particles. T
causes the short-range statistical correlations in the in
state to be replicated in the excited state of the gas, wh
results in the statistical factorg2 in the first term of Eq.~1!.

The transfer of spatial correlations to the excited state
not limited to weak excitation. For the case of strong exci
tion, spatial correlations in the ground state will also
transferred to the excited state, but only provided the exc
tion scheme is coherent@17#. The difference between cohe
ent and incoherent cases can be illustrated by comparing
different states of a normal gas. One state is a coheren
perposition of the ground and excited states obtained, e.g
a p/2 pulse. The other is an incoherent mixture state res
ing from saturating the Rabi transition. These states will b
have equal populations in the two internal states, but q
different correlations. In the former case of a pure inter
state the spatial correlation will be the same as for the gro
state of indistinguishable particles. In the latter case o
mixed state the correlations will be reduced. Consequen
the interparticle interaction energy of the first state will e
ceed that of the second state by the factorg2.

To emphasize the nontrivial character of the result~1!, let
us point out that\Dvcoll differs from the thermodynamic
work needed to transfer one atom from the state 1 to the s
2. The latter work, calculated by removing one atom fro
the sample, and then introducing an atom in state 2 from
away, ignoring entropy, is given by (l122g2l11)n. Here
l12n is the energy of interaction of the excited atom with t
atoms in the state 1, andg2l11n is the chemical potential o
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a Bose gas. The key difference between this process
optical excitation, resulting in the different dependence
g2, is the incoherence of the state of the added atom with
initial state of the sample.

To calculate the full optical spectrum shape of a trapp
gas in the cold collision regime, other factors would have
be considered in addition to the effects of statistical corre
tions. Optical coherence can be lost via dephasing ela
collisions, giving rise to collisional broadening. One wou
have also to take into account atomic motion in the trap
the effects of the inhomogeneous density distribution in
sample, especially in the Bose-Einstein condensate. In a
tion, the interaction may give rise to a doublet structure
the spectrum@18#. Altogether, these effects can lead to
complicated broadened spectrum with asymmetric lines@19–
21#. However, we demonstrate below that the spectru
center of mass obeys a simple and exact sum rule an
insensitive to these additional effects.

We lay out the theory of the shift by deriving a sum ru
@Eq. ~12!# that relates the center of mass of the obser
spectrum to measurable experimental parameters. The
rule bridges between the uniform density result~1! and ex-
perimentally measured spectra. The sum rule accounts fo
interactions between atoms occurring in thes-wave scatter-
ing channel, which includes thes-wave collisional broaden
ing. It follows from the sum rule that collisional broadenin
as well as the time of flight broadening resulting from atom
motion in the trap do not contribute to the spectral shift.
the same time, the effects on the shift of inhomogeneity
the gas density and nonuniformity in the excitation field a
expressed in the sum rule~12! in an exact and straightfor
ward way. The sum rule is applicable both to Doppler-fr
and Doppler-sensitive spectra.

We start by considering a homogeneous Bose gas
derive Eq.~1!. Then for the realistic situation of a trappe
gas sample we derive the sum rule~12!, a generalization of
Eq. ~1!. Finally, to illustrate usage of the sum rule, we co
sider the Thomas-Fermi model of BEC in a harmonic opti
trap and analyze optical shift in this case.

I. THE SYSTEM

To provide the context for the theory, we briefly descri
a recent experiment, in which optical spectroscopy was u
to identify BEC in spin-polarized hydrogen@19,20#. In
this experiment, the temperature of the hydrogen
100–500 mK, well below the cold collision thresholdT
.1 K @3,4#. The atoms are spin polarized and interact in
triplet channel. Calculated values of the 1S-1S and 1S-2S
triplet scattering lengths area1150.0648 nm@22# and a12
522.3 nm @23#. We neglect 2S-2S scattering because th
excitation rate is assumed low~in the experiment typically
1024 of the sample is excited and no atom has more tha
few percent excitation probability! so the background gas i
essentially pure 1S @24#. Since ua12u@a11, collisions be-
tween 1S and 2S atoms dominate the shift, which is to th
red.

