
PHYSICAL REVIEW A, VOLUME 65, 033602
Theory of coherent Bragg spectroscopy of a trapped Bose-Einstein condensate

P. B. Blakie* and R. J. Ballagh
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We present a detailed theoretical analysis of Bragg spectroscopy from a Bose-Einstein condensate at
T50 K. We demonstrate that within the linear-response regime, both a quantum-field-theory treatment and a
mean-field Gross-Pitaevskii treatment lead to the same value for the mean evolution of the quasiparticle
operators. The observable for Bragg spectroscopy experiments, which is the spectral response function of the
momentum transferred to the condensate, can therefore be calculated in a mean-field formalism. We analyze
the behavior of this observable by carrying out numerical simulations in axially symmetric three-dimensional
cases and in two dimensions. An approximate analytic expression for the observable is obtained and provides
a means for identifying the relative importance of three broadening and shift mechanisms~mean field, Doppler,
and finite pulse duration! in different regimes. We show that the suppression of scattering at small values ofq
observed by Stamper-Kurnet al. @Phys. Rev. Lett.83, 2876 ~1999!# is accounted for by the mean-field
treatment, and can be interpreted in terms of the interference of theu andv quasiparticle amplitudes. We also
show that, contrary to the assumptions of previous analyses, there is no regime for trapped condensates for
which the spectral response function and the dynamic structure factor are equivalent. Our numerical calcula-
tions can also be performed outside the linear-response regime, and show that at large laser intensities a
significant decrease in the shift of the spectral response function can occur due to depletion of the initial
condensate.

DOI: 10.1103/PhysRevA.65.033602 PACS number~s!: 03.75.Fi
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I. INTRODUCTION

In 1999, Ketterle’s group at Massachusetts Institute
Technology~MIT ! reported a set of experiments in whic
condensate properties were measured using the techniq
Bragg spectroscopy@1,2#. In those experiments a low
intensity Bragg pulse was used to excite a small amoun
condensate into a higher momentum state, and theBragg
spectrumof the condensate was found by measuring the m
mentum transfer for a range of Bragg frequencies (v) and
momenta (\q). That work established Bragg spectroscopy
a tool capable of measuring condensate properties with s
troscopic precision. The theoretical analysis of the meas
ments however, gives rise to a number of issues. Ketterle
his colleagues assumed that the spectra gave a direct
surement of thedynamic structure factor, which is the Fou-
rier transform of the density-density correlation function, a
is familiar as the observable in neutron-scattering exp
ments in superfluid helium@3–5#. They also attributed the
suppression of imparted momentum they observed at loq
values to correlated pair excitations, and quantum deple
of the condensate, and speculated@6# that an accurate de
scription would require a more complete quantum treatm
The purpose of the current paper is to develop a theory
Bragg spectroscopy that is valid in the regime of the exp
ments, and to use it to make quantitative calculations an
analyze the phenomena that occur in this regime. We
investigate the relationship between the observable of Br
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spectroscopy~i.e., the momentum transferred to the conde
sate! and the dynamic structure factor, and show that fo
trappedcondensate there is no regime in which one can s
ply be obtained from the other.

We begin in Sec. II within the framework of many-bod
field theory and calculate, in the Bogoliubov approximatio
the linear response of the condensate to an applied B
pulse. We obtain expressions for the temporal evolution
the quasiparticle operators, and show that they have a n
zero mean value, i.e., that the quasiparticles are generate
coherent states. We demonstrate that within a well-defi
regime the mean values of the Bogoliubov operators
identical to the amplitudes obtained from a linearized me
field ~Gross-Pitaevskii! treatment. The mean field treatme
therefore provides a valid description of the experiments
the regime of small excitation.

A number of mean-field theoretical treatments of Bra
scattering from condensates have been given. Blakie
Ballagh have presented a quantitative mean-field descrip
@7# which confirmed the analysis of the Bragg spectrosco
shift given by the MIT group, and provided analytic es
mates for a number of quantities, including the moment
width of the scattered condensate. Zambelliet al. and
Brunello et al. have also used a mean-field description
analyze Bragg spectroscopy@8,9#, and in addition have used
the approach to devise schemes for measuring quasipa
amplitudes@10#, and for making spatially separate conde
sates interfere@11#. In the current paper we use the Gros
Pitaevskii formulation of Bragg scattering as presented
Blakie and Ballagh@7# to analyze the behavior observed
the Bragg spectroscopy experiments.
©2002 The American Physical Society02-1
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The observable in the experiments is the moment
transferred to the condensate, and in Sec. III we defin
normalized version of the expectation value of this quan
that we call thespectral response function R(q,v). For a
trapped condensate the momentum transfer can arise
two sources, the Bragg beams or the trap itself, which co
plicates the analysis. The MIT group recognized this iss
and applied the Bragg laser pulses only for a small fract
of the trap period, and then released the trap. However,
tradeoff involved in minimizing momentum transfer from th
trap by using a short Bragg pulse significantly compromi
the energy selectivity of the process. We examine the in
ence this has on the relationship betweenR(q,v) and the
dynamic structure factorS(q,v), and we show that in the
presence of a trap, the evaluation ofS(q,v) requiresR(q,v)
to be known for all possible pulse lengths.

The central quantity of Bragg spectroscopy is thus
spectral response functionR(q,v) and we derive an approxi
mate analytic expression for this quantity, incorporating
effects of both the mean field interaction and the finite du
tion of the Bragg pulse, in Sec. IV. In Sec. V we useR(q,v)
to characterize our numerical investigations of Bragg sp
troscopy, and we consider a wide range of three-dimensio
axially symmetric scenarios, for which we simulate the e
periments using the mean-field~Gross-Pitaevskii! equation
for Bragg scattering@7#. We verify the validity range of our
approximate form forR(q,v) by comparing it to the full
numerical results, and we identify the regimes in which o
or other of the mechanisms of: the mean-field interaction,
Doppler effect, and the finite pulse duration, dominates
formation of the Bragg spectrum. We also show that o
approximate form forR(q,v) will allow a more accurate
estimation of the momentum width of a condensate than
tained by previous analyses.

Our numerical simulations allow us to calculate the eff
on Bragg spectroscopy of laser intensities sufficiently la
that linear response theory no longer holds. We investig
cases where the scattered fraction of the condensate is o
order 20%, and show that the depletion of the ground-s
condensate leads to a significant reduction of the freque
shift, which has not been accounted for in previous analy
We also consider the spectral response function from a
tex, using two-dimensional simulations. Finally, in Sec. V
we investigate the energy response of a condensate subje
a Bragg pulse of sufficiently long duration that individu
quasiparticle excitations can be resolved.

II. LOW-INTENSITY BRAGG SCATTERING THEORY

In this section we calculate the response of the conden
to a Bragg pulse within the linear regime, using two distin
approaches. In the first of these~Sec. IIA! we use the many-
body field theory formalism in the Bogoliubov approxim
tion, to calculate the temporal evolution of the quasiparti
operators. In the second approach~Sec. IIB! we use a mean
field ~Gross-Pitaevskii! equation and obtain the amplitude
of the linearized response. The two approaches are show
give identical mean results in Sec. IIC.
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A. Many-body field-theoretic approach

The many-body Hamiltonian forN0 identical bosons in a
trap and subject to a time-dependent Bragg pulse can
written

Ĥ5Ĥ01ĤI~ t !, ~2.1!

whereĤ0 is the usual trapped boson Hamiltonian

Ĥ05E dr Ĉ†F2
\2

2m
¹21VT~r !GĈ1

U0

2 E dr Ĉ†Ĉ†ĈĈ.

~2.2!

