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Theory of coherent Bragg spectroscopy of a trapped Bose-Einstein condensate
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We present a detailed theoretical analysis of Bragg spectroscopy from a Bose-Einstein condensate at
T=0 K. We demonstrate that within the linear-response regime, both a quantum-field-theory treatment and a
mean-field Gross-Pitaevskii treatment lead to the same value for the mean evolution of the quasiparticle
operators. The observable for Bragg spectroscopy experiments, which is the spectral response function of the
momentum transferred to the condensate, can therefore be calculated in a mean-field formalism. We analyze
the behavior of this observable by carrying out numerical simulations in axially symmetric three-dimensional
cases and in two dimensions. An approximate analytic expression for the observable is obtained and provides
a means for identifying the relative importance of three broadening and shift mechdmisams field, Doppler,
and finite pulse duratiorin different regimes. We show that the suppression of scattering at small valges of
observed by Stamper-Kurat al. [Phys. Rev. Lett.83, 2876 (1999] is accounted for by the mean-field
treatment, and can be interpreted in terms of the interference af éinelv quasiparticle amplitudes. We also
show that, contrary to the assumptions of previous analyses, there is no regime for trapped condensates for
which the spectral response function and the dynamic structure factor are equivalent. Our numerical calcula-
tions can also be performed outside the linear-response regime, and show that at large laser intensities a
significant decrease in the shift of the spectral response function can occur due to depletion of the initial

condensate.
DOI: 10.1103/PhysRevA.65.033602 PACS nuntber03.75.Fi
I. INTRODUCTION spectroscopyi.e., the momentum transferred to the conden-

satg and the dynamic structure factor, and show that for a
In 1999, Ketterle's group at Massachusetts Institute oftrappedcondensate there is no regime in which one can sim-

Technology(MIT) reported a set of experiments in which ply be obtained from the other.
condensate properties were measured using the technique of We begin in Sec. Il within the framework of many-body
Bragg spectroscopy1,2]. In those experiments a low- field theory and calculate, in the Bogoliubov approximation,
intensity Bragg pulse was used to excite a small amount ofhe linear response of the condensate to an applied Bragg
condensate into a higher momentum state, andBiegg  pulse. We obtain expressions for the temporal evolution of
spectrunmof the condensate was found by measuring the mothe quasiparticle operators, and show that they have a non-
mentum transfer for a range of Bragg frequencie§ @nd  zero mean value, i.e., that the quasiparticles are generated as
momenta £q). That work established Bragg spectroscopy ascoherent states. We demonstrate that within a well-defined
a tool capable of measuring condensate properties with spegegime the mean values of the Bogoliubov operators are
troscopic precision. The theoretical analysis of the measurdeentical to the amplitudes obtained from a linearized mean-
ments however, gives rise to a number of issues. Ketterle anfield (Gross-Pitaevskiitreatment. The mean field treatment
his colleagues assumed that the spectra gave a direct meaaerefore provides a valid description of the experiments in
surement of thelynamic structure factomwhich is the Fou-  the regime of small excitation.
rier transform of the density-density correlation function, and A number of mean-field theoretical treatments of Bragg
is familiar as the observable in neutron-scattering experiscattering from condensates have been given. Blakie and
ments in superfluid heliui3-5]. They also attributed the Ballagh have presented a quantitative mean-field description
suppression of imparted momentum they observed atqow-[7] which confirmed the analysis of the Bragg spectroscopy
values to correlated pair excitations, and quantum depletioshift given by the MIT group, and provided analytic esti-
of the condensate, and specula{éd that an accurate de- mates for a number of quantities, including the momentum
scription would require a more complete quantum treatmentwidth of the scattered condensate. Zambatial. and
The purpose of the current paper is to develop a theory oBrunello et al. have also used a mean-field description to
Bragg spectroscopy that is valid in the regime of the experianalyze Bragg spectroscop§,9], and in addition have used
ments, and to use it to make quantitative calculations and tthe approach to devise schemes for measuring quasiparticle
analyze the phenomena that occur in this regime. We alsamplitudes[10], and for making spatially separate conden-
investigate the relationship between the observable of Braggates interfer¢11]. In the current paper we use the Gross-

Pitaevskii formulation of Bragg scattering as presented by

Blakie and BallagH 7] to analyze the behavior observed in

*Electronic address: bblakie@physics.otago.ac.nz the Bragg spectroscopy experiments.
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The observable in the experiments is the momentum (a)
transferred to the condensate, and in Sec. Ill we define a
normalized version of the expectation value of this quantity

that we call thespectral response function(R w). For a
trapped condensate the momentum transfer can arise from

two sources, the Bragg beams or the trap itself, which com-

plicates the analysis. The MIT group recognized this issue, /EZ,(DZV k\\
and applied the Bragg laser pulses only for a small fraction T
of the trap period, and then released the trap. However, the

tradeoff involved in minimizing momentum transfer from the (b)

trap by using a short Bragg pulse significantly compromises
the energy selectivity of the process. We examine the influ-
ence this has on the relationship betwd®({t,») and the
dynamic structure facto8(q,»), and we show that in the
presence of a trap, the evaluationS§fj, ) requiresR(q, )

to be known for all possible pulse lengths.

The central quantity of Bragg spectroscopy is thus the 0 T
spectral response functi®(q,») and we derive an approxi- P
mate analytic expression for this quantity, incorporating the
effects of both the mean field interaction and the finite dura- FIG. 1. Bragg spectroscopy of a Bose-Einstein condensate
tion of the Bragg pulse, in Sec. IV. In Sec. V we [B@, ) (BEQ). (a) Two laser beams with wave vectdks andk, and fre-
to characterize our numerical investigations of Bragg specquenciesw; andw,, respectively, create a moving optical potential
troscopy, and we consider a wide range of three-dimensionatith wave vectorg=k;—k, and frequencyw= w,— , (see[7]).
axially symmetric scenarios, for which we simulate the ex-(b) Temporal behavior of the Bragg pulse assumed in this paper.
periments using the mean-fiel@ross-Pitaevskii equation
for Bragg scattering7]. We verify the validity range of our A. Many-body field-theoretic approach
approximate form forR(q,w) by comparing it to the full
numerical results, and we identify the regimes in which ong,,
or other of the mechanisms of: the mean-field interaction, th
Doppler effect, and the finite pulse duration, dominates the
formaupn of the Bragg spectrgm. We also show that our |:|2|:|0+|:||(t): 2.1)
approximate form forR(q,w) will allow a more accurate
estimation of the momentum width of a condensate than ob- R
tained by previous analyses. whereH,, is the usual trapped boson Hamiltonian

Our numerical simulations allow us to calculate the effect
on Bragg spectroscopy of laser intensities sufficiently large 52
that linear response theory no longer holds. We investigatqqozf dr xif‘r[ — ——V2+ V(1)
cases where the scattered fraction of the condensate is of the 2m
order 20%, and show that the depletion of the ground-state 22
condensate leads to a significant reduction of the frequency
shift, which has not been accounted for in previous analysed/+(r) is the trapping potential, which we choose to be har-
We also consider the spectral response function from a voimonic. The Bragg interactioH(t) arises from two overlap-
teX, US|ng two-dimensional simulations. F|na”y, in Sec. VI, p|ng p|ane_wave laser fie'dsy which have equa| amp"tudes
we investigate the energy response of a condensate subjectdgt frequency and wave-vector differenaesandq, respec-

a Bragg pulse of sufficiently long duration that individual tively [see Fig. 1a)]. The laser fields are treated classically,

quasiparticle excitations can be resolved. and their interaction with the internal transition of the atoms
is characterized by a Rabi frequen@yt) (for the combined
fields at the intensity peakand a detunings which is large

[l. LOW-INTENSITY BRAGG SCATTERING THEORY and essentially the same for both laser fields. In this regime

In this section we calculate the response of the condensa%ge internal structure for the atoms can be eliminate{ 7]

to a Bragg pulse within the linear regime, using two distinctor details so that the field operato# refers only to the
approaches. In the first of theggec. I1A) we use the many- ground internal state, arid,(t) takes the form

body field theory formalism in the Bogoliubov approxima-

tion, to calculate the temporal evolution of the quasiparticle

operators. In the second approg&ec. |IB) we use a mean FI,(t)=J dr UT[AaV(t)cogg-r—wt) ¥, (2.3
field (Gross-Pitaevskiiequation and obtain the amplitudes

of the linearized response. The two approaches are shown to

give identical mean results in Sec. IIC. whereV(t)=Q?(t)/2|A| [see Fig. 1)].

