PHYSICAL REVIEW A, VOLUME 65, 033612
Calculation of mode coupling for quadrupole excitations in a Bose-Einstein condenstate
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In this paper, we give a theoretical description of resonant coupling between two collective excitations of a
Bose-condensed gas on, or close to, a second-harmonic resonance. Using analytic expressions for the quasi-
particle wave functions, we show that the coupling between quadrupole modes is strong, leading to a coupling
time of a few millisecondgfor a TOP trap with radial frequency 100 Hz and~10* atoms. Using the
hydrodynamic approximation, we derive an analytic expression for the coupling matrix element. These can be
used with an effective Hamiltoniafthat we also deriveto describe the dynamics of the coupling process and
the associated squeezing effects.
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[. INTRODUCTION tions and approximations made in that derivation are impor-
tant for understanding the calculations in Sec. V. Section IV
In two recent experimentfl,2], we observed resonant gives the derivation of the Hamiltonian describing second-
coupling between the low-energy modes of oscillation in aharmonic generatiofSHG) or degenerate down-conversion
Bose-condensed gas. In the first experinidit we excited ~from the NLSE, closely following the approach given in Ref.
an even parity quadrupole modde m=0 low-lying mode [4]. The coupling matrix elements governing the nonlinear
and observed transfer of energy to a mode at twice the origiProcesses are calculated in Sec. V. A simple expression is
nal frequency(the m=0 high-lying mod¢. The oscillations ~found for resonant coupling and the results are compared to
at the second harmonic were observed as soon as the excif? €xact numerical calculation. We show that symmetry ar-
tion period ended and stayed constant in amplitude. Thig§uments forbid the direct down-conversion of the scissors
indicates strong coupling between the modes so that energVOde and discuss our results with respect to two recent ex-
is transferred between them at a rate comparable to the modkgriments1,2] by our group.
oscillation frequency of a few hundred Hz, i.e., this an al-
lowed transition between the vibrational modes. In contrast,
the coupling between a scissors mode and a mode at half the Il. CONDENSATE EXCITATIONS

initial frequency was found to be a much slower prod@s oy treatment of the coupling between the modes starts
This paper shows that the simple downconversion process (§ith the Gross-Pitaevskii equatiofGPE) for the macro-

forbidden, i.e., the matrix element for the direct conversionscopiC wave function(r,t) (also called the order param-
of one quantum of the higher-lying scissors mode into tWOgtey '

guanta of a lower-lying mode, is zero. This means that some

more complicated process is required to explain the experi-

mental results. We also show how to calculate the coupling A ) )
rates between various modes analytically. We do not want to ih—==| 5V T Vext glv|*|w. (1)

give a direct comparison with our experimental data, where

the oscillations of the condensate widths were measured in

time of flight (and not quasiparticle amplitudesut we fo-  The external potential for a harmonic trap M..(r)

cus on a description of the coupling process in terms of qua= mziwfxf/Q, andg=4mfi%as/m characterizes the nonlin-
siparticle amplitudes. For resonant coupling between thearity that depends on the particle interaction strength
quadrupole excitations, we present a simple expression fafrough the scattering lengtiy. The ground statd’, is the

the radial integrand of the matrix element that shows that th%west_energy eigenstate of the condensate and a solution to
coupling mostly takes place in the boundary regions of thehe time-independent NLSE,

condensate. Finally, we show that the coupling is well de-
scribed by a simple Hamiltonian that can be used for quan-
titative studies of the squeezing effects related to the har-
monic generation processes.

The paper is structured as follows. Section Il presents the
nonlinear Schrdinger equatiofNLSE) and the derivation of
the Bogoliubov—de GenndB8dG) equation from the many- where the energy of the ground statethe chemical poten-
body Hamiltonian. These equations form the basis of thdial of the system.
following sections. In section Ill, we summarize the deriva- One way to derive the collective excitations is to linearize
tion of solutions to the BAG equations in the hydrodynamicthe GPE for small perturbations around the ground state with
limit following the method given in Ref[3]. The assump- the ansatz
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P(r,t)y=e M

Wy(r)+ 2 (u(r)be et H=Ey+ > fiwb/b+C. (9)

HereC is the zero-point energy of the noncondensateyd

* * A tiwjt
o7 (r)bf ™) 1. ®) is the energy of the condensate given by

P2 o 9412
—%V +Vext—,u,+§|\1’g| \I’g.

