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Ground state of a trapped Bose-Einstein condensate in two dimensions:
Beyond the mean-field approximation
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We consider the ground state of a trapped Bose-Einstein condensate in two dimensions. In the mean-field
approximation the ground-state density profile satisfies the Gross-Pitaevskii equation. We compute the leading
guantum corrections to the density profile to second order in an expansion around the Thomas-Fermi limit. By
summing the ladder diagrams, we obtain a modified equation that includes gradient corrections.
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[. INTRODUCTION only depends oa. Moreover, it differs significantly from the
ground-state energy obtained from solving the Gross-
The remarkable achievement of Bose-Einstein condensditaevskii equation. Including the leading quantum correc-
tion (BEC) of alkali-metal atoms in harmonic traps—3] has  tions to zeroth order in a gradient expansion, the agreement
created an enormous interest in the properties of dilute Boseith the result obtained by Blume and GrediB¢ improves
gases(see, e.g., Ref4] and references therginOne of the  significantly.
basic questions is the condensate density profile as a function The ground-state energy density of a two-dimensional ho-
of temperature. At zero temperature and in the mean-fieldnogeneous Bose gas was first calculated by Sdg¢kBy
approximation, the condensate density satisfies the Grossumming up the ladder diagrams contributing to the chemi-
Pitaevskii equation. Until recently, the condensates were soal potential, he showed that, in the dilute limit, the bare
dilute that mean-field theory gives a satisfactory descriptiorinteraction g is replaced by an effective interaction

of the experiments. However, there are corrections from[|n(pa2)]—l, wherep is the density and is the range of the
quantum fluctuations around the mean field and their relativéhteraction. This parameter is the two-bodymatrix, and
importance grows with the gas parametgra®, whereais  Schick determined the leading-order resulTirThe next-to-
the swave scattering length anglis the density. The sign |eading order result has later been derived by several authors
and value of the scattering length are determined by the nd10-14. Very recently, a formal proof of the result by Schick
ture and the strength of the interatomic interaction and thvas given by Lieb and co-workef45,16.
scattering length can be manipulated by an external field. In |t is well known that a Bose-Einstein condensate in a
recent experiments, Cornisdt al. [5] were able to vary the two-dimensional homogeneous Bose gas only exist3 at
scattering lengtla over a large range by applying a strong = 0. At finite temperature, phase fluctuations destroy the con-
external magnetic field and exploiting the existence of a Fesdensate. This reflects the Mermin-Wagner theofdm, 1§
hbach resonance f{Rb atB~ 155 G. Values for/pa’ upto  stating that there is no spontaneous breakdown of a continu-
approximately 0.1 were obtained and should be sufficientlypus symmetry in a homogeneous system in two dimensions
large to see deviations from the mean field in experimentsat finite temperature. The physics of two-dimensional homo-
Hence it becomes important to be able to calculate the effecgeneous Bose gases is nonetheless very interesting. A dilute
of quantum fluctuations around the mean field in a systemhomogeneous Bose gas in two dimensions is expected to
atic way. Such an approach was developed in Fdfwhere  undergo a phase transition at finite temperature, which is the
the effects of quantum fluctuations on the ground state of &osterlitz-Thouless transitiofil8]. Below the critical tem-
Bose-Einstein condensate in three dimensions were calcyperature, the gas is superfluid but has only algebraic long-
lated. In Ref[7], the result was extended to arbitrary time- range order. This topological phase transition is not charac-
independent states, including vortices. The method is a conierized by a local order parameter, but by the unbinding of
bination of the Hartree-Fock approach and the Thomasvortex pairs and the destruction of superfluidity. The super-
Fermi approach. The Hartree-Fock method includes alfluid phase is characterized by the existence of a so-called
leading quantum corrections to the mean-field equation foguasicondensatgl1], which roughly speaking corresponds
the density. The resulting equation is an integral equationto a condensate with a fluctuating phase. The existence of a
which is reduced to a local differential equation by applyingquasicondensate has only very recently been observed in
a gradient expansion around the Thomas-Fermi limit. spin-polarized hydrogen adsorbed on a superfflite sur-