Intensity ¥(?)
S

=]

Time

The many-body Hamiltonian fdx, identical bosons in a
p and subject to a time-dependent Bragg pulse can be
ritten

.U e
\If+7°f dr Tty
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1. Bogoliubov transformation with the orthogonality conditions

For a highly occupied stationary staté£0 K) the field
operator can be written in the Bogoliubov approximation as a J dr{uiuj* — vivj*}: 8, (2.12
sum of mean-field and operator parts £ (W) + ¢). In this
paper we mostly consider a ground state, but we also con-
sider the case of a central vortex. Following standard treat- f dr{uv;—v;u;}=0. (2.13
ments(e.g.,[12,13) we employ a Bogoliubov transforma-
tion for the operator part to write
2. Bogoliubov Hamiltonian
T (r,1)= VNoio(r)e 44 gllSonxtl Applying the transformation in Eq2.4), to the Hamilto-
nians(2.2) and(2.3) we obtain their Bogoliubov form, i.e.,

X >, [bi(t)e  “ifu;(r)+bf (t)el“iv¥ ()],

Ho~HE=E,+ >, fwblb;, (2.14
(2.4 0~ Ho=FEo Z ik O
where the condensate is represented by the first termband H,(t)~HE(t)
and B;‘ are the quasiparticle destruction and creation opera-
tors, respectively(in an interaction picture with respect to ENOJ dr | o 2AV(t)cog q-r — wt)
Ho). The stateyo=|olexp(Sy), is an eigenstate solution,
with eigenvalue Au of the time-independent Gross- L L
Pitaevskii equation + \/N_OE biTe"”i‘J' dr (uf +vf)
I
ﬁZ
|- 2 2
hupo=| = 5 Vo Vr(r) o+ NoUol ol *4o, (2.5 XhV(t)codq-r—wt)|o| +H.c[, (2.15

and the functiongU;,v;} are theorthogonal quasiparticle  whereE, is the energy of the highly occupied stésee Eq.

basgs stateg14]. dThes;: ba3|s|staées a;]e orthogonﬁl o the(6.3)]. The quasiparticle transformation diagonalizfd:@ to

?121:)] eunzass?tZrT?geebggis 2{; é: ate} (toivter? Smogt O?OO' quadratic order, and we note that the orthogonal basis
quasip :Vis 9 yp {u;,v;} is required for this diagonalization to be valid. In

jection into the subspace orthogonal to the condensate, i.e S . i o
evaluatingH, terms involving products of quasiparticle op-

TJi=Ui—ai|¢o|, (2.6) erators have been ignored. This amounts to neglecting
Bragg-induced scattering between quasiparticle states, which

E=v*+a* |, (2.7 is of order 14Ny smaller than the terms linear bj (or b)).
Those linear terms are of primary interest here, as they de-
where scribe the scattering between the condensate and quasiparti-
cle states which occurs as a result of the energy and momen-
tum transfer from the optical potential.
ai:f dr [4olu; = _f dr [oloy (28 The time-dependent exponentials, expg;t), which mul-
tiply the quasiparticle operators in E.4) account for the

(see[14]). _ _ , free evolution due tdHE, and so the Heisenberg equation
The form of Bogoliubov transformation used in E§.4)

explicitly includes the phases() of ¢, which is convenient J . o R )

in cases where/, is not necessarily a ground state. We note iﬁE(bie"‘“it)=[(bie"°’i‘).H8+H.B(t)] (2.16

that a number of different sign conventions appear in the

literature, and ours differs from that in R¢1.3]. We discuss

becomes
the different conventions in the Appendix. The

Bogoliubov-de Gennes equation far; ,v;} are 9. A
in—b=[b;,H5+HF(D)]-Awib;, (2.17
Lui+NoUolghol?vi=h wju;, 2.9 o
L£*vi+NoUol ol 2ui= — frwyvy, (2.10 =[bi, AP(®)]. (2.18
where This is easily solved to give
2 “ N
bi(t)=b;(0) + Bi(t), (2.19

h
£: —%(V‘i‘|VSO)2+VT(r)_hM+2N0UO|ll/0|2:|,
(2.12)  wherep;(t) is ac number,
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,Bi(t)z—i\/N—oftdt’ V(t’)ei“’it/J dr i, [ci(tyue it +c¥ (tuFeleit] (2.23
0 i
X (UF +vf)codq-r—ot)|gol.  (2.20 = e IS~ r\/(t)cog -1 — wt) W (r,1). (2.24)

We see that the Bragg excitation causes the quasiparticilorganet al.[14] have shown how to use the orthogonality
operators to develop nonzero mean values. Note that this isrelations of the gquasiparticles, Eq&.12 and (2.13), to
complete solution of the physics in the linearized regimeproject out the quasiparticle amplitudes from a condensate
from which any observable quantities can be computed. wave function, namely,

3. Initial conditions ci(t) :eiwjtf dr [ei[;/ut—So(r)]uA*\If—v?c e—i[,ut—so(r)]q;*]
Our derivation so far has been based oh=a0 K Bogo- ) ! !
liubov treatment. For this case the initial state is the quasi- _oa* (2.25
particle vacuum state|@)). Had we started with this initial 1 ’

condition and considered evolution in the Safinger pic- where a; is defined in Eq.(2.8). Since the quasiparticles

ture we would have found that the system evolveg@s form a complete set, we may use projection to obtain a set of

?equ OB, where |{,'B‘}> s a coherent state, ie., equations for quasiparticle amplitudes that are equivalent to
bi[{Bi})=Bil{Bi}) and # is some phase factdsee[15]). Eq. (2.23, namely,
Equation (2.19 also provides insight into finite-
temperature cases where most of the atoms are in the con- . .
densate. To fully treat the finite-temperature case, it is nec- ¢;(t)= —iV(t)e""i‘f dr [ufe'l#t=%(lcogq-r - wt) ¥
essary to generalize the Bogoliubov treatment to account for
the thermal depletioke.g., se¢12]), requiring the functions +U}ke7i[/‘t750(r)]cogq. r—wt)W]. (2.26
Yo, Ui, v;, andw; to be solved for in a self-consistent man-
ner(e.g., se¢16-18). In that case, Eq2.19 for the evo-  Because the quasiparticles occupations are all small com-
lution of b; will still apply, and thus we see that the initial pared to the condensate mode, we can simplify(E®6) by
statistics ofb;(0) are preserved and the mean valbg) is  SettingW (r,t) = VNo| iro(r)|exiSy(r) —iut], yielding
shifted byg; .
t
ci(t)z—i\/N_Of dt’ V(t')eiwit’f dr (u* +v¥)
B. Gross-Pitaevskii equation approach 0
The Gross-Pitaevskii equation for a condensats ppar- Xcogq-r—owt")| gy (2.27
ticles subject to a Bragg pulse was derived 7 i.e.,
This will of course only provide a good solution while the

a h? - . .
ihﬁ\lf(r,t)= _ ﬁV2+VT(r)+UO|\I’|2 W(r,t) quasiparticle occupations all remain small.
+AaV(t)codq-r— wt)W(r,t), (2.22) C. Comparison of approaches

