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Two-component Fermi gas in a one-dimensional harmonic trap
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A many-body theory for a two-component system of spin-polarized interacting fermions in a one-
dimensional harmonic trap is developed. The model considers two different states of the same fermionic
species and treats the dominant interactions between the two using the bosonization method for forward
scattering. Asymptotically exact results for the one-particle matrix elements at zero temperature are given.
Using them, occupation probabilities of oscillator states are discussed. Particle and momentum densities are
calculated and displayed. It is demonstrated how interactions modify all these quantities. An asymptotic
connection with Luttinger liquids is suggested. The relation of the coupling constant of the theory to the
dipole-dipole interaction is also discussed.
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I. INTRODUCTION

The achievement of Bose-Einstein condensation in di
ultracold gases@1# renewed the interest in fermionic man
body systems@2–4# and their superfluid properties@5–8#.
Recent experimental successes in obtaining degenerac
three-dimensional Fermi vapors@9,10# intensified the interes
in confined Fermi gases. Using microtrap technology@11–
14#, it will become possible in the near future to produce
neutral ultracold quantum gas of quasi-one-dimensional
generate fermions.

In many cases, identical spin-polarized fermions exp
ence only a weak residual interaction becauses-wave scat-
tering is forbidden. This restriction does not hold for a tw
component system of spin-polarized fermions and signific
interactions between the components are possible. Fo
stance, the dipole-dipole interaction@15# can become rel-
evant, especially in the case of polar molecules@16#.

The confinement of a trapped ultracold gas can be r
ized by a harmonic potential, which is more realistic th
trapping between hard walls~‘‘open boundary conditions’’!.
The latter system of interacting one-dimensional fermio
constitutes a bounded Luttinger liquid, which allows an ex
treatment for certain types of interactions@17–23#.

In this paper, we consider a quasi-one-dimensional s
polarized Fermi gas composed of an equal number of at
in two different internal states and confined by a harmo
potential. One possible realization consists of trapped~elec-
tron! spin-polarized fermions in two different hyperfin
states, as discussed in@5# for the case of6Li.

We consider the intercomponent interaction between
two components. As in@24#, we apply the bosonization
method known from the Luttinger model~for reviews we
refer to@25–27#! to treat the interactions. The generalizati
to two components is analogous to the inclusion of spin\/2
into the Luttinger model@28#. The bosonization method re
lies on fermion-boson transmutation in one spatial dim
sion: Physical quantities can be calculated in a bosonic
mulation instead of the fermionic theory, and the tw
calculations give the same answer@29–32#.

We show how interactions modify the one-particle pro
erties of the two-component Fermi gas. Results for the n
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interacting Fermi gas in a one-dimensional harmonic t
were given in@33,34#.

The paper is organized as follows. Section II develops
theory for the two-component case. Section III applies
theory to the calculation of the one-particle matrix elemen
In Sec. IV, occupation probabilities, off-diagonal matrix el
ments, and densities of particles and momenta are evalu
numerically for two different interaction models. Section
discusses the problem of the Fermi edge in the present c
and a possible relation to the standard Luttinger model re
is pointed out. In Sec. VI, the relation of the coupling co
stant of the theory to the dipole-dipole interaction is d
cussed. The Appendix is concerned with the bosoniza
procedure for bilinear forms of auxiliary fields in the case
two components.

II. TWO-COMPONENT THEORY

The two-component Fermi gas of uniform massmA is
confined by the one-dimensional harmonic potential

V~z!5
1

2
mAv l

2 z2, ~1!

with longitudinal trap frequencyv l . The unperturbed
Hamiltonian in second quantization is

Ĥ05 (
n50,s561

`

\vnĉns
† ĉns . ~2!

The indexs561 refers to the two components andĉns
†

creates a fermion of speciess in the oscillator stateun&.
The one-particle energies

\vn5\v l ~n11/2!, n50,1, . . . , ~3!

are seen to depend linearily on the quantum numbern of
oscillator states. This is one of the requirements
bosonization. In addition, exact solvability rests on the pr
ence of an anomalous vacuum~cf. @25–27#!, which is con-
structed by extending the linear dispersion of oscillator sta
to arbitrarily negative energies and then filling all states
©2002 The American Physical Society10-1
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GAO XIANLONG AND W. WONNEBERGER PHYSICAL REVIEW A65 033610
negative energy. However, the anomalous vacuum has
effect for processes near the Fermi energyeF5\v l (N
21/2) providedN is sufficiently large@32#, making the treat-
ment asymptotically exact.