VT(r ) is the trapping potential, which we choose to be h
monic. The Bragg interactionĤI(t) arises from two overlap-
ping plane-wave laser fields, which have equal amplitu
but frequency and wave-vector differencesv andq, respec-
tively @see Fig. 1~a!#. The laser fields are treated classical
and their interaction with the internal transition of the atom
is characterized by a Rabi frequencyV(t) ~for the combined
fields at the intensity peaks! and a detuningD which is large
and essentially the same for both laser fields. In this reg
the internal structure for the atoms can be eliminated~see@7#

for details! so that the field operatorĈ refers only to the
ground internal state, andĤI(t) takes the form

ĤI~ t !5E dr Ĉ†@\V~ t !cos~q•r2vt !#Ĉ, ~2.3!

whereV(t)5V2(t)/2uDu @see Fig. 1~a!#.

FIG. 1. Bragg spectroscopy of a Bose-Einstein condens
~BEC!. ~a! Two laser beams with wave vectorsk1 andk2 and fre-
quenciesv1 andv2, respectively, create a moving optical potent
with wave vectorq5k12k2 and frequencyv5v12v2 ~see@7#!.
~b! Temporal behavior of the Bragg pulse assumed in this pape
2-2
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1. Bogoliubov transformation

For a highly occupied stationary state (T'0 K) the field
operator can be written in the Bogoliubov approximation a
sum of mean-field and operator parts (Ĉ5^Ĉ&1f̂). In this
paper we mostly consider a ground state, but we also c
sider the case of a central vortex. Following standard tre
ments~e.g., @12,13#! we employ a Bogoliubov transforma
tion for the operator part to write

Ĉ~r ,t !5AN0c0~r !e2 imt1ei [S0(r )2mt]

3(
i

@ b̂i~ t !e2 iv i tũi~r !1b̂i
†~ t !eiv i tṽ i* ~r !#,

~2.4!

where the condensate is represented by the first term, anb̂i

and b̂i
† are the quasiparticle destruction and creation ope

tors, respectively,~in an interaction picture with respect t
Ĥ0). The statec05uc0uexp(iS0), is an eigenstate solution
with eigenvalue \m of the time-independent Gross
Pitaevskii equation

\mc05F2
\2

2m
¹21VT~r !Gc01N0U0uc0u2c0 , ~2.5!

and the functions$ũi ,ṽ i% are theorthogonal quasiparticle
basis states@14#. These basis states are orthogonal to
condensate mode and are related to the usual~nonorthogo-
nal! quasiparticle basis states$ui ,v i% ~given below! by pro-
jection into the subspace orthogonal to the condensate,

ũi5ui2ai uc0u, ~2.6!

ṽ i* 5v i* 1ai* uc0u, ~2.7!

where

ai5E dr uc0uui52E dr uc0uv i ~2.8!

~see@14#!.
The form of Bogoliubov transformation used in Eq.~2.4!

explicitly includes the phase (S0) of c0, which is convenient
in cases wherec0 is not necessarily a ground state. We no
that a number of different sign conventions appear in
literature, and ours differs from that in Ref.@13#. We discuss
the different conventions in the Appendix. Th
Bogoliubov-de Gennes equation for$ui ,v i% are

Lui1N0U0uc0u2v i5\v iui , ~2.9!

L* v i1N0U0uc0u2ui52\v iv i , ~2.10!

where

L5F2
\2

2m
~¹1 i¹S0!21VT~r !2\m12N0U0uc0u2G ,

~2.11!
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with the orthogonality conditions

E dr$uiuj* 2v iv j* %5d i j , ~2.12!

E dr$uiv j2v iuj%50. ~2.13!

2. Bogoliubov Hamiltonian

Applying the transformation in Eq.~2.4!, to the Hamilto-
nians~2.2! and ~2.3! we obtain their Bogoliubov form, i.e.,

Ĥ0'Ĥ0
B[E01(

i
\v i b̂i

†b̂i , ~2.14!

ĤI~ t !'ĤI
B~ t !

[N0E dr uc0u2\V~ t !cos~q•r2vt !

1AN0 (
i

F b̂i
†eiv i tE dr ~ ũi* 1 ṽ i* !

3\V~ t !cos~q•r2vt !uc0u1H.cG , ~2.15!

whereE0 is the energy of the highly occupied state@see Eq.
~6.3!#. The quasiparticle transformation diagonalizesĤ0 to
quadratic order, and we note that the orthogonal ba

$ũi ,ṽ i% is required for this diagonalization to be valid. I
evaluatingĤI

B , terms involving products of quasiparticle op
erators have been ignored. This amounts to neglec
Bragg-induced scattering between quasiparticle states, w
is of order 1/AN0 smaller than the terms linear inb̂i

† ~or b̂i).
Those linear terms are of primary interest here, as they
scribe the scattering between the condensate and quasi
cle states which occurs as a result of the energy and mom
tum transfer from the optical potential.

The time-dependent exponentials, exp(6ivit), which mul-
tiply the quasiparticle operators in Eq.~2.4! account for the
free evolution due toĤ0

B , and so the Heisenberg equation

i\
]

]t
~ b̂ie

2 iv i t!5@~ b̂ie
2 iv i t!,Ĥ0

B1ĤI
B~ t !# ~2.16!

becomes

i\
]

]t
b̂i5@ b̂i ,Ĥ0

B1ĤI
B~ t !#2\v i b̂i , ~2.17!

5@ b̂i ,ĤI
B~ t !#. ~2.18!

This is easily solved to give

b̂i~ t !5b̂i~0!1b i~ t !, ~2.19!

whereb i(t) is a c number,
2-3
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b i~ t !52 iAN0E
0

t

dt8 V~ t8!eiv i t8E dr

3~ ũi* 1 ṽ i* !cos~q•r2vt8!uc0u. ~2.20!

We see that the Bragg excitation causes the quasipar
operators to develop nonzero mean values. Note that this
complete solution of the physics in the linearized regim
from which any observable quantities can be computed.

3. Initial conditions

Our derivation so far has been based on aT50 K Bogo-
liubov treatment. For this case the initial state is the qua
particle vacuum state (u0&). Had we started with this initia
condition and considered evolution in the Schro¨dinger pic-
ture we would have found that the system evolves asu0&
→exp(iu)u$bi%&, where u$b i%& is a coherent state, i.e
b̂i u$b i%&5b i u$b i%& andu is some phase factor~see@15#!.

Equation ~2.19! also provides insight into finite
temperature cases where most of the atoms are in the
densate. To fully treat the finite-temperature case, it is n
essary to generalize the Bogoliubov treatment to accoun
the thermal depletion~e.g., see@12#!, requiring the functions
c0 , ui , v i , andv i to be solved for in a self-consistent ma
ner ~e.g., see@16–18#!. In that case, Eq.~2.19! for the evo-
lution of b̂i will still apply, and thus we see that the initia
statistics ofb̂i(0) are preserved and the mean value^b̂i& is
shifted byb i .

B. Gross-Pitaevskii equation approach

The Gross-Pitaevskii equation for a condensate ofN0 par-
ticles subject to a Bragg pulse was derived in@7#, i.e.,

i\
]

]t
C~r ,t !5F2

\2

2m
¹21VT~r !1U0uCu2GC~r ,t !

1\V~ t !cos~q•r2vt !C~r ,t !, ~2.21!

whereC(r ,t) is the condensate mean-field wave function
the atoms in their internal ground state, and is normali
according to*dr uCu25N0. The condensate wave functio
can be expanded in terms of a quasiparticle basis in the f

C~r ,t !5AN0c0e2 imt1ei [S0(r )2mt]

3(
i

@ci~ t !uie
2 iv i t1ci* ~ t !v i* eiv i t#,

~2.22!

where ci are the time-dependent quasiparticle amplitud
This expansion has been made using the nonorthogonal
siparticle basis, and the ground state has been assumed
This latter assumption will only be valid while excitatio
induced by the Bragg pulse remains small. The wa
function decomposition@Eq. ~2.22!# transforms the Gross
Pitaevskii Eq.~2.21! into
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@ ċi~ t !uie
2 iv i t1 ċi* ~ t !v i* eiv i t# ~2.23!