Each atom will be in some superposition of the groun
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state 1S and the excited-state 2S. In the second quantization
formalism, the atoms are described by the canonical B
operatorsc1(r ) and c2(r ). The Hamiltonian isH5H0
1Hint , whereH0 describes atoms freely moving in the tra
andHint is the interaction term

H05E (
a51,2

ca
†~r !S 2

\2¹2

2m
1U~r ! Dca~r !d3r , ~2!

Hint5
1

2E (
a,b51,2

labca
†~r !cb

†~r !cb~r !ca~r !d3r . ~3!

HereU(r ) is the trap potential~essentially the same for th
1S and the 2S states!.

Inelastic collisions, such as collisions in which the hyp
fine level of one or both of the colliding partners chang
may contribute additional shifts which are not accounted
in this formalism. However, these effects, as well as
three-body collision effects, are small in the experiment a
can be neglected@25,26#.

The two-photon 1S-2S spectrum consists of Doppler-fre
and Doppler-sensitive excitations. In the Doppler-free sit
tion, the transition results from absorbing two count
propagating photons with equal frequencies and zero net
mentum. In the absence of interactions, the resona
condition is 2v laser5v0, wherev0 corresponds to the reso
nance of a single free atom. In the Doppler-sensitive sit
tion, the transition is caused by two photons propagating
the same direction. For a free atom, the resonance frequ
is shifted by the recoil energy: 2\v laser5\v01(2k)2/2m,
where k5\v/c is photon momentum andm is the atom
mass.

Radiative excitation in a many-particle system is d
scribed by adding to the Hamiltonians~2!,~3! the term

Hrad5E d3r @A~r !e2 ivtc2
†~r !c1~r !1H.c.#, ~4!

wherev52v laser2v0. The two-photon excitation fieldA(r )
is equal, up to a constant factor, to the square of the elec
field. Spatial variation ofA(r ) in the Doppler-free case oc
curs on a scale set by the focused laser beam diameter, a
the Doppler-sensitive case is given byÃ(r )cos@2kr1f(r)#,
whereÃ(r ) andf(r ) are slowly varying functions.

II. EXAMPLE

Before discussing the general case, here we derive
mean frequency shift for the Doppler-free transition caus
by a uniform excitation fieldA(r )5A0, ignoring the 1S-1S
interactions (l1150). To that end, consider a gas ofN atoms
confined in a box of volumeV. Since we ignore the 1S-1S
interaction, the many-body state ground state of the sys
F0 is simply a symmetrized product of single-particle stat
It can be characterized by occupation numbersnj of the
single-particle plane-wave statesV21/2eik j r , ( jnj5N. Ini-
tially, the internal state of all atoms is 1S.

The excited state, to lowest order in the excitation,
7-2
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given byF15HradF0. We consider the normiF1i2 and the
expectation value of the interaction^F1uHintuF1&. The ratio
of these quantities gives the mean frequency shift. Beca
F0 is the product of plane-wave states in a box, the f
quency shift can be evaluated exactly.

The norm^F1uF1& of the excited state is given by

uA0u2E ^F0uc1
†~r !c2~r !c2

†~r 8!c1~r 8!uF0&d
3rd3r 8.

~5!

To evaluate the norm one first puts the operatorsc2(r ) and
c2

†(r 8) in Eq. ~5! in normal order by using the commutatio
relation @c2(r ),c2

†(r 8)#5d(r 2r 8). Noting thatc2(r )uF0&
50, the norm is given by

iF1i25uA0u2E ^F0uc1
†~r !c1~r !uF0&d

3r 5uA0u2N. ~6!

To obtain the frequency shiftDvcoll , we consider the expec
tation value^F1uHintuF1&, keeping inHint only the 1S-2S
interactionl12. After arranging in normal order, as in th
calculation of the normiF1i2, one has

^F1uHintuF1&5l12uA0u2

3E ^F0uc1
†~r !c1

†~r !c1~r !c1~r !uF0&d
3r .

