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Sum rule for the optical spectrum of a trapped gas
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We develop an exact sum rule that relates the spectral shift of a trapped gas undergoing cold collisions to
measurable quantities of the system. The method demonstrates the dependence of the cold collision frequency
shift on the quantum degeneracy of the gas and facilitates extracting scattering lengths from the data. To
illustrate the method, we consider optical shift for the Thomas-Fermi model of Bose-Einstein condensate in a
harmonic optical trap.
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The broadening and shifting of spectral lines of a gas bycollision shift is half of the shift for a noncondensed gas.
collisions was among the earliest discoveries in the developEquation (1) generalizes the result of Ref§6—-8] to T
ment of high-precision spectroscopy]. The pressure shift, <Tg. and relates the spectral shift to the condensate frac-
which originates in interatomic perturbatiof®), is particu-  tjon.
larly simple to interpret at low temperatures where the ther- |t is quite remarkable that the factgp in Eq. (1) multi-
mal de Broglie wavelength\ = h/mvT=h/(2kaT)1_’2 IS" " plies both N1, and \y;. This results from correlations be-
much larger than the scattering lengtti3,4] and the inter-  yeen an excited atom and other atoms. During the excita-
actions arise only througkwave scattering. In thisold col- tion, the internal states of the atoms are rotated:ADES)
lision regime, t_he f[ypical frequency shift (ﬂi/m)a_n_with n +e1%0sin g(1)[29). The anglesd(t), ¢(t) depend on laser
the gas_densn%/ is much larger than the collisional IeVelpower and on the atom’s trajectory in the laser field, specific
broadening 4ra“vn [5]. for each atom. However, for small excitation power, the

The theory of the cold collision shif6—8] has been de- ! .
veloped to interpret hyperfine transitions in cryogenic hydro-angle 8(t) is small, and thus the internal states of all atoms

gen masers and laser cooled atomic fountf®sl3. In this rem_ain_ ”e"?“'y _identigal while the laser is on, even if the
paper, we study the shift for optical excitation in a Systemexc!tat!on field is spana!ly nonunn‘orr_n. Th_erefore, _dunng thg
that can be fully or partially quantum degenerate, and appngcnauon the atoms mterapt_as |dent|ca_l parltlcles. _Th_|s
the results to a Thomas-Fermi model of Bose-Einstein conc@uses the short-range statistical correlations in the initial
densategBEC) in an optical trap. We also consider the casestate to be replicated in the excited state of the gas, which
of fermions and demonstrate that the density shift disappeafésults in the statistical fact@, in the first term of Eq(1).
in the cold collision regime, well above Fermi degeneracy The transfer of spatial correlations to the excited state is
temperature. not limited to weak excitation. For the case of strong excita-
For the case of a homogeneous sample of densiipnd a  tion, spatial correlations in the ground state will also be
coherent, weak excitation that couples two inner states of thransferred to the excited state, but only provided the excita-
atoms, we find tion scheme is coherefit7]. The difference between coher-
ent and incoherent cases can be illustrated by comparing two
hidweon=0a(N2—= NN, N p=(47hi%Im)a,s. (1)  different states of a normal gas. One state is a coherent su-
perposition of the ground and excited states obtained, e.g., by
Hereg, is the equal point value of the second-order correla-a /2 pulse. The other is an incoherent mixture state result-
tion function[14,15, g,=g®(r=0), the state 12) is the ing from saturating the Rabi transition. These states will both
ground (excited state, anda,s is the swave scattering have equal populations in the two internal states, but quite
length fora— B collisions. different correlations. In the former case of a pure internal
Equation(1) shows that quantum correlations in the sys-state the spatial correlation will be the same as for the ground
tem are manifest in the collision shift. For a uniform Bosestate of indistinguishable particles. In the latter case of a
gas in thermal equilibriung,=2— (ngec/n)? [16], where  mixed state the correlations will be reduced. Consequently,
Ngec is the density of condensed atoms. Above the condenthe interparticle interaction energy of the first state will ex-
sation temperature, whetgec=0, g, equals two, in which  ceed that of the second state by the fagtor
case Eq.(1) is in agreement with previous wofl6—8]. At To emphasize the nontrivial character of the resljit let
zero temperature, for a pure condensate wiggc=n, the  us point out thati A wy, differs from the thermodynamic
work needed to transfer one atom from the state 1 to the state
2. The latter work, calculated by removing one atom from
*Current address: Department of Physics, The Ohio State Univethe sample, and then introducing an atom in state 2 from far

