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Two-component Fermi gas in a one-dimensional harmonic trap
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A many-body theory for a two-component system of spin-polarized interacting fermions in a one-
dimensional harmonic trap is developed. The model considers two different states of the same fermionic
species and treats the dominant interactions between the two using the bosonization method for forward
scattering. Asymptotically exact results for the one-particle matrix elements at zero temperature are given.
Using them, occupation probabilities of oscillator states are discussed. Particle and momentum densities are
calculated and displayed. It is demonstrated how interactions modify all these quantities. An asymptotic
connection with Luttinger liquids is suggested. The relation of the coupling constant of the theory to the
dipole-dipole interaction is also discussed.
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[. INTRODUCTION interacting Fermi gas in a one-dimensional harmonic trap
were given in[33,34.

The achievement of Bose-Einstein condensation in dilute The paper is organized as follows. Section Il develops the
ultracold gase$1] renewed the interest in fermionic many- theory for the two-component case. Section Ill applies the
body systemg2-4] and their superfluid propertid&—8]. theory to the calculation of the one-particle matrix elements.
Recent experimental successes in obtaining degeneracy IR Sec. IV, occupation probabilities, off-diagonal matrix ele-
three-dimensional Fermi vapd®,10] intensified the interest ments, and densities of particles and momenta are evaluated
in confined Fermi gases. Using microtrap technolpgy—  numerically for two different interaction models. Section V
14], it will become possible in the near future to produce adiscusses the problem of the Fermi edge in the present case,
neutral ultracold quantum gas of quasi-one-dimensional deand a possible relation to the standard Luttinger model result
generate fermions. is pointed out. In Sec. VI, the relation of the coupling con-

In many cases, identical Spin-po|arized fermions experistant of the theory to the dipole-dipole interaction is dis-
ence 0n|y a weak residual interaction becagseave scat- cussed. The Appendix is concerned with the bosonization
tering is forbidden. This restriction does not hold for a two- procedure for bilinear forms of auxiliary fields in the case of
component system of spin-polarized fermions and significanftw0 components.
interactions between the components are possible. For in-
stance, the dipole-dipole interactiqd5] can become rel- Il. TWO-COMPONENT THEORY
evant, especially in the case of polar molecyl&s). . . )

The confinement of a trapped ultracold gas can be real- The two-component Fermi gas of uniform masg is
ized by a harmonic potential, which is more realistic thanConfined by the one-dimensional harmonic potential
trapping between hard wallSopen boundary conditions 1
The latter system of interacting one-dimensional fermions V(2)= = mpw2z?, (1
constitutes a bounded Luttinger liquid, which allows an exact 2 '
treatment for certain types of interactiofis’—23. i o

In this paper, we consider a quasi-one-dimensional spin/ith longitudinal trap frequencyw,. The unperturbed
polarized Fermi gas composed of an equal number of atomg@Mmiltonian in second quantization is
in two different internal states and confined by a harmonic w0
potential. One possible realization consists of trapfedelc- N ot
tron) spin-polarized fermions in two different hyperfine Ho_n:O,;:tl G oo @
states, as discussed|[if] for the case ofLi.

We consider the intercomponent interaction between thehe indexo==*1 refers to the two components aﬁﬁg

two components. As i{24], we apply the bosonization creates a fermion of speciesin the oscillator statén).

method known from the Luttinger modélor reviews we The one-particle energies
refer to[25—27)) to treat the interactions. The generalization
to two components is analogous to the inclusion of gpi how,=hwo, (n+1/2), n=0.1,..., 3)

into the Luttinger mode[28]. The bosonization method re-
lies on fermion-boson transmutation in one spatial dimenare seen to depend linearily on the quantum number
sion: Physical quantities can be calculated in a bosonic forescillator states. This is one of the requirements for
mulation instead of the fermionic theory, and the twobosonization. In addition, exact solvability rests on the pres-
calculations give the same answee—32. ence of an anomalous vacuuif. [25-27]), which is con-

We show how interactions modify the one-particle prop-structed by extending the linear dispersion of oscillator states
erties of the two-component Fermi gas. Results for the nonto arbitrarily negative energies and then filling all states of
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negative energy. However, the anomalous vacuum has littlend component fluctuation operators

effect for processes near the Fermi enerep=r%w (N
—1/2) providedN is sufficiently largg 32], making the treat-
ment asymptotically exact.

