PHYSICAL REVIEW A, VOLUME 65, 033415

Density-functional calculations in a two-dimensional finite-element basis for atoms
in very strong magnetic fields: Energy values
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Results of density-functional calculations for atoms in very strong magnetic fields using a two-dimensional
finite-element basis set are reported for ground-state energies of helium, carbon, and neon, and for some
excited states of helium. We give results obtained by using three different local-density functionals. A com-
parison with multi-Landau-channel Hartree-Fock calculations shows reasonable agreement for helium.
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[. INTRODUCTION exchange-correlation energy is a portion of the total electron-

electron interaction energy, which in a nonrelativistic de-

The properties of atoms in very strong magnetic fieldsscription, and if one neglects the current-current, current-

have been the subject of many research efforts during the lagpin, and spin-spin interactions between the electrons, all of

three decades. Noteworthy are the investigations on Wannigyhich are many orders of magnitude smaller than the influ-

excitons by Fritsche and Co_workd}f&z:l, the paper by Ca- ence of the external magnetic f|e|d, does not involve the

nuto and Venturg3], and the many publications in this field current density. There is of course a rather strong indirect
from the group of Ruder and Wunner in Erlangen urid-Tu depe_n_dence in the sense that the magnetic field changes t.he

ingen; see Ref§4—7] and references therein. This is, on the densities from the field-free case. Thus we can _drop the di-

one hand, due to the discovery of very strongly magnetizedeCt current dependence from the functionals in the one-

objects in the universe, in particular, white dwaf&] and particle equations obtained by Vignale and co-workers and

neutron star§9]. On the other hand, the topic of the dynam- simply use the density-dependent functionals as they have

. ; ._been used in the field-free case.
ics of qguantum systems under the influence of the competing In this paper, we will report on the results of density-

symmetries of C°‘.J'°mb and Lorgntz forces has by ItSEItfunctional calculations in cylindrical coordinates employing
been a strong motivation. In addition, there have also beeq v, gimensional finite element basis gnand z. This al-
developments in solid-state physics, which gave additiongy, s in principle, for a smooth connection to the low-field
impetus for this research field. ~ domain, since the details of the grid can be adopted to the
For hydrogen and hydrogenlike systems, the calculationgirength of the magnetic field, and there are, apart from the
have now reached a very complete lefE0]. However, for  cysp condition at the origin, no difficulties in obtaining low-
many-electron atoms beyond helium, nearly all calculationgield solutions in this basis set. Even this problem is not of
have so far been done in the adiabatic approximation, whickajor consequence for the accuracy of the wave functions, if
assumes that the one-particle wave functions are in cylindrithe grid is suitably concentrated at the origin. However, in
cal coordinateg,z,¢ given by a product of a function &f  this paper, we will treat only the case of very strong mag-
and the eigenfunctions of the two-dimensional harmonic osnetic fields and there only consider the spin-polarized case,
cillator or Landau functions im and ¢. Two examples for where all spins are antiparallel to the magnetic field, which is
this approach are the Hartree-Fock calculations by Millerenergetically favored.
[11] and the heuristic density-functional calculations by The paper is organized as follows: in Sec. Il, we show the
Jones[12]. Thus, one assumes that the electron only occuHamiltonian. In Sec. I, we describe our ansatz. In Sec. IV,
pies the lowest Landau level for a given value of the magwe discuss the numerical method used, while in Sec. V, some
netic quantum numbem. There have been some efforts to results of our calculations are presented. Finally, in Sec. VI,
improve on this by adding more Landau chanrjé3]. we present our conclusions.
The use of density-functional-theory techniques for many-
electron atoms is an attractive option, since it does not in- II. THE HAMILTONIAN
volve the calculation of computationally intensive exchange
integrals. We consider an atom consisting of electrons and a
Already more than 10 years ago, Vignale and Rasolt havaucleus of charg&e in a homogeneous magnetic fieRl
developed[14-17 the theoretical framework of a current along thez axis. UsingZ-scaled atomic units, i.e., as energy
density-functional theory applicable to our current problem.unit E;=Z? Rydberg and as length urit,,/Z, neglecting
In their formalism, the exchange-correlation functional alsothe finite mass of the nucleus, and choosing the following
depends on the paramagnetic current density. However, th@ylindrically symmetric gauge, i.e., the vector potential as