sity, Columbus, Ohio 43210. away, ignoring entropy, is given bya(,—J,\9)n. Here
TCurrent address: Department of Physics and Astronomy, Ric ;o0 is the energy of interaction of the excited atom with the
University, Houston, Texas 77005. atoms in the state 1, argpA 140 is the chemical potential of
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a Bose gas. The key difference between this process arglate 1S and the excited-stateX In the second quantization

optical excitation, resulting in the different dependence orformalism, the atoms are described by the canonical Bose

g5, is the incoherence of the state of the added atom with theperators ;(r) and ¢,(r). The Hamiltonian isH="H,

initial state of the sample. +Hint» WhereH, describes atoms freely moving in the trap,
To calculate the full optical spectrum shape of a trappedndH;y is the interaction term

gas in the cold collision regime, other factors would have to 4oy

be considered in addition to the effects of statistical correla- _ t 3

tions. Optical coherence can be lost via dephasing elastic Ho_j a=21,2 l’//“(r)( 2m +U(r))¢//a(r)d r @

collisions, giving rise to collisional broadening. One would

have also to take into account atomic motion in the trap and 1 + + 3

the effects of the inhomogeneous density distribution in the Hint:§f a,B§=:lZ Napa(N)Pp(r) () ho(r)dr. (3)

sample, especially in the Bose-Einstein condensate. In addi- o

tion, the interaction may give rise to a doublet structure OfHereU(r) is the trap potentialessentially the same for the
the spectrun{18]. Altogether, these effects can lead t0 a1g and the B states.

complicated broadeged spectrumbwilth as%/mmﬁtric liA8s-  nelastic collisions, such as collisions in which the hyper-
21]. However, we demonstrate below that the Spectrum§jne |evel of one or both of the colliding partners changes,

center of masz obeyzdg.smlpleﬁ and exact sum rule and |3,y contribute additional shifts which are not accounted for
Insensitive to these additional efects. in this formalism. However, these effects, as well as the

We lay out the theory of the shift by deriving a sum rule y, e _pody collision effects, are small in the experiment and
[Eq. (12)] that relates the center of mass of the observeq ., pe neglectefl5, 2.

spectrum to measurable experimental parameters. The sum |, two-photon $-2S spectrum consists of Doppler-free

rule bridges between the uniform density resdltand ex- o4 poppler-sensitive excitations. In the Doppler-free situa-
perimentally measured spectra. The sum rule accounts for "’ﬁlon, the transition results from absorbing two counter-

Interactions betv_vee_n atoms occurring in _Eh_wave scatter- propagating photons with equal frequencies and zero net mo-
ing channel, which includes thewave collisional broaden- mentum. In the absence of interactions. the resonance
ing. It follows from the sum rule that collisional broadening . jition is Aoy 0, Wherew, corresponds to the reso-

as well as the time of flight broadening resulting from atomic

e ) ; nance of a single free atom. In the Doppler-sensitive situa-
motion in the trap do not contribute to the spectral shift. Attion, the transition is caused by two photons propagating in

the same time, the effects on the shift of inhomogeneity iy, same direction. For a free atom, the resonance frequency
the gas density and nonuniformity in the excitation field areis ghifted by the recoil energy: o= h wo+ (2K)2/2m
- aser ’

expressed in the sum rul@?2) in an exact and straightfor- where k=% w/C is photon momentum anch is the atom
ward way. The sum rule is applicable both to Doppler-freemass

and Doppler-sensitive spectra. Radiative excitation in a many-particle system is de-

We start by considering a homogeneous Bose gas ang. . : e
derive Eq.(1). Then for the realistic situation of a trappedrgjcnbEd by adding to the Hamiltoniar®),(3) the term

gas sample we derive the sum r(l), a generalization of
Eq. (1). Finally, to illustrate usage of the sum rule, we con- HradzJ' d3r[A(r)e*i‘”‘</;£(r)1//l(r)+H.c.], (4)
sider the Thomas-Fermi model of BEC in a harmonic optical

trap and analyze optical shift in this case.

