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Phase-space structure of the Penning trap with octupole perturbation
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A Lie transformation is developed to study the structure of classical phase space for a perturbed Penning
trap. In general, perturbations may result from imperfections or may be deliberately introduced into the system
by the application of fields. We study the lowest-order nontrivial perturbation in the trap, which is octupolar,
using classical perturbation methods. The original three-degree-of-freedom problem is reduced to a single
degree of freedom byi) symmetry argumentsji) generation of apt action-angle variables, diid compu-
tation of the classicatormal form The phase-space structure of the resulting normalized Hamiltonian, in the
1:1 resonance, is then analyzed. In the process we discover a saddle-node bifurcation. This approach provides
for a global view of the reduced phase space, and, thereby, allows for a systematic study of the impact of
several simultaneously applied perturbations.
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[. INTRODUCTION drogen atom, the classical and quantum theories of the Pen-
ning trap itself are self-contained and exact. Indeed, the
The Penning trapl] is an exceptionally stable technique stability of the Penning trap derives largely from the simple
for trapping charged particles. Consequently, it has becomeature of the confining potential: the system displaysxial
one of the most versatile experimental devices in atomic andymmetry, thus leading to angular momentum conservation
molecular physic§2-5]. Applications of the Penning trap and(ii) an essentially harmonic form of confining potential.
are broad and have included tests of fundamental theorie$his provides a natural launching point for investigating per-
e.g., of QED, and the determination of fundamental physicaturbations that destroy one or other, or both, of these sym-
constants such as the fine-structure condtént]. As well  metries. For example, Squires al. [18] have studied the
as being useful for the study of isolated charged particles, dsreakdown of axial symmetry in a so-called combined
in the classic geonium experimef®], modified Penning Penning-loffe trap and identified stable orbits that adiabati-
traps have been used with advantage to study singlezally continue from the axially symmetric case. These inves-
component plasmas. Recently Penning traps have beeigators were also able to identify particular frequencies and
shown to allow the trapping of large numbers of ions at veryresonances that give rise to instability. In this spirit, the cur-
low temperatures: remarkably, ion crystals containing ap+ent paper studies the effect of octupolar perturbations on the
proximately 16 ions have been observed by Bragg diffrac- phase-space structure of the Penning trap with the objective
tion. van Eijkelenborget al.[10] have trapped the molecular of developing a way of systematizing the search through
ions HCO" and NH™, which, through their interactions phase space.
with Mg™ ions, were sympathetically cooled to 4 K. Char-  As indicated, while perturbations may arise from me-
acteristic and mass-dependent breathing-mode frequenciebanical imperfections they are often deliberately introduced
were then used to detect the molecules. Thus, the Penning a controlled fashion as a way to perturb the motions of the
trap served essentially as a mass spectrometer. More recentdgnfined particles, e.g., in a mass spectrometric experiment.
the Penning trap has been used as a quantum computihg the ideal trap, confinement along thexis is realized by
device by taking advantage of hysteresis and bistability of applying a three-electrode structure, two of them being, in
parametrically driven electron that served as a 1-bit memoryhe ideal case, hyperboloids of revolution, located alongthe
[11,12. There have also been a number of classical andxis, and the third one, a ring electrode similar to the form of
guantum studies of the Penning trap together with perturbethe inner surface of a toroid. Taken together these generate
variants thereof13-16. the electrostatic quadrupole potential that acts as a trap along
Given the variety of perturbations that are of interest, andhe z direction. Along thex- andy-axes the motion, however,
the possibility of uncovering new effects by simultaneouslyis unstable. To effect stable motion in the radial plane, a
applying several perturbations of various strengths, it ignagnetic field along the direction is added that causes
clearly desirable to develop a method for studying and coneharged particles to circulate along cyclotron-type orbits
ceptualizing the dynamics. For example, several unexpectegiound the center of the trap. For details and description of
phenomena have been discovered in perturbed Rydberg ateveral ion traps, the reader is referred to R2¥.
oms using similar approachgk7]. Like the unperturbed hy- The highly nonlinear nature of the dynamics makes per-
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turbed ion traps ideal candidates for studies of integrabilityys;, and holding its conjugate momeHt,; as a parameter
and chaotic behavior in classical and quantum mechanicamounts to partitioning the phase space into leaves consist-
[15]. Bifurcations, unstable equilibria, and separatrices aréng of all states for which the parametéhe moment¥,)
the seeds of chaotic behavift9] and govern the chaos- has a given value, collecting into classes all points within
order-chaos transitions whose onset may be sudden and uat leaf that are images of one another by the canonical
expected13—15,17,20,2lland so possibly overlooked in ex- transformations generated by the integtal, and then “re-
periments. In particular, bifurcations iphase spacewill ~ ducing” the phase space on each lel{=const. by han-
have ramifications for spectroscopy as they lead to the emeflling each class as an individual phase space. Thus the key
gence of new families of orbits. We emphasize that, in thidhat allows us to systematize the search_through phase space
paper, we are not necessarily looking for bifurcations tha@S the strength and number of perturbations applied are var-
may be implied from a study of the potential-energy,ebr ied. . ) )
fectivepotential-energy, surface. It is certainly true that much ~ The paper is organized as follows; Sec. Il is devoted to
of the richness of the dynamic of trapped ions can be undeth€ description of the problem of the motion in an unper-
stood based on the emergence or disappearance of equilibfifPed Penning trap, and obtaining the Hamiltonian in
in the (effective potential. In the Paul trap a double well act|0n-_angle v_arla_bles. In_S_ec. 1 we pres_ent the_ perturbing
emerges for particular values of the parameters that a||0Wgotent_|al function ina realistic trap, focussing our mtergst on
the stable trapping of two ions in a dumbbell configurationthe axially symmetric case. For the octupole perturbation the
[15]. Here our emphasis is, instead, on phase-space bifurcRoblem(Sec. IV) can be reduced to only two degrees of
tions that may not be related to any observable bifurcation§®€dom by making use of this symmetry. Then, we describe
in the potential-energy surface. An example of the impor-2 set of _actlon-angle variables t_hat are partpulgrly apt f_or the
tance of this type of bifurcation can be found in studies Ofapphca}uon of a Lie transformation. Of special interest is the.
the vibrational dynamics of small molecules; there, classicanalysis of the resonant case 1:1. In the presence of this
studies have proved remarkably effective in pinpointing tran€Sonance, we are able, first, to normalize the Hamiltonian,
sitions between librational and rotational modag]. and second, to flr_1d the .equllllbrla. In the process we discover
To achieve our objective we apply a technique that ha® sadqlle-nod_e bifurcation in the normallze_d proplem. Our
mainly been used in celestial mechanics, with, however, re@nalysis provides a global picture of the various blfur_cat|ons
cent applications in atomic and chemical physics; normafnd allows one to understand the effects of varying the
form theory(NFT). To obtain the normal form one must first Perturbing influences on the dynamics. Conclusions are
identify so-called “good” action-angle variables that are ap-n Sec. V.
propriate to the dynamics at hand. The determination of
action-angle variables reflecting the actual dynamics of a Il. THE HAMILTONIAN
system is a significant issue in treating resoridagenerate . . o
classical systems and one which has preoccupied celestial In an |d§al Penning trap, the eIectrod(_e surfaces are infinite
mechanicians and astronomers for more than a cerigay, YPerboloids of revolution whose equations are
[23,24] and references herginBy means of the normaliza-