Direct comparison of the Gross-Pitaevskii and quantum
whereW (r,t) is the condensate mean-field wave function forfield theoretic results is complicated by the fact that they
the atoms in their internal ground state, and is normalizediave been derived for different basis sets. We note that al-
according tofdr |¥|?=N,. The condensate wave function though the Gross-Pitaevskii analysis was carried out using
can be expanded in terms of a quasiparticle basis in the forithe {u;,v;} basis, it is equally straightforward to use the

orthogonal basigu; ,v;}. Morganet al.[14] have shown that
\If(r,t)=\/N—O¢0e‘i“‘+ei[50(')‘“” (in analysis of the Gross-Pitaevskii equajidransforming
between these bases affects only the ground-state population
and gives rise to no difference in the quasiparticle occupa-
tions.
Connections between the field theory and simple Gross-
(2.22 Pitaevskii results based on EQ.21) can only be expected to
) o ) exist atT=0 K, where thermal effects can be ignor&s].
where ¢; are the time-dependent quasiparticle amplitudesyn thjs regime we begin by considering the relevant vacuum

This expansion has been made using the nonorthogonal quaxpectation of the quasiparticle operator from Ej19
siparticle basis, and the ground state has been assumed static.

This latter assumption will only be valid while excitation A . vt et ~ o~y
induced by the Bragg pulse remains small. The wave- <bi(t)>__"/N_0Jodt v(t)e™ J’dr(“i +oi)
function decompositiodEq. (2.22] transforms the Gross-

Pitaevskii Eq.(2.21) into X cogq-r—owt’)|ol. (2.28

X 2 [Ci(t)uieiiwit-i-Ci*(t)ui*eiwit],
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This expression emphasizes the coherent nature of the qua- 2 sif(wT/2)
siparticle states, and is the same as the Gross-Pitaevskii re- Flw,T)= 5 (2.32
sult of Eq.(2.27, with the identificationc; (t) < (B;(t)). We 7T o

note that the apparent difference between @37) and is a familiar term in time-dependent perturbation calcula-
(2.28, where the former depends on the matrix element

Sions. In particularF (w;j— »,T,) in Eq. (2.3D) is sharply
involving {u; ,v;} and the latter on matrix elements |nvolV|ng peaked in frequency aboui=w;, encloses the unit area,

{TJLZ,} disappears with the observation that+uv;=u; and has a half width ofr,~2/T,. In the limit T,—o
+v; [see Eqs(2.6) and (2.7)]. Thus, we have verified that (while V2T, remains small this term can be taken as &

the c;(t) and(b;(t)) are identical. function expressing precise energy conservation, so that only
quasiparticles of energhw will be excited, i.e.,

D. Quasiparticle occupation
For the physics we consider in this paper the mean occu- lim <ﬁi(T

pation of theith quasiparticle leveli.e., (b/b;) or |c;(t)|? Tp—
for the many-body or Gross-Pitaevskii methods, respec-

B wngpNo
p)) = 2

2
[ arcur +orevud

tively) is of interest, as it is used to make a quasihomoge- X 8= w) +(ni(0)). (233
neous approximation to the spectral response function in Eq.
(4.10. Using Eq.(2.19 we calculate I1l. OBSERVABLE OF BRAGG SPECTROSCOPY
t . . . .
o _ ' it \ g x % In this section, we outline the experimental procedure of
{ni(1)=No J’odt eVt )f dr (uf +vi’) Bragg spectroscopy on condensates. We begin by discussing

the measured observable, which we refer to as the spectral
+<ﬁ-(0)> (2.29 response function. Ifi,2] this ob_servable was assumed to_be
: ' ' a measurement of the dynamic structure factor. We briefly
review the dynamic structure factor, and discuss why it is
where(n;(0)) is the initial occupation, e.g., thermal occupa- inappropriate for these experiments.
tion atT#0 K, and is included for generality. In E€R.29
we have chosen to use tHe;,v;} quasiparticle basis for A. Spectral response function
ease of comparison with previous results by other authors

(e.g.,[8,20—22)._ , . ing was used to excite the condensitesitu for less than a
To progress, it is necessary to specify the temporal behavs o ter of a trap period. Immediately following this the trap

ior of the Bragg pulse. For simplicity we take the pulse shapg,q yrned off, the system allowed to ballistically expand,
as being square, with'=V,, for 0<t<T, [see Fig. )],  zn4 the momentum transfer to the system was inferred by
then Eq.(2.28 becomedevaluated at=Ty) imaging the expanded spatial distribution. The experimental

(By(T)y= — 1 NgVpelen T2 signal measured itsee[1,2,6])

2
X cogq-r—wt")| gl

In the MIT experiment$1,2] a low-intensity Bragg grat-

— P(T,)—P(0)
= | CICR R RGo) =y g =
. inp(sir{(wi-i-w)Tp/Z]) where
¢ (0+ ) -
Y t=5NoVpTy, (3.2
xfdr(u;*+vi*)e“q‘r|</fo|}. (2.30

andP is the momentum expectation of the system. We shall
In this expression, the second terfwith denominatore;  '€fer 10R(q,w) as thespectral response functioriror the

+ w) will typically be significantly smaller than the first term Case Of a Gross-Pitaevskii wave function, the spectral re-
(with denominatok; — w) sincew0, S0 to a good approxi- SPONse function can be written as

mation we can ignore the second term. Similarly, the quasi-

particle occupation resu(®2.29 under the same approxima- dr W* (r, Tp)(—iRV)W(r,T,)
tion is R(q,w)="7 7 , (3.3
o WVIZJTDNO * 4 k\AiQer ?
<ni(Tp)>:T dr (uf +o{")e' %" g where it is assumed that the initial condensate has zero-
momentum expectation value. The factoreind#zq appear-
X F(wi—w,Tp)Jr(ﬁi(O)), (2.30) ing in Egs.(3.1) and(3.3) effectively scale out effects of the
Bragg intensity and duration, the magnitude of momentum
in which transfer, and condensate occupation, so R{@, ») can be
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interpreted as a rate of excitation per atmormalized with  theory for quasiparticles is valid. /=0 K, where thermal
respect tovy) within the condensate. depletion can be ignored, the dynamic structure fat3or
takes the form

B. Dynamic structure factor

2
The dynamic structure factor has played an important role so(q,w)zz j dr(u* +v)e ol | S(w—w)),
in the analysis of inelastic neutron scattering in superfluid '

“He. It has facilitated the understanding of collective modes, (T=0 K) 3.8
and has enabled measurements of the pair-distribution func- '
tion and condensate fraction in that system, as discussed X which a number of approximate forms have been calcu-
tensively in[5]. In those experiments a monochromatic neu-

o lated (e.g., sed8,20,27).
tron beam of momentunik, is directed onto a sample of ;
“He and the intensity of neutrons scattered to momentungh The dynamic structure factor and Bragg spectroscaily

. . . ough the dynamic structure factor and the spectral response
Ak’ is measured. van Hovi23] showed that the inelastic fu g y P P

. . . nction are distinctly different quantities, they do resemble
s_catterlng Cross ;ectlpn of thermal.neutrons, calculatled n thgach other strongly. In fact, the matrix elements in the
first Born ap'prOX|mat|on, can be directly expressed in terms:0 K dynamic structure factor in E43.8) resemble those
of the quantity in the expressiori2.33 for the Bragg-induced quasipatrticle
population,(n;) in the long-time limit. It is easy to show,

