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Density-functional calculations in a two-dimensional finite-element basis for atoms
in very strong magnetic fields: Energy values
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Results of density-functional calculations for atoms in very strong magnetic fields using a two-dimensional
finite-element basis set are reported for ground-state energies of helium, carbon, and neon, and for some
excited states of helium. We give results obtained by using three different local-density functionals. A com-
parison with multi-Landau-channel Hartree-Fock calculations shows reasonable agreement for helium.
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I. INTRODUCTION

The properties of atoms in very strong magnetic fie
have been the subject of many research efforts during the
three decades. Noteworthy are the investigations on Wan
excitons by Fritsche and co-workers@1,2#, the paper by Ca-
nuto and Ventura@3#, and the many publications in this fiel
from the group of Ruder and Wunner in Erlangen und Tu¨b-
ingen; see Refs.@4–7# and references therein. This is, on t
one hand, due to the discovery of very strongly magneti
objects in the universe, in particular, white dwarfs@8# and
neutron stars@9#. On the other hand, the topic of the dynam
ics of quantum systems under the influence of the compe
symmetries of Coulomb and Lorentz forces has by its
been a strong motivation. In addition, there have also b
developments in solid-state physics, which gave additio
impetus for this research field.

For hydrogen and hydrogenlike systems, the calculati
have now reached a very complete level@10#. However, for
many-electron atoms beyond helium, nearly all calculatio
have so far been done in the adiabatic approximation, wh
assumes that the one-particle wave functions are in cylin
cal coordinatesr,z,f given by a product of a function ofz
and the eigenfunctions of the two-dimensional harmonic
cillator or Landau functions inr and f. Two examples for
this approach are the Hartree-Fock calculations by Mi
@11# and the heuristic density-functional calculations
Jones@12#. Thus, one assumes that the electron only oc
pies the lowest Landau level for a given value of the m
netic quantum numberm. There have been some efforts
improve on this by adding more Landau channels@13#.

The use of density-functional-theory techniques for ma
electron atoms is an attractive option, since it does not
volve the calculation of computationally intensive exchan
integrals.

Already more than 10 years ago, Vignale and Rasolt h
developed@14–17# the theoretical framework of a curren
density-functional theory applicable to our current proble
In their formalism, the exchange-correlation functional a
depends on the paramagnetic current density. However
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exchange-correlation energy is a portion of the total electr
electron interaction energy, which in a nonrelativistic d
scription, and if one neglects the current-current, curre
spin, and spin-spin interactions between the electrons, a
which are many orders of magnitude smaller than the in
ence of the external magnetic field, does not involve
current density. There is of course a rather strong indir
dependence in the sense that the magnetic field change
densities from the field-free case. Thus we can drop the
rect current dependence from the functionals in the o
particle equations obtained by Vignale and co-workers a
simply use the density-dependent functionals as they h
been used in the field-free case.

In this paper, we will report on the results of densit
functional calculations in cylindrical coordinates employin
a two-dimensional finite element basis inr and z. This al-
lows, in principle, for a smooth connection to the low-fie
domain, since the details of the grid can be adopted to
strength of the magnetic field, and there are, apart from
cusp condition at the origin, no difficulties in obtaining low
field solutions in this basis set. Even this problem is not
major consequence for the accuracy of the wave function
the grid is suitably concentrated at the origin. However,
this paper, we will treat only the case of very strong ma
netic fields and there only consider the spin-polarized ca
where all spins are antiparallel to the magnetic field, which
energetically favored.

The paper is organized as follows: in Sec. II, we show
Hamiltonian. In Sec. III, we describe our ansatz. In Sec.
we discuss the numerical method used, while in Sec. V, so
results of our calculations are presented. Finally, in Sec.
we present our conclusions.