~7!

Evaluating the expectation value forF0 chosen as a symme
trized product of plane-wave states, one expresses Eq.~7! in
terms of the occupation numbers of the ground and exc
states as

^F1uHintuF1&5
l12uA0u2

V S 2(
iÞ j

ninj1(
i

ni~ni21! D .

~8!

The mean frequency shift is then given by the ratio of Eq.~8!
and the norm~6!

\Dvcoll5
l12

VN S 2N22(
i

ni~ni11! D . ~9!

The formal reason for the factor 2 to appear in Eqs.~8! and
~9! and, eventually forg2 to appear in Eq.~1!, is the follow-
ing. In taking the average in Eq.~7! by Wick’s theorem@27#,
there are two essentially different ways to pair the operat
analogous to the Hartree and Fock contributions to the
ergy. For short-range interaction between bosons, the Ha
and Fock contributions are equal and as a result the
quency shift is twice as large as the ‘‘mean density’’ resu

In the thermodynamic limit,V,N→`, n5N/V constant,
the second term in Eq.~9! contributes only when there ar
states filled by a macroscopic number of particles. For
ample, in thermodynamic equilibrium atT,TBEC, the shift
~9! is l12(2n2nc

2/n), whereas in a nondegenerate gas, aT
.TBEC, the shift is 2l12n.
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III. THE SUM RULE

We turn now to deriving a sum rule that generalizes
result ~1! to nonhomogeneous samples and spatially vary
excitation field~andl11Þ0). We start with the Golden Rule
formula for the absorption spectrum,

I~v!5
2p

\ (
Ei ,Ef

d~\v1Ei2Ef !u^ f uHradu i &u2pi , ~10!

where u i & and u f & are eigenstates of the HamiltonianH
5H01Hint with the energiesEi andEf andpi is the statis-
tical occupation of the statesu i &.

The sum rule for the spectrumI(v) is found by evaluat-
ing the first moment

E vI~v!
dv

2p
5

1

\3 (
Ei ,Ef

~Ef2Ei !u^ f uHradu i &u2pi

5
1

\3 (
Ei ,Ef

^ i uHradu f &^ f u@H,Hrad#u i &pi

5
1

\3 (
Ei

^ i uHrad@H,Hrad#u i &pi . ~11!

In obtaining this result we first integrated the delta functio
then wrote the result as a matrix element of the commuta
@H,Hrad# and, finally, used the completeness relation.

Now we consider contributions of the different terms
the Hamiltonian to the sum rule. The potential-energy ope
tor *(c1

†c11c2
†c2) U(r )d3r commutes withHrad, and

thus does not contribute. There are two contributions, fi
from the interaction Hamiltonian, second from the kinet
energy operator, denoted byF int andFkin , respectively. The
sum rule becomes

E vI~v!
dv

2p
5F int1Fkin . ~12!

For Doppler-free excitation the termFkin in Eq. ~12! is small
compared toF int , whereas for Doppler-sensitive excitation
contributes the larger shift.

First, consider the interactionHint , and calculateF int .
After evaluating the commutator in Eq.~11!, one follows the
same procedure as in the above calculation of the n
iF1i . The result is

F int5K E ~l122l11!uA~r !u2c1
†~r !c1

†~r !c1~r !c1~r !
d3r

\3 L ,

~13!

where ^•••& means(Ei
^ i u•••u i &pi . The expectation value

^:@c1
†(r )c1(r )#2:&5G2(r ), the two-particle density.~Here

:•••: indicates canonical normal ordering.! Finally, using the
statistical factorg25G2 /n2, the result is

F int5E ~l122l11!uA~r !u2g2n2~r !
d3r

\3
. ~14!
7-3
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Next, we calculate Fkin , the contribution to the
sum rule coming from the kinetic-energy operat
2(\2/2m)*(c1

†¹2c11c2
†¹2c2)d3r . After evaluating the

commutator withHrad, one has

Fkin52
\2

2m K E c1
†~r !A* ~r !@“2,A~r !#c1~r !

d3r

\3 L .