5e2 i [S0(r )2mt]\V~ t !cos~q•r2vt !C~r ,t !. ~2.24!

Morganet al. @14# have shown how to use the orthogonali
relations of the quasiparticles, Eqs.~2.12! and ~2.13!, to
project out the quasiparticle amplitudes from a condens
wave function, namely,

cj~ t !5eiv j tE dr @ei [mt2S0(r )]uj* C2v j* e2 i [mt2S0(r )]C* #

22aj* , ~2.25!

where aj is defined in Eq.~2.8!. Since the quasiparticle
form a complete set, we may use projection to obtain a se
equations for quasiparticle amplitudes that are equivalen
Eq. ~2.23!, namely,

ċ j~ t !52 iV~ t !eiv i tE dr @uj* ei [mt2S0(r )]cos~q•r2vt !C

1v j* e2 i [mt2S0(r )]cos~q•r2vt !C* #. ~2.26!

Because the quasiparticles occupations are all small c
pared to the condensate mode, we can simplify Eq.~2.26! by
settingC(r ,t)5AN0uc0(r )uexp@iS0(r )2 imt#, yielding

ci~ t !52 iAN0E
0

t

dt8 V~ t8!eiv i t8E dr ~ui* 1v i* !

3cos~q•r2vt8!uc0u. ~2.27!

This will of course only provide a good solution while th
quasiparticle occupations all remain small.

C. Comparison of approaches

Direct comparison of the Gross-Pitaevskii and quant
field theoretic results is complicated by the fact that th
have been derived for different basis sets. We note that
though the Gross-Pitaevskii analysis was carried out us
the $ui ,v i% basis, it is equally straightforward to use th
orthogonal basis$ũi ,ṽ i%. Morganet al. @14# have shown that
~in analysis of the Gross-Pitaevskii equation! transforming
between these bases affects only the ground-state popul
and gives rise to no difference in the quasiparticle occu
tions.

Connections between the field theory and simple Gro
Pitaevskii results based on Eq.~2.21! can only be expected to
exist atT50 K, where thermal effects can be ignored@28#.
In this regime we begin by considering the relevant vacu
expectation of the quasiparticle operator from Eq.~2.19!

^b̂i~ t !&52 iAN0E
0

t

dt8 V~ t8!eiv i t8E dr ~ ũi* 1 ṽ i* !

3cos~q•r2vt8!uc0u. ~2.28!
2-4
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THEORY OF COHERENT BRAGG SPECTROSCOPY OF A . . . PHYSICAL REVIEW A65 033602
This expression emphasizes the coherent nature of the
siparticle states, and is the same as the Gross-Pitaevsk
sult of Eq.~2.27!, with the identificationci(t)↔^b̂i(t)&. We
note that the apparent difference between Eqs~2.27! and
~2.28!, where the former depends on the matrix eleme
involving $ui ,v i% and the latter on matrix elements involvin

$ũi ,ṽ i%, disappears with the observation thatui1v i5ũi

1 ṽ i @see Eqs.~2.6! and ~2.7!#. Thus, we have verified tha
the ci(t) and ^b̂i(t)& are identical.

D. Quasiparticle occupation

For the physics we consider in this paper the mean oc
pation of thei th quasiparticle level~i.e., ^b̂i

†b̂i& or uci(t)u2

for the many-body or Gross-Pitaevskii methods, resp
tively! is of interest, as it is used to make a quasihomo
neous approximation to the spectral response function in
~4.10!. Using Eq.~2.19! we calculate

^n̂i~ t !&5N0U E
0

t

dt8 eiv i t8V~ t8!E dr ~ui* 1v i* !

3cos~q•r2vt8!uc0uU2

1^n̂i~0!&, ~2.29!

where^n̂i(0)& is the initial occupation, e.g., thermal occup
tion at TÞ0 K, and is included for generality. In Eq.~2.29!
we have chosen to use the$ui ,v i% quasiparticle basis fo
ease of comparison with previous results by other auth
~e.g.,@8,20–22#!.

To progress, it is necessary to specify the temporal beh
ior of the Bragg pulse. For simplicity we take the pulse sha
as being square, withV5Vp for 0,t,Tp @see Fig. 1~b!#,
then Eq.~2.28! becomes~evaluated att5Tp)

^b̂i~Tp!&52 iAN0Vpei (v i2v)Tp/2

3F S sin@~v i2v!Tp/2#

~v i2v! D E dr ~ui* 1v i* !eiq•ruc0u

1eivTpS sin@~v i1v!Tp/2#

~v i1v! D
3E dr ~ui* 1v i* !e2 iq•ruc0uG . ~2.30!

In this expression, the second term~with denominatorv i
1v) will typically be significantly smaller than the first term
~with denominatorv i2v) sincev.0, so to a good approxi
mation we can ignore the second term. Similarly, the qu
particle occupation result~2.29! under the same approxima
tion is

^n̂i~Tp!&5
pVp

2TpN0

2
U E dr ~ui* 1v i* !eiq•ruc0uU2

3F~v i2v,Tp!1^n̂i~0!&, ~2.31!

in which
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F~v,T!5
2 sin2~vT/2!

pT v2
~2.32!

is a familiar term in time-dependent perturbation calcu
tions. In particularF(v i2v,Tp) in Eq. ~2.31! is sharply
peaked in frequency aboutv5v i , encloses the unit area
and has a half width ofsv;2p/Tp . In the limit Tp→`
~while Vp

2Tp remains small! this term can be taken as ad
function expressing precise energy conservation, so that
quasiparticles of energy\v will be excited, i.e.,

lim
Tp→`

^n̂i~Tp!&5
pVp

2TpN0

2
U E dr ~ui* 1v i* !eiq•ruc0uU2

3d~v2v i !1^n̂i~0!&. ~2.33!

III. OBSERVABLE OF BRAGG SPECTROSCOPY

In this section, we outline the experimental procedure
Bragg spectroscopy on condensates. We begin by discus
the measured observable, which we refer to as the spe
response function. In@1,2# this observable was assumed to
a measurement of the dynamic structure factor. We brie
review the dynamic structure factor, and discuss why it
inappropriate for these experiments.

A. Spectral response function

In the MIT experiments@1,2# a low-intensity Bragg grat-
ing was used to excite the condensatein situ for less than a
quarter of a trap period. Immediately following this the tra
was turned off, the system allowed to ballistically expan
and the momentum transfer to the system was inferred
imaging the expanded spatial distribution. The experimen
signal measured is~see@1,2,6#!

R~q,v!5g
P~Tp!2P~0!

\q
, ~3.1!

where

g215
p

2
N0Vp

2Tp , ~3.2!

andP is the momentum expectation of the system. We sh
refer to R(q,v) as thespectral response function. For the
case of a Gross-Pitaevskii wave function, the spectral
sponse function can be written as

R~q,v!5g
E dr C* ~r ,Tp!~2 i\¹!C~r ,Tp!

\q
, ~3.3!

where it is assumed that the initial condensate has z
momentum expectation value. The factorsg and\q appear-
ing in Eqs.~3.1! and~3.3! effectively scale out effects of the
Bragg intensity and duration, the magnitude of moment
transfer, and condensate occupation, so thatR(q,v) can be
2-5
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interpreted as a rate of excitation per atom~normalized with
respect toVp

2) within the condensate.

B. Dynamic structure factor

The dynamic structure factor has played an important r
in the analysis of inelastic neutron scattering in superfl
4He. It has facilitated the understanding of collective mod
and has enabled measurements of the pair-distribution f
tion and condensate fraction in that system, as discussed
tensively in@5#. In those experiments a monochromatic ne
tron beam of momentum\k0 is directed onto a sample o
4He and the intensity of neutrons scattered to momen
\k8 is measured. van Hove@23# showed that the inelasti
scattering cross section of thermal neutrons, calculated in
first Born approximation, can be directly expressed in ter
of the quantity

S~q,v!5
1

Z (
m,n

e2bEmu^mur̂qun&u2d~\v2Em1En!,

~3.4!

which is called the dynamic structure factor~see@3#!. In Eq.
~3.4!, um& andEm are the eigenstates and energy levels of
unperturbed system,Z is the partition function, r̂q

5*dr Ĉ†(r )exp(2iq•r )Ĉ(r ) is the density fluctuation op
erator, and we have taken

\v5
\2k0

2

2m
2

\2k82

2m
, ~3.5!

q5k02k8. ~3.6!