II. THE HAMILTONIAN

We consider an atom consisting ofne electrons and a
nucleus of chargeZe in a homogeneous magnetic fieldB
along thez axis. UsingZ-scaled atomic units, i.e., as energ
unit EZ5Z2 Rydberg and as length unitaBohr/Z, neglecting
the finite mass of the nucleus, and choosing the follow
cylindrically symmetric gauge, i.e., the vector potential as

A5bZez3r, ~1!

the Hamiltonian reads in cylindrical coordinates (r i ,zi ,f i)
-
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, ~2!

with bZ5B/(Z234.70103105 T! and thez componentsl zi
,

szi
of the angular-momentum operator and spin for thei th

electron in units of\. Neglecting the finite mass of th
nucleus has two effects: first, the well-known mas
polarization effect that is present irrespective of the stren
of the magnetic field and the corrections due to the motion
the charged nucleus in the magnetic field, which will gro
with bZ . Thus the energies obtained for very largebZ values
of the order 1000 have to be considered as rather appr
mative values.

For very strong magnetic fields, i.e.,bZ*1, the spin-flip
energy of 4bZEZ per electron means that all electrons will b
in a spin-down state for the ground state and many low-ly
states. Thus the space part of the wave function will be
tally antisymmetric. For the remainder of this paper, we o
consider states of this kind and suppress the spin degre
freedom.

III. THE ANSATZ FOR THE WAVE FUNCTION

We will describe the wave function by a single Slat
determinant C constructed from suitably chosen on
electron wave functionsF i , i.e.,

C~r1 ,r2 , . . . ,rne
!

5
1

Ane!
(
P

~21!PPF1~r1!F2~r2!•••Fne
~rne

!, ~3!

whereP is the permutation operator. Calculating the exp
tation value^H& for this ansatz, we obtain

^H&5(
i

^F i u2
1

r

]

]r
r

]

]r
1

l z
2

r2
2

]2

]z2
2

2

Ar21z2

12bZ@ l z12sz#1bZ
2r2uF i&1

2

Z

1

2 (
i , j

E dr

3E dr8 F i* ~r!F j* ~r8!
1

ur2r8u
F i~r!F j~r8!2

2

Z

1

2

3(
i , j

E drE dr8 F j* ~r!F i* ~r8!
1

ur2r8u
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Looking for an extremum of the energy under the orthog
nality conditions

^F i uF j&5d i j , ~5!

requiring ne
2 Lagrange multiplierse i j we obtain the well

known Hartree-Fock equations which in the units defin
above read

H 2
1

r

]

]r
r

]

]r
1

l z
2

r2
2

]2

]z2
2

2

Ar21z2
12bZ@ l z12sz#

1bZ
2r21

2

ZE n~r8!

ur2r8u
dr8J F i~r!

2
2

ZE (
j

f j~r!f j* ~r8!

ur2r8u
F i~r8!dr85(

j
e i j f j~r!,

~6!

with the density

n~r!5(
i

F i* ~r!F i~r!. ~7!

It is now customary to specialize to the casee i j 5d i j e i ,
which can always be achieved by applying a rotation to
vector of wave functions (F i).

The nonlocal exchange terms in the above equati
make, however, the application of the Hartree-Fock meth
very demanding in terms of computational power, since
large number of matrix elements of the type^ i j u1/r 12ukl&
have to be evaluated. Therefore, the density-functional
proach, where the exchange term in Eq.~4! is approximated
by a functional of the one-particle densityn, is more conve-
nient and should, for the purposes of this calculation, still
accurate enough. In addition, the density-functional appro
allows for the inclusion of correlation effects at least in pri
ciple. We have, however, to keep in mind that the dens
functional approach is normally restricted to ground stat
In this work, we use it for low-lying excited states as we
which can be justified along the lines of a generalized Ko
Sham approach@19–21#, where it is shown, that state
dependent local functionals exist that lead to Slater deter
nants that have the correct one-particle density. Thus,
admittedly use the density-functional approach in a heuri
manner, since the exact functionals are not known, but th
the case with most of the current application of the dens
functional theory.

In the following we restrict ourselves to the so-calle
local-density approximation, where the exchange and co
lation functional is expressed as

Exc@n#5E n~r!exc„n~r!…dr, ~8!

leading to a local potential
5-2
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vxc~r!5n~r!
]exc

]n
1exc„n~r!…. ~9!

