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Ground state of a trapped Bose-Einstein condensate in two dimensions:
Beyond the mean-field approximation
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Hårek Haugerud
Faculty of Engineering, Oslo University College, Cort Adelers gate 30, 0254 Oslo, Norway

~Received 17 September 2001; published 20 February 2002!

We consider the ground state of a trapped Bose-Einstein condensate in two dimensions. In the mean-field
approximation the ground-state density profile satisfies the Gross-Pitaevskii equation. We compute the leading
quantum corrections to the density profile to second order in an expansion around the Thomas-Fermi limit. By
summing the ladder diagrams, we obtain a modified equation that includes gradient corrections.
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I. INTRODUCTION

The remarkable achievement of Bose-Einstein conde
tion ~BEC! of alkali-metal atoms in harmonic traps@1–3# has
created an enormous interest in the properties of dilute B
gases~see, e.g., Ref.@4# and references therein!. One of the
basic questions is the condensate density profile as a fun
of temperature. At zero temperature and in the mean-fi
approximation, the condensate density satisfies the Gr
Pitaevskii equation. Until recently, the condensates were
dilute that mean-field theory gives a satisfactory descript
of the experiments. However, there are corrections fr
quantum fluctuations around the mean field and their rela
importance grows with the gas parameterAra3, wherea is
the s-wave scattering length andr is the density. The sign
and value of the scattering length are determined by the
ture and the strength of the interatomic interaction and
scattering length can be manipulated by an external field
recent experiments, Cornishet al. @5# were able to vary the
scattering lengtha over a large range by applying a stron
external magnetic field and exploiting the existence of a F
hbach resonance in85Rb atB;155 G. Values forAra3 up to
approximately 0.1 were obtained and should be sufficien
large to see deviations from the mean field in experime
Hence it becomes important to be able to calculate the eff
of quantum fluctuations around the mean field in a syste
atic way. Such an approach was developed in Ref.@6#, where
the effects of quantum fluctuations on the ground state o
Bose-Einstein condensate in three dimensions were ca
lated. In Ref.@7#, the result was extended to arbitrary tim
independent states, including vortices. The method is a c
bination of the Hartree-Fock approach and the Thom
Fermi approach. The Hartree-Fock method includes
leading quantum corrections to the mean-field equation
the density. The resulting equation is an integral equat
which is reduced to a local differential equation by applyi
a gradient expansion around the Thomas-Fermi limit.

In a recent paper, Blume and Greene@8# use a diffusion
Monte Carlo method to calculate the ground-state energy
different two-body potentials that generate the same va
for the scattering lengtha. It turns out that the ground-stat
energy is independent of the actual form of the potentia
1050-2947/2002/65~3!/033615~7!/$20.00 65 0336
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only depends ona. Moreover, it differs significantly from the
ground-state energy obtained from solving the Gro
Pitaevskii equation. Including the leading quantum corr
tions to zeroth order in a gradient expansion, the agreem
with the result obtained by Blume and Greene@8# improves
significantly.

The ground-state energy density of a two-dimensional
mogeneous Bose gas was first calculated by Schick@9#. By
summing up the ladder diagrams contributing to the che
cal potential, he showed that, in the dilute limit, the ba
interaction g is replaced by an effective interactio

;@ ln(ra2)#21, wherer is the density anda is the range of the
interaction. This parameter is the two-bodyT matrix, and
Schick determined the leading-order result inT. The next-to-
leading order result has later been derived by several aut
@10–14#. Very recently, a formal proof of the result by Schic
was given by Lieb and co-workers@15,16#.

