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Phase-space structure of the Penning trap with octupole perturbation
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A Lie transformation is developed to study the structure of classical phase space for a perturbed Penning
trap. In general, perturbations may result from imperfections or may be deliberately introduced into the system
by the application of fields. We study the lowest-order nontrivial perturbation in the trap, which is octupolar,
using classical perturbation methods. The original three-degree-of-freedom problem is reduced to a single
degree of freedom by~i! symmetry arguments,~ii ! generation of apt action-angle variables, and~iii ! compu-
tation of the classicalnormal form. The phase-space structure of the resulting normalized Hamiltonian, in the
1:1 resonance, is then analyzed. In the process we discover a saddle-node bifurcation. This approach provides
for a global view of the reduced phase space, and, thereby, allows for a systematic study of the impact of
several simultaneously applied perturbations.
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I. INTRODUCTION

The Penning trap@1# is an exceptionally stable techniqu
for trapping charged particles. Consequently, it has beco
one of the most versatile experimental devices in atomic
molecular physics@2–5#. Applications of the Penning trap
are broad and have included tests of fundamental theo
e.g., of QED, and the determination of fundamental phys
constants such as the fine-structure constant@6–8#. As well
as being useful for the study of isolated charged particles
in the classic geonium experiment@9#, modified Penning
traps have been used with advantage to study sin
component plasmas. Recently Penning traps have b
shown to allow the trapping of large numbers of ions at v
low temperatures: remarkably, ion crystals containing
proximately 106 ions have been observed by Bragg diffra
tion. van Eijkelenborget al. @10# have trapped the molecula
ions HCO1 and N2H1, which, through their interaction
with Mg1 ions, were sympathetically cooled to 4 K. Cha
acteristic and mass-dependent breathing-mode frequen
were then used to detect the molecules. Thus, the Pen
trap served essentially as a mass spectrometer. More rec
the Penning trap has been used as a quantum comp
device by taking advantage of hysteresis and bistability o
parametrically driven electron that served as a 1-bit mem
@11,12#. There have also been a number of classical
quantum studies of the Penning trap together with pertur
variants thereof@13–16#.

Given the variety of perturbations that are of interest, a
the possibility of uncovering new effects by simultaneou
applying several perturbations of various strengths, it
clearly desirable to develop a method for studying and c
ceptualizing the dynamics. For example, several unexpe
phenomena have been discovered in perturbed Rydber
oms using similar approaches@17#. Like the unperturbed hy-
1050-2947/2002/65~3!/033423~7!/$20.00 65 0334
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drogen atom, the classical and quantum theories of the P
ning trap itself are self-contained and exact. Indeed,
stability of the Penning trap derives largely from the simp
nature of the confining potential: the system displays~i! axial
symmetry, thus leading to angular momentum conserva
and ~ii ! an essentially harmonic form of confining potentia
This provides a natural launching point for investigating p
turbations that destroy one or other, or both, of these s
metries. For example, Squireset al. @18# have studied the
breakdown of axial symmetry in a so-called combin
Penning-Ioffe trap and identified stable orbits that adiab
cally continue from the axially symmetric case. These inv
tigators were also able to identify particular frequencies a
resonances that give rise to instability. In this spirit, the c
rent paper studies the effect of octupolar perturbations on
phase-space structure of the Penning trap with the objec
of developing a way of systematizing the search throu
phase space.

As indicated, while perturbations may arise from m
chanical imperfections they are often deliberately introduc
in a controlled fashion as a way to perturb the motions of
confined particles, e.g., in a mass spectrometric experim
In the ideal trap, confinement along thez axis is realized by
applying a three-electrode structure, two of them being,
the ideal case, hyperboloids of revolution, located along thz
axis, and the third one, a ring electrode similar to the form
the inner surface of a toroid. Taken together these gene
the electrostatic quadrupole potential that acts as a trap a
thez direction. Along thex- andy-axes the motion, however
is unstable. To effect stable motion in the radial plane
magnetic field along thez direction is added that cause
charged particles to circulate along cyclotron-type orb
around the center of the trap. For details and description
several ion traps, the reader is referred to Ref.@2#.