~15!

Integrating by parts, and writing the excitation field
A(r )5uA(r )ueiu, yields

Fkin5E S \2

2m
u¹Au2n2\uAu2j•“u Dd3r

\3
, ~16!

wheren and j are the particle number and flux densities

n~r !5^c1
†~r !c1~r !&, ~17!

j ~r !52
i\

2m
^c1

†~r !“c1~r !&1H.c.

The first term in Eq.~16! generalizes the ordinary momen
tum recoil energy shift to the trapped gas problem@28#. The
second term represents the Doppler shift due to poss
macroscopic gas flow in the sample. To clarify this, consi
A(r )5A0eipr /\, which would describe Doppler-sensitive e
citation. ThenFkin5uA0u2*(p2/2m2p•v)n d3r /\3, where
v5 j /n is the local velocity. The sensitivity of the frequenc
shift to motion within the sample, manifest in the seco
term in Eq. ~16!, makes it possible, in principle, to dete
vortices in the condensed state.

To employ the sum rule, one needs to relate the integra
spectral power toA(r ) andn(r ). Repeating the steps that le
to Eq. ~12!, one obtains

Itot5E I~v!
dv

2p
5E uA~r !u2n~r !

d3r

\3
. ~18!

Combining Eq.~18! with the sum rule~12!, one obtains an
exact expression for the spectrum’s ‘‘center of mass’’v̄
5*vI(v)dv/*I(v)dv.

For example, consider a uniform density sample, and
nore the spatial variation of the laser fieldA(r ). Equation
~14! gives F int5(l122l11)g2n2* uA(r )u2d3r /\3. In the ex-
periment@19,20# the kinetic contributionFkin is small and
thus we can neglect it. After pulling constant densityn(r )
[n out of integral in Eqs.~14! and ~18!, and dividing one
equation by the other, one obtains the frequency shift~1!.

There are two comments concerning the generality of
sum rule. First, note that in deriving the sum rule~12!, we do
not assume thermodynamic equilibrium. The result is ex
and applies to nonequilibrium systems for which the fac
g2 may differ from its equilibrium value. Second, the abo
derivation of the sum rule assumes coherence of the ex
tion described by Eq.~4!. One can see, however, that th
results ~14!, ~16!, and ~18! hold as well for an incoheren
excitation field of the formA(r )eivt1 if(t) with a fluctuating
03361
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phasef(t). Also, it is straightforward to generalize the re
sults for the excitation field with different spatial dependen
of different frequency components.

IV. FREQUENCY SHIFT IN THE
THOMAS-FERMI MODEL

To demonstrate the use of the sum rule for a nonhomo
neous system, we apply it to a condensate in a parabolic
with cylindrical symmetry

V~r !5
1

2
mv'

2 ~x21y2!1
1

2
mvz

2z2. ~19!

We consider the situation when the trap is so soft in thz
direction, vz!v' , that the gas sample is quasi-on
dimensional. This corresponds to the hydrogen system s
ied in Refs.@19,20#. The BEC density distribution in such
trap can be calculated in the Thomas-Fermi approximat
n(r )5@m2V(r )#/l11. Since the trap is elongated, the g
sample near the trap center is cylindrical. The density a
function of the distancer' from the trap axis is

n~r !5H n0~12r'
2 /d2! r',d

0 r'.d,
~20!

wheren05m/l11 is the BEC density at the trap center an
d5A2m/mv'

2 is the BEC sample radius.
We take the excitation fieldA(r ) to be a Gaussian beam

aligned with the trap axes

A~r !5A0 expS 2
r'

2

2a2
2

z2

2b2D . ~21!