It is well known that a Bose-Einstein condensate in
two-dimensional homogeneous Bose gas only exists aT
50. At finite temperature, phase fluctuations destroy the c
densate. This reflects the Mermin-Wagner theorem@17,18#
stating that there is no spontaneous breakdown of a cont
ous symmetry in a homogeneous system in two dimens
at finite temperature. The physics of two-dimensional hom
geneous Bose gases is nonetheless very interesting. A d
homogeneous Bose gas in two dimensions is expecte
undergo a phase transition at finite temperature, which is
Kosterlitz-Thouless transition@18#. Below the critical tem-
perature, the gas is superfluid but has only algebraic lo
range order. This topological phase transition is not char
terized by a local order parameter, but by the unbinding
vortex pairs and the destruction of superfluidity. The sup
fluid phase is characterized by the existence of a so-ca
quasicondensate@11#, which roughly speaking correspond
to a condensate with a fluctuating phase. The existence
quasicondensate has only very recently been observe
spin-polarized hydrogen adsorbed on a superfluid47He sur-
face by Safonovet al. @20#.

The Mermin-Wagner theorem does not apply to an inh
mogeneous system and a condensate may exist. Bagnat
Kleppner @21# showed the possibility of BEC forT,Tc

'AN\v ~whereN is the number of particles andv is the
©2002 The American Physical Society15-1
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JENS O. ANDERSEN AND HA˚ REK HAUGERUD PHYSICAL REVIEW A65 033615
trap frequency! in a two-dimensional ideal gas confined by
harmonic potential. In this temperature range, the phase
tuations on the scale of the size of a trapped gas is neglig
and there is a true condensate. In Refs.@22,23#, it was shown
that the possibility of BEC exists also when local two-bo
interactions are included~see also Ref.@24#!.

Low-dimensional trapped Bose gases are becoming o
creasing interest theoretically as they are now being real
experimentally. In a very recent experiment by Go¨rlitz et al.
@25#, one and two-dimensional Bose-Einstein condensa
were created by reducing the temperature and the ave
interaction energy of the atoms below the energy splitting
either two or one of the directions of the harmonic trapp
potential, respectively. For relation to other possible exp
ments, see, e.g., Refs.@4,26#.

The ground-state properties of a trapped Bose gas in
dimensions have been studied recently by a number of
thors. In Refs.@27–29#, the Gross-Pitaevskii equation wa
solved numerically using the bare couplingg. In Refs.
@15,16,30#, it is argued that the correct equation for the de
sity can be derived from an energy functional that conta
the result for the energy density obtained by Schick@9# and
therefore involves a density-dependent coupling.

However, the Gross-Pitaevskii equation is a mean-fi
equation and receives quantum corrections, and in the
of trapped Bose gases these involve gradients of the den
In the present paper, we calculate the leading quantum
rections to the Gross-Pitaevskii equation to second orde
the gradient expansion around the Thomas-Fermi limit.
also apply theT-matrix approximation to sum up the ladd
diagrams. The resulting equation extends the result in R
@15,16,30#.

The plan of the paper is as follows. In Sec. II, we revie
the perturbative framework developed in Ref.@6# to calculate
the leading quantum corrections to the Gross-Pitaev
equation. In Sec. III, we calculate the self-consistent o
loop corrections to second order in the gradient expansion
Sec. IV, we briefly discuss the summation of the ladder d
grams and derive an equation that takes this summation
account. Finally, we summarize our results in Sec. V. Cal
lational details are included in two appendixes.

II. PERTURBATIVE FRAMEWORK

In this section, we discuss the perturbative framework
veloped in Ref.@6# to calculate the leading effects on th
ground state from quantum fluctuations around the m
field.

The action is

S@c#5E dtH E d2x c* ~x,t !F i\
]

]t
1

\2

2m
¹21m2V~x!G

3c~x,t !2
1

2E d2xE d2x8c* ~x,t !c* ~x8,t !

3V0~x2x8!c~x,t !c~x8,t !J . ~1!

c* (x,t) is a complex field operator that creates a boson
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the positionx. m is the chemical potential,V(x) is the exter-
nal trapping potential,V0(x) is the two-body potential. In the
following, we set\52m51. Factors of\ and 2m can be
reinserted using dimensional analysis.

The action~1! is symmetric under a phase transformati

c~x,t !→eiac~x,t !. ~2!

This U~1! symmetry ensures that the densityr and current
densityj satisfy the continuity equation

ṙ1“• j50. ~3!