tion, in the language of modern-day nonlinear classical dy- 2 22
namics, the actual chaotinonintegrablg effective two- - 53=*1
degree-of-freedom Hamiltonian is replaced by a nonchaotic o %o

(integrable approximation that is designed to provide good ) ] . ] )
agreement with the real dynamif1,25. This paper is the Wherery is the inner radius of the ring electrode anglis
first in a series that will use normal form methods to under-half the distance between the two end caps. A positive volt-
stand the various modes that can be induced in perturbed@eV is applied to the end-cap electrodes with respect to the
Penning traps Containing one or more ions through the introﬂng §|eCtr0de. Besides this e|e(?tI‘I(.: f|e|d, a tlme—lndependent
duction of perturbations. By exciting the relevant modes ofSPatially homogeneous magnetic fidds present along the
various ion species the ion cloud absorbs energy and thigdirection. _ _
allows the detection of species of spectroscopic interest, e.g., Since in a Penning trap both a constant electric and a
in chemistry and astrophysics. In this paper we present theonstant magnetic field are present, the potential is taken to
basic theory for studying the phase-space flow of a singlée (¢,3BXx). For a particle of mass1 moving in an ideal
charged particle in a perturbed Penning trap. SubsequentiPenning trap, the Lagrangian is
the separate and combined effects of applying several pertur-
bations, introducing other ions and breaking the overall axial m.. . . eB . _
symmetry, will be investigated using this approach and its L=—=(X%+y?+7%)+—(Xy—yXx)—ed, (1)
extensions. 2 2c

In addition to approximating the local dynamics close to a ) o
resonance, normalization, in the sense of NFT, also has §here the quadrupole electric potential is
second interpretation: it is @duction[26]. In the process of
normalization, the number of degrees of freedom falls by one U
unit. Upon analyzing this fact from a geometric standpoint, ¢=—5——(22°—x*~y?).
one will recognize that ignoring one coordinate, let us say 27510

033423-2



PHASE-SPACE STRUCTURE OF THE PENNING TRA . .