The highly nonlinear nature of the dynamics makes p
©2002 The American Physical Society23-1
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turbed ion traps ideal candidates for studies of integrab
and chaotic behavior in classical and quantum mecha
@15#. Bifurcations, unstable equilibria, and separatrices
the seeds of chaotic behavior@19# and govern the chaos
order-chaos transitions whose onset may be sudden and
expected@13–15,17,20,21# and so possibly overlooked in ex
periments. In particular, bifurcations inphase spacewill
have ramifications for spectroscopy as they lead to the em
gence of new families of orbits. We emphasize that, in t
paper, we are not necessarily looking for bifurcations t
may be implied from a study of the potential-energy, oref-
fectivepotential-energy, surface. It is certainly true that mu
of the richness of the dynamic of trapped ions can be un
stood based on the emergence or disappearance of equi
in the ~effective! potential. In the Paul trap a double we
emerges for particular values of the parameters that all
the stable trapping of two ions in a dumbbell configurati
@15#. Here our emphasis is, instead, on phase-space bifu
tions that may not be related to any observable bifurcati
in the potential-energy surface. An example of the imp
tance of this type of bifurcation can be found in studies
the vibrational dynamics of small molecules; there, class
studies have proved remarkably effective in pinpointing tr
sitions between librational and rotational modes@22#.

To achieve our objective we apply a technique that
mainly been used in celestial mechanics, with, however,
cent applications in atomic and chemical physics; norm
form theory~NFT!. To obtain the normal form one must firs
identify so-called ‘‘good’’ action-angle variables that are a
propriate to the dynamics at hand. The determination
action-angle variables reflecting the actual dynamics o
system is a significant issue in treating resonant~degenerate!
classical systems and one which has preoccupied cele
mechanicians and astronomers for more than a century~see,
@23,24# and references herein!. By means of the normaliza
tion, in the language of modern-day nonlinear classical
namics, the actual chaotic~nonintegrable! effective two-
degree-of-freedom Hamiltonian is replaced by a noncha
~integrable! approximation that is designed to provide go
agreement with the real dynamics@21,25#. This paper is the
first in a series that will use normal form methods to und
stand the various modes that can be induced in pertu
Penning traps containing one or more ions through the in
duction of perturbations. By exciting the relevant modes
various ion species the ion cloud absorbs energy and
allows the detection of species of spectroscopic interest,
in chemistry and astrophysics. In this paper we present
basic theory for studying the phase-space flow of a sin
charged particle in a perturbed Penning trap. Subseque
the separate and combined effects of applying several pe
bations, introducing other ions and breaking the overall a
symmetry, will be investigated using this approach and
extensions.

In addition to approximating the local dynamics close to
resonance, normalization, in the sense of NFT, also ha
second interpretation: it is areduction@26#. In the process of
normalization, the number of degrees of freedom falls by o
unit. Upon analyzing this fact from a geometric standpo
one will recognize that ignoring one coordinate, let us s
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c1, and holding its conjugate momentC1 as a paramete
amounts to partitioning the phase space into leaves con
ing of all states for which the parameter~the momentC1)
has a given value, collecting into classes all points with
that leaf that are images of one another by the canon
transformations generated by the integralC1, and then ‘‘re-
ducing’’ the phase space on each leafC15const. by han-
dling each class as an individual phase space. Thus the
that allows us to systematize the search through phase s
as the strength and number of perturbations applied are
ied.

The paper is organized as follows; Sec. II is devoted
the description of the problem of the motion in an unp
turbed Penning trap, and obtaining the Hamiltonian
action-angle variables. In Sec. III we present the perturb
potential function in a realistic trap, focussing our interest
the axially symmetric case. For the octupole perturbation
problem ~Sec. IV! can be reduced to only two degrees
freedom by making use of this symmetry. Then, we descr
a set of action-angle variables that are particularly apt for
application of a Lie transformation. Of special interest is t
analysis of the resonant case 1:1. In the presence of
resonance, we are able, first, to normalize the Hamilton
and second, to find the equilibria. In the process we disco
a saddle-node bifurcation in the normalized problem. O
analysis provides a global picture of the various bifurcatio
and allows one to understand the effects of varying
perturbing influences on the dynamics. Conclusions
in Sec. V.

II. THE HAMILTONIAN

In an ideal Penning trap, the electrode surfaces are infi
hyperboloids of revolution whose equations are

r 2

r 0
2

2
z2

z0
2

561,

where r 0 is the inner radius of the ring electrode andz0 is
half the distance between the two end caps. A positive v
ageU is applied to the end-cap electrodes with respect to
ring electrode. Besides this electric field, a time-independ
spatially homogeneous magnetic fieldB is present along the
z direction.

Since in a Penning trap both a constant electric an
constant magnetic field are present, the potential is take

be (f, 1
2 B3x). For a particle of massm moving in an ideal

Penning trap, the Lagrangian is

L5
m

2
~ ẋ21 ẏ21 ż2!1

eB

2c
~xẏ2yẋ!2ef, ~1!

where the quadrupole electric potential is

f5
U

2 z0
21r 0

2 ~2z22x22y2!.
3-2
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PHASE-SPACE STRUCTURE OF THE PENNING TRAP . . . PHYSICAL REVIEW A 65 033423
The Hamiltonian will be found as the Legendre transf
mation of the Lagrangian function

H~X,x!5X• ẋ2L,

where the canonically conjugate momentsX are the partial
derivatives

X5
]L
] ẋ

5“ ẋL.

