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Calculation of mode coupling for quadrupole excitations in a Bose-Einstein condenstate

G. Hechenblaikner, S. A. Morgan, E. Hodby, O. M. Marago`, and C. J. Foot
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
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In this paper, we give a theoretical description of resonant coupling between two collective excitations of a
Bose-condensed gas on, or close to, a second-harmonic resonance. Using analytic expressions for the quasi-
particle wave functions, we show that the coupling between quadrupole modes is strong, leading to a coupling
time of a few milliseconds~for a TOP trap with radial frequency;100 Hz and;104 atoms!. Using the
hydrodynamic approximation, we derive an analytic expression for the coupling matrix element. These can be
used with an effective Hamiltonian~that we also derive! to describe the dynamics of the coupling process and
the associated squeezing effects.

DOI: 10.1103/PhysRevA.65.033612 PACS number~s!: 03.75.Fi, 05.45.2a, 42.65.Ky
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I. INTRODUCTION

In two recent experiments@1,2#, we observed resonan
coupling between the low-energy modes of oscillation in
Bose-condensed gas. In the first experiment@1#, we excited
an even parity quadrupole mode~them50 low-lying mode!
and observed transfer of energy to a mode at twice the o
nal frequency~the m50 high-lying mode!. The oscillations
at the second harmonic were observed as soon as the e
tion period ended and stayed constant in amplitude. T
indicates strong coupling between the modes so that en
is transferred between them at a rate comparable to the m
oscillation frequency of a few hundred Hz, i.e., this an
lowed transition between the vibrational modes. In contr
the coupling between a scissors mode and a mode at ha
initial frequency was found to be a much slower process@2#.
This paper shows that the simple downconversion proces
forbidden, i.e., the matrix element for the direct convers
of one quantum of the higher-lying scissors mode into t
quanta of a lower-lying mode, is zero. This means that so
more complicated process is required to explain the exp
mental results. We also show how to calculate the coup
rates between various modes analytically. We do not wan
give a direct comparison with our experimental data, wh
the oscillations of the condensate widths were measure
time of flight ~and not quasiparticle amplitudes!, but we fo-
cus on a description of the coupling process in terms of q
siparticle amplitudes. For resonant coupling between
quadrupole excitations, we present a simple expression
the radial integrand of the matrix element that shows that
coupling mostly takes place in the boundary regions of
condensate. Finally, we show that the coupling is well
scribed by a simple Hamiltonian that can be used for qu
titative studies of the squeezing effects related to the h
monic generation processes.

The paper is structured as follows. Section II presents
nonlinear Schro¨dinger equation~NLSE! and the derivation of
the Bogoliubov–de Gennes~BdG! equation from the many
body Hamiltonian. These equations form the basis of
following sections. In section III, we summarize the deriv
tion of solutions to the BdG equations in the hydrodynam
limit following the method given in Ref.@3#. The assump-
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tions and approximations made in that derivation are imp
tant for understanding the calculations in Sec. V. Section
gives the derivation of the Hamiltonian describing secon
harmonic generation~SHG! or degenerate down-conversio
from the NLSE, closely following the approach given in Re
@4#. The coupling matrix elements governing the nonline
processes are calculated in Sec. V. A simple expressio
found for resonant coupling and the results are compare
an exact numerical calculation. We show that symmetry
guments forbid the direct down-conversion of the sciss
mode and discuss our results with respect to two recent
periments@1,2# by our group.

II. CONDENSATE EXCITATIONS

Our treatment of the coupling between the modes st
with the Gross-Pitaevskii equation~GPE! for the macro-
scopic wave functionC(r ,t) ~also called the order param
eter!,

i\
]C

]t
5F2

\2

2m
¹21Vext1guCu2GC. ~1!

The external potential for a harmonic trap isVext(r )
5m( iv i

2xi
2/2, andg54p\2as /m characterizes the nonlin

earity that depends on the particle interaction stren
through the scattering lengthas . The ground stateCg is the
lowest-energy eigenstate of the condensate and a solutio
the time-independent NLSE,

S 2
\2

2m
¹21Vext1guCgu2DCg5mCg , ~2!

where the energy of the ground statem the chemical poten-
tial of the system.

One way to derive the collective excitations is to lineari
the GPE for small perturbations around the ground state w
the ansatz
©2002 The American Physical Society12-1
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C~r ,t !5e2 imtFCg~r !1(
i

~ui~r !bie
2 iv i t

1v i* ~r !bi* e1 iv i t!G . ~3!

Substitution into the GPE and linearization with respect
the small ampitudesbi yields the BdG equations

Lui1gCg
2v i5\v iui ,

Lv i1gCg*
2ui52\v iv i . ~4!

The operatorL is given by

L52
\2

2m
¹21Vext~r !2m12guCgu2. ~5!