Our choice of notation for these quantities is to facilita
comparison between the matrix elements which arise in
dynamic structure factor and Bragg cases. We note that in
Bragg contextq and v refer to the wave vector and fre
quency, respectively, of the optical potential, whereas i
dynamic structure factor measurement,\q and \v are the
momentum and energy, respectively, transferred to the
tem from the scattered probe.

For the case of a trapped gas Bose condensate,
intensity off-resonant inelastic light scattering@24# provides
a close analogy to neutron scattering from4He. Csorda´s
et al. @20# have shown that the cross section for such ine
tic light scattering, with energy and momentum transfer
the photon of2\v and2\q, respectively, can be expresse
in terms of the quantity

S~q,v!5(
i

U E dr ~ui* 1v i* !eiq•ruc0uU2

3@~^n̂i&11!d~v2v i !1^n̂i&d~v1v i !#.

~3.7!

This expression generalizes the dynamic structure facto
the case of light scattering and applies at finite temperat
in the regime of linear response, where the Bogoliub
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theory for quasiparticles is valid. AtT50 K, where thermal
depletion can be ignored, the dynamic structure factor~3.7!
takes the form

S0~q,v!5(
i

U E dr ~ui* 1v i* !eiq•ruc0uU2

d~v2v i !,

~T50 K! ~3.8!

for which a number of approximate forms have been cal
lated ~e.g., see@8,20,22#!.

The dynamic structure factor and Bragg spectroscopy. Al-
though the dynamic structure factor and the spectral respo
function are distinctly different quantities, they do resemb
each other strongly. In fact, the matrix elements in theT
50 K dynamic structure factor in Eq.~3.8! resemble those
in the expression~2.33! for the Bragg-induced quasiparticl
population,^n̂i& in the long-time limit. It is easy to show
beginning from Eq.~3.8!, that

S0~q,v!5H g(
i

lim
Tp→`

^n̂i~Tp!&J ~T50 K!, ~3.9!

where ^n̂i& is given by Eq.~2.33! and g is defined in Eq.
~3.2!. Note that because Eq.~3.9! is evaluated atT50 K,
we have taken the initial occupation,^n̂i(0)& in Eq. ~2.33!, to
be zero. In practice, a very long pulse (Tp@1/vT) of suffi-
ciently weak intensity (Vp

2Tp!1) could be used to excite th
quasiparticles in the regime necessary for Eq.~3.9! to hold.

In @1,2# the spectral response functionR(q,v) was as-
sumed to represent a measurement of the dynamic struc
factor, S(q,v). The argument given in those papers w
based on the assumption that the Bragg pulse would ex
quasiparticles of definite momentum\q and the momentum
transfer is hence proportional to the rate of quasiparticle
citation. This is in fact not so, although we can show that,
a certain sense, the dynamic structure factor and the spe
response function do determine each other. We use the r
of Brunello et al. @9#, who have shown that the momentu
imparted can be related to the dynamic structure factor
cording to

dPz~ t !

dt
52mvz

2Z12N0\qS V

2 D 2

3E dv8 @S~q,v8!2S~2q,2v8!#
sin~@v2v8#t !

v2v8
,

~3.10!

where the Bragg scattering has been taken to be in thz
direction andPz is the z component of the momentum ex
pectation. The quantityZ5^( j 51

N zj& is the expectation value
of the z center-of-mass coordinate and evolves according

dZ

dt
5

Pz

m
. ~3.11!
2-6
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Taking the initial position and momentum expectations to
zero, Eqs.~3.10! and~3.11! can be solved using Eq.~3.1! to
give the spectral response function in terms of the dyna
structure factor as

R~q,v!5
1

pTp
E dv8@S~q,v8!

2S~2q,2v8!#
cos~vzTp!2cos~@v2v8#Tp!

@v2v8#22vz
2

.

~3.12!

This formula can be inverted, but the inversion formulas
different depending on whethervz is zero or not,

S~q,v!2S~2q,2v!5 lim
Tp→`

R~q,v,Tp! for vz50,

~3.13!

5vz
2E

0

`

R~q,v,Tp! TpdTp

for vzÞ0. ~3.14!

In the linearized approximation we are using, we can use
~3.7! to show that

S0~q,v!5S~q,v!2S~2q,2v!, v>0, ~3.15!

so that the differencing cancels out finite-temperature effe
Beyond the Bogoliubov approximation, there will howev
be residual finite-temperature effects.

Thus, we see it is possible to determine thezero-
temperaturedynamic structure factor in a good degree
approximation from experiments on a trapped condens
provided measurements are performed for a sufficient ra
of pulse timesTp . It is clear that this could be a difficul
experiment to implement, since the spectral response fu
tion will drop off faster than 1/Tp for largeTp , so the mea-
sured signal could become very small. But in analogy w
the results of Sec. VI, we would expect that significant
formation could be obtained by measuring for pulse timesTp
up to about five trap periods.

On the other hand, there is no direct connection betw
the spectral response function and the dynamic structure
tor for any single time Tp unlessvz50, in which case we
must takeTp→`. In fact, if we note that significant structur
in S(q,v) is expected on the frequency scale ofvz , then the
formula ~3.12! shows that a smearing over this frequen
scale is assured by the form of the integrand in Eq.~3.12!,
independently of the value ofTp .

One therefore must conclude that the spectral respo
function, not the dynamic structure factor, is the appropri
method of analysis for Bragg scattering experiments. Ho
ever, it is in principle possible to determine thezero-
temperaturedynamic structure factor in a certain degree
approximation from these experiments by use of the inv
sion formula~3.14!.
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IV. QUASIHOMOGENEOUS APPROXIMATION
TO R„q,v…

In this section, we develop an approximation for the sp
tral response function valid for time scales shorter than
quarter trap period. Because trap effects are negligible
this time scale we employ a quasihomogeneous appro
based on homogeneous quasiparticles weighted by the
densate density distribution. This approximation plays an
portant part in the analysis of the numerical results
present in Sec. V.

A. Homogeneous spectral response

The results developed in Sec. II for the trapped cond
sates can be applied to a homogeneous system of num
densityn by making the replacements

ui~r !→uk~n!eik•r/AV, ~4.1!

v i* ~r !→vk~n!e2 ik•r/AV, ~4.2!

AN0c0~r !→AN0 /V5An, ~4.3!

whereV is the volume, and

uk~n!5
vk

B~n!1vk

2Avk
B~n!vk

, ~4.4!

vk~n!52
vk

B~n!2vk

2Avk
B~n!vk

, ~4.5!

vk
B~n!5Avk

212nU0vk /\, ~4.6!

vk5
\k2

2m
. ~4.7!

We have explicitly written these as functions of densityn for
later convenience. Using Eqs.~4.1!–~4.3! the expectation of
the quasiparticle operators~2.30! ~i.e., atT50 K) resulting
from Bragg excitation is found to be

^b̂k&52 iVpAn

VEV
dr @uk~n!e2 ik•r1vk~n!e2 ik•r#

3eivk
B(n)Tp/2Fe2 ivTp/2S sin@~vk

B~n!2v#Tp/2!

@vk
B~n!2v#

D eiq•r

1eivTp/2S sin@~vk
B1v!Tp/2#

~vk
B1v!

D e2 iq•rG . ~4.8!