The success of the Luttinger model is based on the possi-

bility to express forward scattering processes entirely
terms of the density fluctuation operators. For the tw
component system, these operators are

ﬁAp)EEq CitpaCao - (4)

Due to the presence of the anomalous vacuum, they obey

bosonic commutation relations

(5)

In our case, the interaction Hamiltonian is given by a two-
particle interaction

>

mnpgo,o’

[ﬁo( - p) 1;70"(q)] =p 5(r,0’ 6p,q .

~ 1 b oA nr A
V:E V(mo',po;qo’ ,no) (CLU,ch/)(c;Gcw)

(6)

without “component flip,” i.e., the possibility for a fermion
to change its state in the collision process is excluded.
The casec=0' corresponds to a weak intracomponent
interactionV|, while o= —o¢' is a relevant intercomponent
interactionV | .
Similar to[24], two cases of solvable forward-scattering
processes can be identified:

\A/:Va‘i‘Vb (7)
with
~ 1 - - 1
Va=25 2 Va(IpDpo(=P)ps(P)+5 2 Vai(lp))
p.o p,o
Xp-o(=P)py(P),
®

~ 1 - R
V=5 2 Vi(IPDes(PIpo(P)

1 A -
+3 2 Vou(IPDpo(P)p—o(P).

The coupling function®/,, andV,, are the analogs aj,,
andg,, of the Luttinger model.

e (10
7

a(p)=—=[p+(P)—p-(p)],

(')nsuch that the Hamiltonian for low-lying excitations separates

into H=H,+H, in analogy to the spi- case[28] of the
Luttinger model.
The transformation to new bosonic operators

o) Vel s, P<O,
p(p)= -
Vo oodh, p>0,
g = ~
N df_, p>0,
leads to canonical commutation relations
[ 08, 1= 8, ,0mn- (12

The new labeb= =1 refers to mass and component fluctua-
tions.

The bosonic version of the unperturbed Hamiltonian in
the N-fermion sector i§32,36|

ﬁw/

F'oz 2

E m{a:ﬁvamv+ amva:ﬁv}'

m>0,v

(13

The complete bosonic interaction operator becomes

o1 At A q At
V=3 2 mVay(m)+»Va, (M) {dn, A, + Ay}
1 At2 4, 42
t5 2 mVy(m)+ v Ve (M Kde+dn,} (19

The total bosonic Hamiltonian is diagonalized in a stan-
dard way using the Bogoliubov transformation

Ay =5"F 1, 5=, coshe,— 1 sinhg,,,, (15
with
2 1 22 3t2
S=exp = > Zm(f3,—112)1. (16)
2 m>0p==+1

Forward scattering dominates when the pair interaction iShe transformation parametets,, are determined by the

sufficiently long-ranged, e.g., in the case of dipole-dipole
interactions. IN[35], a detailed discussion is given on how
the assumed formg8) can be related to real scattering
potentials.

The case of two components requires canonical transfor-

mations to mass fluctuation operators
1

2 ©)

p(p)=—=[p.(p)+p_(p)]

diagonalization conditions

V(M) + vV, (M)

tanh(2¢,,) = ﬁw/+va\\(m)+ vV (M)’

17

Finally, we arrive at the free bosonic Hamiltonian

H= > menptl, fm+const,
m>0,v

(18
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describing density wave excitations in the two-component A o .
Fermi gas. The excitation spectra are Yar(v)= E e'°C = tha,(v+27). (25
|=—w
+ + . . o
emV:hw/ Vay(m)+ »Va, (M) (19 The Appendix demonstrates that the required bosonization

cosi2¢m,) for a two-component Fermi gas is

In connection with the calculation of one-particle matrix el- ;ﬂf (U)lAﬂa (v)=GN(u—v)exp{—i[fﬁT(u)— &f(v)]}
ao o o g

ements, scaled coupling constants

X exp{—i[ ¢, (U)— d,(v)]}, (26)