Thus, we use the following self-consistent one-parti
Hamiltonian for an electron with spin21/2 and magnetic
quantum numberm<0,

Heff m52
1

r

]

]r
r

]

]r
1

m2

r2
2

]2

]z2
2

2

Ar21z2
22bZ@ umu11#

1bZ
2r21

2

Z K E n~r8!

ur2r8u
dr8L

f

1^vxc~r!&f , ~10!

where ^•••&f stands for the average over the azimuth
angle, with associated eigenvaluese i . Since the potentials in
question are cylindrically symmetric, this average is equi
lent to taking the potentials atf50. Evaluating the expec
tation value of̂ H& for our density-functional approach, w
obtain

E5(
i

e i2
2

Z

1

2E n~r8!n~r!

ur2r8u
dr dr81E n~r!exc„n~r!…dr

2E n~r!vxc„n~r!…dr. ~11!

The low-lying eigenstates of the effective Hamiltonian~10!
can be classified in analogy to those of hydrogen in a str
magnetic field as detailed in Chap. 4 of Ref.@10#. For pur-
pose of this classification, it is convenient to consider
adiabatic approximation, where the (r,z)-dependent portion
of the wave function is assumed to have the form

C lmn5
1

Nlm
~rAbZ! umuLl 1umu

umu expS 2
1

2
bZ

2r2DFn
( lm)~z!,

~12!

with l instead of the customaryn, indicating the Landau lev-
els, the Laguerre polynomialsLb

a , a normalization constan
Nlm that is not of further interest here, and whereFn

( lm) is a
solution of the one-dimensional Schro¨dinger equation

F2
]2

]z2
1Veff

( lm)~z!GFn
( lm)~z!5en

( lm)Fn
( lm)~z!. ~13!

The l andm-dependent effective potentialVeff
( lm) is defined by

Veff
( lm)~z!5E

0

`

Rlm~r!2F2
2

Ar21z2
1K 2

ZE n~r8!

ur2r8u
dr8L

f

1^vxc~r!&fGr dr, ~14!

whereRlm(r) denotes ther-dependent part on the right-han
side of Eq.~12! andn denotes the number of nodes ofFn

( lm) .
Thus the one-particle energies of these wave functions
obtained as
03341
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( lm)5bZ~2l 1umu1m!1en

( lm) . ~15!

Since we are considering the case ofbZ*1, we will further
restrict ourselves tol 50, since states withl .0, because of
the term 2bZl , do not belong to the low lying part of the
spectrum.

Thus, the eigenstates can be labeled by (m,n) with the
magnetic quantum numberm<0 and the node numbern
>0, where even~odd! n refers to even~odd! z parity. The
reason that onlym<0 will be considered is that positive
values ofm incur a penalty of 4bZmEZ relative to negative
m values and thus are not considered forbZ*1. The spec-
trum of this effective Hamiltonian can also be expected to
qualitatively similar to that of hydrogen in a magnetic fiel
insofar as the lowest states start with a numberns of strongly
bound states (m,0), i.e., states whose binding energies gro
without bound ifbZ is increased in contrast to the hydroge
like states (m,n.0) whose energies approach limiting va
ues forbZ to `. ns also grows withbZ .

This means that the ground state for our system will,
sufficiently large values ofbZ , be obtained as a Slater de
terminant of strongly bound states with increasing values
umu and that there will be, for each value ofZ and ne , a
critical magnetic fieldbZ below which the ground state con
tains at least one electron that isnot strongly bound, i.e., for
which n.0. In this work, we will, however, restrict our
selves to values ofbZ , such that the ground state consists
only strongly bound states. In this paper, we shall denote
atomic eigenstates by the occupied single-electron states
example, the ground state of carbon will be labeled
u(0,0)(21,0)(22,0)(23,0)(24,0)(25,0)&.

The low-lying excited states can be obtained by eith
exciting one electron to higher values ofumu or by exciting it
to a hydrogenlike state, i.e., ton.0. Those of the first type
will be quite close in energy to the ground-state energy, si
changingm results in a small change of the one-particle e
ergies, especially form@1, while those of the second typ
will be more strongly excited, since the binding energy o
hydrogenlike state is small compared to that of a stron
bound state.