PHYSICAL REVIEW A 65 033423

The Hamiltonian will be found as the Legendre transfor-with s andd given by

mation of the Lagrangian function

H(X,X)=X-X— L,

where the canonically conjugate momebtsare the partial
derivatives

X=—=V,L.
Ix

Thus, it results that the Hamiltonian is

1 w m w?
— T (X2avy2yi72y_ ¢ _ L M24\,2
H 2m(X +Y*+Z%) 2(xY yX)Jr2 4(x +y°)

m

+5 w?z?, 2)
where
e B
“e"me
is the cyclotron frequency
4eU

o=
‘ m(2z5+rd)

is the axial frequencyand
wn=Vwi— 205

is a frequency related to the magnetron frequeiseg| 2] p.
51 for details.
From here on, we take the unit of mass torbe 1.

0157=(D1+D,)/2, w102=(D,—D))/2,

renders the expression
1 1 0
_ 2, \2 2(y2.4\,2 c
ny—z(x +Y9)+ gwm(x +y )—7(XY—yX)
into
ny:"-’lq)l_qu)Za
where

W= 02, w=w/2.

Thus, the canonical transformation made of the composition
of the two canonical ones, Lissajo@) and Poincarg3),
converts the Hamiltoniaf®) corresponding to the ideal Pen-
ning trap into

H0=w1q)1—w2<132+w3(1>3. (5)

of immediate integratiof3].

Ill. PERTURBED PENNING TRAP

A real Penning trap differs from the ideal trap in several
aspects. It has a finite size, the geometrical shape of the
electrodes may differ from that of an ideal trap, there may be
misalignment in the electrodes or the magnetic field, and
other perturbations may be added intentionally. Thus, the
scalar potentiafp and the vector potential that currently de-
scribe the electromagnetic field on the trap routinely differ
from the one corresponding to the ideal hyperbolic Penning

This Hamiltonian is integrable and may be put as a lineat’ap-

combination of three harmonic oscillators. Indeed, zkari-

Imperfections of the electrostatic field can be presented in

able is uncoupled witk andy, hence, the classical Poincare @ form of the series of spherical Legendre functifs,2§

transformation

2@,

Z=\2 w,P3C0S¢p3, zZ=

Sines 3

z

converts the term
H,=322+ sl
into H,= w3®3, where we puw,= ws.
On the other hand, the Lissajous transformafi@n] de-
fined by
X=—wq[ssin(¢1+ ¢,) +dsin(¢,—¢1)],
Y=wi[scog¢1+ ¢y)+dcog e~ ¢1)],
4
X=sC0g @1+ ¢y)—d cog @~ ¢1),

y=ssin(¢;+ ¢,) —dsin(¢,— ¢1),

SP(r,0,0)= > a nr'Pl(cosh)cogme), (6)

oslsm=s»

where ,6,¢) are the spherical coordinates, aRfl the as-
sociated Legendre polynomials.

Symmetries of the perturbation reduce the number of
terms in the above expression. Indeed, symmetry under
space reflections with respect to the origin requigg=0
for all oddl. On the other hand, axial symmetry about the
axis requires the vanishing of all coefficierag,, with m
>0. Thus, when these two symmetries take place, the per-
turbation can be written in Cartesian coordinates as follows:

P(x,y,z)=0<|2< ayr? P2|(z/r)=oz,l V.

=s|l=x

After some computations, one finds that the quadrupole term
is
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V,=1a,(222—x%—y?). @1, while the transformatioif3) makes the ternz? depend-
ing on the angleps, and consequently, the ang}sg is cyclic
The octupole term is in the Hamiltonian(7)
V= ta,[82%— 2422 (x%+y?) + 3(x2+y?)?]. a
. . H=Hot+asH1= w1 P1+ w3®3+%
The contribution of the term,=6, is 16wiws

X[3(8w2P3— 160, w3D 1P 3— w35+ 305d3)

ag
V=12 162°— 1202*(x*+y?) + 902%(x* +y?)?
° 16 — 1203\ D2~ DE(wsD; — 4w, P3)COS 2p;