1. :
my= Esmr(Zg“m,,), Yy =SINtF L, (20 using the two-component non-Hermitian bosonic field
will appear. - < inos A - ~t
Usually, the intracomponent scattering is negligibl ( bo(v)= —lngl —\/%e'” (dny +odn)# dg(v). (27)

—0, the caseV|#0 was considered ih24] for the one-
component systefrand dominant forward scattering for the The distribution-valued prefactdBy(u) is the same as in

intercomponent part resulf85] in [40]:
Vai (M)=Vp, (M=V(Mh w,. (21) N
Gy(u)= > e ", (28
Then the simpler relations ===
5 1525 V(m) rV(m) I1l. ONE-PARTICLE MATRIX ELEMENTS
€Em=hw \1+2vV(m), aon=—""F—"—""—
" ™ 21+ 2vV(m) The above prescription allows us to calculate analytically

(22) all m-particle matrix elements of bilinear fermion operators.
It is not difficult to carry the calculation of one-particle ma-

hold for [V(m)|<fiw, /2. . o trix elements i 24] over to the present case of two compo-
Following [24], we will also consider two specific inter- pants:

action models: A simplified model IM1, when only one mode
V(m)=V(1)(6yn1t+ Jm 1) contributes. This model pre- R N1 ron r2rdu do
”Cq">:|=§—:m fo f

serves many of the features of the interaction in the full (c/ 2 g (n-hlurig-i(a=hv-ie)
0 m

n
model(interaction model 2, see IM2 belgwwhen infinitely

many modes are superimposed.

o oag - -
. i (W) +id,(v)g=id(U)+id,(v)
In the case of IM1, the relevant coupling constants are x(e e ). (29)

1 »V(1) 1 Using the bosonic Wick theorem, the expectation value
glvz—artanVE—), aq,==sin(2¢,,), ( y=exd —W,] on the right-hand side can be evaluated. At
2 1+wV(1) 2 zero temperature, the functiol', is given by
1 0
_ 2 1
=5 (V1+4ay,—1). (23 W, =W, (u,v)= >, mE:la[ym,,—amvcosm(u+v)]
In the case of IM2, the coupling constants decay exponen- X{1-cosm(u—wv)}. (30)

tially according to
This quantity is independent of component labelas ex-

ampy=exp—r ,m2)ag,, ag,=expr, /2)aq,, pected.
Comparing Eq(30) with Eqg. (39) in [24], it is seen that
Yme=EXA(—T,M) Yo,  Yo,=EXQAT,)V1,- (24)  the effective coupling constants in the two-component case
are

An essential step in the actual calculation of physical
guantities is the connection between fermionic operators and — 1 — 1
bosonic fields. The bosonization of fermion generation and m=5 ;1 Fmys YmTH ;1 Ymw - (32)
destruction operators is completely solved for the Luttinger
model[32,37-39. W is a real and even function of its arguments leading to the
In the present case, the situation is less comfortable: Apadymmetries
from the above association of mass and component fluctua-
tion operators with thel operators, we can bosonize only (ChaCao) = {(ClyCho) = (ChyCqo)* (32)
bilinear forms of an auxiliary field following the prescription
of [40]. The aukxiliary field is defined by and to the conditiom+q=2m, m=0,1,2 ... .