In a recent paper, Blume and Gred® use a diffusion face by Safonoet al. [20].
Monte Carlo method to calculate the ground-state energy for The Mermin-Wagner theorem does not apply to an inho-
different two-body potentials that generate the same valugiogeneous system and a condensate may exist. Bagnato and
for the scattering length. It turns out that the ground-state Kleppner [21] showed the possibility of BEC fol <T,
energy is independent of the actual form of the potential, it~ N (whereN is the number of particles and is the
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trap frequencyin a two-dimensional ideal gas confined by a the positionx. x is the chemical potentiaV/(x) is the exter-
harmonic potential. In this temperature range, the phase flugal trapping potentialy(x) is the two-body potential. In the
tuations on the scale of the size of a trapped gas is negligiblépllowing, we setZ =2m=1. Factors ofi and 2m can be
and there is a true condensate. In RE22,23, it was shown reinserted using dimensional analysis.

that the possibility of BEC exists also when local two-body The action(1) is symmetric under a phase transformation
interactions are includegee also Ref.24]).

Low-dimensional trapped Bose gases are becoming of in- P(xX,t)—eY(x,t). 2)
creasing interest theoretically as they are now being realized
experimentally. In a very recent experiment byri@p et al. This U(1) symmetry ensures that the densjfyand current
[25], one and two-dimensional Bose-Einstein condensateaensityj satisfy the continuity equation
were created by reducing the temperature and the average
interaction energy of the atoms below the energy splitting of
either two or one of the directions of the harmonic trapping
potential, respectively. For relation to other possible experi- . ) ) )
ments, see, e.g., Ref,26]. In the ground state, the current dengityanishes identi-

The ground-state properties of a trapped Bose gas in tw62lly and the condensate has a constant phase. Thg U
dimensions have been studied recently by a number of aiymmetry can then be used to make the condensate real ev-
thors. In Refs[27-29, the Gross-Pitaevskii equation was erywhere. _ _ , ,
solved numerically using the bare coupling In Refs. _If_the interatomic potentla‘_{/o(x) is short range, it can be
[15,16,30, it is argued that the correct equation for the den-mimicked by local _|nteract|0_ns. If the energies are low
sity can be derived from an energy functional that contain€nough, the scattering amplitude can be approximated by
the result for the energy density obtained by Scligkand ~ SWave scattering and the action Ed) can be approximated
therefore involves a density-dependent coupling. by [31]

However, the Gross-Pitaevskii equation is a mean-field
equation and receives quantum corrections, and in the case . d 1
of trapped Bose gases these involve gradients of the densityL 1= f dtf a2 i E +V2+"L_V} Y=59(4" 9?2
In the present paper, we calculate the leading quantum cor- (4)
rections to the Gross-Pitaevskii equation to second order in
the gradient expansion around the Thomas-Fermi limit. We The quantum field theory defined by the actigh has
also apply theT-matrix approximation to sum up the ladder ytraviolet divergences that must be removed by renormal-
diagrams. The resulting equation extends the result in Ref$;ation of 1 andg. There is also an ultraviolet divergence in
[15,16,3Q. _ _ the expression for the density This divergence can be re-

The plan of the paper is as follows. In Sec. Il, we reviewmgyed by adding a counterterdp. Alternatively, one can
the perturbative framework developed in Réf| to calculate  gjiminate the divergences associated wjthand p by a
the leading quantum corrections to the Gross-Pitaevskihormal-ordering prescription of the fields in E(). The

equation. In Sec. Ill, we calculate the self-consistent onegoypling constant is renormalized in the usual way by replac-
loop corrections to second order in the gradient expansion. Iihg the bare coupling with the physical one.

grams and derive an equation that takes this summation in@itraviolet divergences in the loop integrals, there will be
account. Finally, we summarize our results in Sec. V. CalcUierms proportional toMP, wherep is a positive integer.

p+V-j=0. 3)

lational details are included in two appendixes. There are also terms that are proportional toM.( The
coefficients of the power divergences depend on the regular-
Il. PERTURBATIVE FRAMEWORK ization method and are therefore artifacts of the regulator. On

the other hand, the coefficients of M) are independent of
veloped in Ref[6] to calculate the leading effects on the the regulator and they therefore represent real physics. In this

ground state from quantum fluctuations around the meaf@Per, We use dimensiqnal regularizatiqn to .regulate both
field infrared and ultraviolet divergences. In dimensional regular-