% e AEm|(m| pgln)[28(hw—En+Ey), beginning from Eq(3.8), that
(3.9

S(q,w)=

N

So(q,w)z[yz lim <ﬁi(Tp)>} (T=0 K), (3.9

which is called the dynamic structure factsee[3]). In Eq. N S

(3.4), |m) andE,, are the eigenstates and energy levels of the

unpertlAered system,ZA is the partition function, p, where(ﬁi> is given by Eq.(2.33 and y is defined in Eq.
= fdr U(r)exp(=ig-r)W(r) is the density fluctuation op- (3.2). Note that because E¢3.9) is evaluated aT=0 K,
erator, and we have taken we have taken the initial occupatiofm;(0)) in Eq.(2.33, to
H22 - be zero. In practice, a very long puls€é.@ 1/wy) of suffi-
w=—2_ A7k (3.5 ciently weak intensity‘«STp< 1) could be used to excite the
2m 2m ' ' quasiparticles in the regime necessary for 839 to hold.
In [1,2] the spectral response functid®(q,w) was as-
g=ko—k’. (3.6 sumed to represent a measurement of the dynamic structure
factor, S(q,w). The argument given in those papers was
Our choice of notation for these quantities is to facilitatebased on the assumption that the Bragg pulse would excite
comparison between the matrix elements which arise in thquasiparticles of definite momentufg and the momentum
dynamic structure factor and Bragg cases. We note that in thieansfer is hence proportional to the rate of quasiparticle ex-
Bragg contextq and o refer to the wave vector and fre- citation. This is in fact not so, although we can show that, in
quency, respectively, of the optical potential, whereas in a certain sense, the dynamic structure factor and the spectral
dynamic structure factor measuremefity and 4w are the response function do determine each other. We use the result
momentum and energy, respectively, transferred to the sysf Brunello et al. [9], who have shown that the momentum
tem from the scattered probe. imparted can be related to the dynamic structure factor ac-
For the case of a trapped gas Bose condensate, lovgording to
intensity off-resonant inelastic light scatterifigd#] provides
a close analogy to neutron scattering frotHle. Csorda  dP,(t) ) 2
et al.[20] have shown that the cross section for such inelas— gy~ ~ M@z4+ ZNOﬁQ<§>
tic light scattering, with energy and momentum transfer to
the photon of-% w and—7#.q, respectively, can be expressed
in terms of the quantity X f do'[S(q,0")=S(—0,—0')]

sin[w—w']t)

2
; Nl
s@=3 | [ ar @ +ur)ee 319
I
A A where the Bragg scattering has been taken to be inzthe
X[(n)+1)8(w—w)+{n)d(w+w;)]. direction andP, is the z component of the momentum ex-
pectation. The quantitz:@j“‘: 12j) is the expectation value

3.9 of the z center-of-mass coordinate and evolves according to
This expression generalizes the dynamic structure factor to
the case of light scattering and applies at finite temperatures d_Z: P_z (3.11)
in the regime of linear response, where the Bogoliubov dt m’ '
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Taking the initial position and momentum expectations to be IV. QUASIHOMOGENEOUS APPROXIMATION
zero, Egs(3.10 and(3.11) can be solved using E¢3.1) to TO R(q,w)
give the spectral response function in terms of the dynamic

structure factor as In this section, we develop an approximation for the spec-

tral response function valid for time scales shorter than a
1 quarter trap period. Because trap effects are negligible on
R(q,0)= _f do'[S(q,0") this time scale we employ a quasihomogeneous approach,
Ty based on homogeneous quasiparticles weighted by the con-
, densate density distribution. This approximation plays an im-
codw,Tp) —cod[w—w']Ty) portant part in the analysis of the numerical results we
[w—0']?— w2 ' present in Sec. V.

(3.12
A. Homogeneous spectral response
This formula can be inverted, but the inversion formulas are The results developed in Sec. Il for the trapped conden-

different depending on whethey, is zero or not, sates can be applied to a homogeneous system of number
densityn by making the replacements

—S(—q,~e')]

S(g,0)=S(—0,—w)= lim R(q,0,T,) for 0,=0,

o (3.13 ui(r)— u(n)e' 1\, 4.1)
o o} (N—v(me ™ 7\, 4.2
=w§f R(q,w,Tp) TodT,
’ Noto(r)—No/V=1n, 4.3
for w,#0. (3.19

whereV is the volume, and
In the linearized approximation we are using, we can use Eq.

(3.7) to show that wB(n)+ oy
Uk(n = _2 B(n) ) (44)
\w w
So(dhw)=S(q,w)=S(—0,~w), =0, (3.19 K K
so that the differencing cancels out finite-temperature effects. wE(n) — Wk
Beyond the Bogoliubov approximation, there will however vi(n)=-— B ’ (4.5
yon 509 PP ' 2N wp(n)wy
be residual finite-temperature effects.
Thus, we see it is possible to determine thero- B
temperaturedynamic structure factor in a good degree of wi(N)=\wi+2nUowy /i, (4.9
approximation from experiments on a trapped condensate,
provided measurements are performed for a sufficient range hk?
of pulse timesT,. It is clear that this could be a difficult “k=om" (4.7)

experiment to implement, since the spectral response func-

tion will drop off faster than T, for large T,,, so the mea-  \ye have explicitly written these as functions of densitipr

sured signal could become very small. But in analogy Withate convenience. Using Eqet.1)—(4.3) the expectation of
the regults of Sec. VI, we would expect that 5|gn|f|gant iNthe quasiparticle operatof&.30 (i.e., atT=0 K) resulting
formation could be obtained by measuring for pulse tifigs  ¢om Bragg excitation is found to be

up to about five trap periods.
On the other hand, there is no direct connection between =

the spectral response function and the dynamic structure facp, )= — iV \/:f dr [ug(n)e ® T+u,(nye k1]

tor for anysingletime T, unlessw,=0, in which case we Vv

must takeT ,— . In fact, if we note that significant structure

in S(q,w) is expected on the frequency scalewgf, then the Xe‘wE(”)Tp’z

( siri<w5<n>—w1Tp/2>)eiq.r

formula (3.12 shows that a smearing over this frequency [w2(n)— o]
scale is assured by the form of the integrand in 8912,
independently of the value df,. _ sin (wf+ w)Ty/2] ,
One therefore must conclude that the spectral response +eloTo2 5 e '), (4.9
function, not the dynamic structure factor, is the appropriate (@ +w)

method of analysis for Bragg scattering experiments. How- o
ever, it is in principle possible to determine ttmero- ~ Since the homogeneous excitations are plane waves, evalu-

temperaturedynamic structure factor in a certain degree ofating the spatial integral in Eq4.8) selects out quasiparti-
approximation from these experiments by use of the invereles with wave-vectok=*q. The occupations{bﬁb@ of
sion formula(3.14). these states are
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(Neg)=—7—[Ug(N)+vg(M]Fl(wg(n)+w),Ty],
4.9

whereF(w,T) is defined in Eq(2.32.
Since a quasiparticle created B&/carries momenturik,

the total momentum transferred to the homogeneous conden-

sate is

(p) =ha((ng)—(N_q)), (4.10

and the spectral response function, as defined in(&q),
becomes

R(q,w>=y%, (4.1
=y((Ng)—(N_g)), (4.12

__Yq

[FL(@5(M) ~0) Tyl Fl(wg(n) +ol.Ty)],
(4.13

where we have useflug(n)+vq(n)]?=w,/wi(n) [from
Eqgs.(4.4) and(4.5)] to arrive at the last result.

T B
wq(Nn

B. Quasihomogeneous spectral response function

PHYSICAL REVIEW A65 033602

vation inRgy with the replacemerf (o, T) — 6(w), reduces
Eq. (4.16 to the simpler line-shape expression

Ron(g,0)—14(w), (4.17
_15ﬁ(w2—w§) ﬁ(a)z—wq)
"~ 8wyNoUy ~ 2wgNoUp

(4.18

where we have adopted the notatiby, as used in the origi-
nal derivation1]. Equation(4.18) is also known as the local-
density approximation to the dynamic structure fadsee
[8]), and has been used to analyze experimental ddtg2h
We emphasize that witf,<(1/4) Ty, the -function re-
placement is unjustifiable, as we verify with our numerical
results in the next section.