2 2
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For the interaction model IM1, one of the integrations in P(m—1)
Eqg. (30) can be performed giving the closed expression for 14 conoonnoom
the matrix elements of each component: o
1 0.8 o
M(map)5<cjn—pcm+ p>: E 5p,0
0.6
1 (= sin (m+1/2—N)s]
2m) . 2 sin(s/2) 0.47
_ 0
Xexp{—2y,[1—-cogs)]} 0.2
O
X1 .{2a,[1—cogs)]}. 33 S o o SSoress
pl2enl S 33 0I5 015 2025
m

Due to the factofsin(. . . )}, the following symmetries hold:

4 - _ ~t N FIG. 1. Occupation probabilitie® of oscillator statesm—1
<C2N—1—m—p oCoN-1-m+p o= 5p,o_<cm—p oCm+p o) (m=1,2,...) for aninteracting two-component Fermi gas o2
(34) =14+ 14 atoms in a one-dimensional harmonic trap at zero tem-

Similarily, IM2 leads to perature. Interaction model 1 with,=—1 has been used.

1 = dt cogpt) We start with the discussion of the occupation probabili-
M(m,p)=3dp0 f > " tiesP(m)=M(m,p=0) of oscillator states as shown in Fig.
~mem [1+Z,—cog)]% 1. It is seen that interactions smooth out the Fermi edge at
= ds [sin(m+1/2—N)s] me=N—1, but still leave a gagnot an energy gapat m .
J [ 2 sins/2) ] Figure 2 displays the off-diagonal matrix elements ffor
=1. They are significant near the Fermi edge=N—1 and
Yo cannot be neglected. Their values increase further with in-
{[1+Z,—cogt—s)] creasing coupling strength.
We also present results for the particle density and the
- momentum density. Both are expected to show Friedel oscil-
X[1+Z,~cogt+s)]}*0?, (39 |ations[41] as noted i24,34. In agreement wittf24], the
effective intracomponent interaction, which is always attrac-
tive, suppresses the Friedel oscillations in the particle den-

Z,=coshr,)—1, Z,=coshr,/2)—1. (36) sity,

_a2m

y

>< s
1+2Z,—cogs)

with decay parameters

IV. NUMERICAL RESULTS - m
N@)=2 2 Yn-p(@¥mep@MMP). (38

The main results of the paper are the formula3) and
(35) for the one-particle matrix elements. They are identical

in form to those i 24], however they depend differently on M(m-1,p=1)
the coupling constants. This leads to very different physical
predictions, which are presented in a number of figures for 0.11 ©
fermion numbers R= 14+ 14.
Using Egs.(17) and (20), it is found that the main cou- o
pling parametersy,,, 205
o)
—  V(m) 1 1 a7 o Q
an= - ; 5 15 20 25
T4 | J1r2v(im) J1—2V(m) o m
are nonpositive and even functions of the interactid(i): 2057 o
Irrespective of the sign of the interaction between the two
components, the effective interaction in each component of 0.14
the Fermi gas is attractive. o

In the case of IM1, onlyr, is needed as an input param-  f|G. 2. Off-diagonal matrix elementdl versus oscillator state
eter in the calculation of the matrix elemeng(1)| is ob-  m—1 (m=1,2,...) for arinteracting two-component Fermi gas of

tained via Eq(37) and all other quantities such &s, and?1 2N=14+ 14 atoms in a one-dimensional harmonic trap at zero tem-
can be calculated from Eq&3) and(31). perature. Interaction model 1 witlh; = —1 has been used.
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n(z)l P(m-1)
I_C%b
OOo
0.8 5
O
0.6 O
0 0.4+ O
1 ) 3 ‘ : O
1 2 3 4 5 .
. . . . . . 0.2 o
FIG. 3. Dimensionless patrticle densityz)/ (/ is the oscilla- o
tor length versus dimensionless distanedrom the center of the OQDOO,h
one-dimensional harmonic trap foN2 14+ 14 atoms in the two- 0 5 10 15 20 25
component Fermi gas at zero temperature. The broken curve shows m

unperturbed Friedel oscillations. The smooth curve refers to the

interacting case withe;=— 1. Interaction model 1 has been used.  F/G: 5. Occupation probabilitie® of oscillator statesn—1
(m=1,2,...) for aninteracting two-component Fermi gas oN2

as is seen in Fig. 3. In E438), ¥/(2) is the oscillator state =14+14 atoms in a one-dimensional harmonic trap at zero tem-

|m) in position representation. perature. Interaction model 2 withy,= —1.16 has been used.
Conversely, the Friedel oscillations in the momentum
density The minimum wave number increment in the trapAik