wherew = 2w~ wg. The two-photon excitation field(r)

is equal, up to a constant factor, to the square of the electric
field. Spatial variation ofA(r) in the Doppler-free case oc-

l. THE SYSTEM curs on a scale set by the focused laser beam diameter, and in

To provide the context for the theory, we briefly describethe Doppler-sensitive case is given Byr)cog 2kr+¢(r)],
a recent experiment, in which optical spectroscopy was usedhereA(r) and ¢(r) are slowly varying functions.
to identify BEC in spin-polarized hydrogefil9,20. In
this experiment, the temperature of the hydrogen is
100-500 wK, well below the cold collision threshold
=1 K[3,4]. The atoms are spin polarized and interact in the Before discussing the general case, here we derive the
triplet channel. Calculated values of th&-1S and 1S-2S  mean frequency shift for the Doppler-free transition caused
triplet scattering lengths ara;;=0.0648 nm[22] anda;, by a uniform excitation field\(r) =A,, ignoring the 5-1S
=—2.3 nm[23]. We neglect 5-2S scattering because the interactions §,,=0). To that end, consider a gasMfatoms
excitation rate is assumed lo(in the experiment typically confined in a box of volum&/. Since we ignore the &1S
10" “ of the sample is excited and no atom has more than #nteraction, the many-body state ground state of the system
few percent excitation probabilityso the background gas is @ is simply a symmetrized product of single-particle states.
essentially pure $ [24]. Since |ajj>a;;, collisions be- It can be characterized by occupation numbeysof the
tween 1S and 25 atoms dominate the shift, which is to the single-particle plane-wave statés Y%e'ki", 2in;=N. Ini-
red. tially, the internal state of all atoms isS1

Each atom will be in some superposition of the ground- The excited state, to lowest order in the excitation, is

Il. EXAMPLE
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given by®,="H,,4P,. We consider the noriid,|? and the
expectation value of the interactid® | ;| ®,). The ratio

PHYSICAL REVIEW 85 033617

Ill. THE SUM RULE

We turn now to deriving a sum rule that generalizes the

of these guantities gives the mean frequgncy shift. Becauq%sun(l) to nonhomogeneous samples and spatially varying
&, is the product of plane-wave states in a box, the fre-, iation field(and\ 1,#0). We start with the Golden Rule

guency shift can be evaluated exactly.
The norm{®,|®,) of the excited state is given by

lelzf (ol YN (WA ) ia(r )| Do) drdr .
(5)

To evaluate the norm one first puts the operaigsg) and

ng(r’) in Eq. (5) in normal order by using the commutation

relation[zpz(r),sz(r’)]:é(r—r’). Noting that r,(r)|P)
=0, the norm is given by

||‘D1||2:|Ao|2j<q’o|¢I(f)¢1(r)|¢’o>d3r:|Ao|2N- (6)

To obtain the frequency shift w.,,, we consider the expec-

tation value(® | H;.|®1), keeping inH;, only the 1S-2S

interactioni 1,. After arranging in normal order, as in the

calculation of the nornf{®,||?, one has
(@1 Hind D 1) =N 12l Ag|?

XJ<‘I’o|lﬂI(f)lﬂI(f)¢1(f)lﬂ1(f)|q>o>d3r-
(7)

Evaluating the expectation value fér, chosen as a symme-

trized product of plane-wave states, one expresse$7Eq

terms of the occupation numbers of the ground and excite

states as

N1 Agl?

v (22 ninj+2 ni(ni—l)).
i#] i
tS)

(@ 4| Hin 1) =

The mean frequency shift is then given by the ratio of @By.

and the norm6)

: 9

Ao
ﬁAwCO”:W( ZNZ_Z ni(ni+l)

The formal reason for the factor 2 to appear in E&$.and
(9) and, eventually fog, to appear in Eq(l), is the follow-
ing. In taking the average in E¢7) by Wick’s theoren{27],

formula for the absorption spectrum,
2 12
Lw)=7- 2 dho+E—E)[f[Hadi)?pi, (10
i =f

where |i) and |[f) are eigenstates of the Hamiltoniah
=Hoy+ H;nt With the energie€; andE; andp; is the statis-
tical occupation of the statéé).

The sum rule for the spectruff{ ) is found by evaluat-
ing the first moment

d 1
| ooz 3 E- B
1
=3 E <i|Hrac“><f|[HvHrad]|i>pi
h* Ej Eg

1
=5 2 (Had M Hadlip. QD

In obtaining this result we first integrated the delta function,
then wrote the result as a matrix element of the commutator
[H,H,adl @nd, finally, used the completeness relation.

Now we consider contributions of the different terms of
the Hamiltonian to the sum rule. The potential-energy opera-
tor f(z,/f{z/;lJr z//}pz) U(r)d® commutes withH,,4, and
awus does not contribute. There are two contributions, first
rom the interaction Hamiltonian, second from the kinetic-
energy operator, denoted &y, andF;,, respectively. The
sum rule becomes

dw
f oI(w) a7 Fintt Fin - (12

For Doppler-free excitation the terf;, in Eq.(12) is small
compared td-;,;, whereas for Doppler-sensitive excitation it
contributes the larger shift.