V. BRAGG SPECTROSCOPY

Bragg spectroscopy can broadly be defined as selective
excitation of momentum components in a condensate, by
Bragg light fields. In this section, we consider the spectral
response function as a Bragg spectroscopic measurement,
and using numerical simulations of the Gross-Pitaevskii Eq.
(2.21) and the analytic results of the previous section we
identify the dominant physical mechanisms governing the
spectral response behavior. We investigate the spectral re-
sponse function for a vortex and identify parameter regimes

The density distribution of a Thomas-Fermi condensate id" Which a clear signature of a vortex is apparent. From the

given by

N(n)=

15N
zon\/l—n/np, (4.14
4n

p

where N(n)dn is the portion of condensate atoms in the
density rangen—n-+dn, andn,=%u/U, is the peak den-

sity (see[1]).

To approximate the spectral response function for the in
homogeneous case we multiply the portion of the condensafé
at densityn by the homogeneous spectral response functio

(4.13 for a homogeneous condensébé densityn) and in-
tegrate over all densities present, i.e.,

RQH(q,w)EJ dn N(n)R(q, ), (4.19

15N n nw
20 f pdn 5 a Vv1=n/n,
4ng ) Jo wq(N)

X{Flog(n)—o,Ty]—Flog(n)+ o, Ty}

(4.16

full numerical simulations we are also able to assess the ef-
fect of higher laser intensities on the spectroscopic measure-
ments.

A. Numerical results for R(q, w)
1. Procedure

The numerical results we present fle{q,), are found
by evolving an initial stationary condensate staypically a
ound statein the presence of the Bragg optical potential,

jising Eq.(2.21). At the conclusion of this pulse, the spectral

response is evaluated using E.3). This differs slightly
from the typical procedure in the experiments, where the
system is allowed to expand before destructive imaging is
used to measure the condensate momentum. However, we
have verified numericallyin cylindrically symmetric three-
dimensional3D) casejthat condensate expansitafter the
pulse does not alter the momentum expectation value. For
each desired value @ and w, we repeat our procedure of
evolving ¥ according to Eq(2.21), and calculatindr(q, )
immediately after the optical pulse terminates.

For axially symmetric situations, the simulations are cal-
culated in three spatial dimensions wdtoriented along the
z axis. When the initial state is a vortex, the interesting case
of scattering in a direction orthogonal to the vortex ctye

We shall refer toRqy as thefinite time quasihomogeneous ing on thez axis) would break the symmetry requirement, so
approximationto the spectral response function, or simply for these cases, 2D simulations withdirected along they

the quasihomogeneous approximatiolynoring the finite

axis are used. For convenience we use computational units of

time broadening effects and assuming exact energy consatiistance ro=\%/2mw+; interaction strengthwy=7%wr3;
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q=2/r b q-16/r TABLE I. Simple estimate of widths of component mechanisms
(@ 0 (0) 0 of the spectral response functions in Fig. 2. All quantities are ex-
0.1 i’“ iA‘ pressed in units of.
El it i ! : i
g rog 'R Density FiniteT, Momentum
T 0.05 - N i
I ¥ 4 Fig. % Ty a,a/m
: AN 2(a) 14.2 7.9 0.86
ol 1 LN 2(b) 14.2 7.9 6.92
5 15 25 240 260 280 2(c) 70.6 7.9 0.88
ol /oy 2(d) 70.6 7.9 7.4
() q=3.76/r0 (d) g=31 6/r0
0.02 A\ N N . .
3 ! | tha_t the. case in F.Ig.(a) is in the p_honqn .reglmeq(= 2Iry),
z ,’ ; while Fig. 2b) is in the free particle limit =16/,). For
T 0.01 comparison, we present in Figs(c and 2Zd) spectral re-
sponse functions for a different ground state of greater non-
/ : linearity, for whichqy= 8.4t . Figure Zc) is in the phonon

regime = 3.76f,), whereas Fig. @) is in the free particle
regime =31.6f). In all cases, we compare the Gross-
Pitaevskii calculation oR with the lines-shapé, and quasi-

FIG. 2. Spectral response functi®{q,») of a 3D condensate. homogeneous reSUIRQH from Egs. (4.18 and (4.16,
(a),(b) Spherical condensatd®,U,=10"W,, u=14.207. (c),(d) respectively.
Oblate condensate with trap asymmetry= /8, NoUo
=5.6X10Pw,, u="70.%7. Full numerical solution foR shown as

0
10 30 50 70 1000 1100

u)/u).l_ m/u).l_

1. Mechanisms

solid line; the local-density approximationgf dash-dot; and the The two ground states used in calculating the results pre-
finite time local-density approximatiorRgy) dashed. Bragg pa- sented in Fig. 2 are both in the Thomas-Fermi lithi., they
rameters ar&/,=0.2w7 and T,=0.4/w1 . satisfy the conditionu> wy) [29]. We can see from the fig-

_ L _ _ _ ure that the local-density approximatiop Eq. (4.18 used
and timeto= w1~ ; Wherewr is the trapping frequency in the by previous authors does not always give a good description

direction of scattering. of R(q,w), whereas our quasihomogeneous approximation
. Ron(d, @) Eq.(4.16 is much more accurate. We have inves-
2. Parameter regimes tigated the accuracy dRqy over a wide parameter range

We use square pulses of intensity and duration such tha¥hich has allowed us to evaluate the relative importance of
typically less than 1% of the condensate is excited, except if€ three underlying broadening mechanisms which contrib-
Sec. V E where we investigate the nonlinear response of thdt€ t0R(q,w). The mechanisms and their contributions are
condensate. As long as the amount of excitation is small, was follows: o
verify that the spectral response functi@(q, w) is indepen- (i) The shift in the excitation spectrum due to the mean-
dent ofV,. However, the shape d%(q,) is dependent on field mt(_e(actmn(depelndlng on the local densityThe range
the pulse duratiorin accordance with the frequency spread©f densities present in the condensate cause a spread in this
aboutw associated with the time limited pu)sand on the shift. The frequency width associated with this spread is pro-

magnitude ofg. portional to the chemical potentiagd, and we shall refer to
The momentuntiq, defined by this as the density width—see Sec. IV.
(i) The Doppler effect due to the momentum spread of
o= m’ (5.1) the condensate; the Doppler broadened frequency width is

a,9/m, whereo, is the condensate momentum width.
(i.e., qo=1/£, where ¢ is the condensate healing length _ (iii) The frequency spread in the Bragg grating due to the
characterizes the division between regimes of phonon anfiteé pulse time; the width arising from this effect is
free particlelike quasiparticle character. We note that the ex= ™ Tp.
perimental results irf1] and [2] report measurements of

R(q,w) in the free particle and phonon regime, respectively. o ) ]
The relative importance of these mechanisms varies ac-

cording to the parameter regime. In Table I, we compare the
estimated values of these widths for the simulations in Fig. 2.
We present in Fig. 2 spectral response functions calcuwe see that for the case of Fig(a both finite time and
lated using the Gross-Pitaevskii simulations in three spatialiensity effects are important; hence the quasihomogeneous
dimensions. The spectral response functions in Figs.ghd  result which includes both of these is in good agreement with
2(b) are for a spherically symmetric ground state with  R(q,w), whereasl4(w) which accounts for density effect
=3.8k. The g values(of the Bragg fieldswere chosen so alone is quite inaccurate. In Fig(t8 the value ofq is much

2. Relative importance of mechanisms

B. Underlying broadening mechanisms
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larger, increasing the momentum width to a point where it is .
comparable to the other mechanisms. Since bpdndRqy (b) I
fail to account for the condensate momentum, neither ap- 0.08 |“|
proximation to the spectral response function is in particu- n
larly good agreement with the numerically calculatdin n
both Figs. Zc) and 2d) the density width is an order of

magnitude larger than both the finite pulse and momentum 0.04
widths, and so in this regime the simple line-shape expres-

sionly is generally adequate.