Since the homogeneous excitations are plane waves, ev
ating the spatial integral in Eq.~4.8! selects out quasiparti
cles with wave-vectork56q. The occupationŝ b̂k

†b̂k& of
these states are
2-7
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^n̂6q&5
pVp

2TpN0

2
@uq~n!1vq~n!#2F@~vq

B~n!7v!,Tp#,

~4.9!

whereF(v,T) is defined in Eq.~2.32!.
Since a quasiparticle created byb̂k

† carries momentum\k,
the total momentum transferred to the homogeneous con
sate is

^p& 5\q~^n̂q&2^n̂2q&!, ~4.10!

and the spectral response function, as defined in Eq.~3.1!,
becomes

R~q,v!5g
u^p&u
\q

, ~4.11!

5g~^n̂q&2^n̂2q&!, ~4.12!

5
vq

vq
B~n!

@F@~vq
B~n!2v!,Tp#2F@~vq

B~n!1v#,Tp!#,

~4.13!

where we have used@uq(n)1vq(n)#25vq /vq
B(n) @from

Eqs.~4.4! and ~4.5!# to arrive at the last result.

B. Quasihomogeneous spectral response function

The density distribution of a Thomas-Fermi condensat
given by

N~n!5
15N0

4np
2

nA12n/np, ~4.14!

where N(n)dn is the portion of condensate atoms in t
density rangen→n1dn, andnp5\m/U0, is the peak den-
sity ~see@1#!.

To approximate the spectral response function for the
homogeneous case we multiply the portion of the conden
at densityn by the homogeneous spectral response func
~4.13! for a homogeneous condensate~of densityn) and in-
tegrate over all densities present, i.e.,

RQH~q,v![E dn N~n!R~q,v!, ~4.15!

5S 15N0

4np
2 D E

0

np
dn

n vq

vq
B~n!

A12n/np

3$F@vq
B~n!2v,Tp#2F@vq

B~n!1v,Tp#%.

~4.16!

We shall refer toRQH as thefinite time quasihomogeneou
approximationto the spectral response function, or simp
the quasihomogeneous approximation.Ignoring the finite
time broadening effects and assuming exact energy con
03360
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vation inRQH with the replacementF(v,T)→d(v), reduces
Eq. ~4.16! to the simpler line-shape expression

RQH~q,v!→I q~v!, ~4.17!

5
15\~v22vq

2!

8vqN0U0
A12

\~v22vq
2!

2vqN0U0
,

~4.18!

where we have adopted the notation,I q , as used in the origi-
nal derivation@1#. Equation~4.18! is also known as the local
density approximation to the dynamic structure factor~see
@8#!, and has been used to analyze experimental data in@1,2#.
We emphasize that withTp,(1/4) Ttrap the d-function re-
placement is unjustifiable, as we verify with our numeric
results in the next section.

V. BRAGG SPECTROSCOPY

Bragg spectroscopy can broadly be defined as selec
excitation of momentum components in a condensate,
Bragg light fields. In this section, we consider the spec
response function as a Bragg spectroscopic measurem
and using numerical simulations of the Gross-Pitaevskii
~2.21! and the analytic results of the previous section
identify the dominant physical mechanisms governing
spectral response behavior. We investigate the spectra
sponse function for a vortex and identify parameter regim
in which a clear signature of a vortex is apparent. From
full numerical simulations we are also able to assess the
fect of higher laser intensities on the spectroscopic meas
ments.

A. Numerical results for R„q,v…

1. Procedure

The numerical results we present forR(q,v), are found
by evolving an initial stationary condensate state~typically a
ground state! in the presence of the Bragg optical potenti
using Eq.~2.21!. At the conclusion of this pulse, the spectr
response is evaluated using Eq.~3.3!. This differs slightly
from the typical procedure in the experiments, where
system is allowed to expand before destructive imaging
used to measure the condensate momentum. However
have verified numerically~in cylindrically symmetric three-
dimensional~3D! cases! that condensate expansion~after the
pulse! does not alter the momentum expectation value.
each desired value ofq and v, we repeat our procedure o
evolvingC according to Eq.~2.21!, and calculatingR(q,v)
immediately after the optical pulse terminates.

For axially symmetric situations, the simulations are c
culated in three spatial dimensions withq oriented along the
z axis. When the initial state is a vortex, the interesting c
of scattering in a direction orthogonal to the vortex core~ly-
ing on thez axis! would break the symmetry requirement, s
for these cases, 2D simulations withq directed along they
axis are used. For convenience we use computational uni
distance r 05A\/2mvT; interaction strengthw05\vTr 0

3;
2-8
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and timet05vT
21 ; wherevT is the trapping frequency in th

direction of scattering.

2. Parameter regimes

We use square pulses of intensity and duration such
typically less than 1% of the condensate is excited, excep
Sec. V E where we investigate the nonlinear response of
condensate. As long as the amount of excitation is small,
verify that the spectral response functionR(q,v) is indepen-
dent ofVp . However, the shape ofR(q,v) is dependent on
the pulse duration~in accordance with the frequency spre
aboutv associated with the time limited pulse! and on the
magnitude ofq.

The momentum\q0 defined by

\q05A2mnpU0, ~5.1!

~i.e., q051/j, where j is the condensate healing lengt!
characterizes the division between regimes of phonon
free particlelike quasiparticle character. We note that the
perimental results in@1# and @2# report measurements o
R(q,v) in the free particle and phonon regime, respective

B. Underlying broadening mechanisms

We present in Fig. 2 spectral response functions ca
lated using the Gross-Pitaevskii simulations in three spa
dimensions. The spectral response functions in Figs. 2~a! and
2~b! are for a spherically symmetric ground state withq0
53.8/r 0. The q values~of the Bragg fields! were chosen so

FIG. 2. Spectral response functionR(q,v) of a 3D condensate
~a!,~b! Spherical condensate,N0U05104w0 , m514.2vT . ~c!,~d!
Oblate condensate with trap asymmetryl5A8, N0U0

55.63105w0 , m570.9vT . Full numerical solution forR shown as
solid line; the local-density approximation (I q) dash-dot; and the
finite time local-density approximation (RQH) dashed. Bragg pa
rameters areVp50.2vT andTp50.4/vT .
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that the case in Fig. 2~a! is in the phonon regime (q52/r 0),
while Fig. 2~b! is in the free particle limit (q516/r 0). For
comparison, we present in Figs. 2~c! and 2~d! spectral re-
sponse functions for a different ground state of greater n
linearity, for whichq058.4/r 0. Figure 2~c! is in the phonon
regime (q53.76/r 0), whereas Fig. 2~d! is in the free particle
regime (q531.6/r 0). In all cases, we compare the Gros
Pitaevskii calculation ofR with the lines-shapeI q and quasi-
homogeneous resultRQH from Eqs. ~4.18! and ~4.16!,
respectively.

1. Mechanisms

The two ground states used in calculating the results p
sented in Fig. 2 are both in the Thomas-Fermi limit~i.e., they
satisfy the conditionm@vT) @29#. We can see from the fig
ure that the local-density approximationI q Eq. ~4.18! used
by previous authors does not always give a good descrip
of R(q,v), whereas our quasihomogeneous approximat
RQH(q,v) Eq. ~4.16! is much more accurate. We have inve
tigated the accuracy ofRQH over a wide parameter rang
which has allowed us to evaluate the relative importance
the three underlying broadening mechanisms which cont
ute to R(q,v). The mechanisms and their contributions a
as follows:

~i! The shift in the excitation spectrum due to the mea
field interaction~depending on the local density!. The range
of densities present in the condensate cause a spread in
shift. The frequency width associated with this spread is p
portional to the chemical potentialm, and we shall refer to
this as the density width—see Sec. IV.

~ii ! The Doppler effect due to the momentum spread
the condensate; the Doppler broadened frequency widt
spq/m, wheresp is the condensate momentum width.

~iii ! The frequency spread in the Bragg grating due to
finite pulse time; the width arising from this effect
;p/Tp .