ization, one calculates the loop integralglisn 2—2e dimen-
sions for values ot where the integrals converge. One then
J 2 analytically continues back =2 dimensions. With dimen-
it 9t + ﬁVZJFM—V(X) sional regularization, an arbitrary renormalization sddlés
introduced. This scale can be identified with the simple mo-
1 mentum cutoff mentioned above. An advantage of dimen-
X (x,1) _EJ’ dzxf 2" g* (x,t) * (X' 1) sional regularization is that it automatically sets power diver-
gences to zero, while logarithmic divergences show up as
poles ine. In two dimensions, the one-loop counterterms for
XVO(x—x’)w(x,t)zp(x’,t)]. (1) the chemical potentigk and the density are quadratic ul-
traviolet divergences, while the one-loop counterterm for the
¥* (x,t) is a complex field operator that creates a boson atoupling constang is a logarithmic ultraviolet divergence.

In this section, we discuss the perturbative framework de

The action is

S[z/x]zf dt[fdzx o* (X,1)
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We next parametrize the quantum figldin terms of a

PHYSICAL REVIEW @6 033615

The propagatofevaluated at the classical minimuthat

time-independent condensateand a quantum fluctuating corresponds to the free acti®.d #1,¥-] in Eq. (10) is

field ¥,

y=v+, (5)
where the condensate satisfies

v=(¥). (6)

Here and in the following{A) denotes expectation value of

k2 —iw

i €3(K)/k2

D(w,k)= = ) (16)

—eéX(k)+ie

Herek is the wave vectory is the frequency, ané(k) is the
dispersion relation for the Bogoliubov modes

e(k)=kykZ+ A2, (17)

the operatoA in the ground state. Thus the expectation valueThe dispersion relation is gapless, which reflects the sponta-
of i vanishes. The fluctuating field can be written in terms ofneous breakdown of the () symmetry(Goldstone’s theo-

two real fields,

~ 1
¢=5(¢1+i¢z)- ()

Substituting Eq(7) into Eq. (4), the action can be decom-

posed into three terms,

S 1= v ]+ Syed 1,21+ Sl v, b1, 2] (8

Sv] is the classical action
S[v]=J dtJ d?[(u—V)v?—3gv*+vV2], (9
while the free part of the action is

Sued .021= | 0t [ A vy

+3 (V2= A+ 30,V295]. (10

The interaction part of the action is

V2T + Xy +3Y 45

Sint[U:'/’lal/fz]:f dtf d?x

1
+ ‘Ezwlwf% ¥3)— 59(4T+ Y33

(11)

The sources in Eq1l) are
T=[u—-V-gv’lo+V?, (12)
X=A?+[u—V-3gv?], (13
Y=[pn—-V-gv?], (14)
Z=—gv. (15)

Note that we have added and subtracted an arbitrary ter
%Azz,bf in the action. Its effects are subtracted out at highe
orders through the sourcé By a judicious choice of\, one

can ensure thaX can be treated as a perturbation in the same
way as the other sources and thus simplify calculations. We

return to the choice ol in the following section.

rem). The dispersion is quadratic for large wave vectors and
is that of a free nonrelativistic particle. The propagator is
defined with ani e prescription in the usual way. The quan-
tum field theory defined by Eq4) has been decomposed
into free and interacting parts. The quantum loop expansion
is then an expansion in the dimensionless coupling constant
g. The Hartree-Fock approximation includes all effects to
leading order irg.

The field equation foiy; (and ) is obtained by varying
the action(8). Taking the expectation value of the equation
for 1, we obtain the tadpole equation

1
0=TH+35Z(yd)+32(u)~ S~ g+ v). (19

The density can be written as
p=(P* ) =02+ 3(y5) + 3(y3). (19

To zeroth order in the loop expansion, one neglects the ex-
pectation values in Eq18) and the tadpole equation reduces
to T=0. We also neglect the expectation values in @)

and we havg=uv?. The tadpole equation then reduces to the
Gross-Pitaevskii equation for the density profile

[u—V—gplp+V2p=0. (20)

The last term in Eq(18) only contributes at second order
and beyond in the loop expansion. Thus to leading order in
the quantum fluctuations, E¢L8) reduces to

0=T+3Z(y)+3Z(y3). (21)

Equation (21) is referred to as the semiclassical tadpole
equation[6].