(10

Substitution into the GPE and linearization with respect to E :j d3r*
the small ampitudeb; yields the BdG equations ¢ g

49V =hou, . . . o .
LUt g¥gui=fou;, So far, in all experiments on collective excitations, the eigen-

modes have been excited strongly into a coherent state. For
these conditions, one can assume that the mode operators
L commute and can replace them by complex humbers so that
The operatot_ is given by Eq. (8) reduces to Eq(3) except for a factore™'#! that
52 amounts to a shift in the zero of energy.

—om Vo Ve —p 29[Vl (5

Ill. CALCULATING THE QUASIPARTICLE WAVE
FUNCTIONS IN THE HYDRODYNAMIC LIMIT

EUi‘l‘g\P;ZUi:—hwiUi. (4)

L

By solving the BdG equations we find the eigenmodes with
energiesh w; , and wave functions; ,u; that satisfy the or- In this section, we give a brief overview of how to calcu-
thogonality and symmetry relations late the excited-state wave functiomsv; directly following
the approach given in Ref3]. The starting point are the
3 . . BdG Eqgs.(4). These can be rewritten in dimensionless units
f d°r(uiuj —vjvi) =4y, by introducing the following coordinate transformg;

=r;/l;,j=1,...,3,wherel;=(2u/mw?)"? are the charac-

i
5 teristic lengths of the condensate in the Thomas-Fermi re-
J d*r (up} —v;uj ) =0. (6)  gime. As in Ref[3], we define the small dimensionless pa-
rameteré =% w/2p and the dimensionless energy of made

The small complex amplitude coefficiens,b’ in Eq.  ¢=E;/Aw, where E; is the energy of modd and w
(3) can be replaced by annihilation and creation operators- (w;w,w3)*® is the geometric mean oscillator frequency.
b, b, respectively. This is justified by the standard ap-We also introduce the mean characteristic lendth
proach of second quantization, where the eigenmodes of & (I,1,15)¥® and the dimensionless Laplace operatbr
classical system are found and then the complex amplitudes Ele(wj ) a2/ayj2 and definQ,Z:zf:lyJ?. The resulting
are replaced by mode operators. Alternatively, one can staggyations are
with the grand-canonical many-body Hamiltonian for the

field operator¥ (r,t), — AU +y2Uu+ (2u;+v)Ng= (1+2&€)u;,  (11)

~ R h2 — 2Ry +V2 + una=(1— Ny
H=f dsrq,f(r,t){_ﬁvzwext(r)_ﬂ B +y?0i+ (20, u)No=(1-2¢€)v;,  (12)
. — EN Yty gt nog= g, (13
+ =gt i i —
ZT (r,t)\lf(r,t)}\lf(r,t), @ where n0=|¢g|zg/,u. These equations can be combined to
form fourth-order equations for the functioS=u;+v; . In
and make the ansatz the hydrodynamic limit the expressiof,=+no(1—y?),
wherengy= u/g is the maximum condensate density, is then
i - (OB (D +o* (DB, substituted for the ground-state wave functigy, and terms
Py =¥, Z [i(M)bit) +of (bi(t)] ® of second order in the small parameteare omitted.
Now we introduce the operat@ with the definition
In this approach, the field operator is split into its expec-
tation value(the condensate parand a fluctuating part that
accounts for collective excitations and the thermal cloud.
Substitution of Eq(8) into the Hamiltonian of Eq(7), and
neglecting terms of order three or four in the excitation op-and define new functionsV;(y,,y,,ys) by fif(y):(:ii(l
eratorsb; ,b! gives a quadratic Hamiltonian that is diagonal- —y?) “¥2W;(y1,y,,ys), where the relation between the co-
ized exactly ify, satisfies the GPE of E42) and the wave efficients C;" is given by C;"=¢€£C; . Using these defini-
functions u; ,v; are solutions of the BdG Eqg4). The tions one finally obtains from Eqg11), (12) the compact
Hamiltonian can, therefore, be written as expression 3]

G=(1-y)A-22 yi(wilw)?dldy, (14)
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EW+ 262W=0, (15) 0°—304(wi+ w3+ 03)+ 802 (wiwi+ wiwi+ wind)

2 2 2\ __
where we have omitted the mode-inder simplicity. For a —20(wiwz03)=0. (22)