2. Relative importance of mechanisms

The relative importance of these mechanisms varies
cording to the parameter regime. In Table I, we compare
estimated values of these widths for the simulations in Fig
We see that for the case of Fig. 2~a! both finite time and
density effects are important; hence the quasihomogene
result which includes both of these is in good agreement w
R(q,v), whereasI q(v) which accounts for density effec
alone is quite inaccurate. In Fig. 2~b! the value ofq is much

TABLE I. Simple estimate of widths of component mechanism
of the spectral response functions in Fig. 2. All quantities are
pressed in units ofvT .

Density FiniteTp Momentum
Fig. m p/Tp spq/m

2~a! 14.2 7.9 0.86
2~b! 14.2 7.9 6.92
2~c! 70.6 7.9 0.88
2~d! 70.6 7.9 7.4
2-9
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larger, increasing the momentum width to a point where i
comparable to the other mechanisms. Since bothI q andRQH
fail to account for the condensate momentum, neither
proximation to the spectral response function is in parti
larly good agreement with the numerically calculatedR. In
both Figs. 2~c! and 2~d! the density width is an order o
magnitude larger than both the finite pulse and momen
widths, and so in this regime the simple line-shape exp
sion I q is generally adequate.

3. Experimental comparison

Taking typical experimental parameters, the state use
Figs. 2~a! and 2~b! corresponds to about 2.83105 Na atoms
in a 50 Hz trap, with the Bragg grating formed from 589 n
laser beams intersecting at an angle of 5° in~a! and 39° in
~b!. These figures are indicative of typical Bragg spectr
copy results for a small-to-medium size condensate.
state used in Figs. 2~c! and 2~d! corresponds to about 107 Na
atoms in a 100 Hz trap, and was chosen to match som
the features of the experiments reported in@1,2#, e.g., the
peak density of this state is;431014 atoms/cm3 and the
chemical potential is;6.7 kHz. The momentum value
chosen correspond to those used to probe the phonon
free particle regimes in those papers~Bragg grating formed
by 589 nm beams at 14° and 180°, respectively!. Computa-
tional constraints mean we cannot match the experime
~prolate! trap geometry, but in a similar manner to the me
surements made in@1# we scatter along a tightly trappe
direction, although from a condensate in an oblate trap
aspect ratioA8. We note that in the phonon probing expe
ments@2#, scattering was performed in the weakly trapp
direction for imaging convenience. It is worth emphasizi
that the mechanisms accounted for in our approximate
sponse functionRQH depend only on the peak density~i.e.,
\m/U0), the magnitude ofq and the Bragg pulse duration
The reason is that condensates in the Thomas-Fermi re
with the same peak density will have identical density dis
butions in either prolate or oblate traps@see Eq.~4.14!#. Thus
the quasihomogeneous approximation predicts the s
spectral response function for both. Scattering in a tigh
trapped direction will enhance momentum effects not
counted for inRQH , since spatially squeezing the condens
causes the corresponding momentum distribution to broa
However, it is apparent from Table I, that for the case
large condensates this momentum effect is relatively sm
and thus we expect our result in Figs. 2~c! and 2~d! to give a
reasonably accurate description of the MIT experime
@1,2#.

C. Spectral response function of a vortex

In previous work@25#, we showed how Bragg scatterin
from a vortex can produce an asymmetric spatially selec
beam of scattered atoms which provides anin situ signature
of a vortex. In Fig. 3, we compare the spectral respo
functions from two-dimensional ground and vortex stat
and in Table II we summarize the density, finite time, a
momentum effects for the cases in Fig. 3. In the lo
momentum transfer case Fig. 3~a!, the density width is the
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most significant component of the response function wid
although the increased momentum distribution of the vor
state relative to the ground state is reflected in the width oR.
We also see thatRQH for the 2D ground state is a reasonab
approximation to the full numerical calculation ofR.

In the large momentum transfer case Fig. 3~b!, Doppler
effects~which scale linearly withq) become important and
the two peaks in the vortex spectral response appear. T
indicate the presence of flow~or momentum components!
running parallel and antiparallel to the scattering directio
Zambelli et al. @8# have discussed the Doppler effect in d
tail, and they utilized theimpulse approximationfor the dy-
namic structure factor for the regime where this mechan
dominates. The essence of this approximation is to pro
the trapped condensate momentum distribution into
quency space, and they have applied this to the case
vortex ~in the noninteracting long pulse limit!. The impulse
approximation always predicts a double-peaked respo
from a vortex state corresponding to the Doppler reson
frequencies for the parallel and antiparallel momentum co
ponents. Our numerical results forR(q,v) show that at low
momenta this vortex signature is obscured by the density
finite time effects.

D. Shape characteristics of the spectral response function

The spectral response functions shown in Figs. 2 an
contain a large amount of information, however the ma

FIG. 3. Spectral response functionsR(q,v) for 2D ground
~solid! andm51 vortex ~dots! states, andRQH(2D) for 2D ground
state~dashed!. Both states haveN0U05500w0, and the spectra are
calculated with~a! q56/r 0 and~b! q514/r 0. Bragg parameters are
Vp50.2vT andTp50.8/vT .

TABLE II. Simple estimate of widths of component mech
nisms of the spectral response functions in Fig. 3. All are quanti
expressed in units ofvT .

Density Finite time Momentum
Fig. m p/Tp spq/m

3~a! ground 9.0 3.9 2.9
3~a! vortex 9.2 3.9 5.2
3~b! ground 9.0 3.9 6.7
3~b! vortex 9.2 3.9 12.2
2-10
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properties can be well represented by a few numbers
describe the overall shape characteristics of these cur
The characteristics of the response curve that we focus on
the area under the curve, the shift of the mean response f
tion, and the rms frequency width. These can be expresse
terms of the first few frequency moments (mn) of R at con-
stantq, defined as

mn[E dv vnR~q,v!. ~5.2!

The area under the curve is simplym0; the shift of mean
response frequency is

mshift5m1 /m02vq , ~5.3!

and the rms response width is

mrms5Am2 /m02~m1 /m0!2. ~5.4!

These characteristics have also been considered in ex
mental measurements@1,2#, where, however, only two value
of q were used~corresponding to Bragg gratings formed b
counter-propagating and approximately copropaga
beams, respectively! and the speed of sound~equivalent to
q0) was changed by altering the condensate density.

Numerically we can consider any valueq which can be
resolved on our computational grids. Here we choose
simplicity to directly varyq and consider how the spectr
response function changes. The initial state for these ca
lations is identical to that used in Figs. 2~a!–2~b! ~i.e., a
spherically symmetric ground state withN0U05104w0), be-
cause density, temporal, and momentum effects are all
portant for the range ofq values we consider. This should b
contrasted with the initial state in Figs. 2~c!–2~d!, where the
density effect dominates over the other two effects at b
small and largeq.

Our numerical results lead to the following observation
~i! In Fig. 4~a!, the area under the response curve~i.e.,

m0! is considered. The reduction of this from unity is cha
acteristic of suppression of scattering forq,q0 caused by
the interference of theu andv amplitudes in the expressio
for the quasiparticle population@e.g., see Eq.~4.9!#. Apart
from the discrepancy at very lowq ~which exists in all mo-
ments and which we discuss more fully below!, both I q and
RQH are in qualitatively good agreement withR. The finite
pulse duration effect onm0 is to reduce it uniformly from the
I q prediction, a feature whichRQH represents well.

~ii ! The mean shift~5.3! arises because of the Hartre
interaction between the particles excited and those remai
in the condensate, as indicated by the Bogoliubov disper
relation~4.6!. The approximationsRQH andI q are seen to be
in good agreement with the full numerical calculation ov
most of the range ofq, apart fromq50 ~see below!. At large
values ofq, the mean shift saturates at the value 4m/7.

~iii ! The width prediction ofRQH is in good agreemen
with the full numerical calculation at lowq (2<qr0&6), but
differs asq increases and the role of the condensate mom
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tum distribution increases in importance.I q is in poor agree-
ment for all q, because it ignores temporal broadening
fects.