The success of the Luttinger model is based on the po
bility to express forward scattering processes entirely
terms of the density fluctuation operators. For the tw
component system, these operators are

r̂s~p![(
q

ĉq1p s
† ĉqs . ~4!

Due to the presence of the anomalous vacuum, they o
bosonic commutation relations

@ r̂s~2p!,r̂s8~q!#5p ds,s8dp,q . ~5!

In our case, the interaction Hamiltonian is given by a tw
particle interaction

V̂5
1

2 (
mnpq,s,s8

V~ms8,ps;qs8,ns! ~ ĉms8
† ĉqs8!~ ĉps

† ĉns!

~6!

without ‘‘component flip,’’ i.e., the possibility for a fermion
to change its states in the collision process is excluded.

The cases5s8 corresponds to a weak intracompone
interactionVi , while s52s8 is a relevant intercomponen
interactionV' .

Similar to @24#, two cases of solvable forward-scatterin
processes can be identified:

V̂5V̂a1V̂b ~7!

with

V̂a5
1

2 (
p,s

Vai~ upu!r̂s~2p!r̂s~p!1
1

2 (
p,s

Va'~ upu!

3 r̂2s~2p!r̂s~p!,
~8!

V̂b5
1

2 (
p,s

Vbi~ upu!r̂s~p!r̂s~p!

1
1

2 (
p,s

Vb'~ upu!r̂s~p!r̂2s~p!.

The coupling functionsVa' andVb' are the analogs ofg4'

andg2' of the Luttinger model.
Forward scattering dominates when the pair interactio

sufficiently long-ranged, e.g., in the case of dipole-dip
interactions. In@35#, a detailed discussion is given on ho
the assumed forms~8! can be related to real scatterin
potentials.

The case of two components requires canonical trans
mations to mass fluctuation operators

r̂~p![
1

A2
@ r̂1~p!1 r̂2~p!# ~9!
03361
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and component fluctuation operators

ŝ~p![
1

A2
@ r̂1~p!2 r̂2~p!#, ~10!

such that the Hamiltonian for low-lying excitations separa
into H̃5H̃r1Ĥs in analogy to the spin-1

2 case@28# of the
Luttinger model.

The transformation to new bosonic operators

r̂~p!5H Aupu d̂upu1 , p,0,

Ap d̂p1
† , p.0,

ŝ~p!5H Aupu d̂upu2 , p,0,

Ap d̂p2
† , p.0,

~11!

leads to canonical commutation relations

@ d̂mm ,d̂nn
† #5dm,ndm,n . ~12!

The new labeln561 refers to mass and component fluctu
tions.

The bosonic version of the unperturbed Hamiltonian
the N-fermion sector is@32,36#

H̃05
\v l

2 (
m.0,n

m$d̂mn
† d̂mn1d̂mnd̂mn

† %. ~13!

The complete bosonic interaction operator becomes

V̂5
1

2 (
m.0,n

m@Vai~m!1n Va'~m!#$d̂mn
† d̂mn1d̂mnd̂mn

† %

1
1

2 (
m.0,n

m@Vbi~m!1n Vb'~m!#$d̂mn
†2 1d̂mn

2 %. ~14!

The total bosonic Hamiltonian is diagonalized in a sta
dard way using the Bogoliubov transformation

d̂mn5Ŝ† f̂ mnŜ5 f̂ mn coshzmn2 f̂ mn
† sinhzmn , ~15!

with

Ŝ5expH 1

2 (
m.0,n561

zmn~ f̂ mn
2 2 f̂ mn

†2 !J . ~16!

The transformation parameterszmn are determined by the
diagonalization conditions

tanh~2zmn!5
Vbi~m!1n Vb'~m!

\v l 1Vai~m!1nVa'~m!
. ~17!

Finally, we arrive at the free bosonic Hamiltonian

H̃5 (
m.0,n

m emn f̂ mn
† f̂ mn1const, ~18!
0-2
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TWO-COMPONENT FERMI GAS IN A ONE- . . . PHYSICAL REVIEW A 65 033610
describing density wave excitations in the two-compon
Fermi gas. The excitation spectra are

emn5
\v l 1Vai~m!1nVa'~m!

cosh~2zmn!
. ~19!