A=Bz&XT, @

*Mailing address: Physics Department, University of South Af-
rica, P.O. Box 392, 0001 Pretoria, South Africa. the Hamiltonian reads in cylindrical coordinatgs (z; , ¢;)
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Looking for an extremum of the energy under the orthogo-

n 2 2
H= S| 17 7 Iﬁ_ s L nality conditions
i=1 pi dpi” Ipi p|2 (92|2 \/pi2+2i2
(D))= 5, )
2 2 2 &
2Bl +2s, ]+ Bzpi tZ > requiring nZ Lagrange multiplierse;; we obtain the well
) known Hartree-Fock equations which in the units defined

1 above read

X .
Voi +pf—2 cod i~ b)) pipj+ (2~ 2))?

2
-= -l 2B,[1,+ 25]]

o
pap"dp p? 972 \JpP+7?

[1&3@32

with B,=B/(Z?*x4.7010< 10° T) and thez components, ,
s, of the angular-momentum operator and spin for itie ,
electron in units of#i. Neglecting the finite mass of the +,3§P2+EJ n(r’) dr’
nucleus has two effects: first, the well-known mass- Z) Jr=r|
polarization effec_t that is present irrgspective of the strgngth ()
of the magnetic field and the corrections due to the motion of B ;J’ EJ: ¢,(| r) ¢r, T (I)i(r’)df':z]: e (1),

the charged nucleus in the magnetic field, which will grow
with B, . Thus the energies obtained for very lagevalues
of the order 1000 have to be considered as rather approxi- (6)
mative values.
For very strong magnetic fields, i.8,=1, the spin-flip  with the density
energy of 43,E, per electron means that all electrons will be
in a spin-down state for the ground state and many low-lying .
states. Thus the space part of the wave function will be to- n(r)=§i: 7 (NDi(r).
tally antisymmetric. For the remainder of this paper, we only

consider states of this kind and suppress the spin degrees gfis now customary to specialize to the case=6;;¢,

freedom. which can always be achieved by applying a rotation to the
vector of wave functions®;).
IIl. THE ANSATZ FOR THE WAVE FUNCTION The nonlocal exchange terms in the above equations
] ) ) ) make, however, the application of the Hartree-Fock method
We will describe the wave function by a single Slateryery demanding in terms of computational power, since a
determinant ¥ constructed from suitably chosen one- large number of matrix elements of the typi|L/r1,kI)

)

electron wave functiond;, i.e., have to be evaluated. Therefore, the density-functional ap-
proach, where the exchange term in E4).is approximated
W(ry,ry, ... Jne) by a functional of the one-particle densityis more conve-

nient and should, for the purposes of this calculation, still be
accurate enough. In addition, the density-functional approach
1 E (—1)PPD,(r)Dy(ry)--- D, (1), (3) a_llows for the inclusion of correlatio_n eff_ects at least in pri_n-
Jng! P e e ciple. We have, however, to keep in mind that the density-
functional approach is normally restricted to ground states.
whereP is the permutation operator. Calculating the expecIn this work, we use it for low-lying excited states as well,
tation value(H) for this ansatz, we obtain which can be justified along the lines of a generalized Kohn-
Sham approact19-21, where it is shown, that state-
dependent local functionals exist that lead to Slater determi-

2 2
=3 <¢_|_}ipi+|_2_‘9__ 2 nants that have the correct one-particle density. Thus, we
i " pap"ap p? 9% p*+7 admittedly use the density-functional approach in a heuristic
manner, since the exact functionals are not known, but this is

dr the case with most of the current application of the density-
functional theory.
In the following we restrict ourselves to the so-called

21
+2B1,425,)+ 7|0+ 7 5 2

- . ) local-density approximation, where the exchange and corre-
Xf dr’ ®F (r) @7 (r )|r—r’| PN -5 5 lation functional is expressed as
1 _
xS drf df"Df(f)qu(f’)ﬁ‘bi(f)‘I’j(f')- Exc[n]—f n(r)e,(n(r))dr, (8)
i r—r’