Ephencal trap, tZ'.?r equa_mlon can be s_orllved eg‘."‘c“{- I 'S Fhis general expression simplifies for the case of an axially
ypergeometric di erenpa equation W.'t Qaco ! PO ynom'.'ssymmetric trap 1= w,). In this case the solutions afe

als as the general solution. The quantization of the energies 2w, for them=2 mode, and
comes from the condition that the function must converge at 1 '
the condensate boundaries, which yields an analytic expres- 3 1
sion for the mode spectrups, 3]. 0202=2+ E)\ZIE\/Q)\“— 1602+ 16, (22)

In the most general case of an anisotropic trap with three
different trap frequencies, one can make a polynomial ansat¢ them=0 low lying and then=0 high-lying mode. Here,
The symmetry of the Hamiltonian means that parity is ayq trap anisotropy is given by=w,/w, , wherew, ,w, are
good quantum number for any spatial coordinate. We shall,g 5yia) and radial trap frequencies, respectively. Equations
€21) and (22) were derived in the review paper on Bose-
Einstein Condensates by Dalfoet al. [8]. In the next step,
the polynomial coefficients; are found from any two of the
three equations in Eq18) and Eq.(19).

So far, we have summarized important known results that
enable us to calculate the quasiparticle wave functions for all
six quadrupole modes. We will use these in Sec. V to calcu-

have been stu.died extensively by our grd6p and. WE US€ |ate the matrix elements that describe the coupling of these
Eq. (16) to derive some of their coupling properties in Sec.modes

V. We have to make a different ansatz to find the three even-
parity eigenfunctiongwhich are also referred to as diagonal
quadrupolar modef7]),

of the polynomial is 2. We can make the and&}k
Wocyiyj y |7&j, (16)

to find the three odd-parity eigenfunctions with eigenfre-
quenciest(wi2+ wjz)l’z. These so-called scissors modes

IV. AMODEL FOR SECOND-HARMONIC COUPLING
BETWEEN TWO MODES

S We follow the approach given in Rd#] to derive a set of

N 2,,2
W““’le bj(w/wj)7yj . (17) coupled nonlinear equation&escribing second-harmonic
generatiop from the NLSE. For convenience, we normalize
The polynomial coefficientd; completely characterize the the condensate wave function to unity and change the param-

mode geometry and will be very important later on in our&t€rgin Eq.(1) to Nog, whereN, is the number of particles
expression for the coupling matrix element. In the foIIowing,'” the condensate. We introduce a set of excitations that is

normal to the condensate and also diagonalizes the many-
body Hamiltonian of Eq(7). This is achieved by projecting
out the overlap with the condensate from the solutions to the
BdG equations to give quasiparticle wave functions defined

we use the abbreviatiop; =b;(w/w;)2. Substitution of Eq.
(17) into Eqg. (15 shows thatW is a solution, provided that
the following equations hold:

b, by
s| bz | =0, (18) Ui=u;— Wy, (23)
bs ~
v =v ey, (24)
3 2
S b+ Q::O (19 wherec;= [d° [W5u;]=— [d* [¥g;]. These wave func-
= e ’ tions still diagonalize the many-body Hamiltoni&) and
the orthogonality relation) hold as well. The advantage of
where the matriXSis defined as introducing excitations orthogonal to the ground state is that
it makes it easier to extract the amplitudes of various excita-
02 tions from a given wave function. In terms of the orthogonal
3-— 1 1 excitations a general wave function can be writteidds
w7y
QZ —aiut + + m .
w3
1 1 3_9_2 +51*(r)bi*(t)]), (25)
w3

where the coefficiendy describes the change in the conden-
The eigenfrequencie€) are found by demanding that sate. Itis easy to show that for the orthogonal excitations the
det(S)=0. The resulting equation is following relationships hold:
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f dPryfwetlH=1+bg, T=‘ (30)

V2h
NgMyb1(0)|
_ L , This model for the second-harmonic coupling between two
f dPrfuf we M —pFwre M) =b;. (26)  collective excitations allows us to find an explicit expression
for the matrix element governing the process.