In connection with the calculation of one-particle matrix e
ements, scaled coupling constants

amn[
1

2
sinh~2zmn!, gmn[sinh2zmn ~20!

will appear.
Usually, the intracomponent scattering is negligible (Vi

→0, the caseViÞ0 was considered in@24# for the one-
component system! and dominant forward scattering for th
intercomponent part results@35# in

Va'~m!5Vb'~m![V~m!\ v l . ~21!

Then the simpler relations

emn5\v l A112n V~m!, amn5
n V~m!

2A112n V~m!
~22!

hold for uV(m)u,\v l /2.
Following @24#, we will also consider two specific inter

action models: A simplified model IM1, when only one mo
V(m)5V(1)(dm,11dm,21) contributes. This model pre
serves many of the features of the interaction in the
model~interaction model 2, see IM2 below!, when infinitely
many modes are superimposed.

In the case of IM1, the relevant coupling constants ar

z1n5
1

2
artanhS n V~1!

11nV~1! D , a1n5
1

2
sinh~2z1n!,

g1n5
1

2
~A114 a1n

2 21!. ~23!

In the case of IM2, the coupling constants decay expon
tially according to

amn5exp~2r am/2!a0n , a0n5exp~r a/2!a1n ,

gmn5exp~2r gm!g0 , g0n5exp~r g!g1n . ~24!

An essential step in the actual calculation of physi
quantities is the connection between fermionic operators
bosonic fields. The bosonization of fermion generation a
destruction operators is completely solved for the Luttin
model @32,37–39#.

In the present case, the situation is less comfortable: A
from the above association of mass and component fluc
tion operators with thed̂ operators, we can bosonize on
bilinear forms of an auxiliary field following the prescriptio
of @40#. The auxiliary field is defined by
03361
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ĉas~v ![ (
l 52`

`

eil vĉls5ĉas~v12p!. ~25!

The Appendix demonstrates that the required bosoniza
for a two-component Fermi gas is

ĉas
† ~u!ĉas~v !5GN~u2v !exp$2 i @f̂s

†~u!2f̂s
†~v !#%

3exp$2 i @f̂s~u!2f̂s~v !#%, ~26!

using the two-component non-Hermitian bosonic field

f̂s~v !52 i (
n51

`
1

A2n
einv~ d̂n11sd̂n2!Þf̂s

†~v !. ~27!

The distribution-valued prefactorGN(u) is the same as in
@40#:

GN~u!5 (
l 52`

N21

e2 i l (u1 ih). ~28!

III. ONE-PARTICLE MATRIX ELEMENTS

The above prescription allows us to calculate analytica
all m-particle matrix elements of bilinear fermion operato
It is not difficult to carry the calculation of one-particle ma
trix elements in@24# over to the present case of two comp
nents:

^ĉns
† ĉqs&5 (

l 52`

N21 E
0

2pE
0

2pdu dv

4p2
ei (n2 l )(u1 i e)2 i (q2 l )(v2 i e)

3^e2 i f̂s
†(u)1 i f̂s

†(v)e2 i f̂s(u)1 i f̂s(v)&. ~29!

Using the bosonic Wick theorem, the expectation va
^ &[exp@2Ws# on the right-hand side can be evaluated.
zero temperature, the functionWs is given by

Ws5Ws~u,v !5(
n

(
m51

`
1

m
@gmn2amn cosm~u1v !#

3$12cosm~u2v !%. ~30!

This quantity is independent of component labels, as ex-
pected.

Comparing Eq.~30! with Eq. ~39! in @24#, it is seen that
the effective coupling constants in the two-component c
are

ām5
1

2 (
n51

2

amn , ḡm5
1

2 (
n51

2

gmn . ~31!