(4) leading to a local potential
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elm= g, (2l +|m|+m)+ €™ (15)

Since we are considering the case@f=1, we will further

Thus, we use the following self-consistent one-particlerestrict ourselves th=0, since states with>0, because of

Hamiltonian for an electron with spir-1/2 and magnetic
quantum numbem=0,

’ 19 a+m2 92 26,0+ 1]
= — — — —_— —_——— — m
T o plap 2 g2 pPi2 f
22,2 n(’)
+B5p +Z |r_r,|dr F(vxe(M) g (10
¢

where (- --), stands for the average over the azimutha
angle, with associated eigenvalugs Since the potentials in
guestion are cylindrically symmetric, this average is equiva
lent to taking the potentials ab=0. Evaluating the expec-
tation value of(H) for our density-functional approach, we

obtain

—f n(rvy(n(r))dr.

21

Z?2

n(r’)yn(r)

r=r']

E=E €

drdr’+f n(r)e.(n(r))dr

(11)

The low-lying eigenstates of the effective Hamiltoni@ld)
can be classified in analogy to those of hydrogen in a stron
magnetic field as detailed in Chap. 4 of REf0]. For pur-
pose of this classification, it is convenient to consider th
adiabatic approximation, where thg,£)-dependent portion
of the wave function is assumed to have the form

m

I+]m

ex;{ - %Bipz) Fim(2),
(12

1
%mV:N—mw@'m‘L

with | instead of the customary, indicating the Landau lev-
els, the Laguerre polynomialsy, a normalization constant
N that is not of further interest here, and whég™ is a
solution of the one-dimensional Sckiinger equation

|

Thel andm-dependent effective potentis{" is defined by

4

2

J
- STV @ FN@=d"FN . 13
z

2

P2+22

2 n(r') |
= r
AN

(14

ViP(2)= f:Rm(p)z[ -

+<ch(r)>¢:|P dp,

whereR,(p) denotes the-dependent part on the right-hand
side of Eq.(12) and v denotes the number of nodesFlf™ .

|

the term 28,1, do not belong to the low lying part of the
spectrum.

Thus, the eigenstates can be labeled by with the
magnetic quantum numben<0 and the node number
=0, where ever{odd v refers to ever{fodd) z parity. The
reason that onlym=0 will be considered is that positive
values ofm incur a penalty of 8,mE; relative to negative
m values and thus are not considered By=1. The spec-
trum of this effective Hamiltonian can also be expected to be
Iqualitatively similar to that of hydrogen in a magnetic field,
insofar as the lowest states start with a numienf strongly
bound statesm,0), i.e., states whose binding energies grow
without bound if3; is increased in contrast to the hydrogen-
like states fn,»>0) whose energies approach limiting val-
ues forBz to . ng also grows withg3;.

This means that the ground state for our system will, for
sufficiently large values of3;, be obtained as a Slater de-
terminant of strongly bound states with increasing values of
|m| and that there will be, for each value &fandn,, a
critical magnetic field3, below which the ground state con-
tains at least one electron thatrist strongly bound, i.e., for
which »>0. In this work, we will, however, restrict our-
selves to values g8, such that the ground state consists of
nly strongly bound states. In this paper, we shall denote the
tomic eigenstates by the occupied single-electron states. For
xample, the ground state of carbon will be labeled by
(O!O) (_110) (_210)(_3!0)(_410) (_ 510»

The low-lying excited states can be obtained by either
exciting one electron to higher values|af| or by exciting it
to a hydrogenlike state, i.e., t@>0. Those of the first type
will be quite close in energy to the ground-state energy, since
changingm results in a small change of the one-particle en-
ergies, especially fom>1, while those of the second type
will be more strongly excited, since the binding energy of a
hydrogenlike state is small compared to that of a strongly
bound state.