By solving the BdG equations we find the eigenmodes w
energies\v i , and wave functionsv i ,ui that satisfy the or-
thogonality and symmetry relations

E d3r ~uiuj* 2v iv j* !5d i j ,

E d3r ~uiv j* 2v iuj* !50. ~6!

The small complex amplitude coefficientsbi ,bi* in Eq.
~3! can be replaced by annihilation and creation opera
b̂i ,b̂i

† , respectively. This is justified by the standard a
proach of second quantization, where the eigenmodes
classical system are found and then the complex amplitu
are replaced by mode operators. Alternatively, one can s
with the grand-canonical many-body Hamiltonian for t
field operatorĈ(r ,t),

Ĥ5E d3rĈ†~r ,t !F2
\2

2m
¹21Vext~r !2m

1
g

2
Ĉ†~r ,t !Ĉ~r ,t !GĈ~r ,t !, ~7!

and make the ansatz

Ĉ~r ,t !5Cg1(
i

@ui~r !b̂i~ t !1v i* ~r !b̂i
†~ t !#. ~8!

In this approach, the field operator is split into its expe
tation value~the condensate part! and a fluctuating part tha
accounts for collective excitations and the thermal clo
Substitution of Eq.~8! into the Hamiltonian of Eq.~7!, and
neglecting terms of order three or four in the excitation o
eratorsb̂i ,b̂i

† gives a quadratic Hamiltonian that is diagona
ized exactly ifcg satisfies the GPE of Eq.~2! and the wave
functions ui ,v i are solutions of the BdG Eqs.~4!. The
Hamiltonian can, therefore, be written as
03361
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Ĥ5Eg1(
i

\v i b̂i
†b̂i1C. ~9!

HereC is the zero-point energy of the noncondensate andEg
is the energy of the condensate given by

Eg5E d3rCg* F2
\2

2m
¹21Vext2m1

g

2
uCgu2GCg .

~10!

So far, in all experiments on collective excitations, the eig
modes have been excited strongly into a coherent state.
these conditions, one can assume that the mode oper
commute and can replace them by complex numbers so
Eq. ~8! reduces to Eq.~3! except for a factore2 imt that
amounts to a shift in the zero of energy.

III. CALCULATING THE QUASIPARTICLE WAVE
FUNCTIONS IN THE HYDRODYNAMIC LIMIT

In this section, we give a brief overview of how to calc
late the excited-state wave functionsui ,v i directly following
the approach given in Ref.@3#. The starting point are the
BdG Eqs.~4!. These can be rewritten in dimensionless un
by introducing the following coordinate transforms:yj

5r j / l j , j 51, . . . ,3,wherel j5(2m/mv j
2)1/2 are the charac-

teristic lengths of the condensate in the Thomas-Fermi
gime. As in Ref.@3#, we define the small dimensionless p
rameterj5\v̄/2m and the dimensionless energy of modei,
e i5Ei /\v̄, where Ei is the energy of modei and v̄
5(v1v2v3)1/3 is the geometric mean oscillator frequenc
We also introduce the mean characteristic lengthl c

5( l 1l 2l 3)1/3 and the dimensionless Laplace operatorñ

5( j 51
3 (v j /v̄)]2/]yj

2 and definey25( j 51
3 yj

2 . The resulting
equations are

2j2ñui1y2ui1~2ui1v i !n̄05~112je i !ui , ~11!

2j2ñv i1y2v i1~2v i1ui !n̄05~122je i !v i , ~12!

2j2ñcg1y2cg1n̄0cg5cg , ~13!

where n̄05ucgu2g/m. These equations can be combined
form fourth-order equations for the functionsf i

65ui6v i . In
the hydrodynamic limit the expressioncg5An0(12y2),
wheren05m/g is the maximum condensate density, is th
substituted for the ground-state wave functioncg , and terms
of second order in the small parameterj are omitted.

Now we introduce the operatorĜ with the definition

Ĝ5~12y2!ñ22(
i

yi~v i /v̄ !2]/]yi ~14!

and define new functionsWi(y1 ,y2 ,y3) by f i
6(y)5Ci

6(1
2y2)71/2Wi(y1 ,y2 ,y3), where the relation between the co
efficients Ci

6 is given by Ci
15ejCi

2 . Using these defini-
tions one finally obtains from Eqs.~11!, ~12! the compact
expression@3#
2-2
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CALCULATION OF MODE COUPLING FOR QUADRUPOLE . . . PHYSICAL REVIEW A 65 033612
ĜW12e2W50, ~15!

where we have omitted the mode-indexi for simplicity. For a
spherical trap, this equation can be solved exactly. It i
hypergeometric differential equation with Jacobi polynom
als as the general solution. The quantization of the ener
comes from the condition that the function must converge
the condensate boundaries, which yields an analytic exp
sion for the mode spectrum@5,3#.