W is a real and even function of its arguments leading to
symmetries

^ĉns
† ĉqs&5^ ĉqs

† ĉns&5^ĉns
† ĉqs&* ~32!

and to the conditionn1q52m, m50,1,2, . . . .
0-3
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For the interaction model IM1, one of the integrations
Eq. ~30! can be performed giving the closed expression
the matrix elements of each component:

M ~m,p![^ĉm2p
† ĉm1p&5

1

2
dp,0

2
1

2pE2p

p

dsH sin@~m11/22N!s#

2 sin~s/2! J
3exp$22ḡ1@12cos~s!#%

3I p$2ā1@12cos~s!#%. ~33!

Due to the factor$sin( . . . )%, the following symmetries hold

^ĉ2N212m2p s
† ĉ2N212m1p s&5dp,02^ĉm2p s

† ĉm1p s&.
~34!

Similarily, IM2 leads to

M ~m,p!5
1

2
dp,02E

2p

p dt

2p

cos~p t!

@11Za2cos~ t !#ā0

3E
2p

p ds

2p H sin@~m11/22N!s#

2 sin~s/2! J
3F Zg

11Zg2cos~s!G
ḡ0

$@11Za2cos~ t2s!#

3@11Za2cos~ t1s!#%ā0/2, ~35!

with decay parameters

Zg5cosh~r g!21, Za5cosh~r a/2!21. ~36!

IV. NUMERICAL RESULTS

The main results of the paper are the formulas~33! and
~35! for the one-particle matrix elements. They are identi
in form to those in@24#, however they depend differently o
the coupling constants. This leads to very different phys
predictions, which are presented in a number of figures
fermion numbers 2N514114.

Using Eqs.~17! and ~20!, it is found that the main cou
pling parametersām ,

ām5
V~m!

4 H 1

A112 V~m!
2

1

A122 V~m!
J , ~37!

are nonpositive and even functions of the interactionsV(m):
Irrespective of the sign of the interaction between the t
components, the effective interaction in each componen
the Fermi gas is attractive.

In the case of IM1, onlyā1 is needed as an input param
eter in the calculation of the matrix elements.uV(1)u is ob-
tained via Eq.~37! and all other quantities such asz1n andḡ1
can be calculated from Eqs.~23! and ~31!.
03361
r

l

l
r

o
of

We start with the discussion of the occupation probab
ties P(m)[M (m,p50) of oscillator states as shown in Fig
1. It is seen that interactions smooth out the Fermi edge
mF5N21, but still leave a gap~not an energy gap! at mF .

Figure 2 displays the off-diagonal matrix elements forp
51. They are significant near the Fermi edgemF5N21 and
cannot be neglected. Their values increase further with
creasing coupling strength.

We also present results for the particle density and
momentum density. Both are expected to show Friedel os
lations @41# as noted in@24,34#. In agreement with@24#, the
effective intracomponent interaction, which is always attra
tive, suppresses the Friedel oscillations in the particle d
sity,

n~z!5 (
m50

`

(
p52m

m

cm2p~z!cm1p~z!M ~m,p!, ~38!

FIG. 1. Occupation probabilitiesP of oscillator statesm21
(m51,2, . . . ) for aninteracting two-component Fermi gas of 2N
514114 atoms in a one-dimensional harmonic trap at zero te

perature. Interaction model 1 withā1521 has been used.

FIG. 2. Off-diagonal matrix elementsM versus oscillator state
m21 (m51,2, . . . ) for aninteracting two-component Fermi gas o
2N514114 atoms in a one-dimensional harmonic trap at zero te

perature. Interaction model 1 withā1521 has been used.
0-4
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TWO-COMPONENT FERMI GAS IN A ONE- . . . PHYSICAL REVIEW A 65 033610
as is seen in Fig. 3. In Eq.~38!, cm(z) is the oscillator state
um& in position representation.

Conversely, the Friedel oscillations in the momentu
density

p~k!5 (
m50

`

(
p52m

m

~21!pcm2p~k!cm1p~k!M ~m,p!

~39!

are enhanced@24#. This is displayed in Fig. 4 for strong
coupling (ā15210). We have chosen the oscillator leng
l [A\/(mAv l ) as the unit of length, renderingn(z) andz
as well asp(k) andk dimensionless.

In the case of IM2, some modifications occur. We ag
set ā1521. We needām and ḡm(m50,1,2. . . ) for the
evaluation of Eq.~35!. This requires knowledge of the deca
constantsr a and r g @cf. Eq. ~24!#. For convenience, we se
r a5r g[r and estimater by the following argument.