The sourceX andY depend on the condensateln order
to obtain an equation for the densjiywe invert Eq.(19) so
that we can eliminate in favor of p in Eq. (21). The expec-
tation values in Eq(19) are correction terms arising from
quantum fluctuations around the mean field. These terms are
suppressed by powers @f compared to the terms in the
fglassical equations. Since we are only interested in the lead-
Iing quantum effects, we can invert H4.9) and expand it to
first order in the expectation values,

1 5 5
v= P‘m(‘ﬂl""ﬁz)- (22)
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We can also derive expressions for the gradients b/ w2
differentiating Eq.(22), i

1 FIG. 1. Feynman diagram needed for the calculation of the
Vo= %[4PV Vo+ Vp(ui+ yd)— pV {2+ yd)], coefficient ofa, in Eq. (29).
23
@3 dient expansion or in the coupling constantThis is gener-
1 ally not correct, but it can be made true at a specific paint
V= m[4p3/2V2\/;+[\/;V2\/;— 2(V\p) 212+ 3 by a clever choice of the paramet&r{6]. Since the expec-
p tation values of the quantum fields are of ordeand we are
+2\pV p- V(2 + y2) — pV A2+ y2)]. (24)  interested in the leading quantum effects, we can use the
classical equation of motiod,=0, to simplify the sources,
Substituting the expressid@2) for v and Eq.(24) for Vv, 1
the semiclassical tadpole equati(#1) becomes X(xo) = A2—2gv?— ;Vzv’ (26)

1
0=[u—=V=8pINp+V:\p=gVp(¥D) + 5[ VpV\p 1
p Y(Xo)=— ;Vzv. (27)
1
_ 2 2 2\, = ) 2 2
(V) 25+ gy + 2pV\/; VLt ) The sourceY(x,) is already second order in the gradient
expansion. We can also makéx,) second order in the gra-

1 1 1 dient expansion by the following choi¢é] for the arbitrary
2/ .42 2 2
_ 4\/;V (Yi+y5)— —4\/; u—V—gp+ —\/;V Vp parameter:

X{Y+ y5). (25) A2=2gp(xo). (28)

The last line in Eq(25) is proportional to the classical equa- The difference betweep andv_z is higher order irg and can
tion of motion. The corrections to the classical equation of?® neglected. Any other choice df, which is equal to Eq.
motion are of ordeg and so are the expectation values of the(28) to leading order ing and in the gradient expansion,
quantum fields. Thus the last line is second order in quanturfésults in the same final equation for the density.

corrections and will therefore be dropped in the following. "€ expectation values in E(R5) are now expanded in
powers ofX andY and their gradients around the poigf,

IIl. GRADIENT EXPANSION (P2) =g+ ag X+ a,Y +asV2X + a2+ ag(VX)2t -

The expectation values in E¢R1) are functionals of the (29)
sourcesX andY. These functionals involve an arbitrary num- o 2 2 2
ber of insertions of the sources in the loop diagram {ig) (2)=Do+b1X+b,Y +bgVEX+ DX +bs(VX) ™ .
and (y3). They are nonlocal since the positions of the (30

sources are integrated over. Thus the tadpole equation is afhe expansions of ;) and (i,) include all rotationally

integral equation. ) . invariant terms built from the sources and their derivatives.
Instead of solving the nonlocal integral equati@), we | Fig. 1, we show the diagram that we need to calculate in

would like to derive a local differential equation by expand- order to obtain the coefficierst, appearing in Eq(29). The

ing the expectation valuey?) and(y3) in powers of the  sojid line denotes the diagonal propagator far. The cal-

sources and their gradients. The Thomas-Fermi expansion {&jlation is sketched in Appendix B.

an expansion in powers ¢fR, where¢=1/\/gp is the local We will also need to calculate the gradients(gf) and

coherence length anR is the length scale for significant 2y in powers of the sources and their derivatives. Adding
changes in the density. It is possible to expand the expectgqs (29) and (30) and differentiating, we obtain
tion values in Eq(21) in powers of gradients of the sources,

if the expectation values receive significant contributions V(,/,§+ ¢§>:(al+ by ) VX+---, (31
only from modes with wavelengths that are of the order of

the coherence length or less. This can be ensured by intro- V2(yl+ 2y =(a,+ b)) VIX+2(as+ by (VX) 2+ -+ .
ducing an infrared cutoff that eliminates the contribution (32)
from wavelengths larger than the coherence length. We use

dimensional regularization to guarantee that the effects of We next eliminate the dependence wwf the sources in
these modes are eliminated. If the results depend on the ifiavor of the densityp. Since the sources only appear in the
frared cutoff, it indicates a sensitivity to length scales muchexpectation values that are of ordgrwe can neglect the

larger than the coherence lend#. expectation values in Eq$22)—(24),
We can also expand the expectation values in poweks of
andY if the sources are at least first order either in the gra- v(Xg)= \/E, (33
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Vo(xo)=Vp,

V2 (%) =V2p.