The population of the condensate ground state is given by _ _
|1+by|>Ny and the population of the excited states by A. Quantum-mechanical model for the coupling
|bi[*No. Alternatively, the two coupled nonlinear equatiof&8)

In the next step, we obtain the equations of evolution forcan be derived from the Hamiltonig81), which gives a full
the complex coefficientb;(t) by substituting the expansion quantum-mechanical description and clearly shows the un-
of the wave functior(25) into the GPE(1), and carrying out  derlying physical processes
the projections described by Eg&6). We so obtain the
Heisenberg equations for thenumber equivalents of the
mode operatord;. We then transform these equations for
the mode amplitudes into the interaction picture by making
the ansatb;(t) =b{(t)e”'“i'. This gives rise to a large num- wherea!a, ,a}a, give the quasiparticle populations of mode
ber of terms oscillating at frequencies + w,* w;. If we 1 and 2, respectively. We derive the Heisenberg equations for
focus on second-harmonic processes, where w; and o, the mode operators by the relation
=2w;, we can neglect all the rapidly oscillating terms and _
retain only the term oscillating aA;; = wj—2w;. This is é:l—[H Al (32
called the rotating-wave approximation. If we neglect any Y
variation in the population of the condensate mode we obtain
the following coupled equations of motion for the two modesTo remove the fast oscillation at the mode frequencies

nin e~  hk .
H=%w,ala; +2kw,aba,+ 7(a12é2+ azal), (31

i=1 andj=2: w1,w, from the operators ,a,, we introduce the slowly
. varying  operators by,b,:  b;=a;(1/\/Np)e'“,b,
e Rik nRa— A4t =a,(1\Ng)e'“?', where they/N, factor arises because of
i =NogM b7 bJe 212 2 2 0 ' 0
dt o9MaDi bz @0 the different normalization.
The Heisenberg equations in terms of these operators are
dbf 1 .
i ——=—=NogM=bTbRel 212, (28 db; e
dt 2 0¥Mi12iita ihd—tlz\/N—oﬁKb{bze*'Alzt, (33
where the matrix elemem¥ ;, is given by .
Cdb, 1 N
ih—g = EJr\TOﬁKblble' 12, (34)

Vao=2 [ @3 (2T T+ T1T17)
Equations(28) are obtained by replacing the mode operators

+ ,pg(zﬁﬁﬁzjuafaiaz)]. (29) by complex humbers and setting
VNofi = NogM . (35)

These equations describe the transfer of excitation be-

tween the two modes via annihilatioftreation of two However, quantum effects such as squeezing and sub-

quantg |n2mo<:]<_e ﬁ gndlcreatlﬁ)al(rjwhllatlor)do;‘]one qqantum Poissonian statistics in the quasiparticle number can only be
In mode 2, which IS also called a seconad harmoniC proCeSyegerined by the operator equatiqBd) and are lost in mak-

The matrix elemenM ,, contains all the information on_the ing the classical approximation leading to E¢@8), where
geometry of the two modes that are coupled. If we excite th%perators are replaced by complex numbers.
lower mode at resonance\(,=0) and there is no initial

population in the upper mode, then all the excitation is trans-
ferred to the upper mode. The opposite is not true, i.e., there
is no transfer from an initially excited upper mode to the In this subsection we want to show briefly how a quantum
lower mode if we start off with zero population in the lower description of the nonlinear processes leads to nonclassical
mode. We will see later in this section that in a quantum-effects such as squeezing. We apply the well-established
mechanical description, where the lower mode is describetheory of nonlinear effects in optid®,10] to describe the

by operators rather thac-numbers, down-conversion does phononic coupling in a condensate and demonstrate the di-
occur. The strength of the processes depends on the spatiact dependence of squeezing on the coupling matrix element
overlap between the respective quasiparticle wave functiongn both, up- and down-conversion processes. It is difficult to
The characteristic time scale for the transfer from mode 1 testudy squeezing for the full quantum-mechanical description
mode 2 is given by the expression of both modes given by the Hamiltoni#®1) as the operator

B. Squeezing in parametric down- and up-conversion
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equations are nonlinear. We first investigate down-it. The standard way to do this is to mechanically force the
conversion for resonant coupling and transform the Hamilcondensate into oscillation at the frequency and geometry

tonian(31) into the interaction picture to obtain corresponding to the upper mode.
Similarly, squeezing occurs during SHG where two
Hom —i ﬁ—K(BTZB _ E)ZE)T) (36) phonons from the lower mode are converted into one phonon
R 2 12 MRk of the upper mode. In this case, we cannot replace the lower