First, consider the interactiofi;,;, and calculateF .
After evaluating the commutator in E(L1), one follows the
same procedure as in the above calculation of the norm
[®,]|. The result is

dr
there are two essentially different ways to pair the operators,Fim=< f (N 2= M) [A) Py (0 @i (0) ¢ (1) g (1) —3> ,
analogous to the Hartree and Fock contributions to the en- h

ergy. For short-range interaction between bosons, the Hartree (13
T e Soman 1 ihere. ) meansS (.. 1p. The expectatn value
d 4 g Y LYl g (r)17:)=Gy(r), the two-particle density(Here

In the thermodynamic limity,N—ec, n=N/V constant, \'t71% /¢ - e .
the second term in Eq9) contributes only when there are " " indicates canonical normal orderingrinally, using the

. . _ 2 .
states filled by a macroscopic number of particles. For exStatistical factog,=G,/n?, the result is
ample, in thermodynamic equilibrium &< Tgec, the shift 4
(9) is A1A(2n—n¢/n), whereas in a nondegenerate gasT at ,:im:J ()\12_)\11)|A(r)|2gzn2(r)_3_ (14)
>Tgec, the shift is 2 15n. h
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Next, we calculate F,,,, the contribution to the phase¢(t). Also, it is straightforward to generalize the re-
sum rule coming from the Kkinetic-energy operator sults for the excitation field with different spatial dependence
— (h212m) [ (1V2y+ yiV24,)d%r . After evaluating the of different frequency components.

commutator withH,,q, one has

52 4°r IV. FREQUENCY SHIFT IN THE
Fkin: — ﬁ< f w{(r)A*(r)[VZ,A(r)]lﬁl(r)— ) THOMAS-FERMI MODEL

3
h (15) To demonstrate the use of the sum rule for a nonhomoge-
neous system, we apply it to a condensate in a parabolic trap

Integrating by parts, and writing the excitation field asWith cylindrical symmetry
A(r)=|A(r)|e"?, yields

1 202,42 1 2,2
52 d3r V(r)=§mwl(x +y9)+ Emwzz . (29
Fkin:J <ﬁ|VA|2n—ﬁ|A|ZJV0)?, (16)

We consider the situation when the trap is so soft in zhe
wheren andj are the particle number and flux densities  direction, w,<w,, that the gas sample is quasi-one-
dimensional. This corresponds to the hydrogen system stud-
n(r) =1 ga(r)), (17)  ied in Refs[19,20. The BEC density distribution in such a
trap can be calculated in the Thomas-Fermi approximation,
] i7i n(r)=[x—V(r)]/\q;. Since the trap is elongated, the gas
J(r)=- %<¢I(F)V§Ul(r)>+H.C. sample near the trap center is cylindrical. The density as a
function of the distance, from the trap axis is
The first term in Eq(16) generalizes the ordinary momen-
tum recoil energy shift to the trapped gas problg2@]. The no(l—rf/dz) r <d
second term represents the Doppler shift due to possible n(r ={ (20
macroscopic gas flow in the sample. To clarify this, consider
A(r)=A,e""" which would describe Doppler-sensitive ex- _ .
citation. ThenF,=|Aq|2f (pZ2m—p-v)n d®r/#3, where whereny= u/\ 11 is the BEC density at the trap center and
v=j/n is the local velocity. The sensitivity of the frequency d= v2u/me? is the BEC sample radius.
shift to motion within the sample, manifest in the second We take the excitation field(r) to be a Gaussian beam
term in Eq.(16), makes it possible, in principle, to detect aligned with the trap axes
vortices in the condensed state.
To employ the sum rule, one needs to relate the integrated rf 72
spectral power td\(r)_ andn(r). Repeating the steps that led A(r)=~A, eXp( T2 ) (21)
to Eq.(12), one obtains a

0 r,>d,

dow d3r To keep the discussion simple we further assume that the size
Tior= f I(w)z—:f |A(D)[?n(r) —. (18 b of the beam in the direction is much smaller than the gas
™ h
sample length. = \/Z,u/mwzz.