In the most general case of an anisotropic trap with th
different trap frequencies, one can make a polynomial ans
The symmetry of the Hamiltonian means that parity is
good quantum number for any spatial coordinate. We s
find the solutions for the quadrupolar modes where the o
of the polynomial is 2. We can make the ansatz@3#

W}yiyj , iÞ j , ~16!

to find the three odd-parity eigenfunctions with eigenf
quenciesV5(v i

21v j
2)1/2. These so-called scissors mod

have been studied extensively by our group@6# and we use
Eq. ~16! to derive some of their coupling properties in Se
V. We have to make a different ansatz to find the three ev
parity eigenfunctions~which are also referred to as diagon
quadrupolar modes@7#!,

W}11(
j 51

3

bj~v̄/v j !
2yj

2 . ~17!

The polynomial coefficientsbj completely characterize th
mode geometry and will be very important later on in o
expression for the coupling matrix element. In the followin
we use the abbreviationb̄ j5bj (v̄/v j )

2. Substitution of Eq.
~17! into Eq. ~15! shows thatW is a solution, provided tha
the following equations hold:

SS b1

b2

b3

D 50, ~18!

(
j 51

3

bj1
V2

v̄
50, ~19!

where the matrixS is defined as

S5S 32
V2

v1
2

1 1

1 32
V2

v2
2

1

1 1 32
V2

v3
2

D . ~20!

The eigenfrequenciesV are found by demanding tha
det(S)50. The resulting equation is
03361
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V623V4~v1
21v2

21v3
2!18V2~v2

2v3
21v1

2v3
21v1

2v2
2!

220~v1
2v2

2v3
2!50. ~21!

This general expression simplifies for the case of an axi
symmetric trap (v15v2). In this case the solutions areV
5A2v1 for the m52 mode, and

V2/V1
2521

3

2
l27

1

2
A9l4216l2116, ~22!

for them50 low lying and them50 high-lying mode. Here,
the trap anisotropy is given byl5vz /v r , wherevz ,v r are
the axial and radial trap frequencies, respectively. Equati
~21! and ~22! were derived in the review paper on Bos
Einstein Condensates by Dalfovoet al. @8#. In the next step,
the polynomial coefficientsbj are found from any two of the
three equations in Eq.~18! and Eq.~19!.

So far, we have summarized important known results t
enable us to calculate the quasiparticle wave functions fo
six quadrupole modes. We will use these in Sec. V to cal
late the matrix elements that describe the coupling of th
modes.

IV. A MODEL FOR SECOND-HARMONIC COUPLING
BETWEEN TWO MODES

We follow the approach given in Ref.@4# to derive a set of
coupled nonlinear equations~describing second-harmoni
generation! from the NLSE. For convenience, we normaliz
the condensate wave function to unity and change the par
eterg in Eq. ~1! to N0g, whereN0 is the number of particles
in the condensate. We introduce a set of excitations tha
normal to the condensate and also diagonalizes the m
body Hamiltonian of Eq.~7!. This is achieved by projecting
out the overlap with the condensate from the solutions to
BdG equations to give quasiparticle wave functions defin
by

ũi5ui2ciCg , ~23!

ṽ i* 5v i* 1ci* Cg , ~24!

whereci5*d3r @Cg* ui #52*d3r @Cgv i #. These wave func-
tions still diagonalize the many-body Hamiltonian~7! and
the orthogonality relations~6! hold as well. The advantage o
introducing excitations orthogonal to the ground state is t
it makes it easier to extract the amplitudes of various exc
tions from a given wave function. In terms of the orthogon
excitations a general wave function can be written as@4#

C~r ,t !5e2 imtH ~11bg!Cg~r !1(
i .0

@ ũi~r !bi~ t !

1 ṽ i* ~r !bi* ~ t !#J , ~25!

where the coefficientbg describes the change in the conde
sate. It is easy to show that for the orthogonal excitations
following relationships hold:
2-3
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E d3rcg* Ce1 imt511bg ,

E d3r @ ũi* Ce1 imt2 ṽ i* C* e2 imt#5bi . ~26!

The population of the condensate ground state is given
u11bgu2N0 and the population of the excited states
ubi u2N0.