R(q,m)

\
s
Z, SN
3. Experimental comparison 0 2 30 40 50 170 200 230
Taking typical experimental parameters, the state used in ooy w/e
Figs. 2a) and 2b) corresponds to about 28L0° Na atoms
ina 50 Hz trap, with the Bragg grating formed from 589 nm
laser beams intersecting at an angle of 57{anand 39° in
(b). These figures are indicative of typical Bragg spectros
copy results for a small-to-medium size condensate. Th
state used in Figs.(8) and 2d) corresponds to about 10la

atoms in a 100 Hz trap, and was chosen to match some of o . .
the features of the experiments reported[1r2], e.g., the most significant component of the response function width,
peak density of this state is4x10'* atoms/cn? and the a:tr:ouglh ;[.he |tnctrheased m(;)mteptqm dfllstntblét[onthof thgm\;or:ex
chemical potential is~6.7 kHz. The momentum values state refalive 1o the ground state 1S reflected in the widis. o

chosen correspond to those used to probe the phonon a alsp set_e thiﬁ%ﬁ' f(;r Itlhe 2D grOLIJndlstaI\tet_is aa;easonable
free particle regimes in those papéBragg grating formed approximation to the fufl numerical calcuiation

by 589 nm beams at 14° and 180°, respectiveBomputa- In the Igrge momgntum trgnsfer case F'@)S Doppler
tional constraints mean we cannot match the experiment ffects (which scale linearly witfg) become important and

(prolate trap geometry, but in a similar manner to the mea-the two peaks in the vortex spectral response appear. These

surements made ifil] we scatter along a tightly trapped |nd|cgte the presence OT floor momentum co_mpor_1er)t§
direction, although from a condensate in an oblate trap o unning parallel and antiparallel to the scattering direction.

: . . .~ Zambelliet al. [8] have discussed the Doppler effect in de-
aspect ratio,/8. We note that in the phonon probing experi- £ e X P
ments|[2], scattering was performed in the weakly trappedta"’ and they utilized thempulse gpproxmaﬂorﬁpr the dy- .
direction for imaging convenience. It is worth emphasizingnam!C structure factor for the regime Wh_ere .th's _mechanl_sm
that the mechanisms accounted for in our approximate re(jOmlnates. The essence of this approximation is to project
sponse functioRoy depend only on the peak densiiye the trapped condensate momentum distribution into fre-
fiulUy), the maanFi|tude ofj and the Bragg pulse duratibn. quency space, and they have applied this to the case of a

The reason is that condensates in the Thomas-Fermi regirﬁ/é)rtex (in the noninteracting long pulse limitThe impulse

with the same peak density will have identical density distri_approxmanon always predicts a double-peaked response

butions in either prolate or oblate tr e Eq(4.14]. Thus from a vortex state correspondmg_ to the Doppler resonant
. . EIEE. ; frequencies for the parallel and antiparallel momentum com-
the quasihomogeneous approximation predicts the same

: S . onents. Our numerical results fB(q,w) show that at low
spectral response function for both. Scattering in a tlghtlylr)nomenta this vortex signature is%(bqscu)red by the density and

trapped direction will enhance momentum effects not ac. .. ..
. . ) : finite time effects.
counted for inRRqy, since spatially squeezing the condensate
causes the corresponding momentum distribution to broaden.
However, it is apparent from Table |, that for the case of
large condensates this momentum effect is relatively small, The spectral response functions shown in Figs. 2 and 3
and thus we expect our result in FiggcPand 2d) to give a  contain a large amount of information, however the major

reasonably accurate description of the MIT experiments

FIG. 3. Spectral response functio®q,») for 2D ground
(solid) andm=1 vortex (dotg states, andRgy2p) for 2D ground
state(dashegl Both states havdlyU,=500w,, and the spectra are
calculated with(a) g=6/ry and(b) q= 14/ ,. Bragg parameters are
¥,=0.207 andT,=0.8/wr.

D. Shape characteristics of the spectral response function

[1,2]. TABLE Il. Simple estimate of widths of component mecha-
nisms of the spectral response functions in Fig. 3. All are quantities
C. Spectral response function of a vortex expressed in units aby .
In previous work[25], we showed how Bragg scattering Density Finite time Momentum

from a vortex can produce an asymmetric spatially selectiv%i u /T ooq/m

beam of scattered atoms which providesimusitu signature : P P

of a vortex. In Fig. 3, we compare the spectral responsé&(a) ground 9.0 3.9 2.9
functions from two-dimensional ground and vortex states3(a) vortex 9.2 3.9 5.2

and in Table Il we summarize the density, finite time, and3(b) ground 9.0 3.9 6.7
momentum effects for the cases in Fig. 3. In the low-3(p) vortex 9.2 3.9 12.2

momentum transfer case Fig(@B the density width is the
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properties can be well represented by a few numbers that @

describe the overall shape characteristics of these curves. e = =T
The characteristics of the response curve that we focus on are o e

the area under the curve, the shift of the mean response func- Eosl \s

tion, and the rms frequency width. These can be expressed in

terms of the first few frequency moments{) of R at con- 0
stantq, defined as

mnEJ do ©"R(q,w). (5.2

The area under the curve is simply,; the shift of mean

response frequency is 0
Mgpir= My /My — (5.3 {c)
shift— M1 /My~ @q, . 10 _
d -
and the rms response width is Eé 5
7
N -
Mims™ \/mz/mo_ (mllmo)z- (5.4 0
0 5 10 15