In the ground state, the current densityj vanishes identi-
cally and the condensate has a constant phase. The~1!
symmetry can then be used to make the condensate rea
erywhere.

If the interatomic potentialV0(x) is short range, it can be
mimicked by local interactions. If the energies are lo
enough, the scattering amplitude can be approximated
s-wave scattering and the action Eq.~1! can be approximated
by @31#

S@c#5E dtE d2x c* F i
]

]t
1¹21m2VGc2

1

2
g~c* c!2.

~4!

The quantum field theory defined by the action~4! has
ultraviolet divergences that must be removed by renorm
ization ofm andg. There is also an ultraviolet divergence
the expression for the densityr. This divergence can be re
moved by adding a countertermdr. Alternatively, one can
eliminate the divergences associated withm and r by a
normal-ordering prescription of the fields in Eq.~4!. The
coupling constant is renormalized in the usual way by repl
ing the bare coupling with the physical one.

If we use a simple momentum cutoffM to cut off the
ultraviolet divergences in the loop integrals, there will
terms proportional toM p, where p is a positive integer.
There are also terms that are proportional to ln (M). The
coefficients of the power divergences depend on the regu
ization method and are therefore artifacts of the regulator.
the other hand, the coefficients of ln(M) are independent o
the regulator and they therefore represent real physics. In
paper, we use dimensional regularization to regulate b
infrared and ultraviolet divergences. In dimensional regu
ization, one calculates the loop integrals ind5222e dimen-
sions for values ofe where the integrals converge. One th
analytically continues back tod52 dimensions. With dimen-
sional regularization, an arbitrary renormalization scaleM is
introduced. This scale can be identified with the simple m
mentum cutoff mentioned above. An advantage of dim
sional regularization is that it automatically sets power div
gences to zero, while logarithmic divergences show up
poles ine. In two dimensions, the one-loop counterterms
the chemical potentialm and the densityr are quadratic ul-
traviolet divergences, while the one-loop counterterm for
coupling constantg is a logarithmic ultraviolet divergence.
5-2
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We next parametrize the quantum fieldc in terms of a
time-independent condensatev and a quantum fluctuating
field c̃,

c5v1c̃, ~5!

where the condensatev satisfies

v5^c&. ~6!

Here and in the following,̂A& denotes expectation value o
the operatorA in the ground state. Thus the expectation va
of c̃ vanishes. The fluctuating field can be written in terms
two real fields,

c̃5
1

&
~c11 ic2!. ~7!

Substituting Eq.~7! into Eq. ~4!, the action can be decom
posed into three terms,

S@c#5S@v#1Sfree@c1 ,c2#1Sint@v,c1 ,c2#. ~8!

S@v# is the classical action

S@v#5E dtE d2x@~m2V!v22 1
2 gv41v¹2v#, ~9!

while the free part of the action is

Sfree@c1 ,c2#5E dtE d2x@ 1
2 ~c1c22c1c2!

1 1
2 c1~¹22L2!c11 1

2 c2¹2c2#. ~10!

The interaction part of the action is

Sint@v,c1 ,c2#5E dtE d2xF&Tc11 1
2 Xc1

21 1
2 Yc2

2

1
1

&
Zc1~c1

21c2
2!2 1

8 g~c1
21c2

2!2G .

~11!

The sources in Eq.~11! are

T5@m2V2gv2#v1¹2v, ~12!

X5L21@m2V23gv2#, ~13!

Y5@m2V2gv2#, ~14!

Z52gv. ~15!

Note that we have added and subtracted an arbitrary t
1
2 L2c1

2 in the action. Its effects are subtracted out at hig
orders through the sourceX. By a judicious choice ofL, one
can ensure thatX can be treated as a perturbation in the sa
way as the other sources and thus simplify calculations.
return to the choice ofL in the following section.
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The propagator~evaluated at the classical minimum! that
corresponds to the free actionSfree@c1 ,c2# in Eq. ~10! is

D~v,k!5
i

v22e2~k!1 i e S k2 2 iv

iv e2~k!/k2D . ~16!