FIG. 3. Dimensionless particle densityn(z)l (l is the oscilla-
tor length! versus dimensionless distancez from the center of the
one-dimensional harmonic trap for 2N514114 atoms in the two-
component Fermi gas at zero temperature. The broken curve s
unperturbed Friedel oscillations. The smooth curve refers to

interacting case withā1521. Interaction model 1 has been use

FIG. 4. Dimensionless momentum densityp(k)/l (l is the
oscillator length! versus dimensionless momentumk for 2N514
114 atoms of a two-component Fermi gas in a one-dimensio
harmonic at zero temperature. The broken curve shows unpertu
Friedel oscillations. The thick curve refers to the interacting c

with ā15210. Interaction model 1 has been used.
03361
n

The minimum wave number increment in the trap isDk
'1/LF}1/AN, whereLF5A2N21 is the half-width of the
classically allowed region at the Fermi energy. We theref
set r'1/AN or roughly r 50.3 for the present caseN514.
This givesā0521.16 for ā1521 andḡ051.19.

Figure 5 shows the occupation probabilities of oscilla
states for IM2. It is seen that they are more smoothly distr
uted than in the case of IM1, but still leave a gap at the Fe
edge.

Finally, we show the momentum density for IM2 in Fig
6. The Friedel oscillations are still recognizable for sm
momenta, but strongly suppressed for momenta approac
kF5A2N21.

The off-diagonal matrix elements are significantly smal
for IM2 than for IM1. Nevertheless, they cannot be n

ws
e

al
ed
e

FIG. 5. Occupation probabilitiesP of oscillator statesm21
(m51,2, . . . ) for aninteracting two-component Fermi gas of 2N
514114 atoms in a one-dimensional harmonic trap at zero te

perature. Interaction model 2 withā0521.16 has been used.

FIG. 6. Dimensionless momentum densityp(k)/l (l is the
oscillator length! versus dimensionless momentumk for 2N514
114 atoms of a two-component Fermi gas in a one-dimensio
harmonic at zero temperature. The broken curve shows unpertu
Friedel oscillations. The thick curve refers to the interacting c

with ā0521.16. Interaction model 2 has been used.
0-5
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GAO XIANLONG AND W. WONNEBERGER PHYSICAL REVIEW A65 033610
glected: By comparing Eq.~38! with Eq. ~39!, it is seen that
particle and momentum density would coincide in such
approximation.

V. FERMI EDGE

Figure 1 and also Fig. 5 do not show the gapless distri
tion of occupation probabilities near the Fermi edgemF
5N21, which is characteristic of a Luttinger liquid, i.e., ou
system is not a Luttinger liquid. This cannot be expec
because the system is finite. We can, however, get a glim
at Luttinger liquid behavior in a special limit, which als
presupposes a large particle numberN.

First, we consider a very slow decay of the interacti
modesV(m) in IM2, i.e., r a→r g!1. The factor

F Zg

11Zg2cos~s!G
ḡ0

→S r g
2

r g
21s2D ḡ0

~40!

in the large square brackets of the integrand in Eq.~35! then
becomes sharply localized ats50.

We now calculate the occupation probabilityP(Dkn),

^ĉN211n
† ĉN211n&5^ ĉDkn

† ĉDkn
&[P~Dkn! ~41!

near the Fermi edge and forN@1. P(Dkn) becomes a qua
sicontinuous function of the wave-number deviationDkn
5kn2kF5n/LF→Dk, provided unu!min(N,1/r g) is ful-
filled. Using Eq.~40! in Eq. ~35!, we obtain

P~Dk!5
1

2
2H 3F2F ḡ0 ,

1

2
,1;1,

3

2
;2S p

r g
D 2G r gLFJ Dk

~42!

in terms of a generalized hypergeometric function. It is se
that P(Dk) depends linearly on the wave-number deviati
in a small region near the Fermi edge.

This can be compared with the Luttinger liquid predicti
~cf. e.g.,@26#!

PLL~Dk!5
1

2
2sgn~Dk!CuDkub. ~43!

C is a constant and the exponentb depends on the Lut
tinger liquid coupling strengthgLL according to

b52gLL for gLL,
1

2
~44!

and

b51 for gLL>
1

2
. ~45!