Thus, it results that the Hamiltonian is

H5
1

2m
~X21Y21Z2!2

vc

2
~xY2yX!1

m

2

vm
2

4
~x21y2!

1
m

2
vz

2z2, ~2!

where

vc5
eB

mc

is thecyclotron frequency,

vz5A 4eU

m~2 z0
21r 0

2!

is theaxial frequency, and

vm5Avc
222vz

2

is a frequency related to the magnetron frequency~see@2# p.
51 for details!.

From here on, we take the unit of mass to bem51.
This Hamiltonian is integrable and may be put as a lin

combination of three harmonic oscillators. Indeed, thez vari-
able is uncoupled withx andy, hence, the classical Poinca´
transformation

Z5A2 vzF3cosw3 , z5A2 F3

vz
sinw3 ~3!

converts the term

Hz5
1
2 Z21 1

2 vz
2z2

into Hz5v3F3, where we putvz5v3.
On the other hand, the Lissajous transformation@27# de-

fined by

X52v1@s sin~w11w2!1d sin~w22w1!#,

Y5v1@s cos~w11w2!1d cos~w22w1!#,
~4!

x5s cos~w11w2!2d cos~w22w1!,

y5s sin~w11w2!2d sin~w22w1!,
03342
-

r

with s andd given by

v1s25~F11F2!/2, v1d25~F12F2!/2,

renders the expression

Hxy5
1

2
~X21Y2!1

1

8
vm

2 ~x21y2!2
vc

2
~xY2yX!

into

Hxy5v1F12v2F2 ,

where

v15vm/2, v25vc/2.

Thus, the canonical transformation made of the composi
of the two canonical ones, Lissajous~4! and Poincare´ ~3!,
converts the Hamiltonian~2! corresponding to the ideal Pen
ning trap into

H05v1F12v2F21v3F3 . ~5!

of immediate integration@3#.

III. PERTURBED PENNING TRAP

A real Penning trap differs from the ideal trap in seve
aspects. It has a finite size, the geometrical shape of
electrodes may differ from that of an ideal trap, there may
misalignment in the electrodes or the magnetic field, a
other perturbations may be added intentionally. Thus,
scalar potentialF and the vector potential that currently d
scribe the electromagnetic field on the trap routinely dif
from the one corresponding to the ideal hyperbolic Penn
trap.

Imperfections of the electrostatic field can be presente
a form of the series of spherical Legendre functions@2,3,28#

dF~r ,u,w!5 (
0< l<m<`

al ,mr l Pl
m~cosu!cos~mw!, ~6!

where (r ,u,w) are the spherical coordinates, andPl
m the as-

sociated Legendre polynomials.
Symmetries of the perturbation reduce the number

terms in the above expression. Indeed, symmetry un
space reflections with respect to the origin requiresal ,m50
for all odd l. On the other hand, axial symmetry about thez
axis requires the vanishing of all coefficientsal ,m with m
.0. Thus, when these two symmetries take place, the
turbation can be written in Cartesian coordinates as follo

P~x,y,z!5 (
0< l<`

a2l r
2l P2l~z/r !5(

0< l
V2l .

After some computations, one finds that the quadrupole t
is
3-3
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V25 1
2 a2~2z22x22y2!.

The octupole term is

V45 1
8 a4@8z4224z2~x21y2!13~x21y2!2#.

The contribution of the term,l 56, is

V65
a8

16
@16z62120z4~x21y2!190z2~x21y2!2

25~x21y2!3#.

The dominating terms of the nonlinear contribution d
pend on the actual trap geometry@5#. Thus, for example, in a
trap where the ideally hyperbolic electrodes are appro
mated by electrodes of spherical section, the main nonlin
term is the octupole@29#.

Quadrupole perturbation does not contribute to the d
culty of the problem, since the problemH01V2 still is inte-
grable. Indeed, after rearranging terms, it results

H5H01V25
1

2m
~X21Y21Z2!2

vc

2
~xY2yX!

1
m

2

ṽm
2

4
~x21y2!1

m

2
ṽz

2z2,

with ṽm
2 5vm

2 24a2 and ṽz
25vz

212a2. This Hamiltonian
has exactly the same form as the Hamiltonian~2!, which, as
above proved, is integrable. Thus, only higher terms in
multipole expansion will be considered.