mode by ac number as we have done for our investigation of
whereb, ,b] denote the operatoes ,a} transformed into the down-conversion. We can again try to find an approximate
interaction picture. Then the mode operatbssb} for mode solution valid only for small times. This is demonstrated in
2 are replaced by the numberg, (we can, without loss of Ref.[_lO], where_aTaonr series expansion is used to describe
generality, assume tha, is rea), but we retain the opera- the time .evpllujuon Qf the mode operators. We assume that
tors for mode 1. In addition, we will treat the mode ampli- Mode 1 is initially in ailg)oherent state defined by|g:)
tude of the upper level as a constant. This assumption dogsB1lB1) with B1=|p,|e'” and mode 2 is in the vacuum
not account for the depletion of the upper mode and is onlystate. The result for the squeezing of the quadra@yeof
valid for small times when the occupation of the lower levelmode 1 to second order in time is then given by
is much smaller than the occupation of the upper level, i.e.,
for N;<83. The resulting Hamiltonian is quadratic in ,b] [AD (H)]2=1— ;K2t2|/81|2005{2®) +0(gt)3. (41)
and gives linear Heisenberg equations,

db This result only holds for small times for whicH 8,|%«2t?
—lZ[Bl,HR]=K,326L <1. However, we can see how in both cases, down- and
dt up-conversion, the squeezing of the quadrature components
- can be directly related to the nonlinear coupling strength.
db; . N
——=[b],HR]=«B,b;. 3
dt [ ! RI= B2y (37) V. CALCULATING THE NONLINEAR COUPLING RATE
Equations(37) can be diagonalized by expressing them in ~ We will now calculate the nonlinear coupling rates be-
terms of the two quadrature phase amplitu@gsép defineq  tween two condensate excitations and compare them to those

as from recent experiments. For convenience, we take linear
combinations of the normalized quasiparticle wave functions
&, =b,+b1, to give the new function;” T, defined by
. b,—bl Tr=u+v=1, (42)
Qp_ i . (38 - - - B
fi :ui_vi:fi —2Cilﬂg. (43)

; ; : i A = arBat o . . . ; :
Simple integration  yields Q,(t)=e"2'Q,(0),Qup(t)  \written in terms of these functions, the matrix element in Eq.
=e” "BZtQp(O). These solutions can be used to calculate thg29) has the form

evolution of by,b] and the evolution for the number of
down-converted quasiparticlebl;, for which we find (as- M :zj a3 E]z T (PR P Pt b
suming mode 2 was initially in a vacuum staes) 12 9 127t 2

—/0lbTh —cinh2 L, o~ .~ o
N1—<O|b1b1|0>—SInh (Kﬂzt) (39) _’_Zf;(fi—*fz—*_ff*f:f*) , (44)

Equation(39) shows that in this quantum model down-
conversion occurs even for zero initial population in mode 1where we assumed thé, is real. AlternativelyM,, can be
This is in contrast to the result of the semiclassical modeivritten in terms of untilded functions{ ,f;) as the sum of
discussed above. The evolution of the variances in thewo parts,M,=M{})+M{2, which are defined as follows:
guadrature operators is found to be:

1 - -
[AO,(1)]2=*#:{ AQ(0) mig=2| d3r¢g[§ff*(ff*+f2++fl*f2

[AQ,(1)]2=e 252[AQ,(0)]2. (40) +%f2+(f1**f1**—f[*f[*) , (45)

This clearly demonstrates the squeezing in(ﬁ“,gaquadrature

component. However, it is important to keep in mind that 2)_ 3 . 2 _ _
Eqs.(40) are only valid for short times before the assumption M1z =2 | d°r¢gifs *(2¢7 Catg— CT thgfy —Catfgf1 ™)
that the upper mode is not depleted breaks down. A possible P,

way to avoid depletion of the upper mode is to keep exciting T (el yf ™ —c1 lﬁg)}- (46)
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M{2) is zero if neither of the quasiparticle wave functions hasthat the coupling is strongest in the outer regions of the con-
any overlap with the condensate ground state. We can no@ensate and reaches a maximum at a distance of (fiém
use the function$;” ,f,”, which we found in Sec. Ill. We can the center. In this region, the condensate is still well de-

write, in general, scribed by the hydrodynamic approximation that only breaks
down at a distance of order the healing length from the con-
f1+=A161§(1—y2)*1’2W1, fI:Al(l—yz)]'/ZWl, densate boundaries. The healing length in our recent experi-

ments[1,2] was about 0.05.
f3=Aoeaé(1-y?) VAW,  f, =Ax(1-y?)" AW,
(47) B. Coupling between two modes in a spherical trap

where theA;,A, are normalization constants determined Now we want to give a quantitative comparison between
from the normalization condition (6) and the solutions we found to the coupling matrix element in a
Wi(Y1,Y2.Y3),Wa(Y1,Y2,Ys) are solutions to Eq(15) for  hydrodynamic approach and the exact solutions calculated
mode 1 and 2, respectively. Substituting these expressiorfgom the numerical solutions to the BdG equations. To facili-
into Eq. (45 gives tate the numerical calculations we will look at the coupling
between two quadrupolar modes in a spherical trap of fre-

(), [T A2 3 3 n 2 2 guencyw, where the total angular momentunand the azi-
M1z = (VNo/NoAiA¢l clz)f d yWiWo[ 3e1€x¢ muthal angular momenturm are good quantum numbers.