In the next step, we obtain the equations of evolution
the complex coefficientsbi(t) by substituting the expansio
of the wave function~25! into the GPE~1!, and carrying out
the projections described by Eqs.~26!. We so obtain the
Heisenberg equations for thec-number equivalents of the
mode operatorsbi . We then transform these equations f
the mode amplitudes into the interaction picture by mak
the ansatzbi(t)5bi

R(t)e2 iv i t. This gives rise to a large num
ber of terms oscillating at frequenciesv i6vk6v j . If we
focus on second-harmonic processes, wherevk5v i andv j
.2v i , we can neglect all the rapidly oscillating terms a
retain only the term oscillating atD i j 5v j22v i . This is
called the rotating-wave approximation. If we neglect a
variation in the population of the condensate mode we ob
the following coupled equations of motion for the two mod
i 51 and j 52:

i\
db1

R

dt
5N0gM12b1

R* b2
Re2 iD12t, ~27!

i\
db2

R

dt
5

1

2
N0gM12* b1

Rb1
ReiD12t, ~28!

where the matrix elementM12 is given by

M1252E d3r @cg* ~2ũ1* ṽ1* ũ21 ṽ1* ṽ1* ṽ2!

1cg~2ũ1* ṽ1* ṽ21ũ1* ũ1* ũ2!#. ~29!

These equations describe the transfer of excitation
tween the two modes via annihilation~creation! of two
quanta in mode 1 and creation~annihilation! of one quantum
in mode 2, which is also called a second harmonic proc
The matrix elementM12 contains all the information on th
geometry of the two modes that are coupled. If we excite
lower mode at resonance (D1250) and there is no initial
population in the upper mode, then all the excitation is tra
ferred to the upper mode. The opposite is not true, i.e., th
is no transfer from an initially excited upper mode to t
lower mode if we start off with zero population in the low
mode. We will see later in this section that in a quantu
mechanical description, where the lower mode is descri
by operators rather thanc-numbers, down-conversion doe
occur. The strength of the processes depends on the sp
overlap between the respective quasiparticle wave functi
The characteristic time scale for the transfer from mode 1
mode 2 is given by the expression
03361
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NgM12b1~0!
U. ~30!

This model for the second-harmonic coupling between t
collective excitations allows us to find an explicit expressi
for the matrix element governing the process.

A. Quantum-mechanical model for the coupling

Alternatively, the two coupled nonlinear equations~28!
can be derived from the Hamiltonian~31!, which gives a full
quantum-mechanical description and clearly shows the
derlying physical processes

H5\v1â1
†â112\v1â2

†â21
\k

2
~ â1

†2â21â1
2â2

†), ~31!

whereâ1
†â1 ,â2

†â2 give the quasiparticle populations of mod
1 and 2, respectively. We derive the Heisenberg equations
the mode operators by the relation

âi5
i

\
@H,âi #. ~32!

To remove the fast oscillation at the mode frequenc
v1 ,v2 from the operatorsâ1 ,â2, we introduce the slowly
varying operators b̂1 ,b̂2 : b̂15â1(1/AN0)eiv1t,b̂2

5â2(1/AN0)eiv2t, where theAN0 factor arises because o
the different normalization.

The Heisenberg equations in terms of these operators

i\
db1̂

dt
5AN0\kb̂1

†b̂2e2 iD12t, ~33!

i\
db̂2

dt
5

1

2
AN0\kb̂1b̂1eiD12t. ~34!

Equations~28! are obtained by replacing the mode operat
by complex numbers and setting

AN0\k5N0gM12. ~35!

However, quantum effects such as squeezing and s
Poissonian statistics in the quasiparticle number can only
described by the operator equations~34! and are lost in mak-
ing the classical approximation leading to Eqs.~28!, where
operators are replaced by complex numbers.

B. Squeezing in parametric down- and up-conversion

In this subsection we want to show briefly how a quantu
description of the nonlinear processes leads to nonclas
effects such as squeezing. We apply the well-establis
theory of nonlinear effects in optics@9,10# to describe the
phononic coupling in a condensate and demonstrate the
rect dependence of squeezing on the coupling matrix elem
in both, up- and down-conversion processes. It is difficult
study squeezing for the full quantum-mechanical descript
of both modes given by the Hamiltonian~31! as the operator
2-4
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equations are nonlinear. We first investigate dow
conversion for resonant coupling and transform the Ham
tonian ~31! into the interaction picture to obtain

HR52 i
\k

2
~ b̂1

†2b̂22b̂1
2b̂2

†!, ~36!

whereb̂1 ,b̂1
† denote the operatorsâ1 ,â1

† transformed into the

interaction picture. Then the mode operatorsb̂2 ,b̂2
† for mode

2 are replaced by thec numberb2 ~we can, without loss of
generality, assume thatb2 is real!, but we retain the opera
tors for mode 1. In addition, we will treat the mode amp
tude of the upper level as a constant. This assumption d
not account for the depletion of the upper mode and is o
valid for small times when the occupation of the lower lev
is much smaller than the occupation of the upper level,
for N1!b2

2. The resulting Hamiltonian is quadratic inb̂1 ,b̂1
†

and gives linear Heisenberg equations,

db̂1

dt
5@ b̂1 ,HR#5kb2b̂1

† ,

db̂1
†

dt
5@ b̂1

† ,HR#5kb2b̂1 . ~37!