To keep the discussion simple we further assume that the
b of the beam in thez direction is much smaller than the ga
sample lengthL5A2m/mvz

2.
Excitation spectrum in this case is rather complicated,

cause of the combination of factors such as the nonhomo
neous gas density~20!, nonuniform distribution of the exci-
tation power ~21!, as well as, the last but not the leas
interactions in the gas. However, the sum rule~12! enables
one to write an exact expression for the spectrum cente
mass. Below we calculate the interaction and kinetic con
butions~14! and ~16! to the frequency shift for an arbitrar
ratio of the sample radiusd and the beam radiusa, and study
the shift as a function ofd/a.

First, consider the frequency shift due to interactions. I
given by the ratio of Eqs.~14! and ~18! as

\Dvcoll5~l122l11!
^n2~r !&

^n~r !&
, ~22!

where^•••& stands for*•••uA(r )u2d3r . Neglecting the de-
pendence ofn(r ) on z and changing the integration variab
to u5r'

2 /d2 we obtain
7-4
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\Dvcoll5~l122l11!n0

E
0

1

~11]h!2e2hudu

E
0

1

~11]h!e2hudu

, ~23!

whereh5d2/2a2. Here powers ofr'
2 are represented in Eq

~23! using partial derivatives with respect toh to facilitate
calculation. Performing the integral overu we obtain

\Dvcoll5~l122l11!n0f 1~d2/2a2!, ~24!

f 1~h!5
~11]h!2h21~12e2h!

~11]h!h21~12e2h!
.

The functionf 1(h) is readily evaluated

f 1~h!5
]h

2h21~eh21!

]hh21~eh21!
[

h222h1222e2h

h~h211e2h!
. ~25!

The resulting functionf 1 is shown in Fig. 1. There are tw
limiting cases corresponding to a well-focused and co
pletely defocused beam. The first case when only the cen
part of the BEC distribution is illuminated (a!d) is de-
scribed byf 1(h→`)51. In the second case the entire cro
section of the BEC sample is illuminated uniformly (a@d),
which corresponds tof 1(h→0)52/3. The 1/3 reduction of
the mean frequency shift~24! for a defocused beam can b
understood as a result of averaging over local densities in
BEC sample ranging from 0 to the maximal densityn0.

The kinetic contribution~16! to the frequency shift is a
sum of two parts: a recoil term due to nonzero moment
transfer at excitation by a narrow beam and a Doppler te
describing the effect of current flux in the BEC sample. He

FIG. 1. The mean frequency shift is reduced due to spatial n
uniformity of the BEC sample density and laser beam power. T
interaction (f 1) and recoil (f 2) reduction factors are shown as
function of h5d2/2a2, whered is the BEC Thomas-Fermi distri
bution radius@Eq. ~20!# and a is the excitation beam width@Eq.
~21!#. The functionsf 1,2(h) are defined by Eqs.~25! and ~29!.
03361
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we consider a static BEC sample for which the second c
tribution is zero. The recoil contribution is given by the fir
term in Eq.~16!,

Fkin5
\2

2mE u¹A~r !u2n~r !d3r5
\2

2ma4
^r'

2 n&, ~26!

where ^•••& means*•••uA(r )u2d3r as above. Taking the
ratio of the expressions~26! and ~18! one finds

\Dvkin5
\2d2

2ma4

E
0

1

u~12u!e2hudu

E
0

1

~12u!e2hudu

, ~27!

where the notationh5d2/2a2 is the same as above. Th
result can be written in the form

\Dvkin5
\2

ma2
f 2~d2/2a2!, ~28!

f 2~h!5h
2]h~11]h!h21~12e2h!

~11]h!h21~12e2h!
.

The functionf 2 can be evaluated as

f 2~h!5
~12]h!]hh21~eh21!

h21]hh21~eh21!
[

~h22!eh1h12

~h21!eh11
~29!

~see Fig. 1!. The two limiting cases of a focused and def
cused beam can be understood as follows. Qualitatively
the beam becomes more defocused the recoil momentum
creases. For a well-focused beam (a!d) the functionf 2(h
→`)51, which corresponds to a recoil momentum of t
order ofDp'\/a. For a defocused beam of the width muc
larger than the BEC sample radius (a@d) the function
f 2(h!1)}h describes recoil with small transferred mome
tum Dp'\d/a2. Accordingly, for a defocused beam the r
coil frequency shift decreases from\2/ma2 to \2d2/ma4.