(39

(39

The resulting expressions for the sources and their deriva-

tives then become

v2Jp
X =— , 36)
(XO) \/; (
VX(%0)=—4gpV\p, (37)
V2X(x0) = —4g[VpV?\p+(Vp)?], (39)
v2\Jp
Y =— (39
(XO) \/;

Using EQgs.(29)—(32) for the expectation values and the ex-
pressiong36)—(39) for the sources, the semiclassical tadpole
equation reduces to

0=(u—V—9gp)Vp+V2p—apgVp+i[as+be+(2a,
2

byt ay) A2+ 2a3A%] — L Lag+by+(a+by)A2
V 2

—2(a3—2a4—2b4)A4+4a5A6]ﬂ. (40)
p\p

The coefficientsa; andb; were calculated in Ref6]. They
can be expressed in terms of the intedygl,, which is de-
fined in Appendix A. We list them in Appendix B for conve-
nience. The coefficients, andb, are quadratically ultravio-
let divergent, whilea;, a,, b;, andb, are logarithmically
ultraviolet divergent. The remaining coefficients are ultravio-

let finite. Note also that the infrared divergences in the indi-

vidual coefficients cancel in the sum. The fact that the de
pendence on the infrared cutoff cancels, ensures that there

PHYSICAL REVIEW 86 033615
w%@ + wf@@ + w?@
Focorose
QOO0 4O -

FIG. 2. Series of diagrams that are summed to give the leading
correction to the mean-field tergp+p in Eq. (42).

been derived at a specific poiR. Since the pointx, is
arbitrary, Eq.(42) must hold everywhere.

The logarithmic term in Eqi42) can be obtained from the
one-loop result for the ground-state energy denSitipr a
homogeneous Bose gas, obtained in Rg8,34 by differ-
entiating€ with respect to|p. The last term in Eq(42) is a
new result.

This renormalization scale is completely arbitrary and
physical quantities such as the density profile of the ground
state must be independent of it. The requirement that physi-
cal quantities be independentidfcan be expressed in terms
of renormalization-group equations for the coupling con-
stants in the Lagrangian. The coupling consiguim Eq. (4)
satisfies

d
M 9=8(9), (43
where theg function is a polynomial irg. Normally, 8 func-
tions are known only up to a certain order in the quantum
loop expansion. In the present case, the one-loop result for
the 8 function is exact angB(g) = g?/4m [32].

IV. T-MATRIX APPROXIMATION

In this section we employ the ladder Bmmatrix approxi-
mation, which takes an infinite number of loops into account.
IS The diagrams we are summing and that give the leading

no sensitivity to length scales much larger than the coherencgyrrection to the mean-field terrgp\/ﬁ in Eq. (42) are

length to leading order in the gradient expansion.

shown in Fig. 2. The solid line denotes the diagonal propa-

The counterterm needed to cancel the ultraviolet divergator fory, and the dashed line denotes the diagonal propa-

gences in Eq(40) is [32]

g2

89= Smc’ (41
Using the values for the coefficients listed in Appendix B, we
obtain

gp

2M?

I

2
g
0=[V2%+u—V]Vp—gpvp— %{ 1+In

g

127

- (42)

v2\p.

Note, in particular, that the coefficient o¥(/p)? in Eq. (40)
vanishes. This is not the case in three dimensjéhand we
have no explanation for this cancellation. Equatidf) has

gator forys, . The off-diagonal propagators f@r, and i, are
denoted by a solid-dashed and dashed-solid line, respec-
tively. The diagrams are not the conventional ladder dia-
grams since we use two real fields instead of a single com-
plex field. The final result, however, is the same. The
correction to the gradient term in E42) is obtained by
summing the same diagrams with insertions of sou¥s
and their derivatives in the leftmost loop in every diagram.
In two dimensions, the summation amounts to replacing
the bare interactiong by an effective interaction
—8m[In(pa®)] %, which is density dependefi19,35,36. In
the dilute-gas limit, this expansion parameter is small, and
Eq. (42) is replaced by