Equations~37! can be diagonalized by expressing them
terms of the two quadrature phase amplitudesQ̂x ,Q̂p defined
as

Q̂x5b̂11b̂1
† ,

Q̂p5
b̂12b̂1

†

i
. ~38!

Simple integration yields Q̂x(t)5ekb2tQ̂x(0),Q̂p(t)
5e2kb2tQ̂p(0). These solutions can be used to calculate
evolution of b̂1 ,b̂1

† and the evolution for the number o
down-converted quasiparticles,N1, for which we find ~as-
suming mode 2 was initially in a vacuum stateu0&)

N15^0ub̂1
†b̂1u0&5sinh2~kb2t !. ~39!

Equation~39! shows that in this quantum model dow
conversion occurs even for zero initial population in mode
This is in contrast to the result of the semiclassical mo
discussed above. The evolution of the variances in
quadrature operators is found to be:

@DQ̂x~ t !#25e2kb2t@DQ̂x~0!#2,

@DQ̂p~ t !#25e22kb2t@DQ̂p~0!#2. ~40!

This clearly demonstrates the squeezing in theQ̂p quadrature
component. However, it is important to keep in mind th
Eqs.~40! are only valid for short times before the assumpti
that the upper mode is not depleted breaks down. A poss
way to avoid depletion of the upper mode is to keep excit
03361
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condensate into oscillation at the frequency and geom
corresponding to the upper mode.

Similarly, squeezing occurs during SHG where tw
phonons from the lower mode are converted into one pho
of the upper mode. In this case, we cannot replace the lo
mode by ac number as we have done for our investigation
down-conversion. We can again try to find an approxim
solution valid only for small times. This is demonstrated
Ref. @10#, where a Taylor series expansion is used to desc
the time evolution of the mode operators. We assume
mode 1 is initially in a coherent state defined byb1ub1&
5b1ub1& with b15ub1uei uF and mode 2 is in the vacuum
state. The result for the squeezing of the quadratureQ̂x ~of
mode 1! to second order in time is then given by

@DQ̂x~ t !#2512
1

2
k2t2ub1u2cos~2F!1O~gt!3. ~41!

This result only holds for small times for which14 ub1u2k2t2

!1. However, we can see how in both cases, down-
up-conversion, the squeezing of the quadrature compon
can be directly related to the nonlinear coupling strength

V. CALCULATING THE NONLINEAR COUPLING RATE

We will now calculate the nonlinear coupling rates b
tween two condensate excitations and compare them to t
from recent experiments. For convenience, we take lin
combinations of the normalized quasiparticle wave functio
to give the new functionsf̃ i

1 , f̃ i
2 defined by

f̃ i
15ũi1 ṽ i5 f i

1 , ~42!

f̃ i
25ũi2 ṽ i5 f i

222cicg . ~43!

Written in terms of these functions, the matrix element in E
~29! has the form

M1252E d3r cgH 1

2
f̃ 1

1* ( f̃ 1
1* f̃ 2

11 f̃ 1
2* f̃ 2

2

1
1

4
f̃ 2

1~ f̃ 1
1* f̃ 1

1* 2 f̃ 1
2* f̃ 1

2* !J , ~44!

where we assumed thatcg is real. Alternatively,M12 can be
written in terms of untilded functions (f i

1 , f i
2) as the sum of

two parts,M125M12
(1)1M12

(2) , which are defined as follows

M12
(1)52E d3rcgH 1

2
f 1

1* ( f 1
1* 1 f 2

11 f 1
2* f 2

2

1
1

4
f 2

1~ f 1
1* f 1

1* 2 f 1
2* f 1

2* !J , ~45!

M12
(2)52E d3rcg$ f 1

1* ~2c1* c2cg
22c1* cgf 2

22c2cgf 1
2* !

1 f 2
1~c1* cgf 1

2* 2c1*
2cg

2!%. ~46!
2-5
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M12
(2) is zero if neither of the quasiparticle wave functions h

any overlap with the condensate ground state. We can
use the functionsf i

1 , f i
2 , which we found in Sec. III. We can

write, in general,

f 1
15A1e1j~12y2!21/2W1 , f 1

25A1~12y2!1/2W1 ,

f 2
15A2e2j~12y2!21/2W2 , f 2

25A2~12y2!1/2W2 ,
~47!

where theA1 ,A2 are normalization constants determin
from the normalization condition ~6! and
W1(y1 ,y2 ,y3),W2(y1 ,y2 ,y3) are solutions to Eq.~15! for
mode 1 and 2, respectively. Substituting these express
into Eq. ~45! gives

M12
(1)5~An0 /N0A1

2A2j l c
3/2!E d3yW1

2W2@3e1
2e2j2

3~12y2!212De12~12y2!#. ~48!