Excitation spectrum in this case is rather complicated, be-
cause of the combination of factors such as the nonhomoge-
neous gas densit§20), nonuniform distribution of the exci-
tation power(21), as well as, the last but not the least,
interactions in the gas. However, the sum r(@) enables
one to write an exact expression for the spectrum center of
mass. Below we calculate the interaction and kinetic contri-
butions(14) and (16) to the frequency shift for an arbitrary
ratio of the sample radiusand the beam radius and study

Combining Eq.(18) with the sum rule(12), one obtains an

exact expression for the spectrum’s “center of mass”
=[wI(w)do/ [I(w)dw.

For example, consider a uniform density sample, and ig
nore the spatial variation of the laser fiedqr). Equation
(14) gives Fine=(A1o— N17) 9202 A(r)|2d3r /43, In the ex-
periment[19,2Q the kinetic contributionF,;, is small and
thus we can neglect it. After pulling constant dengitfyr)
=n out of integral in Egs(14) and (18), and dividing one  (,a shift as a function of/a.
equation by the other, one obtains the frequency ¢hift First, consider the frequency shift due to interactions. It is

There are two comments concerning the generality of th%iven by the ratio of Eqs(14) and (18) as
sum rule. First, note that in deriving the sum r(l®), we do
not assume thermodynamic equilibrium. The result is exact (n2(r))
and applies to nonequilibrium systems for which the factor AA o= (N 12— A1) ——r
g, may differ from its equilibrium value. Second, the above (n(r))
derivation of the sum rule assumes coherence of the excita-
tion described by Eq(4). One can see, however, that the where(- - -) stands forf- - -|A(r)|?d®r. Neglecting the de-
results (14), (16), and (18) hold as well for an incoherent pendence of(r) onzand changing the integration variable
excitation field of the formA(r)e'®t*1¢() with a fluctuating to u=r?/d? we obtain

(22
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1 ; g T T we consider a static BEC sample for which the second con-
? 5 : : tribution is zero. The recoil contribution is given by the first
gk term in Eq.(16),
& h? h?
S0t Fkin:ﬁj [VA(D)[?n(r)d®r= 2ma4<rin>' (26)
g
'§ 04l where (- --) means|---|A(r)|?d® as above. Taking the
2 ratio of the expression@6) and(18) one finds

S
[

1
22 f u(l—u)e "du
0

0 j i i hAwyin= 11
0 5 10 15 20 2 2ma f (1—u)e” "du
'r|=d2/2a2 0

, (27)

FIG. 1. The mean frequency shift is reduced due to spatial nongyhere the notationy=d?/2a® is the same as above. The
uniformity of the BEC sample density and laser beam power. ThgagyIt can be written in the form

interaction ;) and recoil ¢,) reduction factors are shown as a

function of »=d?/2a, whered is the BEC Thomas-Fermi distri- 52

bution radius[Eq. (20)] and a is the excitation beam widtfEq. A w,=——f,(d%/2a%), (28)
(21)]. The functionsf, i(7) are defined by Eqg25) and(29). 2

1 —d,(1+d,)n Y(1—-e "
f (1+49,)% ™du fo(7n)= o1* 9,7 ).
0 (1+d,)n H(1-e 7
A weon=(N12—= M) No—77 , (23
fo (1+4d,)e" "du The functionf, can be evaluated as
1-d,)9,7 Ye’—1 —2)e7+ n+2
where »=d?/2a%. Here powers of? are represented in Eq. fo( 17):( 71”) ”j]l ( )E (7=2) U
(23) using partial derivatives with respect tpto facilitate P Y] (p—1)e"+1
calculation. Performing the integral ovaerwe obtain (29
_ _ 212 (see Fig. 1 The two limiting cases of a focused and defo-
hi A eon= (M 12~ M) Nof 1(d*/2a%), (24 cused beam can be understood as follows. Qualitatively, as
the beam becomes more defocused the recoil momentum de-
(1+d,)°n Y(1-e™7) creases. For a well-focused beam<(d) the functionf (7
fi(n)= (1+d,)p Y 1-e ") ' —)=1, which corresponds to a recoil momentum of the
n

order ofAp~#i/a. For a defocused beam of the width much

larger than the BEC sample radiugfd) the function

fo(n<<1)x 5 describes recoil with small transferred momen-

. ) - tum Ap~#d/a®. Accordingly, for a defocused beam the re-

= dyn (&"-1) n°—29+2-2e’7 ) coil frequency shift decreases frofit/ma? to #2d%/ma’.
w(7)= 0.7~ Ye?1) - n(n—1+e 7 (25) To summarize, the mean frequency shift is given by the
K sum of the interaction and kinetic terms