In the last 30 years, many expressions for the excha
and correlation functional have been suggested@18#. In this
work, we will make use of three of them, namely the sp
polarized exchange functional for the free electron gas da
back to Dirac@13#

eDirac„n~r!…52
1

Z

3

2 S 6

p D 1/3

@n~r!#1/3, ~16!

the expression due to Fritsche@19#,

eFritsche„n~r!…52
2

Z
@n~r!#1/3, ~17!

derived by assuming a Gaussian correlation factor, wh
differs from the above only by a factor, and the heuris
functional due to Jones@12#, which also includes a correla
tion term,
5-3



w

s

bi-

ed

e
the
ns

ur-

gi
a

c
o

e-
ods

M. BRAUN PHYSICAL REVIEW A 65 033415
eJones„n~r!…5
1

Z F2pn ln n

bZ
23pn

ln 2bZ

b
113.7

n

bZ

237.8
n2

A8bZ
2.5

2A8bZ@0.0096 ln n

20.0144 ln 2bZ10.122#G . ~18!

In all three expressions aboven(r) denotes the spin-down
density, which is identical to the total density for the case
are considering.

From the above functionals, the potentials are found a

vDirac~r!52
2

Z S 6

p D 1/3

@n~r!#1/3, ~19!

vFritsche~r!52
2

Z

4

3
@n~r!#1/3, ~20!

FIG. 1. Relative difference between the ground-state ener
obtained using the functionals due to Dirac, Fritsche, and Jones
the multichannel Hartree-Fock energies@6#. Positive values corre-
spond to overbinding.

TABLE I. Energy values obtained for the ground stateu(0,0)
(21,0)& of helium calculated by using the functionals due to Dira
Fritsche, and Jones. For comparison, the extrapolated results
multi-Landau-channel Hartree-Fock calculation@6# are also shown.

bZ EDirac EFritsche EJones EMCHF

1 22.6253 22.6783 22.7973 22.8008
2 23.3521 23.4205 23.5560 23.5150
5 24.6693 24.7666 24.9300 24.8051
10 26.0044 26.1323 26.3115 26.0991
20 27.7047 27.8733 28.0571 27.7228
50 210.6517 210.8948 211.0528 210.4714
100 213.5523 213.8571 213.9710 213.085
200 217.1200 217.5425 217.5253 216.229
500 223.2204 223.8283 223.5341 221.312
1000 229.2970 229.9930 229.3533 225.94
03341
e

vJones~r!5
1

Z F2p~n12n ln n!

bZ
26pn

ln 2bZ

b
127.4

n

bZ

2113.4
n2

A8bZ
2.5

2A8bZ@0.0096~11 ln n!

20.0144 ln 2bZ10.122#G . ~21!

IV. NUMERICAL METHOD

A. Expansion of the one-electron wave function

The one-electron wave functions for a particular com
nation ofm andn are taken as

Fmn5exp~ imf!cmn~r,z!, ~22!

where the reduced wave functionscmn are expanded in
terms of localized finite-element functions, which are splic
together from Lagrange interpolation polynomials of orderN
on grids in bothr andz. Thus,

cmn5(
i

ci
(mn)Fi~r,z!, ~23!

where theFi will of course depend on the details of th
discretization, as well as the boundary conditions and
coefficientsci are the values of the reduced wave functio
at the chosen grid points in ther-z plane. Since thez parity
is a good quantum number of the system, we restrict o
selves toz>0. The boundary conditions atr50 andz50,
are then given as follows:

C~0,z!50 for m.0, ~24!

C~0,z! open for m50, ~25!

C~r,0!50 for n52l11, ~26!

C~r,0! open for n52l. ~27!

es
nd

,
f a

TABLE II. Energy values obtained for the ground states of h
lium, carbon, and neon, calculated with different numerical meth
using the functional due to Jones atbZ values corresponding to 2
3108 T and 53108 T. The results denoted byEJonesare taken from
Ref. @12#, those denoted byERelovsky are from Ref.@22#, and our
results are shown in the rightmost column.

Z bZ B(108 T) EJones ERelovsky E

2 265.9 5 219.11 219.15 219.21
6 29.54 5 216.39 216.35 216.41
10 4.254 2 210.41 210.36 210.57
10 10.64 5 214.88 214.84 215.02
5-4
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B. The discretization

The grids inr andz are generated from a choice ofrmax
andzmax via

Ri5S i

nr
D 2

rmax, ~28!