The quadrupole (l 52) case was analytically solved b
Horvathet al. @5#. Our goal here is to study the octupolel
54) contribution, to obtain information about stability re
gions and to show the behavior of the phase flow.

IV. OCTUPOLE PERTURBATION
WITH AXIAL SYMMETRY

Let us consider that the perturbation is given by the oc
pole term with axial symmetry, which is to say,l 54. In such
a case, the Hamiltonian is

H5H01V4 .

This Hamiltonian is invariant by rotations about thez axis,
thus, by virtue of Noether’s theorem, the projection alo
this axis of the angular momentum vector is an integ
therefore, the termxY2yX is a constant that may b
dropped from the Hamiltonian that is reduced to

H5 1
2 ~X21Y21Z2!1 1

2 v1~x21y2!1 1
2 v3

2z2

1 1
8 a4@8z4224z2~x21y2!13~x21y2!2#. ~7!

The existence of this integral would amount to reduce
degrees of freedom by one. Indeed, by the canonical tr
formation ~4!, the term (x21y2) depends only on the angl
03342
-
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w1, while the transformation~3! makes the termz2 depend-
ing on the anglew3, and consequently, the anglew2 is cyclic
in the Hamiltonian~7!

H5H01a4H15v1F11v3F31
a4

16v1
2v3

2

3@3~8v1
2F3

2216v1v3F1F32v3
2F2

213v3
2F1

2!

212v3AF1
22F2

2~v3F124v1F3!cos 2w1

116v1F3~3v3F122v1F3!cos 2w3

13v3
2~F1

22F2
2!cos 4w118v1

2F3
2 cos 4w3

224F3AF1
22F2

2v1v3 cos 2~w11w3!

224F3AF1
22F2

2v1v3 cos 2~w12w3!#. ~8!

Considering the relatively simple nature of the perturb
tions, a straightforward Lie transformation is sufficient
carry out a reduction. The Lie transformation itself is easy
build; symbolic processors currently available simplify t
task as long as it is not carried out beyond excessively h
orders. In the present case, there is no need for carrying
the reduction beyond order two.

Normalization of a Hamiltonian of type

H~p,P,e!5 (
n>0

enHn~p,P!,

we recall@30,26,31#, is a one-parameter family of canonic
transformations

n:~p8,P8,e!→~p,P!

that changesH into a function

nH~p8,P8,e!5H„p~p8,P8,e!,P~p8,P8,e!,e…

in the kernel of the Lie derivativeL0.
The Lie derivative associated withH0 is the partial dif-

ferential operator

L0 :F→~F,H0!

mappingF onto its Poisson bracket to the right withH0. The
kernelof L0 is the set of functionsF such thatL0(F)50; the
imageof L0, the set of functionsF of the formF5L0(G).

In our case, the Lie derivative of the HamiltonianH0 in
Eq. ~8! is

L05v1

]

]w1
1v3

]

]w3
,

thus, when the two frequenciesv1 andv3 are not commen-
surable, the term
3-4
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H15
3a4

16v1
2v3

2 ~8v1
2F3

2216v1v3F1F32v3
2F2

213v3
2F1

2!

belongs to the kernel of the Lie derivative, and will be ch
sen as the normalized perturbed Hamiltonian~we omit the
primes for the sake of simplifying the notation!. The reduced
Hamiltonian depends only on the moments and it is direc
integrable.

Experiments with devices that modify the axial frequen
by superimposing a quadratic magnetic-field component
the homogeneous magnetic field of the Penning trap are
ported in Ref.@6#.

In the case of commensurability, that is, when the t
frequenciesv1 andv3 are equal, the term in Eq.~8! contain-
ing cos 2(w12w2) belongs to the kernel ofL0, thus, it must
remain in the new Hamiltonian, which is of two degrees
freedom and, in principle, not integrable. However, it is po
sible to reduce the degrees of freedom by making a n
canonical transformation
(F1 ,F3 ,w1 ,w3)°(C1 ,C3 ,c1 ,c3), similar to the one
given in @32,33#, as the mapping

F15C11C3 , w15 1
2 ~c11c3!,

F35C12C3 , w35 1
2 ~c12c3!. ~9!

In these variables, the Hamiltonian~8! reads

H5H01a4H1

52v1C12
a4

16v1
2 @3~F2

215C1
2110C1C3227C3

2!

124~C12C3!A~C11C3!22F2
2cos 2c1124~C1

2C3!A~C11C3!22F2
2cos 2c3

212~3C125C3!A~C11C3!22F2
2cos~c11c3!

216~C12C3!~C115C3!cos~c12c3!

23„~C11C3!22F2
2
…cos 2~c11c3!