N ) The two modes are the=2m=0 mode and thd =0m

X(1=y9) T Aep(1-y9)]. (48 =0 mode with frequencies of2w and \5w, respectively.

In a trap with only axial symmetry these two modes get
mixed and become the=0 low lying and them=0 high-
lying (breathing mode. Their quasiparticle wavefunctions
can be presented by the ans&t?), where W,;=(3co%¢
—1)y? and W,=(1—5y?/3). These are the solutions to the

) S > hypergeometric differential equations discussed in Sec. lll.
dynamic approximationto obtain Eq(15) for W(y;,Y2,Y3). o P T B
We will see later in this paper that this is fully justifigd by The normalization constants afg = y35/16ml.e,£ andA,
comparison with exact numerical calculations. Note that the= (3/2)V7/4mlcex¢. o _
second term equals zero if the detunitg;,=e,—2¢; is One can see from E46) that inM{% all terms contain-
zero. ing the constant; are zero, because the overlap between
mode 1, which is proportional t¥9, and the ground state,

. . . 0 . . .
A. Coupling between two even-parity quadrupolar excitations ~ Which s proportl_onal toYy, is Z€ro. The only remaining
rm is proportional toc, and it turns out to be

te
So far, we have made no assumptions about the geometry 6 2 S :
2ng/NgALy°(1—y9), which is exactly the expression we
of the two mades that are coupled and Egh), (46) are found for the resonant caseé €,,=0) in a general triaxial

valid for any pair of modes. We now focus on the quadrupo-,
lar modes of a triaxial trap and investigate the coupling be_trap[see Eq(49)]. But for these two modes €0 and we

fween any two diagonal modes, for which the tunction,N2Ve to consider the contribution from{}) as well, so that
W(y1,Y2,Y3) is represented by the polynomial given in Eqg. we obtain

(17). We can calculate the matrix elemet;, from Egs. n 1 7

(46), (48). An explicit expression foM, and its derivation M= —2\ /—OAzf [—A512(1—y2)(1—5/3y2)

is given in the Appendix. It is important to note that for No “Jol4e;

on-resonant coupling between the two modes=<2w,) the

matrix element simplifies considerably. In that case we can +(1—y2)}y6dy_ (50)
give a simple expression for the radial integrand of the ma-

trix element in terms of the dimensionless positigrwhere

The first term in the above integral proportional to (1
—y?)~ ! diverges at the condensate boundayy=Q), but it
must be dropped as it scales proportionakfoand in the
derivation of the quasiparticle wave functions we omitted
terms proportional t&? in the governing equationgydro-

the condensate boundaries are giverybyl, The wave functions for the ground state and the coupling
matrix elementdv ,, are plotted in Fig. 1 and Fig. 2, respec-
_ /Mo 1o 2\ g /g =~ 2 tively. It is important to note that for the resonant case the
Mip=—2 N_OAZJOV (1-yHdy=-2 N_OAZ@' only contribution comes from Eq49). Also, for the not-

(49) quite-resonant case displayed in Fig. 2, the integrand is
dominated by this contribution. This shows that the coupling

where A, denotes the normalization constant for the wavebetween different quasiparticle excitations predominantly
function of mode 2, given by EGA8). It is important to note  takes place in the boundary region of the condensate and an
that Eq.(49) describes the resonant coupling between anyexplicit analytic expression for the spatial probability of the
two diagonal quadrupole modes in a triaxial trap. This allowsnonlinear process is given by EEt9).
a quick and easy calculation of the coupling strength, cou- The integrated values d¥1,, in the hydrodynamic ap-
pling rates, and squeezing effects associated with the nonlipproximation and for the exact numerical calculation are
ear process. We can see from the radial integrand of4%. —0.161_> and —0.157_ 3, respectively. The error of the
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FIG. 1. The wave functions for the ground state in the hydrody- FIG. 3. The quantitym12=M12|§ ¢ is plotted against the trap
namic limit (solid line) and the exact solution to the GREotted  anisotropy\. The two vertical lines show where there is resonant
line) plotted in units of 1{/@ against the distance from the center of nonlinear coupling between time=0 low lying and then=0 high-
the trap in units of the characteristic lendth The trap is spherical lying modes. The resonances are determined by the matching of
with 1.5x10* atoms and a frequency=120 Hz . The healing mode frequencies (@ = w,) and they are located at=0.68 and
length£=0.09.. A=1.95.