0=[V2+u—V]Jp+8mL Y+ (In[—L/8x]—1)L p\p
+2L71v2\p, (44)
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where L=[In(pa®)]. This is the main result of the present dw w?
paper. The second term follows from the ground-state energy 75— (02— +ie) 1
of a homogeneous Bose gas. The leading piece of this term,

which corresponds to Schick’s result, was found in Refs. (=1)X1X3-(2n—-3) 1

[15,16,30. The subleading pieces of this term as well as the ~ =i(—1)""* ST I o1 (A2)
third term, which is a correction to the gradient term, are our
results. The momentum integrals are evaluated using dimensional

Up to corrections that are suppressed by powers of theegularization ind=2—2¢ dimensions. Some of the inte-
small parameter-8(In(pa?)] %, Eq. (44) can be derived grals are infrared divergent or ultraviolet divergent or both.
from an energy functionak[®], where[®] is identified  They can be written in terms of integrg}, ,, which is de-

with p, fined by
eyMZ € ddk k2m
E[CI)]:J’ d2X{[l+%L_1]|V(‘I)|2+[V—M]|Q)|2—477L_1 Imn= A ) (27T)d kn(k2+A2)n/2- (A3)
X{1+3(2 In[—L/8w]—1)L~ 1| d|*}. (450  Here,M is a renormalization scale that ensures that has

the canonical dimension also fat#2. y~0.5772 is the
Euler-Mascheroni constant. With dimensional regularization,

The energy functional Eq45) generalizes the energy func- I,nn S given by the formula

tional in Refs.[15,3( to include a gradient term.

2\ €
| — Qd e’'M Ad+2m72n
V. SUMMARY mn=2ma\ 4a
In this paper, we have computed the leading quantum cor- d—n d
rections to the Gross-Pitaevskii equation for a trapped Bose I T+m I'in—m- 5

gas in two spatial dimensions. The method involves the trun-
cation of two systematic expansions. The first is the quantum 21“(
loop expansion, which is an expansion in powers of the cou-
pling constantg, and the second is a gradient expansion a2 . ) .
around the Thomas-Fermi limit. The result E42) includes where Qy=27Y91"[d/2] is the area of thel-dimensional
all leading-order quantum corrections to second order in théPhere. . .
gradient expansion. The integrald ,, , satisfy the relations

The summation of the ladder diagrams changes the effec-
tive expansion parameter from to —8=[In(pa?)] . The
resulting equatior(44) includes a term that can be derived - — (AB)
from the ground-state energy density of a homogeneous Bose mnTimmin=2 Ameln
gas. It also includes a term that is a gradient correction to thehe first relation follows from integration by parts, while the
mean-field equation. second is simply an algebraic relation.

n ; (A4)

2

(d+2m_n)|m,n:n|m+2,n+27 (AS5)
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APPENDIX A: FORMULAS

. . . . 3-2:_?11|o,1- (B3)
The loop integrals that appear in our calculations involve

integrations over the energy and the spatial momentuin
The energy integrals are evaluated using contour integration. a3:ﬁ[_ 1015+ 1335113, (B4)
The specific integrals needed are

. . as=15l3s, (B5)
w
J'_ﬁ 1

2 ((l) € +|E) aEZ%[35|6,9_ 10'4’7"’_3'2’5]! (86)

(—1)X1x3---(2n—3) 1

=j(—1n+? =11 i (A1) bo=31_1_1, (B7)
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by=—%lo1, (B8) Finally, we outline how to calculate a one-loop diagram
' explicitly. For simplicity, we compute the leading coefficient
by=3%1_5_1, (B9  a, in the gradient expansion for the expectation valyé)
in Eq. (29). The diagram is shown in Fig. 1, and it reads
1
b3=-72[2l35= 3113~ 1-14], (B10)
16d evmz)ff do [ d%  ik? ©13
Q=7 5> d-72_ 2. -
bAZ_%ll,Sl (Bll) 4 2 (277) w°—€e“tle
5 i i i -
bs=— —— (14742055t loa]. (B12) Aﬁer integrating over the energy, using Eq.(Al), we ob
64d - ™ : ' tain
The factor ofd in the denominators i3, as, bs, andbg p2) e q )
arises from averaging over angles in the momentum a zl e'™M f d“k k_zll (B14)
integrals. 2\ 4xw 2md e 2%
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