. . . . qr
These characteristics have also been considered in experi- 0

mental measuremerits, 2], where, however, only two values g 4. Spectral response function propertiese text for a 3D
of q were usec{co_rrespondmg to Bragg gratings formed py condensate  with NoUo=10'w,. R(q,) (solid), Ron(q,®)
counter-propagating and approximately —copropagatingdashey and I4(w) (dash dot (@) The zeroth momenttb) the
beams, respectivelyand the speed of soun@quivalent to  mean response shift, with the shifud7 indicated(dotted; (c) the
go) was changed by altering the condensate density. rms width of the frequency response. Bragg parametersVgre
Numerically we can consider any valgewhich can be  =0.20; andT,=0.4/w7.
resolved on our computational grids. Here we choose for
simplicity to directly varyq and consider how the spectral tum distribution increases in importandg.is in poor agree-
response function changes. The initial state for these calcunent for all g, because it ignores temporal broadening ef-
lations is identical to that used in Figs(ap-2(b) (i.e., a fects.
spherically symmetric ground state withyU = 10*w,), be- (iv) In Fig. 4 the sharp features in the full numerical cal-
cause density, temporal, and momentum effects are all imculation of the moments oR at extremely lowq arise be-
portant for the range df values we consider. This should be cause theground-state condensate momentum wave func-
contrasted with the initial state in Figs(c2—2(d), where the tion has significant density in the region where the majority
density effect dominates over the other two effects at bottpf the condensate is being scattered. This causes stimulated
small and large. scattering of the condensate atoms, and will significantly af-
Our numerical results lead to the following observations:fect the spectral response function when the amount of con-
(i) In Fig. 4@), the area under the response cufice.,  densate initially present in the region we are scattering to is
mo) is considered. The reduction of this from unity is char-similar (or largej than the amount of condensate excited
acteristic of suppression of scattering fpr g, caused by ~With the Bragg pulse. This effect has been ignored in the
the interference of the andv amplitudes in the expression derivation of Ry by taking b, to have a zero initial occu-
for the quasiparticle populatiofe.g., see Eq(4.9)]. Apart  pation in Eq.(4.8).
from the discrepancy at very log (which exists in all mo- Evaluating condensate momentum width from the spectral
ments and which we discuss more fully bejowothl, and  response functianThe MIT group has used the rms width of
Ron are in qualitatively good agreement wikh The finite  the spectral response function to determine the Doppler
pulse duration effect omy is to reduce it uniformly from the ~width Awp,, Of the condensate, and hence the momentum
|4 prediction, a feature whicRqy represents well. width op(=(m/q) Awpep. This allowed them to make the
(i) The mean shift(5.3) arises because of the Hartree important observation that the condensate coherence length
interaction between the particles excited and those remaininig at least as large as the condensate [sit€also sed6]).
in the condensate, as indicated by the Bogoliubov dispersiofmhe Doppler width was obtained from the spectral response
relation(4.6). The approximation&qyy andl, are seen to be profile by assuming that the Doppler effect adds in quadra-
in good agreement with the full numerical calculation overture to the density and temporal effects. The precise details
most of the range afj, apart fromgq=0 (see below. At large  of the procedure used [1] are not giver(see Fig. 3 of1]);
values ofg, the mean shift saturates at the valye/4. however, an expression for the momentum width of the form
(i) The width prediction ofRqy is in good agreement > 5 5
with the full numerical calculation at low (2<qr,=<6), but - mYyMi— (Alg)?~[AF(0,Ty)]
differs asq increases and the role of the condensate momen- Tp~ q 5.5
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FIG. 5. The true momentum widtt, of the condensatésolid
line) in comparison to the estimated value from E@s6) (squarep
and (5.5 (circles. Other parameters are as in Fig. 4.
is implied in the text. A difficulty that arises in applying Eq.
(5.9 is that the rms-frequency spread(w, T,) due to the 4 O
finite pulse length is ill defined. Formall§;(w,T,) has an 0()
unbounded rms width, though the central peak has a half 0 0.2 04
width of 7/T,. In order to allow the best possible result Peak scattered fraction

from the MIT procedure, we have treatad as an arbitrary FIG. 6. Laser intensity effects on the spectral response function.

parameter, and fitted the fl_'mCti@“é in Eq. (5.9 to the actual (a) Total scattered condensate fraction &pr6/r, and (lowest to
condensate momentum width of the ground state we use. Thﬁghes} V,=0.51,0.85,1.1,18; . (b) Shift of peak response fre-

result for a range of] values is shown plotted as circles in quency me, as a function of the peak scattered fraction &pr

Fig. 5, and was obtained with a best fit valueF =3y, (diamonds, 6/r, (solid), and 9f, (crosses Other param-
~0.86Xm/T,. We can see that Eq5.5 does not give a eters: spherically symmetric condensatdlyUo,=10'w,, qq
particularly good estimate of the true momentum width, in-=3.8t,, andT,=0.8/w7.

dicating that the assumption of quadrature contributions of

density, momentum, and finite time effects to the spectrapijtaevskii equation calculations do however remain valid in
response function is inappropriate. Agreement improves as thjs regime, and can be used to understand the changes in the
increases, as would be expected, because the Doppler effegiectral response function that occur as the scattered fraction
dominates over the other mechanisms in that regime. increases.

Our approximate formRqy provides a more accurate  |n Fig. 6, we present results which extend beyond the
means of extracting the Doppler width. We first assume thafinear regime. In Fig. @), we plot the scattered condensate
the finite time and density effects are well accounted for byfraction [y~ 'R(q,»)/N,] in a sequence of curves for in-
Rqw, which has an an rms widthRq,,. We then assume  creasingv,,. We have chosen to use the scattered condensate
that the overall width is obtained by adding this in quadra-fraction rather than the spectral response funcign, w),
ture to the Doppler width, which gives the following esti- since the numerical value of the scattered fraction indicates

mate?rp for the momentum width: whether the measurement is outside the linear regime. This is
shown clearly in this sequence of curves, which would sim-
~  mymi— (ARgw)? ply be scaled by the ratios &f? if they were in the linear
Op= q ' (5.6 regime. Instead, we see that the shapes of the curves change

asV, increasegand the scattered fraction increasead in

in which no fitting parameter is necessary. Resultsofpare particular the peak frequency shifts downwards. In Fig) 6

also shown in Fig. 5 and clearly give a better estimate for thd/€ consider that dependence of the mean response frequency
true width o, than Eq.(5.5). shift (mgnir) On the peak scattered fraction of condensate

(i.e., the fraction of condensate scattered at the Bragg reso-
nance for the curvedor three differentg values. A number
of features are apparent in those curves. First, the shift de-
Spectroscopic experiments require that the number of aereases below the linear prediction as the scattered fraction
oms scattered be sufficient for the clear identification of mo4increases. Second, the decrease is larger for low-momentum
mentum transfer to the system.[It)], the light intensity was transfers <qg) than for higher-momentum transfers.
chosen so that the largest amount of condensate scatared Third, for large enough momentum transfer, the shift at a
the Bragg resonantevas about 20%. The validity of the given condensate fraction saturates.
linear theoriege.g., Sec. lmust be questioned at such large  We note that in the MIT experiments a peak excitation
fractional transfers, where excitations can no longer be corfraction of ~0.2 was usedl]. From Fig. 6 we see that even
sidered noninteractinge.g.. seé14]). The numerical Gross- for the highest values of momentum transfeg., q=6/ry or

E. Scattering beyond the linear regime
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g=9Iry), the shift will be reduced by an order of 15% rela-

tive to the prediction of the linear theory. 08

Op

VI. LONG-TIME EXCITATION: ENERGY RESPONSE

As discussed in Sec. lll, momentum is not a conserved
guantity in a trapped condensate, and is not a convenient
observable for the long-time limit. Here we investigate the
energy transfer to the condensate by Bragg excitatta®e
also[9]), since in the unperturbed systdne., in the absence
of the Bragg gratingenergy is a conserved quant[ty0]. A (b)
possible method of measuring the energy transferred is the 08
technique of calorimetry, which has been applied by the Ket- B
terle group in a somewhat different cont¢6].

We define an energy response functi(y, w) analogous
to the (momentum spectral response function by the equa-

tion w

Z(q,0)=AHE[Y(r, Ty ]-E[¥(r,t=0)]}, (6. o

Z(q,0)/h

0 2 4 6
where /o
52 U FIG. 7. Energy response function calculated for a two-
E[\If]:f dr \p*( — 2—V2+VT(r) W+ 70|\1f|4 dimensional condensate and a Bragg grating \githl/r, and du-
m ration (a) T,=2%/wr and(b) T,=107/wr. In both cases the in-

(6.2) tensity is chosen so that™ 1~0.08N,.

is the energy functional angt is defined in Eq(3.2). Thus In Fia. 7 ¢ its for th ¢
Z(q,w) is the rate of energy transfer to the condensate frorr%i nn flg.2[3 Wen%rer?erl rﬁsrutvi c()jriff ? en?(cajrgry ;eiponfsgr unc-
a Bragg grating of frequency and wave-vectoq. The re- onota condensate for two difierent durations ot bragg

sults of Sec. Il for the quasiparticle evolution can be readilyexc'tat'on' Figure @) shows the case of Bragg excitation

applied to evaluating Ed6.1). Using theT=0 K results of &pplflfd forna smgr]Ie éra?tﬁerg:jw,:ZqT/wTi). Inﬁtih:snc;?s\(/a\’id
either the vacuum expectation of the Bogoliubov Hamil- € frequency spread of the bragg pulse 1S suticienty N

o PO ) that only a single broad peak of energy absorption is discern-
tonian in Eq.(2.14 with b; given by Eq.(2.19, or the lin- e from the condensate, i.e., the functidh&o— w; ,T) ap-
earized Gross-Pitaevskii resul2.27 in the energy func-  pearing in summation of Eq6.5) are sufficiently broad in

tional (6.2) gives frequency space to allow a large number of quasiparticles to
respond. In Fig. ®), Z(g,w) is shown for the case of a
E[qf(r,t)]:Eo+2 ﬁwi<ﬁi(t)>, (6.3 Bragg pulse applied for five trap periodd = 107/ w1).
I

Here the detailed structure of the energy response function is
) o revealed, with individual(possibly degenerakejuasiparticle
where Eo=E[ WNowyo] s the initial (ground-state energy peaks being visible. We emphasize that current momentum
and (n;(t)) is the Bragg-induced quasiparticle occupationresponse experimense., R(g,w)] are essentially limited to
(2.29 at timet. Substituting Eq(6.3) into Eq. (6.1) gives at most a quarter trap period of excitation.