~iv! In Fig. 4 the sharp features in the full numerical ca
culation of the moments ofR at extremely lowq arise be-
cause the~ground-state! condensate momentum wave fun
tion has significant density in the region where the major
of the condensate is being scattered. This causes stimu
scattering of the condensate atoms, and will significantly
fect the spectral response function when the amount of c
densate initially present in the region we are scattering t
similar ~or larger! than the amount of condensate excit
with the Bragg pulse. This effect has been ignored in
derivation ofRQH by taking b̂k to have a zero initial occu-
pation in Eq.~4.8!.

Evaluating condensate momentum width from the spec
response function. The MIT group has used the rms width o
the spectral response function to determine the Dop
width DvDop of the condensate, and hence the moment
width sp(5(m/q) DvDop). This allowed them to make the
important observation that the condensate coherence le
is at least as large as the condensate size@1# ~also see@6#!.
The Doppler width was obtained from the spectral respo
profile by assuming that the Doppler effect adds in quad
ture to the density and temporal effects. The precise de
of the procedure used in@1# are not given~see Fig. 3 of@1#!;
however, an expression for the momentum width of the fo

sp85
mAmrms

2 2~DI q!22@DF~v,Tp!#2

q
~5.5!

FIG. 4. Spectral response function properties~see text! for a 3D
condensate with N0U05104w0 . R(q,v) ~solid!, RQH(q,v)
~dashed!, and I q(v) ~dash dot!. ~a! The zeroth moment;~b! the
mean response shift, with the shift 4m/7 indicated~dotted!; ~c! the
rms width of the frequency response. Bragg parameters areVp

50.2vT andTp50.4/vT .
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is implied in the text. A difficulty that arises in applying Eq
~5.5! is that the rms-frequency spreadDF(v,Tp) due to the
finite pulse length is ill defined. Formally,F(v,Tp) has an
unbounded rms width, though the central peak has a
width of p/Tp . In order to allow the best possible resu
from the MIT procedure, we have treatedDF as an arbitrary
parameter, and fitted the functionsp8 in Eq. ~5.5! to the actual
condensate momentum width of the ground state we use.
result for a range ofq values is shown plotted as circles
Fig. 5, and was obtained with a best fit valueDF
'0.863p/Tp . We can see that Eq.~5.5! does not give a
particularly good estimate of the true momentum width,
dicating that the assumption of quadrature contributions
density, momentum, and finite time effects to the spec
response function is inappropriate. Agreement improvesq
increases, as would be expected, because the Doppler e
dominates over the other mechanisms in that regime.

Our approximate formRQH provides a more accurat
means of extracting the Doppler width. We first assume t
the finite time and density effects are well accounted for
RQH , which has an an rms widthDRQH . We then assume
that the overall width is obtained by adding this in quad
ture to the Doppler width, which gives the following es
mates̃p for the momentum width:

s̃p5
mAmrms

2 2~DRQH!2

q
, ~5.6!

in which no fitting parameter is necessary. Results fors̃p are
also shown in Fig. 5 and clearly give a better estimate for
true widthsp than Eq.~5.5!.

E. Scattering beyond the linear regime

Spectroscopic experiments require that the number o
oms scattered be sufficient for the clear identification of m
mentum transfer to the system. In@1#, the light intensity was
chosen so that the largest amount of condensate scattere~at
the Bragg resonance! was about 20%. The validity of the
linear theories~e.g., Sec. II! must be questioned at such larg
fractional transfers, where excitations can no longer be c
sidered noninteracting~e.g.. see@14#!. The numerical Gross

FIG. 5. The true momentum widthsp of the condensate~solid
line! in comparison to the estimated value from Eqs.~5.6! ~squares!
and ~5.5! ~circles!. Other parameters are as in Fig. 4.
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Pitaevskii equation calculations do however remain valid
this regime, and can be used to understand the changes i
spectral response function that occur as the scattered fra
increases.

In Fig. 6, we present results which extend beyond
linear regime. In Fig. 6~a!, we plot the scattered condensa
fraction @g21R(q,v)/N0# in a sequence of curves for in
creasingVp . We have chosen to use the scattered conden
fraction rather than the spectral response functionR(q,v),
since the numerical value of the scattered fraction indica
whether the measurement is outside the linear regime. Th
shown clearly in this sequence of curves, which would si
ply be scaled by the ratios ofVp

2 if they were in the linear
regime. Instead, we see that the shapes of the curves ch
asVp increases~and the scattered fraction increases! and in
particular the peak frequency shifts downwards. In Fig. 6~b!
we consider that dependence of the mean response frequ
shift (mshift) on the peak scattered fraction of condens
~i.e., the fraction of condensate scattered at the Bragg r
nance for the curves! for three differentq values. A number
of features are apparent in those curves. First, the shift
creases below the linear prediction as the scattered frac
increases. Second, the decrease is larger for low-momen
transfers (q,q0) than for higher-momentum transfer
Third, for large enough momentum transfer, the shift a
given condensate fraction saturates.

We note that in the MIT experiments a peak excitati
fraction of;0.2 was used@1#. From Fig. 6 we see that eve
for the highest values of momentum transfer,~i.e.,q56/r 0 or

FIG. 6. Laser intensity effects on the spectral response funct
~a! Total scattered condensate fraction forq56/r 0 and ~lowest to
highest! Vp50.51,0.85,1.1,1.3vT . ~b! Shift of peak response fre
quency mshift as a function of the peak scattered fraction forq
53/r 0 ~diamonds!, 6/r 0 ~solid!, and 9/r 0 ~crosses!. Other param-
eters: spherically symmetric condensate,N0U05104w0 , q0

53.8/r 0, andTp50.8/vT .
2-12
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q59/r 0), the shift will be reduced by an order of 15% rel
tive to the prediction of the linear theory.

VI. LONG-TIME EXCITATION: ENERGY RESPONSE

As discussed in Sec. III, momentum is not a conser
quantity in a trapped condensate, and is not a conven
observable for the long-time limit. Here we investigate t
energy transfer to the condensate by Bragg excitation~see
also@9#!, since in the unperturbed system~i.e., in the absence
of the Bragg grating! energy is a conserved quantity@30#. A
possible method of measuring the energy transferred is
technique of calorimetry, which has been applied by the K
terle group in a somewhat different context@26#.

We define an energy response functionZ(q,v) analogous
to the ~momentum! spectral response function by the equ
tion

Z~q,v![g$E@C~r ,Tp!#2E@C~r ,t50!#%, ~6.1!

where

E@C#5E dr FC* S 2
\2

2m
¹21VT~r ! DC1

U0

2
uCu4G

~6.2!

is the energy functional andg is defined in Eq.~3.2!. Thus
Z(q,v) is the rate of energy transfer to the condensate fr
a Bragg grating of frequencyv and wave-vectorq. The re-
sults of Sec. II for the quasiparticle evolution can be read
applied to evaluating Eq.~6.1!. Using theT50 K results of
either the vacuum expectation of the Bogoliubov Ham
tonian in Eq.~2.14! with b̂i given by Eq.~2.19!, or the lin-
earized Gross-Pitaevskii result~2.27! in the energy func-
tional ~6.2! gives

E@C~r ,t !#5E01(
i

\v i^n̂i~ t !&, ~6.3!

where E05E@AN0c0# is the initial ~ground-state! energy
and ^n̂i(t)& is the Bragg-induced quasiparticle occupati
~2.29! at time t. Substituting Eq.~6.3! into Eq. ~6.1! gives

Z~q,v!5g(
i

\v i^n̂i~Tp!&. ~6.4!

As noted above, because energy is a constant of motio
the trapped condensate, we can takeTp@2p/vT ~though we
requireVp

2Tp to remain small compared to unity for our lin
ear analysis to remain valid! and from Eq. ~2.31! ~with

^n̂i(0)&50), we have

Z~q,v!5(
i

\v iU E dr ~ui* 1v i* !eiq•ruc0uU2

F~v i2v,Tp!.