Zi5S i

nz
D 2

zmax. ~29!

In each rectangular element of the form@Ri ,Ri 11#
3@Zi ,Zi 11#, the interpolation nodes will, however, be di
tributed uniformly, because the Lagrange interpolation po
nomials have equidistant nodes.

The cutoff inr is chosen as

rmax5
Ammax13

AbZ

, ~30!

wheremmax is the largest value ofumu needed. This choice
can be motivated from the minimum of the effective pote
tial at z50, which is, excluding the coulomb terms, given b

TABLE III. Ground-state energies of carbon and neon in ve
strong magnetic fields calculated using the functional due
Fritsche.

bZ EC ENe

1 24.5712 25.9184
2 25.9496 27.7814
5 28.4396 211.1422

10 210.9659 214.5564
20 214.1887 218.9215
50 219.7819 226.5179

100 225.2554 233.9694
200 232.0330 243.2098
500 243.4474 258.7362

1000 254.2638 273.5062

TABLE IV. Energies of the stateu(0,0)(21,1)& of helium in
very strong magnetic fields calculated using the functionals du
Dirac, Fritsche, and Jones with the MCHF results for compariso
the rightmost column.

bZ EDirac EFritsche EJones EMCHF

1 22.1735 22.2156 22.2788 22.2474
2 22.7171 22.7698 22.8261 22.7750
5 23.6949 23.7675 23.8175 23.7218
10 24.6790 24.7724 24.8101 24.6658
20 25.9247 26.0455 26.0605 25.8446
50 28.0687 28.2396 28.1989 27.8301
100 210.1611 210.3763 210.2706 29.708
200 212.7248 213.0166 212.7899 211.959
500 217.0343 217.4506 216.9831 215.577
1000 221.1146 221.6589 220.9092 218.86
03341
-

-

(m2/r2)1bZ
2r2, yielding rmin5Am/bZ. Although this argu-

ment neglects the Coulomb potential it turns out, that
densities obtained will have their maxima at thisrmin with
very high precision, since except for the immediate vicin
of the nucleus, the Coulomb force is, especially forbZ.1,
weaker than the Lorentz force, and thus can only result i
small shift.

The choice ofzmax depends very much on whether hydr
genlike, i.e., loosely bound states withn.0 are required. If
they are not needed, i.e., if only nodeless states are requ
the choice

zmax;
7

AuE2mmax0
u

~31!

will be appropriate since the electron with the highestumu
will be the most loosely bound and the decay of the wa
function inz direction is governed by its binding energy. Th
choice means that the exact one-particle densities will at
value decay to about 1026 of their value atz50. Since the
binding energies needed above scale approximately w

o

to
in

TABLE V. Energies of the stateu(0,0)(22,0)& of helium in very
strong magnetic fields calculated using the functionals due to Di
Fritsche, and Jones with the MCHF results for comparison in
rightmost column.

bZ EDirac EFritsche EJones EMCHF

1 22.4518 22.4987 22.5857 22.5580
2 23.1260 23.1864 23.2790 23.2169
5 24.3511 24.4374 24.5394 24.4100
10 25.5948 25.7085 25.8090 25.6100
20 27.1799 27.3301 27.4152 27.1198
50 29.9288 210.1457 210.1753 29.6840
100 212.6342 212.9066 212.8665 212.130
200 215.9602 216.3378 216.1458 215.082
500 221.5955 222.1390 221.6445 219.871
1000 226.9775 227.6923 226.8399 224.25

TABLE VI. Energies of the stateu(0,0)(22,1)& of helium in
very strong magnetic fields calculated using the functionals du
Dirac, Fritsche, and Jones with the MCHF results for compariso
the rightmost column.

bZ EDirac EFritsche EJones EMCHF

1 22.1507 22.1910 22.2484 22.2288
2 22.6927 22.7432 22.7940 22.7592
5 23.6673 23.7371 23.7838 23.7101
10 24.6473 24.7372 24.7744 24.6570
20 25.8867 26.0032 26.0210 25.8384
50 28.0173 28.1824 28.1497 27.8263
100 210.0945 210.3023 210.2090 29.706
200 212.6372 212.9194 212.7099 211.957
500 216.9070 217.3100 216.8658 215.576
1000 220.9458 221.4728 220.7499 218.86
5-5
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AbZ, the optimal value ofzmax only shows a weak depen
dence onbZ . However, if loosely bound states are need
the z range will have to be increased considerably, wh
makes the computational effort required larger, sincenz will
have to be larger as well.