Herek is the wave vector,v is the frequency, ande(k) is the
dispersion relation for the Bogoliubov modes

e~k!5kAk21L2. ~17!

The dispersion relation is gapless, which reflects the spo
neous breakdown of the U~1! symmetry~Goldstone’s theo-
rem!. The dispersion is quadratic for large wave vectors a
is that of a free nonrelativistic particle. The propagator
defined with ani e prescription in the usual way. The quan
tum field theory defined by Eq.~4! has been decompose
into free and interacting parts. The quantum loop expans
is then an expansion in the dimensionless coupling cons
g. The Hartree-Fock approximation includes all effects
leading order ing.

The field equation forc1 ~andc2! is obtained by varying
the action~8!. Taking the expectation value of the equatio
for c1 , we obtain the tadpole equation

05T1 3
2 Z^c1

2&1 1
2 Z^c2

2&2
1

2&
g^c1~c1

21c2
2!&. ~18!

The density can be written as

r5^c* c&5v21 1
2 ^c1

2&1 1
2 ^c2

2&. ~19!

To zeroth order in the loop expansion, one neglects the
pectation values in Eq.~18! and the tadpole equation reduc
to T50. We also neglect the expectation values in Eq.~19!
and we haver5v2. The tadpole equation then reduces to t
Gross-Pitaevskii equation for the density profile

@m2V2gr#Ar1¹2Ar50. ~20!

The last term in Eq.~18! only contributes at second orde
and beyond in the loop expansion. Thus to leading orde
the quantum fluctuations, Eq.~18! reduces to

05T1 3
2 Z^c1

2&1 1
2 Z^c2

2&. ~21!

Equation ~21! is referred to as the semiclassical tadpo
equation@6#.

The sourcesX andY depend on the condensatev. In order
to obtain an equation for the densityr, we invert Eq.~19! so
that we can eliminatev in favor of r in Eq. ~21!. The expec-
tation values in Eq.~19! are correction terms arising from
quantum fluctuations around the mean field. These terms
suppressed by powers ofg compared to the terms in th
classical equations. Since we are only interested in the le
ing quantum effects, we can invert Eq.~19! and expand it to
first order in the expectation values,

v5Ar2
1

4Ar
^c1

21c2
2&. ~22!
5-3
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We can also derive expressions for the gradients ofv by
differentiating Eq.~22!,

“v5
1

4r
@4r“Ar1“Ar^c1

21c2
2&2Ar“^c1

21c2
2&#,

~23!

¹2v5
1

4r3/2@4r3/2¹2Ar1@Ar¹2Ar22~“Ar!2#^c1
21c2

2&

12Ar“Ar•“^c1
21c2

2&2r¹2^c1
21c2

2&#. ~24!

Substituting the expression~22! for v and Eq.~24! for ¹2v,
the semiclassical tadpole equation~21! becomes

05@m2V2gr#Ar1¹2Ar2gAr^c1
2&1

1

2r3/2@Ar¹2Ar

2~“Ar!2#^c1
21c2

2&1
1

2r
“Ar•“^c1

21c2
2&

2
1

4Ar
¹2^c1

21c2
2&2

1

4Ar
S m2V2gr1

1

Ar
¹2Ar D

3^c1
21c2

2&. ~25!

The last line in Eq.~25! is proportional to the classical equa
tion of motion. The corrections to the classical equation
motion are of orderg and so are the expectation values of t
quantum fields. Thus the last line is second order in quan
corrections and will therefore be dropped in the following

III. GRADIENT EXPANSION

The expectation values in Eq.~21! are functionals of the
sourcesX andY. These functionals involve an arbitrary num
ber of insertions of the sources in the loop diagrams for^c1

2&
and ^c2

2&. They are nonlocal since the positions of t
sources are integrated over. Thus the tadpole equation
integral equation.