We conclude that the above limit of our model agrees w
the casegLL>1/2 of the Luttinger liquid.
03361
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VI. DISCUSSION AND SUMMARY

For the interaction to become significant in the quantit
calculated, its strengthV(1) should be as large asuV(1)u
&0.5. We demonstrate that this condition is within expe
mental reach.

To this order, we consider the dipole-dipole interacti
@15#. It is marginally long-ranged and thus favors forwa
scattering. In@35#, it is shown that the intercomponent inte
action between longitudinally aligned dipoles reduces
actly to the effective one-dimensional potential

Ṽ1D~k!52
m0m2a t

2

2p F11
k2

2a t
2

expS k2

2a t
2D EiS 2

k2

2a t
2D G

in momentum space. Here,a t is the inverse of the transvers
oscillator length,m the magnetic dipole moment, and Ei d
notes the exponential integral.

Using this equation in the exact formula~A13! in @24#,
V(1) for N514 is found to be

V~1!520.8S m0m2mA
3/2v l

1/2

2p\5/2 D 1

F
.

The quantityF denotes the filling factorF5Nv l /v t .
For example in53Cr, V(1) becomes of the required magn
tude providedF is very small, i.e., the trap is highly aniso
tropic.

In summary, the bosonization method has been use
construct a theory for a two-component gas of spin-polari
fermions in a one-dimensional harmonic potential with fo
ward scattering between the two components. Asympt
results with respect to the fermion numberN were obtained
for the one-particle matrix elements and used to discuss
cupation probabilities for oscillator states, off-diagonal m
trix elements, and distribution functions for particles and m
menta in the harmonic trap. All these quantities can
significantly affected by the attractive interaction genera
within each component. Specifically, the Friedel oscillatio
in the particle density are suppressed, while they survive
the momentum density.

It remains to be seen whether the predicted Friedel os
lations can be observed experimentally. The amplitudes
the Friedel oscillations scale as 1/N @34#, hence Friedel os-
cillations are unobservable in a macroscopic bounded Fe
sea. Small particle numbers pose, however, severe dete
problems. A conceivable experimental method to obse
Friedel oscillations for atom numbers of the order of 100
indicated in @34#. The method proposes microfabricatio
techniques to produce arrays of microtraps.

On the other hand, the asymptotic bosonization meth
requires particle numbers, which are not too small. This
due to the presence of the anomalous vacuum, which cou
to the real particles. For instance, the sum rule(nP(n)5N
gives a somewhat larger value than the numberN of real
particles when Eq.~33! or Eq. ~35! is used. The excessDN
.0 grows with coupling strength and decreasing parti
0-6
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TWO-COMPONENT FERMI GAS IN A ONE- . . . PHYSICAL REVIEW A 65 033610
number. ForN514 and very strong couplingā15210, DN

is about 831023; for ā1521, DN is less than 10210.
The atom number 2N514114 and the coupling value

employed here are appropriate to give visible Friedel os
lations and reliable results of the bosonization method.
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APPENDIX

In this appendix, we extend the bosonization procedur
@40# to the case of two components. Instead ofd̂p6 opera-
tors, which are needed for the diagonalization of the in
acting Hamiltonian, the following set of operators plays t
role of theb̂ and b̂1 operators (n>1) in @40#:

b̂ns
† [

1

A2
@ d̂n1

† 1sd̂n2
† #, b̂ns[

1

A2
@ d̂n11sd̂n2#.

~A1!
-

R

03361
-

.
r-

n

-

They are canonical conjugates. Evidently

b̂ns
† [

1

An
r̂s~n!. ~A2!

Then the two relations hold,

@ b̂ns
† ,ĉks8

† ĉls8#5ds,s8

1

An
~ ĉk1ns

† ĉls2 ĉks
† ĉl 2ns!,

~A3!

@ b̂ns ,ĉks8
† ĉls8#5ds,s8

1

An
~ ĉk2ns

† ĉls2 ĉks
† ĉl 1ns!.

Following the arguments in@40#, the associated Bos
fields for s5s8 are

f̂s~v !52 i (
n51

`
1

An
einvb̂ns[2 i (

n51

`
1

A2n
einv~ d̂n11sd̂n2!

Þf̂s
†~v !. ~A4!
ev. B

ds

n-
-

C

r-
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