approximate analytical result with respect to the exact nuthe coupling between then=0 low lying and them=0
merical calculation is in the order @f, as we expect. The high-lying mode(which arise from thd=0m=0 and thel
good agreement between the two, even for a relatively smak=2 m=0 mode of the spherical trap when#1). We can
number of atoms, justifies the hydrodynamic approximationsise the formula foM ,, for the general triaxial trap, given by
made in calculating the quasi particle wave functions and th€&gs. (A10), (A11) in the Appendix, to calculate the matrix
coupling matrix element. element for any trap geometry. The result is shown in Fig. 3
in terms of the dimensionless quantity;,=M 1, 2\¢. The
C. Coupling between two even parity modes in a TOP trap dependence oM,, on number and mean frequency is con-

, . tained inl_ 3¢~ Y2 and thusm,, only depends on the mode
In our experiments, we use a TOP trap that is axially eometry, i.e., it is only a function of. In order to getM ;,

symmetric and has an anisotropy defined by the paramet¢g, 5 gpecific trap, one has to read the dimensionless matrix
A=w,/w,, wherew, and w, are the axial and radial trap elementm,, from Fig. 3 and multiply it byl - 3¢~ 2,
frequencies, respectively. In a recent experiment, we studied From Eq.(22) one can find two values fcor the anisotropy

N\ where the twan=0 modes are resonantly coupled. These
resonances are at=0.68,1.95 with/m,,|=0.038,0.028, re-
spectively. The characteristic coupling time is given by Eq.
(30), which can be written as follows:

15\/§ﬁ \/E ( N~ 3/557 13/10) )

" 8mumyb,(0)

(51

We can calculate the coupling rate for the parameters of our
second-harmonic generation experimghf, which were:\
=1.95,Ny=1.5x10%, w,=120 Hz. Inserting the relevant
guantities into Eq(51), we obtain a transfer time of 5.7 ms
and 3.7 ms for small initial excited populations |&f,(0)|?
' ' ' ' ' =0.02 and|b,;(0)|?=0.05, respectively. For stronger initial
0.0 0.5 1.0 L5 . .
Distance [1] excitation, the transfer times would be even smaller. One can
° see from Eq.(51) that for larger atom number and stiffer
FIG. 2. The radial integrands for the matrix elemeNts, in the  traps the coupling times become smaller as well. This shows
hydrodynamic limit(solid line) and for the exact numerical calcu- that the process of coupling the two quadrupole modes hap-
lation (dotted ling plotted in units of; ® against the distance from PeNs on a timescale of a few milliseconds. It is consistent
the condensate center in units lgf. The coupling is between the With our experimental observatiofi], where the second-
I|=0,m=0 and thd =2,m=0 mode for the same trap conditions as harmonic was observed as soon as the driving of the funda-
in Fig. 1. mental finishedexcitation time of about 30 mis
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D. Coupling between a scissors mode and another APPENDIX: MATRIX ELEMENTS FOR THE DIAGONAL
quadrupolar excitation QUADRUPOLAR MODES

Now we will discuss coupling between the off-diagonal  We want to calculate the coupling matrix element for any
quadrupolar excitations. We already showed in Sec. Il thatwo diagonal quadrupole modes in a triaxial trap for which
these modes have odd parity and are characterizetlvby the functionW(yq,y,,y3) is represented by a polynomial as
*yiyj.i#]j. Thus their overlap with the condensate groundgiven in Eq.(17). It is useful to derive a number of relations
state is zero and the only contribution to the coupling matrixfor the polynomial coefficients that allow us to simplify the

element comes fromv {1 given in Eq.(48). But this integral ~ expressions for normalization constants, overlap coefficients,

is zero because the prod0€W, is odd. So the total matrix @nd the coupling matrix element.