A response measurement such as that shown in Fiy. 7
reveals a wealth of information about the nature of the con-
densate excitation spectrum. The frequencies) (of the
quasiparticles can be determined by the location of the reso-

As noted above, because energy is a constant of motion afant peaks of the response function, and these frequency
the trapped condensate, we can take- 27/ wy (though we  peaks become narrower and better defined aincreases.
requireV,ZJTp to remain small compared to unity for our lin- We note that for a given peak corresponding to a Bragg
ear analysis to remain va)idand from Eq.(2.31) (with  frequencyw,, the area under the peak is equal to the matrix

(ni(0))=0), we have element

Z<q,w>=y2i hani(Ty)). (6.4)

2 ] 2
20003 ho] [ @t st o FlomoTy. [ dozqw= 3 no [t rnd i

i(wj e dw)

(6.5 (6.6)
Thus in long duratiorfweak Bragg excitation, the only con- where do (=[w,—@/T,,w,+7/T,]) is the frequency

tribution to Z(q, w) will come from quasiparticle states with width of the pulse and the summation is taken over quasipar-
energy approximately matchingw [see Eq(2.33]. ticles in the energy rangéw.

033602-13



P. B. BLAKIE, R. J. BALLAGH, AND C. W. GARDINER PHYSICAL REVIEW A65 033602

VII. DISCUSSION neous Bose-Einstein condensates. These transformations
jsypically differ in their choice of sign between theandov

In this paper, we have given a detailed theoretical analysi : S . .
of the phenomenon of Bragg spectroscopy from a Bosegmphtudes, and by the explicit inclusion of phase. To assist
omparison of our results to the work of others, we summa-

Einstein condensate. We began by deriving analytic exprescf ) o
sions for the evolution of the quasiparticle operators, whicHZ€ four different definitions, and show how the form of the

contain all possible information about the system in theduasiparticle population resdkq. (2.29] is altered by each
linear-response regime. We then demonstrated thaT at choice. In Sec. Il A1 we used the orthogonal quasiparticle

—0 K, the mean values of the quasiparticle operators argEasis, since the Bogoliubov diagonalization of the many-

identical to the quasiparticle amplitudes obtained by solving?©dy Hamiltonian must be made with excitations that are

the linearized Gross-Pitaevskii equation. Thus, for the purfrthogonal to the ground state. However, the quasiparticle
pulation result, Eq(2.29), is insensitive to this and so for

pose of calculating the observable of the Bragg spectrosco X i X
experimentsthe transferred momentyma mean-field treat-  PreVity we will use the nonorthogonal basis states.
ment is equivalent to the full quantum treatment. Conse- M What follows we d_eno}(i)ou(rﬂchmce of quasiparticle
quently, we based our detailed analysis of Bragg spectro@MPplitudes by the notatiofu;™”,v;"’}. These are closely
copy on the mean-field equation for Bragg scatteringrelated to the form used |[127].by Fe-tter.(whlch We.denote
presented in a previous paper. The central object for the exttt{ ’,v{ ’}), but differ by a minus sign in the relative phase
periments is the spectral response function for the momerPetweeru; andv; . Both these conventions explicitly include
tum transfer,R(q, ). We derived the relationship between the condensate phase, and the operator part of the field op-
R(q,») and the dynamic structure factor and showed thaterator is expanded in the form
contrary to the assumptions of previous analyses, there is no
regime in which the two quantities are equivalent for trapped
condensates.

The results of our numerical simulations of Bragg spec-

troscopy, which were carried out in axially symmetric three-, ..o the quasiparticles’ modes obey the equati@tsT
dimensional cases, or in two dimensions, were characterize\ﬁ0 K with N, particles in they, staté

by the behavior oRR(q,w). These full numerical solutions
are accurate for all values @f that can be resolved by the
computational grid, however the computationally intensive
nature of the calculation made quantitative comparison of
our theory with the MIT experiments difficult. The analytic L5+ NoUol ol 2l =~ o (), (A3)
approximation for the spectral response functigg,(q, »),

provides a means of extending the regime of comparison tand £ is as defined in Eq(2.11). The basis choice of Egs.
large condensates, and systems without axial symmetry, ané2) and (A3) leads to the vacuum expectation value Eq.
we showed that it accurately represeR&),w), except in  (2.28 having the form

those regimes where the momentum width is dominant

(0,a/m exceedsw/T, and u) or where stimulated effects R _ to ot ()% o (2)%

can occur {q<a,). It also provided a means for identifying ~ (Pi(1))=—i JN—OL‘“ V(t")e' f dr (ui=" £vi™")

the relative importance of three broadening and shift mecha-

nisms (mean field, Doppler, and finite pulse duratiokVe X cogq-r—ot)| . (A4)
have shown that the suppression of scattering at small values

of g observed by Stamper-Kuet al.[2] is accounted for by  The most common form of the Bogoliubov transformation

the mean-field treatment, and can be interpreted in terms qk g., sed12,14)), uses the following form for the expansion
the interference of the andv quasiparticle amplitudes. of the operator part of the field:

A remaining point to emphasize is that our numerical cal-
culations allowed us to investigate the regime of large laser
intensities where the linear-response condition is invalid. We =2, [uH(Nbi(t) =o!* (nbf (1], (A5)
found that a significant decrease in the shift of the spectral :

response function can occur due to depletion of the initial o o ) ] ]
condensate. where the=x indices indicate the relative choice of sign be-

tween theu andv terms in Eq.(A5). These quasiparticles’
ACKNOWLEDGMENTS modes obey the equationiat T=0 K with N particles in

the ¢, stat
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=€ [uH ()b (H)=oF*(Nb](1)], (A1)

LU= NoUo| ho|vi=Rhwul™), (A2)

LUi(t)iNOU0|'lfo|2;i(i):ﬁwiUi(i)’ (AB)

APPENDIX: BOGOLIUBOV CONVENTIONS Lo0) + NoUo| o201 = — o), (A7)

Several different forms of the Bogoliubov transformation
have been used in the theoretical description of inhomogewherelL is defined as
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#2 [see Eq(2.28]. Whenyy, is a ground staté.e., has constant

L=|— %V2+VT(r)_ﬁ/L+2NOUO|¢O|2 . (A8)  phase, , can be taken as real in EGA9), i.e.,

In this case the mean value bf is

~ t o
(bi(1))=~1 JN_ofotdt' V(e (bi(t)= —i\/N_oJ’Odt’ v(t)e't
Xj dr (ﬁi:)* Woi;i(i)* l/,B‘)COs{q.r—a)t) X j dr (Ui(i)* i;i(i)*)COS{Q'r—wt)wo.
(A9) (A10)
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