The first term in the above integral proportional to
2y2)21 diverges at the condensate boundary (y51), but it
must be dropped as it scales proportional toj2 and in the
derivation of the quasiparticle wave functions we omitt
terms proportional toj2 in the governing equations~hydro-
dynamic approximation! to obtain Eq.~15! for W(y1 ,y2 ,y3).
We will see later in this paper that this is fully justified b
comparison with exact numerical calculations. Note that
second term equals zero if the detuningDe125e222e1 is
zero.

A. Coupling between two even-parity quadrupolar excitations

So far, we have made no assumptions about the geom
of the two modes that are coupled and Eqs.~45!, ~46! are
valid for any pair of modes. We now focus on the quadrup
lar modes of a triaxial trap and investigate the coupling
tween any two diagonal modes, for which the functi
W(y1 ,y2 ,y3) is represented by the polynomial given in E
~17!. We can calculate the matrix elementM12 from Eqs.
~46!, ~48!. An explicit expression forM12 and its derivation
is given in the Appendix. It is important to note that fo
on-resonant coupling between the two modes (v252v1) the
matrix element simplifies considerably. In that case we
give a simple expression for the radial integrand of the m
trix element in terms of the dimensionless positiony, where
the condensate boundaries are given byy51,

M12522An0

N0
A2E

0

1

y6~12y2!dy522An0

N0
A2

2

63
,

~49!

where A2 denotes the normalization constant for the wa
function of mode 2, given by Eq.~A8!. It is important to note
that Eq. ~49! describes the resonant coupling between a
two diagonal quadrupole modes in a triaxial trap. This allo
a quick and easy calculation of the coupling strength, c
pling rates, and squeezing effects associated with the no
ear process. We can see from the radial integrand of Eq.~49!
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that the coupling is strongest in the outer regions of the c
densate and reaches a maximum at a distance of 0.87l c from
the center. In this region, the condensate is still well d
scribed by the hydrodynamic approximation that only brea
down at a distance of order the healing length from the c
densate boundaries. The healing length in our recent exp
ments@1,2# was about 0.05l c .

B. Coupling between two modes in a spherical trap

Now we want to give a quantitative comparison betwe
the solutions we found to the coupling matrix element in
hydrodynamic approach and the exact solutions calcula
from the numerical solutions to the BdG equations. To fac
tate the numerical calculations we will look at the coupli
between two quadrupolar modes in a spherical trap of
quencyv, where the total angular momentuml and the azi-
muthal angular momentumm are good quantum numbers
The two modes are thel 52,m50 mode and thel 50,m
50 mode with frequencies ofA2v andA5v, respectively.
In a trap with only axial symmetry these two modes g
mixed and become them50 low lying and them50 high-
lying ~breathing! mode. Their quasiparticle wavefunction
can be presented by the ansatz~47!, where W15(3cos2u
21)y2 and W25(125y2/3). These are the solutions to th
hypergeometric differential equations discussed in Sec.
The normalization constants areA15A35/16p l c

3e1j andA2

5(3/2)A7/4p l c
3e2j.

One can see from Eq.~46! that in M12
(2) all terms contain-

ing the constantc1 are zero, because the overlap betwe
mode 1, which is proportional toY2

0, and the ground state
which is proportional toY0

0, is zero. The only remaining
term is proportional to c2 and it turns out to be
22An0 /N0A2y6(12y2), which is exactly the expression w
found for the resonant case (De1250) in a general triaxial
trap @see Eq.~49!#. But for these two modesDe12Þ0 and we
have to consider the contribution fromM12

(1) as well, so that
we obtain

M12522An0

N0
A2E

0

1F 7

4e1
De12~12y2!~125/3y2!

1~12y2!Gy6dy. ~50!

The wave functions for the ground state and the coupl
matrix elementsM12 are plotted in Fig. 1 and Fig. 2, respe
tively. It is important to note that for the resonant case
only contribution comes from Eq.~49!. Also, for the not-
quite-resonant case displayed in Fig. 2, the integrand
dominated by this contribution. This shows that the coupl
between different quasiparticle excitations predominan
takes place in the boundary region of the condensate an
explicit analytic expression for the spatial probability of th
nonlinear process is given by Eq.~49!.

The integrated values ofM12 in the hydrodynamic ap-
proximation and for the exact numerical calculation ar
20.161l c

23 and 20.157l c
23 , respectively. The error of the
2-6
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approximate analytical result with respect to the exact
merical calculation is in the order ofj2, as we expect. The
good agreement between the two, even for a relatively sm
number of atoms, justifies the hydrodynamic approximatio
made in calculating the quasi particle wave functions and
coupling matrix element.