In the last 30 years, many expressions for the exchange
and correlation functional have been sugge$t]. In this
work, we will make use of three of them, namely the spin-
polarized exchange functional for the free electron gas dating
back to Dirac[13]

e

3/6 1/3
€piracdN(r)=— 7 E(;) [n(r)]lls, (16)
the expression due to Fritsch&9],
2
eFritsche(n(r)): - Z[n(r)]llsu (17)

derived by assuming a Gaussian correlation factor, which
differs from the above only by a factor, and the heuristic

Thus the one-particle energies of these wave functions areinctional due to Joneld 2], which also includes a correla-

obtained as

03341
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TABLE |. Energy values obtained for the ground st{¢8,0) TABLE Il. Energy values obtained for the ground states of he-
(—1,0)) of helium calculated by using the functionals due to Dirac, lium, carbon, and neon, calculated with different numerical methods
Fritsche, and Jones. For comparison, the extrapolated results ofusing the functional due to Jones @4 values corresponding to 2
multi-Landau-channel Hartree-Fock calculati{@) are also shown. X 10° T and 5x 10° T. The results denoted ;, ccare taken from
Ref. [12], those denoted b¥geiovsky are from Ref.[22], and our

Bz Epirac Erritsche E jones Envchr results are shown in the rightmost column.
1 - 26253 - 26783 - 27973 - 28008 Z IBZ B(lo?; T) EJones EReIovsky E
2 —3.3521 —3.4205 —3.5560 —3.5150
5 —4.6693 —4.7666 —4.9300 —4.8051 2 265.9 5 —-1911 -1915 -—19.21
10 —6.0044 —6.1323 —6.3115 —6.0991 6 29.54 5 -16.39 -16.35 —1641
20 —7.7047 —7.8733 —8.0571 —7.7228 10 4.254 2 -1041 -10.36 —10.57
50 —10.6517 —10.8948 —11.0528 —10.4714 10 10.64 5 —14.88 —14.84 —15.02
100 —13.5523 —13.8571 —13.9710 —13.085
200 —17.1200 —17.5425 —17.5253 —16.229
500 —23.2204 —23.8283 —23.5341 —21.312 1| 2m7(n+2ninn) In28; n
1000  —29.2970 —29.9930 —29.3533  —25.94 VaonekN) == —6mn +27.4- -
Bz B Bz
n2
1/ 2#nInn In zﬁz n _113.4—\/5132'5_ \/8[32[0.009614‘”1 n)
n(r))== — n +13.7— z
€J0nefN(r)) 7 B, 3 B 3 B,
. —0.0144In8,+0.127|. (21
—37.8 WE’_ \/8ﬁz[0.0096 Inn
Z

IV. NUMERICAL METHOD

—0.01441n28,+0.127 |. (18)

A. Expansion of the one-electron wave function

The one-electron wave functions for a particular combi-

In all three expressions abovgr) denotes the spin-down hation ofmandv are taken as
density, which is identical to the total density for the case we .
are co%sidering. g D, =exXpime) ¥m,(p,2), (22

From the above functionals, the potentials are found as
where the reduced wave functiong,, are expanded in

13 terms of localized finite-element functions, which are spliced
- 13 together from Lagrange interpolation polynomials of orier
voiradN)=—35|—=| [n(r)]~s 19 g9 grang p poly
oira{) Z( ) [n(n)] (9 on grids in bothp andz Thus,

24 )
Vriitsend 1) =~ 7 §[n(r)]l/3, (20) Ymy= Z c™Fi(p.2), (23
02 T T where theF; will of course depend on the details of the
discretization, as well as the boundary conditions and the
0.15 - A . .
Dirac —— o coefficientsc; are the values of the reduced wave functions
o1l Fﬂfgﬁgg o e at the chosen grid points in thez plane. Since the parity
;¥ is a good quantum number of the system, we restrict our-
AE/Eyerr 0.05 7 selves toz=0. The boundary conditions at=0 andz=0,
. are then given as follows:
0% -
-0.05 . ¥(0,2)=0 for m>0, (24
0.1 D
1 10 B, 100 1000 W(0z) openform=0, (25)
F_IG. 1. Relative difft_arence betweep the g_round-state energies V(p,0)=0 for v=27+1, (26)
obtained using the functionals due to Dirac, Fritsche, and Jones and
the multichannel Hartree-Fock energi€d. Positive values corre-
spond to overbinding. ¥(p,0) openfor v=2\. (27)
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TABLE Ill. Ground-state energies of carbon and neon in very  TABLE V. Energies of the statg0,0)(— 2,0)) of helium in very
strong magnetic fields calculated using the functional due tostrong magnetic fields calculated using the functionals due to Dirac,

Fritsche.