elementM 1, equals zero and there is no direct coupling via a The onvest mode of Eq(8) is the so-called Gol:jstone

second-harmonic process between two scissors modes. Ol de with wo=0o(r) =W4(r) and ve(r)=—Vg(r),

recent experimental observation of a down-conversion pro\—N "?h arises from the(1) symmetry breaking. For_ this

cess between two scissors modes must, therefore, haveEgrt'CUIar mode the orthogonality and symmetry relations of

more sophisticated interpretation than the conversion of ong¥: (6) take the form

qguantum of the higher mode into two quanta of the lower

scissors mode. f d*r(Wiui+¥g;)=0. (A1)
Similarly, there is no coupling between a higher-lying

e 0 O O qaton(x1) mples ht 0. Subsiang £

of Eq. (46) is also zero becausg=0 andf, are odd. Thus ﬁag)iallnc%orclj?nzgeugil/%ns and Integrating over fhe angies an

the total matrix element is zero. However, there is second-

harmonic coupling from a lower scissors mode to a higher- _

lying diagonal quadrupolar mode. For resonant coupling two 2 b;=—5. (A2)

guanta of the scissors mode are converted into one quantum '

of the higher-lying even-parity mode and one finds that th

) . o . ®rhe characteristic polynomials for the quadrupole modes are
matrix element is again given by expressids9). poly 9 b

real and thusy; ,v; can be taken as real, which allows us to

derive from the orthogonality relatior(§),
VI. CONCLUSION

Starting from the NLSE, we have derived a simple model f d3xff =6 (A3)
o i . e . i i
describing the nonlinear coupling of quasiparticle amplitudes ! J

of two modes. The model can be used to study squeezing

effects that are directly related to the matrix element governif we now insert two different polynomials corresponding to
ing the coupling process. We have demonstrated how to catwo different solutions forf;" ,f; into Eq. (A3), we obtain
culate this matrix element analytically. We then focused orthe relationfd®yW;W,=0 and from that
the quadrupole excitations and found that all resonant (

=2w,) direct-coupling processes between the six quadru- T

pole modes are described by the expression in(&g). un- 2 bidi =5,

less they are forbiddenM;,=0). All second-harmonic pro-

cesses involving odd-parit{scissors modes are forbidden _—
except for up-conversion from a scissors mode to a higher- bydy+bod; +b;ds+bads +bads+bsd; =20, (AS)
lying even-parity mode. It is possible to show that there are _

other allowed nonlinear processes involving all three of thewvhere theb;’s denote the polynomial coefficients of mode 1
scissors modes. This gives rise to nondegenerate parametdad thed,’s the polynomial coefficients of mode 2. These
amplification and multimode squeezing. Full details and thespefficients are found from Eq$18), (19) in Sec. lIl. We
derivation of an effective Hamiltonian describing all allowed a|so have to calculate the overlap coefficierjtbetween the

nonlinear processes between the quadrupole mgaegust  condensate and the quasiparticle wave functions,
the second harmonic generation described )hevidl be

given in a future paper.

(A4)

1 1
ci:fd3r¢/;ui:§f d3r¢;(fﬁ+ff):§f d3rf.

(AB)
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where we used EqA2) andNy= Nl 287/15[Thomas-Fermi -
relation for u(Ng)] for the last step. We also have to calcu- +2b;b,d;+2b,bsd, + 2bybsd,
late the normalization amplitudes for these modes and obtain
from Eq. A3,
+y? 490+212 b?+7(2b,b,+ 2b,bg+ 2b3b;)
3 41
A= &éliT2
105 2 2 2
—525y°+ 105} y“Ae15(1—y“)dy. (A10)

—-1/2
32 b?+2(byby+b;bs+Dbybg) — 35}) .

The second part of the matrix element is given in &dL1).
(A8) Note that this part arises due to the finite overlap between the
condensate ground state and the untilded Bogoliubov wave

We can now calculate the coupling matrix element from Eqs )
functionsu; ,v; .

(46), (48). We shall introduce a constaRy, defined as fol-

lows:
M{P=4R f A [35 325 +90
_ 2 3 12 =4R12 €12) O ——y
Rlz—( \/N —AZA ¢ /2) o5 (A9)
- ; (1) ; 2 2 Mo e 2
The first part of the matrix elemeM {3 is then Xy (1-y“)dy—2 N—OAz .Y (1—y*)dy.
M<112>=—R12f [ 153, B70,+3(2b;b,0; + b7, (A11)
4 2b:bad- +b2d<+ 2b:b-do+ b2d- + 2b- bd- We note that for resonant interactidre;,= e, —2¢,=0, SO
1SR LTS T T T e T AT that M{})=0 and the only term surviving inM{2 is

+b3d;+ 2bybsd, + bids + 2b,bsds +b3d,) — 2o /NoAo S LyS(1—y?)dy.
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