If one of the electrons is excited to a hydrogenlike st
with n.0, its binding energy can in our units, using a
oversimplified, but sufficient picture, where all other ele
trons and the nucleus are assumed to act as central char
(11Z2ne)e, be estimated as

uEmnu5
~11q!2

Z2n2
, ~32!

with the total charge of the systemq5Z2ne .
Estimating the effective potential in theZ-scaled units as

veff~z!522
11q

Z

1

uzu
, ~33!

we easily obtain the following rough estimate for the cut
in z,

TABLE VII. Energies of the stateu(0,0)(23,0)& of helium in
very strong magnetic fields calculated using the functionals du
Dirac, Fritsche, and Jones with the MCHF results for compariso
the rightmost column.

bZ EDirac EFritsche EJones EMCHF

1 22.3696 22.4133 22.4833 22.4634
2 23.0151 23.0712 23.1405 23.0995
5 24.1895 24.2695 24.3395 24.2518
10 25.3821 25.4874 25.5487 25.4116
20 26.9020 27.0410 27.0792 26.8719
50 29.5368 29.7377 29.7105 29.3542
100 212.1284 212.3804 212.2767 211.724
200 215.3120 215.6621 215.4035 214.587
500 220.6981 221.2019 220.6431 219.237
1000 225.8274 226.4900 225.5832 223.49

TABLE VIII. Energies of the stateu(0,0)(23,1)& of helium in
very strong magnetic fields calculated using the functionals du
Dirac, Fritsche, and Jones with the MCHF results for compariso
the rightmost column.

bZ EDirac EFritsche EJones EMCHF

1 22.1370 22.1764 22.2321 22.2182
2 22.6780 22.7273 22.7769 22.7501
5 23.6507 23.7188 23.7657 23.7034
10 4.6283 24.7162 24.7550 24.6522
20 25.8639 25.9779 25.9990 25.8353
50 27.9864 28.1482 28.1213 27.8251
100 210.0539 210.2575 210.1720 29.706
200 212.5826 212.8593 212.6595 211.958
500 216.8235 217.2188 216.7861 215.577
1000 220.8282 221.3452 220.6337 218.86
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The evaluation of matrix elements with respect to t
finite-element basis functions is accomplished by Gau
Legendre integration over the elements defined above,
cept for the element at the origin, where the rectangular
ment is transformed to a curvilinear domain in spheri
coordinatesr and u, which is then treated by two separa
Gauss-Legendre integrations. This is done to ensure the
curate integration of terms containing the Coulomb poten
2/Ar21z2. The global integrals required to obtain the tot
energy~11! are evaluated using the same grid. In the cal
lations to be reported, we used a global grid of 12312 ele-
ments inr andz, 12312 Gauss-Legendre integration poin
per element and the interpolation polynomials were of or
N54. The Coulomb potential due to the axially symmet
charge distributionn(r) was evaluated by the use of Fourie
Bessel transforms, as detailed in Appendix B of Ref.@12#.

C. Self-consistent procedure

The equations resulting from our density-functional a
satz have to be solved by iteratively finding thene selected
eigenstates of Eq.~10! until self-consistency is reached
which we define by requiring that the relative changes of
eigenvaluese i satisfy

maxS Ude i

e i
U D,D, ~35!

FIG. 2. As in Fig. 1, but for theu(0,0)(21,1)& state of helium.

FIG. 3. As in Fig. 1 but for theu(0,0)(22,0)& state of helium.
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whereD51025. To speed up our calculations, we evalua
the self-consistent potential-terms at the grid points of
finite-element grid and interpolate the potential with t
same basis that is used for the wave functions. Once s
consistency is reached for a value ofZ.ne , another itera-
tion for ZªZ21 can be done. This will be necessary f
convergence in cases where neutral or nearly neutral at
are to be calculated, since an attempt to calculate the sy
starting with Z5ne will often, especially forZ*10, not
converge.