Bz Ec Ene
1 —-4.5712 —-5.9184
2 —5.9496 —7.7814
5 —8.4396 —11.1422
10 —10.9659 —14.5564
20 —14.1887 —18.9215
50 —19.7819 —26.5179
100 —25.2554 —33.9694
200 —32.0330 —43.2098
500 —43.4474 —58.7362
1000 —54.2638 —73.5062

B. The discretization

The grids inp andz are generated from a choice @f .«
andz,,,, Via

i 2
Ri:(n_p) Pmax> (29)

i 2
Zi= (n_z) Zmax- (29

In each rectangular element of the foriR, ,R;;4]

Fritsche, and Jones with the MCHF results for comparison in the
rightmost column.

BZ EDirac EFritsche EJones EMCHF

1 —2.4518 —2.4987 —2.5857 —2.5580
2 —3.1260 —3.1864 —3.2790 —3.2169
5 —4.3511 —4.4374 —4.5394 —4.4100
10 —5.5948 —5.7085 —5.8090 —5.6100
20 —7.1799 —7.3301 —7.4152 —7.1198
50 —9.9288 —10.1457 —10.1753 —9.6840
100 —12.6342 —12.9066 —12.8665 —12.130
200 —15.9602 —16.3378 —16.1458 —15.082
500 —21.5955 —22.1390 —21.6445 —19.871
1000 —26.9775 —27.6923 —26.8399 —24.25

(m?/p?) + B2p?, yielding ppmin= M/ B,. Although this argu-
ment neglects the Coulomb potential it turns out, that the
densities obtained will have their maxima at thig;, with
very high precision, since except for the immediate vicinity
of the nucleus, the Coulomb force is, especially gy>1,
weaker than the Lorentz force, and thus can only result in a
small shift.

The choice ofz,,,, depends very much on whether hydro-
genlike, i.e., loosely bound states witt»0 are required. If
they are not needed, i.e., if only nodeless states are required,

X[Z;,Z;+4], the interpolation nodes will, however, be dis- the choice
tributed uniformly, because the Lagrange interpolation poly-

nomials have equidistant nodes.
The cutoff inp is chosen as

oo VMpaxt 3
max \/E 1

(30

7
Ina~ T —/——
AV | E_ mmap|

will be appropriate since the electron with the highfst
will be the most loosely bound and the decay of the wave
function inz direction is governed by its binding energy. This

(31)

wherem,.« is the largest value dfm| needed. This choice choice means that the exact one-particle densities will at this
can be motivated from the minimum of the effective poten-value decay to about 16 of their value az=0. Since the
tial atz=0, which is, excluding the coulomb terms, given by binding energies needed above scale approximately with

TABLE IV. Energies of the stat¢(0,0)(—1,1)) of helium in

TABLE VI. Energies of the staté(0,0)(—2,1)) of helium in

very strong magnetic fields calculated using the functionals due teery strong magnetic fields calculated using the functionals due to
Dirac, Fritsche, and Jones with the MCHF results for comparison irDirac, Fritsche, and Jones with the MCHF results for comparison in

the rightmost column.

the rightmost column.

BZ EDirac EFritsche EJones EMCHF ﬂZ EDirac EFritsche EJones EMCHF

1 —2.1735 —2.2156 —2.2788 —2.2474 1 —2.1507 —2.1910 —2.2484 —2.2288
2 —2.7171 —2.7698 —2.8261 —2.7750 2 —2.6927 —2.7432 —2.7940 —2.7592
5 —3.6949 —3.7675 —3.8175 —3.7218 5 —3.6673 —3.7371 —3.7838 —3.7101
10 —4.6790 —4.7724 —4.8101 —4.6658 10 —4.6473 —4.7372 —4.7744 —4.6570
20 —5.9247 —6.0455 —6.0605 —5.8446 20 —5.8867 —6.0032 —6.0210 —5.8384
50 —8.0687 —8.2396 —8.1989 —7.8301 50 —8.0173 —8.1824 —8.1497 —7.8263
100 —10.1611 —10.3763 —10.2706 —9.708 100 —10.0945 —10.3023 —10.2090 —9.706
200 —12.7248 —13.0166 —12.7899 —11.959 200 —12.6372 —12.9194 —12.7099 —11.957
500 —17.0343 —17.4506 —16.9831 —15.577 500 —16.9070 —17.3100 —16.8658 —15.576
1000 —21.1146 —21.6589 —20.9092 —18.86 1000 —20.9458 —21.4728 —20.7499 —18.86
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TABLE VII. Energies of the staté(0,0)(—3,0)) of helium in 0.16 —r—TTTr —r—TTrr