Instead of solving the nonlocal integral equation~25!, we
would like to derive a local differential equation by expan
ing the expectation valueŝc1

2& and ^c2
2& in powers of the

sources and their gradients. The Thomas-Fermi expansio
an expansion in powers ofj/R, wherej51/Agr is the local
coherence length andR is the length scale for significan
changes in the density. It is possible to expand the expe
tion values in Eq.~21! in powers of gradients of the source
if the expectation values receive significant contributio
only from modes with wavelengths that are of the order
the coherence length or less. This can be ensured by in
ducing an infrared cutoff that eliminates the contributi
from wavelengths larger than the coherence length. We
dimensional regularization to guarantee that the effects
these modes are eliminated. If the results depend on the
frared cutoff, it indicates a sensitivity to length scales mu
larger than the coherence length@6#.

We can also expand the expectation values in powersX
andY if the sources are at least first order either in the g
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dient expansion or in the coupling constantg. This is gener-
ally not correct, but it can be made true at a specific pointx0
by a clever choice of the parameterL @6#. Since the expec-
tation values of the quantum fields are of orderg and we are
interested in the leading quantum effects, we can use
classical equation of motion,T50, to simplify the sources,

X~x0!5L222gv22
1

v
¹2v, ~26!

Y~x0!52
1

v
¹2v. ~27!

The sourceY(x0) is already second order in the gradie
expansion. We can also makeX(x0) second order in the gra
dient expansion by the following choice@6# for the arbitrary
parameterL:

L252gr~x0!. ~28!

The difference betweenr andv2 is higher order ing and can
be neglected. Any other choice ofL, which is equal to Eq.
~28! to leading order ing and in the gradient expansion
results in the same final equation for the density.

The expectation values in Eq.~25! are now expanded in
powers ofX andY and their gradients around the pointx0 ,

^c1
2&5a01a1X1a2Y1a3¹2X1a4X21a5~“X!21¯ ,

~29!

^c2
2&5b01b1X1b2Y1b3¹2X1b4X21b5~“X!21¯ .

~30!

The expansions of̂c1& and ^c2& include all rotationally
invariant terms built from the sources and their derivativ
In Fig. 1, we show the diagram that we need to calculate
order to obtain the coefficienta0 appearing in Eq.~29!. The
solid line denotes the diagonal propagator forc1 . The cal-
culation is sketched in Appendix B.

We will also need to calculate the gradients of^c1
2& and

^c2
2& in powers of the sources and their derivatives. Addi

Eqs.~29! and ~30! and differentiating, we obtain

“^c1
21c2

2&5~a11b1!“X1¯ , ~31!

¹2^c1
21c2

2&5~a11b1!¹2X12~a41b4!~“X!21¯ .
~32!

We next eliminate the dependence onv of the sources in
favor of the densityr. Since the sources only appear in th
expectation values that are of orderg, we can neglect the
expectation values in Eqs.~22!–~24!,

v~x0!5Ar, ~33!

FIG. 1. Feynman diagram needed for the calculation of
coefficient ofa0 in Eq. ~29!.
5-4
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“v~x0!5“Ar, ~34!

¹2v~x0!5¹2Ar. ~35!

The resulting expressions for the sources and their der
tives then become

X~x0!52
¹2Ar

Ar
, ~36!

“X~x0!524gAr“Ar, ~37!

¹2X~x0!524g@Ar¹2Ar1~“Ar!2#, ~38!

Y~x0!52
¹2Ar

Ar
. ~39!

Using Eqs.~29!–~32! for the expectation values and the e
pressions~36!–~39! for the sources, the semiclassical tadpo
equation reduces to

05~m2V2gr!Ar1¹2Ar2a0gAr1 1
2 @a01b01~2a1

1b11a2!L212a3L4#
¹2Ar

r
2 1

2 @a01b01~a11b1!L2

22~a322a422b4!L414a5L6#
~“Ar!2

rAr
. ~40!