C. Coupling between two even parity modes in a TOP trap

In our experiments, we use a TOP trap that is axia
symmetric and has an anisotropy defined by the param
l5vz /v r , wherevz and v r are the axial and radial tra
frequencies, respectively. In a recent experiment, we stu

FIG. 1. The wave functions for the ground state in the hydro
namic limit ~solid line! and the exact solution to the GPE~dotted

line! plotted in units of 1/Al c
3 against the distance from the center

the trap in units of the characteristic lengthl c . The trap is spherica
with 1.53104 atoms and a frequencyv5120 Hz . The healing
lengthj50.05l c.

FIG. 2. The radial integrands for the matrix elementsM12 in the
hydrodynamic limit~solid line! and for the exact numerical calcu
lation ~dotted line! plotted in units ofl c

23 against the distance from
the condensate center in units ofl c . The coupling is between the
l 50,m50 and thel 52,m50 mode for the same trap conditions
in Fig. 1.
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the coupling between them50 low lying and them50
high-lying mode~which arise from thel 50,m50 and thel
52,m50 mode of the spherical trap whenlÞ1). We can
use the formula forM12 for the general triaxial trap, given by
Eqs. ~A10!, ~A11! in the Appendix, to calculate the matri
element for any trap geometry. The result is shown in Fig
in terms of the dimensionless quantitym125M12l c

3Aj. The
dependence ofM12 on number and mean frequency is co
tained in l c

23j21/2 and thusm12 only depends on the mod
geometry, i.e., it is only a function ofl. In order to getM12
for a specific trap, one has to read the dimensionless ma
elementm12 from Fig. 3 and multiply it byl c

23j21/2.
From Eq.~22! one can find two values for the anisotrop

l where the twom50 modes are resonantly coupled. The
resonances are atl50.68,1.95 withum12u50.038,0.028, re-
spectively. The characteristic coupling time is given by E
~30!, which can be written as follows:

T5
15A2\Aj

8pmm12b1~0!
}~N23/5v̄213/10!. ~51!

We can calculate the coupling rate for the parameters of
second-harmonic generation experiment@1#, which were:l
51.95,N051.53104, v r.120 Hz. Inserting the relevan
quantities into Eq.~51!, we obtain a transfer time of 5.7 m
and 3.7 ms for small initial excited populations ofub1(0)u2
50.02 andub1(0)u250.05, respectively. For stronger initia
excitation, the transfer times would be even smaller. One
see from Eq.~51! that for larger atom number and stiffe
traps the coupling times become smaller as well. This sho
that the process of coupling the two quadrupole modes h
pens on a timescale of a few milliseconds. It is consist
with our experimental observation@1#, where the second
harmonic was observed as soon as the driving of the fun
mental finished~excitation time of about 30 ms!.

- FIG. 3. The quantitym125M12l c
3Aj is plotted against the trap

anisotropyl. The two vertical lines show where there is resona
nonlinear coupling between them50 low lying and them50 high-
lying modes. The resonances are determined by the matchin
mode frequencies (2v15v2) and they are located atl50.68 and
l51.95.
2-7
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D. Coupling between a scissors mode and another
quadrupolar excitation

Now we will discuss coupling between the off-diagon
quadrupolar excitations. We already showed in Sec. III t
these modes have odd parity and are characterized bW
}yiyj ,iÞ j . Thus their overlap with the condensate grou
state is zero and the only contribution to the coupling ma
element comes fromM12

(1) given in Eq.~48!. But this integral
is zero because the productW1

2W2 is odd. So the total matrix
elementM12 equals zero and there is no direct coupling via
second-harmonic process between two scissors modes.
recent experimental observation of a down-conversion p
cess between two scissors modes must, therefore, ha
more sophisticated interpretation than the conversion of
quantum of the higher mode into two quanta of the low
scissors mode.

Similarly, there is no coupling between a higher-lyin
scissors mode and a lower-lying diagonal quadrupole mo
In this case,M12

(1) of Eq. ~48! is zero beacuseW2 is odd.M12
(2)

of Eq. ~46! is also zero becausec250 andf 2
6 are odd. Thus

the total matrix element is zero. However, there is seco
harmonic coupling from a lower scissors mode to a high
lying diagonal quadrupolar mode. For resonant coupling t
quanta of the scissors mode are converted into one quan
of the higher-lying even-parity mode and one finds that
matrix element is again given by expression~49!.