To summarize, the mean frequency shift is given by
sum of the interaction and kinetic terms

\Dv total5~l122l11!n0f 1~h!1
\2

ma2
f 2~h!, ~30!

where h5d2/2a2 and the functionsf 1,2(h) are defined by
Eqs. ~25! and ~29!. In the hydrogen system@19,20# the
1S-2S interaction l12 is negative andul12u@l11. At the
high densitiesn0 reported in Refs.@19,20# the first~negative!
term in Eq.~30! is much larger in magnitude than the seco
~positive! term. The resulting shift is therefore negative
sign. At present, due to the lack of precise knowledge of
parameters of the hydrogen system, we are not able to c
pare the numerical value of the observed shift with the re
~30!.
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V. CONCLUSION

In summary, we have shown that quantum statistical c
relations of a cold gas sample are imprinted in the collisio
shift of the center of mass of an optical absorption spectr
In the cold collision regime the sum rule~12! can be applied
to determine the statistical correlation factorg2 from optical
spectrum. The sum rule is valid for any gas in the cold c
lision regime. It takes into account possible inhomogenei
in the sample and the excitation field, and it is valid abo
and belowTBEC. Also, the sum rule is valid for a nonequ
librium system, withg2 values possibly different from thos
in equilibrium. By considering an example of a Thoma
Fermi BEC distribution we have demonstrated how the s
rule could in principle be applied to extract the 1S-2S scat-
tering length for hydrogen from experimental data.

It should be pointed out that our results, the frequen
shift ~1! and the sum rule~12!, are only valid at small mixing
angles of the 1S and 2S states. The cold collision shift a
large angle mixing@17# is an important problem, particularl
for atomic clocks@9–13#. The generalization of the resu
~12! for such systems is an interesting open problem.
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APPENDIX: THE ABSENCE OF THE INTERACTION
SHIFT FOR FERMI PARTICLES

Here we briefly discuss how the sum rule will look for
trapped Fermi gas. Effective inter-particle interaction at sh
distances depends very strongly on particle statistics. Ide
cal fermions, due to the Pauli principle, can never be fou
ev
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at one point. Thus in the cold collision regime, when only t
s-wave scattering can take place, interacting fermions eff
tively turn into a noninteracting Fermi gas. Evidently, th
means that in a cold gas of fermions there will be no int
action shift.

This conclusion is true when the thermal de Brog
wavelength LT5h/(2mkBT)1/2 is larger than the two-
particle scattering lengtha, i.e., atkBT<\2/ma2. Similar to
the case of Bose particles, this condition is considera
weaker than the Fermi degeneracy criterionLTn1/3.1.
Therefore, degeneracy is not required for the absence of
interaction shift.

To verify this quantitatively, we derive a sum rule for th
center of mass of the spectrum by using the same metho
for Bose particles. Since the derivation proceeds in exa
the same steps as for the Bose gas, there is no need to di
it in detail. The operator products that arise in the derivat
can be bilinear or quartic. In both cases the difference
tween Bose and Fermi commutation relations is unimporta
The resulting expressions forF int and Fkin are the same as
Eqs. ~14! and ~16! above. However, the value ofg2 in Eq.
~14! in this case should be calculated using Fermi statist
For fermions with spinsone hasg25121/(2s11). Accord-
ingly, g250 for spinless fermions, as well as for fully spin
polarized particles in a magnetic trap. Therefore in the c
of Fermi particles the spectral shift is determined solely
the kinetic contribution~16!.

The absence of the interaction shift for fermions is
interesting result from the point of view of designing atom
clocks. The value of the kinetic shift is typically small an
independent of particle density. If necessary, it can be furt
reduced by increasing spatial uniformity of the excitati
field.
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