The coefficientsai andbi were calculated in Ref.@6#. They
can be expressed in terms of the integralI m,n , which is de-
fined in Appendix A. We list them in Appendix B for conve
nience. The coefficientsa0 andb0 are quadratically ultravio-
let divergent, whilea1 , a2 , b1 , andb2 are logarithmically
ultraviolet divergent. The remaining coefficients are ultrav
let finite. Note also that the infrared divergences in the in
vidual coefficients cancel in the sum. The fact that the
pendence on the infrared cutoff cancels, ensures that the
no sensitivity to length scales much larger than the cohere
length to leading order in the gradient expansion.

The counterterm needed to cancel the ultraviolet div
gences in Eq.~40! is @32#

dg5
g2

8pe
. ~41!

Using the values for the coefficients listed in Appendix B, w
obtain

05@¹21m2V#Ar2grAr2
g2

8p H 11 lnF gr

2M2G J rAr

2
g

12p
¹2Ar. ~42!

Note, in particular, that the coefficient of (“Ar)2 in Eq. ~40!
vanishes. This is not the case in three dimensions@6# and we
have no explanation for this cancellation. Equation~42! has
03361
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been derived at a specific pointx0 . Since the pointx0 is
arbitrary, Eq.~42! must hold everywhere.

The logarithmic term in Eq.~42! can be obtained from the
one-loop result for the ground-state energy densityE for a
homogeneous Bose gas, obtained in Refs.@33,34# by differ-
entiatingE with respect toAr. The last term in Eq.~42! is a
new result.

This renormalization scale is completely arbitrary a
physical quantities such as the density profile of the grou
state must be independent of it. The requirement that ph
cal quantities be independent ofM can be expressed in term
of renormalization-group equations for the coupling co
stants in the Lagrangian. The coupling constantg in Eq. ~4!
satisfies

M
d

dM
g5b~g!, ~43!

where theb function is a polynomial ing. Normally,b func-
tions are known only up to a certain order in the quant
loop expansion. In the present case, the one-loop resul
the b function is exact andb(g)5g2/4p @32#.

IV. T-MATRIX APPROXIMATION

In this section we employ the ladder orT-matrix approxi-
mation, which takes an infinite number of loops into accou

The diagrams we are summing and that give the lead
correction to the mean-field termgrAr in Eq. ~42! are
shown in Fig. 2. The solid line denotes the diagonal pro
gator forc1 and the dashed line denotes the diagonal pro
gator forc2 . The off-diagonal propagators forc1 andc2 are
denoted by a solid-dashed and dashed-solid line, res
tively. The diagrams are not the conventional ladder d
grams since we use two real fields instead of a single c
plex field. The final result, however, is the same. T
correction to the gradient term in Eq.~42! is obtained by
summing the same diagrams with insertions of sourcesX,Y,
and their derivatives in the leftmost loop in every diagram

In two dimensions, the summation amounts to replac
the bare interaction g by an effective interaction
28p@ ln(ra2)#21, which is density dependent@19,35,36#. In
the dilute-gas limit, this expansion parameter is small, a
Eq. ~42! is replaced by

05@¹21m2V#Ar18pL21$1~ ln@2L/8p#21!L21rAr

1 2
3 L21¹2Ar, ~44!

FIG. 2. Series of diagrams that are summed to give the lead
correction to the mean-field termgrAr in Eq. ~42!.
5-5
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where L5@ ln(ra2)#. This is the main result of the prese
paper. The second term follows from the ground-state ene
of a homogeneous Bose gas. The leading piece of this t
which corresponds to Schick’s result, was found in Re
@15,16,30#. The subleading pieces of this term as well as
third term, which is a correction to the gradient term, are
results.

Up to corrections that are suppressed by powers of
small parameter28p@ ln(ra2)#21, Eq. ~44! can be derived
from an energy functionalE@F#, where @F# is identified
with Ar,

E@F#5E d2x$@11 2
3 L21#u“Fu21@V2m#uFu224pL21

3$11 1
2 ~2 ln@2L/8p#21!L21%uFu4%. ~45!

The energy functional Eq.~45! generalizes the energy func
tional in Refs.@15,30# to include a gradient term.