28~C12C3!2 cos 2~c12c3!#. ~10!

The perturbation belongs to the algebra of Fourier se
in the anglec3; hence, the kernel ofL0 consists of the sub
algebra of functions that do not depend onc3, and the nor-
malization that we have in view is a Delaunay normalizat
that convertsH into its average over the anglec3 @34#. The
Lie derivative is very simple; indeed, it is the partial deriv
tive

L052v1

]

]c1
,

therefore, the reduced Hamiltonian@those terms of Eq.~10!
belonging to the kernel of this Lie derivative# is
03342
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H52v1C12
3a4

16v1
2 @~F2

215C1
2110C1C3227C3

2!

18~C12C3!A~C11C3!22F2
2cos 2c3#,

which is a Hamiltonian with only one degree of freedom
the variables (c3 ,C3), since nowC1 is an integral.

First at all, let us note that the value ofF2 is irrelevant,
assuming it to be nonzero. Indeed, by defining the dim
sionless moments

C̃15C1 /F2 , C̃35C3 /F2 ,

and by the time scalingt5F2t, the Hamiltonian becomes

H52v1C̃12
3a4

16v1
2 @~115C̃1

2110C̃1C̃3227C̃3
2!

18~C̃12C̃3!A~C̃11C̃3!221 cos 2c3#.

The equations of motion for this Hamiltonian are

d C3

d t
52

]H
]c3

52
3a4

v1
2 ~C̃12C̃3!A~C̃11C̃3!221 sin 2c3 ,

d c3

d t
5

]H
]C̃3

52
3a4

8v1
2 F ~5C̃1227C̃3!

2
4~122C̃1C̃322C̃3

2!

A~C̃11C̃3!221
Gcos 2c3 .

Equilibria are the roots of the system made by equating
zero the equations of the motion. Note that not all solutio
of this system are valid, since on the one hand, from
definition of the Lissajous variables,F1.F2, and F3>0,
and besides, from Eq.~9!, it results thatC1.1/2, C3,C1,
and C11C35F1.F2, therefore,C̃11C̃3.1. According
to this, c35p/4 or c353p/4, which cancel out the secon
equation are not solutions.

The first one of the above equations vanishes for eit
c350 or c35p/2. For the first case (c350) the equilibria
are the roots of the equation

~5C̃1227C̃3!2
4~122C̃1C̃322C̃3

2!

A~C̃11C̃3!221
50, ~11!

which always exists forC̃1>0.5. The plotC̃1 versusC̃3 of
the roots of this equation is represented in Fig. 1~above!.

For the second case (c35p/2), the equilibria must obey
the equation
3-5
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~5C̃1227C̃3!1
4~122C̃1C̃322C̃3

2!

A~C̃11C̃3!221
50, ~12!

and it is represented in Fig. 1~below!. Note that this equation
has two roots forC̃1>1.199 009 336 219, and none outsi
this interval. Thus, there is a bifurcation for this value. A
though we do not prove analytically the stability of the eq
libria, we can see, by inspection of the phase flow that
equilibria atc350,p are always stable, whereas of the tw
equilibria atc35p/2, one of the equilibrium points~corre-
sponding to the smaller value ofC̃3) is a local energy maxi-
mum and is also stable. The remaining equilibrium is
saddle point and is unstable~see Fig. 2, obtained for th
valueC̃151.5).

V. CONCLUSIONS

In this short paper we have provided the basis for a s
tematic study of the structure of phase space for a single
in a Penning trap perturbed by, in principle, a number
disturbing forces simultaneously applied. For the case
hand we discovered a saddle-node bifurcation. The bifu
tion manifests itself by the appearance, at a critical value
C̃1, of two new equilibria along the linec35p/2, one stable
and another one unstable. Since an equilibrium in the
duced Hamiltonian accounts for a periodic orbit in the ori
nal problem, a closed-form expression for the homocli
passing by the unstable point would be very helpful; inde

FIG. 1. Geometricallocusof the equilibria: abovec350, below
c35p/2.
03342
-
e

a

s-
n
f
at
a-
f

e-
-
c
,

together with Melnikov’s theorem@31#, it would serve to
decide which perturbations added to the quadrupole pote
would induce chaotic behavior in the neighborhood of t
unstable periodic solution. Moreover, this approach will
useful for studying several combined perturbations. A no
trivial extension of the method will be to the case oftwo or
more interacting ions for which new sets of ‘‘good’’ action
angle variables are needed. Work in all of these direction
underway.
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FIG. 2. Energy plot~bottom! and contour levels~top! for C1

51.5. We identify four equilibria, three stable and one unstable
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