—50x*+y?)°]. +160,D5(3ws®,— 20, D4)COS 2og
The dominating terms of the nonlinear contribution de- +3w5(Pi— D3)cos dpy +8wid3 cos 4ps
pend on the actual trap geomefB). Thus, for example, in a
trap where the ideally hyperbolic electrodes are approxi- — 24D 3\ D% — D50 w3 COS A @1+ @3)
mated by electrodes of spherical section, the main nonlinear —
term is the octupol¢29]. — 240301~ Prw;03C0S A 91— ¢3)]. 8
Quadrupole perturbation does not contribute to the diffi-
culty of the problem, since the probleht,+V, still is inte- Considering the relatively simple nature of the perturba-
grable. Indeed, after rearranging terms, it results tions, a straightforward Lie transformation is sufficient to

carry out a reduction. The Lie transformation itself is easy to

1 w build; symbolic processors currently available simplify the
H=H0+V2:2—(X2+ Y2+ ZZ)—7°(xY—yX) task as long as it is not carried out beyond excessively high
m orders. In the present case, there is no need for carrying out
~2 the reduction beyond order two.
M Om )2t y2)+ To2s2 Normalization of a Hamiltonian of
+ 57()( +y?)+ w2, ormalization of a Hamiltonian of type
with f,=wp—4a, and w;=w;+2a,. This Hamiltonian H(p,Pe)= > €"H. (pP),
has exactly the same form as the Hamiltonian which, as n=0
above proved, is integrable. Thus, only higher terms in the
multipole expansion will be considered. we recall[30,26,31], is a one-parameter family of canonical

The quadrupole|=2) case was analytically solved by transformations
Horvathet al. [5]. Our goal here is to study the octupole (
=4) contribution, to obtain information about stability re- vi(p' P, e)—(p,P)
gions and to show the behavior of the phase flow.

that change$t into a function
IV. OCTUPOLE PERTURBATION

WITH AXIAL SYMMETRY VH( p, 1P, ’ E) = H(p( p, |P, ’ 6) ’ P( p, 1P, ’ E) ’ 6)

Let us consider that the perturbation is given by the octu-
pole term with axial symmetry, which is to say; 4. In such  in the kernel of the Lie derivative,.
a case, the Hamiltonian is The Lie derivative associated witH, is the partial dif-

ferential operator
H:H0+V4.

. o : . Lo:F—(F, Ho)
This Hamiltonian is invariant by rotations about thexis,
thus, by virtue of Noether's theorem, the projection alongm,oningr onto its Poisson bracket to the right witty. The
this axis of the angular mo_mentum vector is an 'ntegral’kemelofLo is the set of function§ such thato(F)=0: the
therefore, the termxY—yX is a constant that may be jnageof L, the set of functions of the formF=Ly(G).
dropped from the Hamiltonian that is reduced to In our case, the Lie derivative of the Hamiltoni&ty in

Eqg. (8) is
H=3(X?+Y?+Z?)+ Jo,(x*+y?) + s w32° q

1 4_ 2/y2 11,2 2 2\2 Jd J
+ 5 ay[82"—24z°(x“+y ) +3(x“+y9)°]. (V) Lo= 01— + wg—,
deq de3
The existence of this integral would amount to reduce the
degrees of freedom by one. Indeed, by the canonical transhus, when the two frequencies, and w5 are not commen-

formation (4), the term &*+y?) depends only on the angle surable, the term
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_ 324 252 _ 252 24,2 _ _ 3a, 2 2 . 2
Hl— 2 2(8(»1(1)3 16(1)1(1)3(1)1(133 (,()3(132"1‘3(1)3(1)1) H—Zwqul _2[((D2+5q,1+ 10\1,1’\1}3 27\1,3)
belongs to the kernel of the Lie derivative, and will be cho- +8(W—W3) V(W1 +W3)2—DScos 2],

sen as the normalized perturbed Hamiltoniare omit the

primes for the sake of simplifying the notatjohe reduced which is a Hamiltonian with only one degree of freedom in
Hamiltonian depends only on the moments and it is directhithe variables ¢5,V3), since now¥, is an integral.
integrable. First at all, let us note that the value @& is irrelevant,

Experiments with devices that modify the axial frequencyassuming it to be nonzero. Indeed, by defining the dimen-
by superimposing a quadratic magnetic-field component osionless moments
the homogeneous magnetic field of the Penning trap are re-
ported in Ref[6].