V. SUMMARY

In this paper, we have computed the leading quantum
rections to the Gross-Pitaevskii equation for a trapped B
gas in two spatial dimensions. The method involves the tr
cation of two systematic expansions. The first is the quan
loop expansion, which is an expansion in powers of the c
pling constantg, and the second is a gradient expans
around the Thomas-Fermi limit. The result Eq.~42! includes
all leading-order quantum corrections to second order in
gradient expansion.

The summation of the ladder diagrams changes the ef
tive expansion parameter fromg to 28p@ ln(ra2)#21. The
resulting equation~44! includes a term that can be derive
from the ground-state energy density of a homogeneous B
gas. It also includes a term that is a gradient correction to
mean-field equation.
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APPENDIX A: FORMULAS

The loop integrals that appear in our calculations invo
integrations over the energyv and the spatial momentumk.
The energy integrals are evaluated using contour integra
The specific integrals needed are

E dv

2p

1

~v22e21 i e!n

5 i ~21!n11
~21!3133¯~2n23!

2n~n21!!

1

e2n21 , ~A1!
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gy
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.
e
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e
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e
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m
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n

e
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ijk

e
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E dv

2p

v2

~v22e21 i e!n11

5 i ~21!n11
~21!3133¯~2n23!

2n11n!

1

e2n21 . ~A2!

The momentum integrals are evaluated using dimensio
regularization ind5222e dimensions. Some of the inte
grals are infrared divergent or ultraviolet divergent or bo
They can be written in terms of integralI m,n , which is de-
fined by

I m,n5S egM2

4p D eE ddk

~2p!d

k2m

kn~k21L2!n/2 . ~A3!

Here,M is a renormalization scale that ensures thatI m,n has
the canonical dimension also fordÞ2. g'0.5772 is the
Euler-Mascheroni constant. With dimensional regularizati
I m,n is given by the formula

I m,n5
Vd

~2p!d S egM2

4p D e

Ld12m22n

3

GS d2n

2
1mDGS n2m2

d

2D
2GS n

2D , ~A4!

where Vd52pd/2/G@d/2# is the area of thed-dimensional
sphere.

The integralsI m,n satisfy the relations

~d12m2n!I m,n5nIm12,n12 , ~A5!

L2I m,n5I m21,n222I m11,n . ~A6!

The first relation follows from integration by parts, while th
second is simply an algebraic relation.

APPENDIX B: COEFFICIENTS

The coefficients needed to calculate^c1
2& and^c2

2& in Eqs.
~29! and ~30! were calculated and listed in Ref.@6#. For
completeness, we list them below:

a05 1
2 I 1,1, ~B1!

a15 1
4 I 2,3, ~B2!

a252 1
4 I 0,1, ~B3!

a35
1

16d
@210I 5,7113I 3,52I 1,3#, ~B4!

a45 3
16 I 3,5, ~B5!

a55
1

64d
@35I 6,9210I 4,713I 2,5#, ~B6!

b05 1
2 I 21,21 , ~B7!
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b152 1
4 I 0,1, ~B8!

b25 1
4 I 22,21 , ~B9!

b35
1

16d
@2I 3,523I 1,32I 21,1#, ~B10!

b452 1
16 I 1,3, ~B11!

b552
5

64d
@ I 4,712I 2,51I 0,3#. ~B12!

The factor ofd in the denominators ina3 , a5 , b3 , andb5
arises from averaging over angles in the moment
integrals.
an

n,

et

v.

n

y

nt
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Finally, we outline how to calculate a one-loop diagra
explicitly. For simplicity, we compute the leading coefficie
a0 in the gradient expansion for the expectation value^c1

2&
in Eq. ~29!. The diagram is shown in Fig. 1, and it reads

a05S egM2

4p D eE dv

2p E ddk

~2p!d

ik2

v22e21 i e
. ~B13!

After integrating over the energyv, using Eq.~A1!, we ob-
tain

a05
1

2 S egM2

4p D eE ddk

~2p!d

k2

e
5

1

2
I 1,1. ~B14!
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