The functionf(#) is readily evaluated

2

The resulting functiorf; is shown in Fig. 1. There are two
limiting cases corresponding to a well-focused and com-
pletely defocused beam. The first case when only the central
part of the BEC distribution is illuminateda&d) is de-
scribed byf,(p—=)=1. In the second case the entire crosswhere »=d?/2a?> and the functions ; (n) are defined by
section of the BEC sample is illuminated uniformlgs¢d), Egs. (25 and (29). In the hydrogen systemil9,2( the
which corresponds té,(7—0)=2/3. The 1/3 reduction of 1S-2S interaction\y, is negative and\qJ>\;. At the
the mean frequency shit@4) for a defocused beam can be high densities, reported in Refd.19,2( the first(negative
understood as a result of averaging over local densities in thierm in Eq.(30) is much larger in magnitude than the second
BEC sample ranging from 0 to the maximal density (positive) term. The resulting shift is therefore negative in
The kinetic contribution(16) to the frequency shift is a sign. At present, due to the lack of precise knowledge of the
sum of two parts: a recoil term due to nonzero momentunparameters of the hydrogen system, we are not able to com-
transfer at excitation by a narrow beam and a Doppler ternpare the numerical value of the observed shift with the result
describing the effect of current flux in the BEC sample. Here(30).

ﬁZ
h A wiora= (N12= N1)Nofa(7) + @fz(ﬂ), (30)
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V. CONCLUSION at one point. Thus in the cold collision regime, when only the

In summary, we have shown that quantum statistical corSwave scattering can take place, interacting fermions effec-

relations of a cold gas sample are imprinted in the coIIissionaPVGIy turn ”?to a noninteracting Ferm| gas. E_V|dently,_th|s
shift of the center of mass of an optical absorption spectruml€ans that in a cold gas of fermions there will be no inter-
In the cold collision regime the sum ru(&2) can be applied act|on shift. . )
to determine the statistical correlation factprfrom optical This conclusion is true when the thermal de Broglie
spectrum. The sum rule is valid for any gas in the cold col-\Wavelength Ar=h/(2mksT)"? is larger than the two-
lision regime. It takes into account possible inhomogeneitiearticle scattering length, i.e., atkgT</#*/ma’. Similar to
in the sample and the excitation field, and it is valid abovethe case of Bose particles, this condition is considerably
and belowTgec. Also, the sum rule is valid for a nonequi- weaker than the Fermi degeneracy criteridnn®®~1.
librium system, withg, values possibly different from those Therefore, degeneracy is not required for the absence of the
in equilibrium. By considering an example of a Thomas-interaction shift.
Fermi BEC distribution we have demonstrated how the sum To verify this quantitatively, we derive a sum rule for the
rule could in principle be applied to extract th&-2S scat-  center of mass of the spectrum by using the same method as
tering length for hydrogen from experimental data. for Bose particles. Since the derivation proceeds in exactly
It should be pointed out that our results, the frequencythe same steps as for the Bose gas, there is no need to discuss
shift (1) and the sum rul€l2), are only valid at small mixing it in detail. The operator products that arise in the derivation
angles of the  and 2S states. The cold collision shift at can be bilinear or quartic. In both cases the difference be-
large angle mixing17] is an important problem, particularly tween Bose and Fermi commutation relations is unimportant.
for atomic clocks[9—1§’]. Th_e gene_rallzatlon of the result 1ne resulting expressions fét,. and F,;, are the same as
(12) for such systems is an interesting open problem. Egs. (14) and (16) above. However, the value f, in Eq.
(14) in this case should be calculated using Fermi statistics.
For fermions with spirsone hagy,=1—1/(2s+1). Accord-
We thank D. Fried, L. Willman, D. Landhuis, S. Moss, T. Ingly, 9o=0 for spinless fermions, as well as for fully spin-

J. Greytak, and W. Ketterle for helpful discussions. polarized particles in a magnetic trap. Therefore in the case
of Fermi particles the spectral shift is determined solely by

the kinetic contribution(16).
The absence of the interaction shift for fermions is an
interesting result from the point of view of designing atomic
Here we briefly discuss how the sum rule will look for a clocks. The value of the kinetic shift is typically small and
trapped Fermi gas. Effective inter-particle interaction at shortndependent of particle density. If necessary, it can be further
distances depends very strongly on particle statistics. Identreduced by increasing spatial uniformity of the excitation
cal fermions, due to the Pauli principle, can never be foundield.
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