~6.5!

Thus in long duration~weak! Bragg excitation, the only con
tribution to Z(q,v) will come from quasiparticle states wit
energy approximately matching\v @see Eq.~2.33!#.
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In Fig. 7, we present results for the energy response fu
tion of a 2D condensate for two different durations of Bra
excitation. Figure 7~a! shows the case of Bragg excitatio
applied for a single trap period (Tp52p/vT). In this case
the frequency spread of the Bragg pulse is sufficiently w
that only a single broad peak of energy absorption is disce
ible from the condensate, i.e., the functionsF(v2v i ,T) ap-
pearing in summation of Eq.~6.5! are sufficiently broad in
frequency space to allow a large number of quasiparticle
respond. In Fig. 7~b!, Z(q,v) is shown for the case of a
Bragg pulse applied for five trap periods (Tp510p/vT).
Here the detailed structure of the energy response functio
revealed, with individual~possibly degenerate! quasiparticle
peaks being visible. We emphasize that current momen
response experiments@i.e.,R(q,v)# are essentially limited to
at most a quarter trap period of excitation.

A response measurement such as that shown in Fig.~b!
reveals a wealth of information about the nature of the c
densate excitation spectrum. The frequencies (v i) of the
quasiparticles can be determined by the location of the re
nant peaks of the response function, and these freque
peaks become narrower and better defined asTp increases.
We note that for a given peak corresponding to a Bra
frequencyvp , the area under the peak is equal to the ma
element

E
dv

dv Z~q,v!5 (
i (v iPdv)

\v iU E dr ~ui* 1v i* !eiq•ruc0uU2

,

~6.6!

where dv ('@vp2p/Tp ,vp1p/Tp#) is the frequency
width of the pulse and the summation is taken over quasip
ticles in the energy rangedv.

FIG. 7. Energy response function calculated for a tw
dimensional condensate and a Bragg grating withq51/r 0 and du-
ration ~a! Tp52p/vT and ~b! Tp510p/vT . In both cases the in-
tensity is chosen so thatg21'0.05N0.
2-13
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VII. DISCUSSION

In this paper, we have given a detailed theoretical anal
of the phenomenon of Bragg spectroscopy from a Bo
Einstein condensate. We began by deriving analytic exp
sions for the evolution of the quasiparticle operators, wh
contain all possible information about the system in
linear-response regime. We then demonstrated that aT
50 K, the mean values of the quasiparticle operators
identical to the quasiparticle amplitudes obtained by solv
the linearized Gross-Pitaevskii equation. Thus, for the p
pose of calculating the observable of the Bragg spectrosc
experiments~the transferred momentum!, a mean-field treat-
ment is equivalent to the full quantum treatment. Con
quently, we based our detailed analysis of Bragg spect
copy on the mean-field equation for Bragg scatter
presented in a previous paper. The central object for the
periments is the spectral response function for the mom
tum transfer,R(q,v). We derived the relationship betwee
R(q,v) and the dynamic structure factor and showed th
contrary to the assumptions of previous analyses, there i
regime in which the two quantities are equivalent for trapp
condensates.

The results of our numerical simulations of Bragg sp
troscopy, which were carried out in axially symmetric thre
dimensional cases, or in two dimensions, were character
by the behavior ofR(q,v). These full numerical solutions
are accurate for all values ofq that can be resolved by th
computational grid, however the computationally intens
nature of the calculation made quantitative comparison
our theory with the MIT experiments difficult. The analyt
approximation for the spectral response function,RQH(q,v),
provides a means of extending the regime of compariso
large condensates, and systems without axial symmetry,
we showed that it accurately representsR(q,v), except in
those regimes where the momentum width is domin
(spq/m exceedsp/Tp and m) or where stimulated effect
can occur (\q,sp). It also provided a means for identifyin
the relative importance of three broadening and shift mec
nisms ~mean field, Doppler, and finite pulse duration!. We
have shown that the suppression of scattering at small va
of q observed by Stamper-Kurnet al. @2# is accounted for by
the mean-field treatment, and can be interpreted in term
the interference of theu andv quasiparticle amplitudes.

A remaining point to emphasize is that our numerical c
culations allowed us to investigate the regime of large la
intensities where the linear-response condition is invalid.
found that a significant decrease in the shift of the spec
response function can occur due to depletion of the ini
condensate.
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APPENDIX: BOGOLIUBOV CONVENTIONS

Several different forms of the Bogoliubov transformati
have been used in the theoretical description of inhomo
03360
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neous Bose-Einstein condensates. These transforma
typically differ in their choice of sign between theu and v
amplitudes, and by the explicit inclusion of phase. To as
comparison of our results to the work of others, we summ
rize four different definitions, and show how the form of th
quasiparticle population result@Eq. ~2.29!# is altered by each
choice. In Sec. II A 1 we used the orthogonal quasiparti
basis, since the Bogoliubov diagonalization of the man
body Hamiltonian must be made with excitations that a
orthogonal to the ground state. However, the quasipart
population result, Eq.~2.29!, is insensitive to this and so fo
brevity we will use the nonorthogonal basis states.

In what follows we denote our choice of quasipartic
amplitudes by the notation$ui

(1) ,v i
(1)%. These are closely

related to the form used in@27# by Fetter~which we denote
$ui

(2) ,v i
(2)%), but differ by a minus sign in the relative phas

betweenui andv i . Both these conventions explicitly includ
the condensate phase, and the operator part of the field
erator is expanded in the form

f̂5eiS0(r )(
i

@ui
(6)~r !b̂i~ t !6v i

(6)* ~r !b̂i
†~ t !#, ~A1!

where the quasiparticles’ modes obey the equations~at T
50 K with N0 particles in thec0 state!

Lui
(6)6N0U0uc0u2v i5\v iui

(6) , ~A2!

L* v i
(6)6N0U0uc0u2ui

(6)52\v iv i
(6) , ~A3!

andL is as defined in Eq.~2.11!. The basis choice of Eqs
~A2! and ~A3! leads to the vacuum expectation value E
~2.28! having the form

^b̂i~ t !&52 iAN0E
0

t

dt8 V~ t8!eiv i t8E dr ~ui
(6)* 6v i

(6)* !

3cos~q•r2vt !uc0u. ~A4!

The most common form of the Bogoliubov transformati
~e.g., see@12,14#!, uses the following form for the expansio
of the operator part of the field:

f̂5(
i

@ ūi
(6)~r !b̂i~ t !6 v̄ i

(6)* ~r !b̂i
†~ t !#, ~A5!

where the6 indices indicate the relative choice of sign b
tween theu and v terms in Eq.~A5!. These quasiparticles
modes obey the equations~at T50 K with N0 particles in
the c0 state!

Lūi
(6)6N0U0uc0u2v̄ i

(6)5\v i ūi
(6) , ~A6!

L v̄ i
(6)6N0U0uc0u2ūi

(6)52\v i v̄ i
(6) , ~A7!

whereL is defined as
2-14
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L5F2
\2

2m
¹21VT~r !2\m12N0U0uc0u2G . ~A8!

In this case the mean value ofb̂i is

^b̂i~ t !&52 iAN0E
0

t

dt8 V~ t8!eiv i t8

3E dr ~ ūi
(6)* c06 v̄ i

(6)* c0* !cos~q•r2vt !

~A9!
rn

.

s

s

oo
F

n-
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@see Eq.~2.28!#. Whenc0 is a ground state~i.e., has constan
phase!, c0 can be taken as real in Eq.~A9!, i.e.,

^b̂i~ t !&52 iAN0E
0

t

dt8 V~ t8!eiv i t8

3E dr ~ ūi
(6)* 6 v̄ i

(6)* !cos~q•r2vt !c0 .

~A10!
ev.

v.

v.
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