. ~1/Lgx 1N, whereLg=2N—1 is the half-width of the
o classically allowed region at the Fermi energy. We therefore
p(k)=mE:O p;_m (= 1)"m—p(K) Ym. po(K)M (M. p) setr~1/yN or roughlyr=0.3 for the present cadé=14.
(399  This givesay=—1.16 fora;=—1 andyy=1.19.

S S Figure 5 shows the occupation probabilities of oscillator
are enhanced24]. This is displayed in Fig. 4 for strong states for IM2. It is seen that they are more smoothly distrib-
coupling (@;=—10). We have chosen the oscillator length uted than in the case of IM1, but still leave a gap at the Fermi
/=+hl(maw,) as the unit of length, rendering(z) andz  edge.
as well asp(k) andk dimensionless. Finally, we show the momentum density for IM2 in Fig.

In the case of IM2, some modifications occur. We again6. The Friedel oscillations are still recognizable for small
set a;=—1. We neede,, and y,(m=0,1,2...) for the ~Momenta, but strongly suppressed for momenta approaching
evaluation of Eq(35). This requires knowledge of the decay kr= v2N—1.

constants, andr,, [cf. Eq. (24)]. For convenience, we set The off-diagonal matrix elements are significantly smaller
r.=r,=r and estimate by the following argument. for IM2 than for IM1. Nevertheless, they cannot be ne-

]

pl pa

FIG. 4. Dimensionless momentum densjtyk)// (7 is the FIG. 6. Dimensionless momentum densjtyk)// (/ is the
oscillator length versus dimensionless momentuafor 2N= 14 oscillator length versus dimensionless momentrfor 2N=14
+14 atoms of a two-component Fermi gas in a one-dimensionat-14 atoms of a two-component Fermi gas in a one-dimensional
harmonic at zero temperature. The broken curve shows unperturbétarmonic at zero temperature. The broken curve shows unperturbed
Friedel oscillations. The thick curve refers to the interacting casd-riedel oscillations. The thick curve refers to the interacting case

with ;= —10. Interaction model 1 has been used. with = —1.16. Interaction model 2 has been used.
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glected: By comparing Eq38) with Eq. (39), it is seen that VI. DISCUSSION AND SUMMARY
particle and momentum density would coincide in such an

approximation. For the interaction to become significant in the quantities

calculated, its strengtNv(1) should be as large d¥(1)]

=<0.5. We demonstrate that this condition is within experi-
V. FERMI EDGE mental reach.

Figure 1 and also Fig. 5 do not show the gapless distribu- To th_is orde_r, we consider the dipole-dipole interaction
tion of occupation probabilities near the Fermi edge [15]. It is marglna_llly long-ranged anc_j thus favors fo_rward
=N-—1, which is characteristic of a Luttinger liquid, i.e., our scattering. I35, it |s.shqwn that_the Intercomponent inter-
system is not a Luttinger liquid. This cannot be expecteoaCtIon between Ipngltudmally al!gned d|p0|(_es reduces ex-
because the system is finite. We can, however, get a glimp&Ctly to the effective one-dimensional potential

at Luttinger liquid behavior in a special limit, which also
k2 k2 k2
1+ —exp — | Eil ——
2at2 Zatz 2at2

presupposes a large particle numbker - ,uo,uzatz
First, we consider a very slow decay of the interaction Vip(K)=— =~
modesV(m) in IM2, i.e.,r ,—r,<1. The factor
% in momentum space. Here, is the inverse of the transverse
(40) oscillator length . the magnetic dipole moment, and Ei de-
notes the exponential integral.
Using this equation in the exact formuw(A13) in [24],

in the large square brackets of the integrand in B§) then V(1) for N=14is found to be
becomes sharply localized at0.