VI. CONCLUSION

Starting from the NLSE, we have derived a simple mo
describing the nonlinear coupling of quasiparticle amplitud
of two modes. The model can be used to study squee
effects that are directly related to the matrix element gove
ing the coupling process. We have demonstrated how to
culate this matrix element analytically. We then focused
the quadrupole excitations and found that all resonantv2
52v1) direct-coupling processes between the six quad
pole modes are described by the expression in Eq.~49! un-
less they are forbidden (M1250). All second-harmonic pro-
cesses involving odd-parity~scissors! modes are forbidden
except for up-conversion from a scissors mode to a high
lying even-parity mode. It is possible to show that there
other allowed nonlinear processes involving all three of
scissors modes. This gives rise to nondegenerate param
amplification and multimode squeezing. Full details and
derivation of an effective Hamiltonian describing all allowe
nonlinear processes between the quadrupole modes~not just
the second harmonic generation described here! will be
given in a future paper.
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APPENDIX: MATRIX ELEMENTS FOR THE DIAGONAL
QUADRUPOLAR MODES

We want to calculate the coupling matrix element for a
two diagonal quadrupole modes in a triaxial trap for whi
the functionW(y1 ,y2 ,y3) is represented by a polynomial a
given in Eq.~17!. It is useful to derive a number of relation
for the polynomial coefficients that allow us to simplify th
expressions for normalization constants, overlap coefficie
and the coupling matrix element.

The lowest mode of Eq.~8! is the so-called Goldstone
mode with v050,u0(r )5Cg(r ) and v0(r )52Cg* (r ),
which arises from theU(1) symmetry breaking. For this
particular mode the orthogonality and symmetry relations
Eq. ~6! take the form

E d3r ~Cg* ui1Cgv i !50. ~A1!

Equation~A1! implies that*d3rcgf 150. Substituting Eq.
~47! into this equation and integrating over the angles a
radial coordinate gives

(
j

b̄ j525. ~A2!

The characteristic polynomials for the quadrupole modes
real and thusui ,v i can be taken as real, which allows us
derive from the orthogonality relations~6!,

E d3xf i
1 f j

25d i j . ~A3!

If we now insert two different polynomials corresponding
two different solutions forf i

1 , f j
2 into Eq. ~A3!, we obtain

the relation*d3yW1W250 and from that

(
i

b̄i d̄i55, ~A4!

b̄1d̄21b̄2d̄11b̄1d̄31b̄3d̄11b̄2d̄31b̄3d̄2520, ~A5!

where theb̄i ’s denote the polynomial coefficients of mode
and thed̄i ’s the polynomial coefficients of mode 2. Thes
coefficients are found from Eqs.~18!, ~19! in Sec. III. We
also have to calculate the overlap coefficientsci between the
condensate and the quasiparticle wave functions,

ci5E d3rcg* ui5
1

2E d3rcg* ~ f i
11 f i

2!5
1

2E d3r f i
2 .

~A6!

After substituting Eqs.~47! into Eq. ~A6!, we obtain

ci5
1

2
Ai l c

3An0

N0

8p

15 S 11
1

7 (
j

b̄ j D 5
1

7
AiAN0

n0
,

~A7!
2-8
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where we used Eq.~A2! andN05n0l c
38p/15 @Thomas-Fermi

relation form(N0)# for the last step. We also have to calc
late the normalization amplitudes for these modes and ob
from Eq. A3!,

Ai5S e ij l c
3 4p

105

3F3(
j

b̄ j
212~ b̄1b̄21b̄1b̄31b̄2b̄3!235G D 21/2

.

~A8!

We can now calculate the coupling matrix element from E
~46!, ~48!. We shall introduce a constantR12 defined as fol-
lows:

R125SAn0

N0
A1

2A2j l c
3/2D 4p

105
. ~A9!

The first part of the matrix elementM12
(1) is then

M12
(1)52R12E

0

1

dyH y6F15(
i

b̄i
2d̄i13~2b̄1b̄2d̄11b̄1

2d̄2

12b̄1b̄3d̄11b̄1
2d̄312b̄1b̄2d̄21b̄2

2d̄112b̄1b̄3d̄3

1b̄3
2d̄112b̄2b̄3d̄21b̄2

2d̄312b̄2b̄3d̄31b̄3
2d̄2!
p-

t,

s,

03361
in
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12b̄1b̄2d̄312b̄1b̄3d̄212b̄2b̄3d̄1G
1y4F490121(

i
b̄i

217~2b̄1b̄212b̄2b̄312b̄3b̄1!G
2525y21105J y2De12~12y2!dy. ~A10!

The second part of the matrix element is given in Eq.~A11!.
Note that this part arises due to the finite overlap between
condensate ground state and the untilded Bogoliubov w
functionsui ,v i .

M12
(2)54R12E

0

1

De12H 35y42
325

7
y21

90

7 J
3y2~12y2!dy22An0

N0
A2E

0

1

y6~12y2!dy.

~A11!

We note that for resonant interactionDe125e222e150, so
that M12

(1)50 and the only term surviving inM12
(2) is

22An0 /N0A2*0
1y6(12y2)dy.
v.
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