V. RESULTS

For helium and heliumlike atoms in very strong magne
fields, there are quite a number of atomic data results in
literature@4,6,7,13# and it is thus the natural starting point fo
a comparison. For heavier atoms there are also some re
available@12,11,22#, but most of them only consider groun
states.

A. Ground-state energies

In Table I, we show the ground-state energies obtained
helium for a wide range of values ofbZ using the functionals
due to Dirac, Fritsche, and Jones. For comparison, the
trapolated results of a multi-Landau-channel Hartree-F
~MCHF! calculation@6# are also shown. It is evident, that th
density-functional calculations agree reasonably well w
the HF-results forbZ&100, but give much more binding fo
bZ*100. For bZ,200, the density-functional results de

FIG. 4. As in Fig. 1 but for theu(0,0)(22,1)& state of helium.

FIG. 5. As in Fig. 1 but for theu(0,0)(23,0)& state of helium.
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crease from left to right. In Fig. 1, the relative deviation
the density-functional results from the MCHF results
shown as function ofbZ . It is seen that the degree o
overbinding increases withbZ for all functionals considered
In addition, it is clear from both the table and the figure, th
the functional due to Jones performs best at smallbZ values,
the one due to Fritsche gives a better performance for m
erately large values ofbZ , while the functional due to Dirac
binds slightly less strongly than and shows a nearly cons
distance from the one due to Fritsche, which is not surpris
since they only differ by a factor, and all functiona
overbind very strongly at very large values ofbZ . We have
not yet found an explanation for this behavior.

In Table II, we show the ground-state energies obtain
with the functional due to Jones for helium, carbon, and ne
at magnetic-field values, for which density-functional calc
lations have previously been done. We obtain slightly m
binding, since the results in the literature were done in
adiabatic approximation, i.e., using only one Landau ch
nel. This is especially true forZ510, wherebZ is smaller
and thus the higher Landau channels will be more importa

In Table III we show the results obtained for the groun
state energies of carbon (Z56) and neon (Z510) in very
strong magnetic fields using the functional due to Fritsche
the samebZ grid as used for helium. Due to the lack of prio
calculations in this field, it is admittedly difficult to estimat
the accuracy of our results obtained for those atoms. Ba
on the above comparison for helium with MCHF calcul
tions, we extrapolate that these results should have an a
racy of about 3 to 5%.

B. Energies of excited states

For the excited statesu(0,0)(21,1)&, u(0,0)(22,0)&,
u(0,0)(22,1)&, u(0,0)(23,0)&, andu(0,0)(23,1)& of helium,
we show in Tables IV–VIII, the results obtained for the sam
functionals as in Table I in comparison to the extrapola
HF-calculations. In Figs. 2–6, we also show the relative
ergy differences as in Fig. 1 as a function of the magne
field. The deviation of the density-functional results from o
MCHF values shows a similar behavior as for the grou
state except that the intercept between results for the Frits
and Jones functionals happens at a smaller value ofbZ ;
again forbZ&100 the functional due to Fritsche seems
average to be the best choice among the three conside

FIG. 6. As in Fig. 1 but for theu(0,0)(23,1)& state of helium.
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Since we expect the main applications of our results to b
the region 1&bZ*100, we will, in future, use the functiona
due to Fritsche for our calculations.

VI. SUMMARY

We have shown, how the method of finite elements a
the density-functional approach can be combined to y
results for atoms in very strong magnetic fields, that sho
be sufficiently accurate for the application in neutron s
spectroscopy. It has also been demonstrated, that the f
tional due to Fritsche, which is derived from the assumpt
of a Gaussian correlation factor seems to be the best ch
for 1&bZ&100. An additional advantage of this function
is that it can be improved upon in a systematic manner
J.

.

.

ra

c.
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determining the width of the Gaussian self-consistently fr
the density. This method was applied to atoms in the fie
free case by Cordes and Fritsche@23#, who report results tha
are quite close to Hartree Fock, while still retaining most
the advantages of the density-functional approach. Invest
tions in this regard are planned. In a forthcoming paper
plan to give results for the oscillator strengths of selec
dipole transitions for some multielectron atoms in stro
magnetic fields.
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