2
Y0
Zy r

1+Z,—coys)

2, &2
r7+s

We now calculate the occupation probabilRfAk,), vit)- -0 promm32, Y2 1
~t - At - 27152 F
(CN—1+nCN-1+n) =(Cak Cak)=P(Akp) (41)

near the Fermi edge and fof>1. P(Ak,) becomes a qua- The quantityF denotes the filling factoF=Nw ,/w;.

sicontinuous function of the wave-number deviatidik, For example in5_3Cr, V(1) becpmes of the r_equ_ired ma_gni-
—k,—ke=n/Lg—AK, provided [n|<min(N,L.) is ful- ';;J:;Cprowded: is very small, i.e., the trap is highly aniso-
filled. Using Eq.(40) in Eq. (35, we obtain In summary, the bosonization method has been used to
1 3 2 construct a theory for a two-component gas of spin-polarized
;0,_,1;1_;_(_ }r LF]Ak fermions in a one-dimensional harmonic potential with for-
2772 7 ward scattering between the two components. Asymptotic
(42) results with respect to the fermion numbémvere obtained

. ] . . ) for the one-particle matrix elements and used to discuss oc-
in terms of a generalized hypergeometric function. It is seeqypation probabilities for oscillator states, off-diagonal ma-

that P(Ak) depends linearly on the wave-number deviationtrix elements, and distribution functions for particles and mo-
in a small region near the Fermi edge. o ~ menta in the harmonic trap. All these quantities can be

This can be compared with the Luttinger liquid prediction significantly affected by the attractive interaction generated
(cf. e.g.,[26]) within each component. Specifically, the Friedel oscillations
in the particle density are suppressed, while they survive in
the momentum density.

It remains to be seen whether the predicted Friedel oscil-
lations can be observed experimentally. The amplitudes of
C is a constant and the exponeBitdepends on the Lut- the Friedel oscillations scale asNL[34], hence Friedel os-
tinger liquid coupling strengthy, | according to cillations are unobservable in a macroscopic bounded Fermi

sea. Small particle numbers pose, however, severe detection
1 problems. A conceivable experimental method to observe
B=2vy . for 'yLL<§ (44) Friedel oscillations for atom numbers of the order of 100 is
indicated in[34]. The method proposes microfabrication
techniques to produce arrays of microtraps.
On the other hand, the asymptotic bosonization method
requires particle numbers, which are not too small. This is
B=1 for y,.= E (45) due to the presence of the anomalous vacuum, which couples
2 to the real particles. For instance, the sum g (n)=N
gives a somewhat larger value than the numiheof real
We conclude that the above limit of our model agrees withparticles when Eq(33) or Eq. (35) is used. The excessN
the casey | =1/2 of the Luttinger liquid. >0 grows with coupling strength and decreasing particle

1

1
PLL(Ak)=§—sgr{Ak)C|Ak|ﬁ. (43)

and
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number. FoiN= 14 and very strong coupling;=—10, AN They are canonical conjugates. Evidently
is about 8<10°3; for a;=—1, AN is less than 10'°,
The atom number 8= 14+ 14 and the coupling values ot N
i : - > . b .=—p,(n). (A2)
employed here are appropriate to give visible Friedel oscil- o

lations and reliable results of the bosonization method.

Then the two relations hold,
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APPENDIX foap oA T
[bna' 1Ckg’C|o"] = 50',0’ T(lenocla_ CIO.C| +na')'

In this appendix, we extend the bosonization procedure in n
[40] to the case of two components. Insteadagg opera- ) ) )
tors, which are needed for the diagonalization of the inter- Following ﬂ)e arguments 40}, the associated Bose
acting Hamiltonian, the following set of operators plays thefiélds foro=o" are

role of theb andb* operators K1=1) in [40]:

. 1. 1 .
=—i2, —=€"b,=—i2, —e"(dy +od,_
[a +0-a ] ¢U'(U) Inzl = no Ian_ \/% ( n+ T ody )
n+ n—1-

(A1) #i(v). (A%)
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