In the case of commensurability, that is, when the two
frequenciesv; andwz are equal, the term in E¢8) contain- ) ) o
ing cos 2¢;—¢,) belongs to the kernel df,, thus, it must —and by the time scaling=®,t, the Hamiltonian becomes
remain in the new Hamiltonian, which is of two degrees of
freedom and, in principle, not integrable. However, it is pos- B 3a, B o ~
sible to reduce the degrees of freedom by making a new H:Zwl\lfl——z[(1+5\lf§+ 107, ;—277%)

16w

;I’ll:\l,l/q)z, @3:’\1’3/(1)2,

canonical transformation
(DP1,P3,01,03)—(V1,V3,1,¢3), similar to the one - —
given in[32,33, as the mapping +8(W1—W3) V(W +W3)%—1 cos 23]
O =V, +Vs,  @1=1(¢gy+ i), The equations of motion for this Hamiltonian are
Gy=T, -V, =1(y1—h3). 9 dwv IH 384 ~  ~ ———
3=V~ W3,  @3=35 (1~ ) 9 3 _ 3 G 4Ty 1sin 2y,

dr _5_‘//3 - w%
In these variables, the Hamiltoni&8) reads

e = 2| (57, - 27,)
a4 2 2 2 d T J‘Pg, 8(1)%
S[3(D3+5W2+ 10W, W5 2703)
1

:2(1)1\[,1_1
4(1-2%,V;—2V3)

F 24V — W) (W, + W 4)2— D2COS 2, + 24(W - — COS 2fr3.
AW = W) V(W + W5 2C0S 2, 1 /(\If1+\lf3)2—1

— W) (W +Wg)*— P30S 2
Equilibria are the roots of the system made by equating to

2
—12(3W;—5W3) (V1 +W3)“— D5c0q if1 + if3) zero the equations of the motion. Note that not all solutions

16V — W) (V4 5¥.)co _ of this system are valid, since on the one hand, from the
A% 3V 3)C08 /1~ ) definition of the Lissajous variable®,>®,, and ®;=0,

—3((V1+W3)%— d3)cos A i, + i) and besides, from Eq9), it results thatV' ;>1/2, V<V,
B B 2 B and ¥, +W¥,=d,>d,, therefore, ¥, +W¥;>1. According
8(W1=W3)"cos Ay —ys) ] 10 this, 3= m/4 or yi3=3x/4, which cancel out the second

equation are not solutions.

S The first one of the above equations vanishes for either
3=0 or 3= /2. For the first casey;=0) the equilibria
are the roots of the equation

The perturbation belongs to the algebra of Fourier serie
in the angleys; hence, the kernel df, consists of the sub-
algebra of functions that do not depend #g and the nor-
malization that we have in view is a Delaunay normalization
that convertsH into its average over the angig; [34]. The

Lie derivative is very simple; indeed, it is the partial deriva- B B 4(1— 2@1@3_2@5)
tive (5W,—27¥3) — =0, (11
V(P +T5)%—1
L0—2wla—¢l, which always exists fol’;=0.5. The plot¥,; versus¥ ; of
the roots of this equation is represented in Figatove.
therefore, the reduced Hamiltonigtihose terms of E¢(10) For the second casel¢= 7/2), the equilibria must obey

belonging to the kernel of this Lie derivatijes the equation
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and it is represented in Fig.(below). Note that this equation
has two roots for’;=1.199 009 336 219, and none outside
this interval. Thus, there is a bifurcation for this value. Al-
though we do not prove analytically the stability of the equi-
libria, we can see, by inspection of the phase flow that the
equilibria aty;=0,7 are always stable, whereas of the two ~ FIG. 2. Energy plot(bottom) and contour levelstop) for ¥,
equilibria atys= /2, one of the equilibrium pointécorre- =1.5. We identify four equilibria, three stable and one unstable.

sponding to the smaller value 8f,) is a local energy maxi-
mum and is also stable. The remaining equilibrium is atogether with Melnikov's theoreni31], it would serve to
saddle point and is unstablsee Fig. 2, obtained for the decide which perturbations added to the quadrupole potential
value¥,=1.5). would induce chaotic behavior in the n_eighborhood o_f the
unstable periodic solution. Moreover, this approach will be
useful for studying several combined perturbations. A non-
V. CONCLUSIONS trivial extension of the method will be to the casetab or

In this short paper we have provided the basis for a Sysr_nore inte_racting ions for which new sets of “good" acj[ion—_
tematic study of the structure of phase space for a single ioﬁngle variables are needed. Work in all of these directions is
in a Penning trap perturbed by, in principle, a number Ofunderway.
disturbing forces simultaneously applied. For the case at
hand we discovered a saddle-node bifurcation. The bifurca-
tion manifests itself by the appearance, at a critical value of ACKNOWLEDGMENTS
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