very stro_ng magnetic fields (_:alculated using the functionals_due _to 0.14 | Dirac —— Ve

Dirac, Fritsche, and Jones with the MCHF results for comparison in 0.12 [ Fritsche --%-- X7

the rightmost column. 0.1 Jones ---- s
0.08 =

Bz Epirac Erritsche Ejones Emchr AE/Eycrr 0.06 -

1 —2.3696 —2.4133 —2.4833 —2.4634 gg; :

2 —3.0151 —3.0712 —3.1405 —3.0995 0 _

5 —4.1895 —4.2695 —4.3395 —4.2518 0.02 i

10 —5.3821 —5.4874 —5.5487 —5.4116 -0.04 PP NPT NPT

20 —6.9020 —7.0410 —7.0792 —6.8719 1 10 100 1000

50 —9.5368 —9.7377 —9.7105 —9.3542 Pz

100 —12.1284  —12.3804 —12.2767 —11.724 FIG. 2. As in Fig. 1, but for thé(0,0)(—1,1)) state of helium.

200 —15.3120 —15.6621 —15.4035 —14.587

500 —20.6981 —21.2019 —20.6431 —19.237 d

1000 —25.8274 —26.4900 —25.5832 —23.49 Zmax= 27— 2, (34

1+qv

/B, the optimal value ofz,.,, only shows a weak depen- .. .The evaluation.of matr_ix elg:-ments witr_] respect to the
’ o max finite-element basis functions is accomplished by Gauss-
dence onB; . However, if loosely bound states are needed, ggendre integration over the elements defined above, ex-
the z range will have to be increased considerably, whicheept for the element at the origin, where the rectangular ele-
makes the computational effort required larger, sing@vill  ment js transformed to a curvilinear domain in spherical
have to be larger as well. _ _ coordinates and 6, which is then treated by two separate
_If one of the electrons is excited to a hydrogenlike stateg,ss-Legendre integrations. This is done to ensure the ac-
with »>0, its binding energy can in our units, using an cyrate integration of terms containing the Coulomb potential
oversimplified, but sufficient picture, where all other elec—2/ 27+ 7. The global integrals required to obtain the total
trons and the nucleus are assumed to act as central Charge&fergy(ll) are evaluated using the same grid. In the calcu-
(1+Z=n)e, be estimated as lations to be reported, we used a global grid o122 ele-
ments inp andz, 12X 12 Gauss-Legendre integration points

1+q)? _ . .
|Em.|= % (32 per element and the interpolation polynomials were of order
Zov N=4. The Coulomb potential due to the axially symmetric
. charge distributiom(r) was evaluated by the use of Fourier-
with the total charge of the systeq=Z—ne. _ Bessel transforms, as detailed in Appendix B of R&g].
Estimating the effective potential in ti&scaled units as
1+q 1 C. Self-consistent procedure
Ve 2) =2 Z H (33 The equations resulting from our density-functional an-

_ _ _ _ satz have to be solved by iteratively finding thg selected
we easily obtain the following rough estimate for the cutoff eigenstates of Eq(10) until self-consistency is reached,
n z, which we define by requiring that the relative changes of the

. o eigenvalues; satisfy
TABLE VIII. Energies of the staté(0,0)(—3,1)) of helium in

very strong magnetic fields calculated using the functionals due to O€
Dirac, Fritsche, and Jones with the MCHF results for comparison in ma>{ ? ) <A, (35
the rightmost column. :
0.16 —— T o
Bz Epirac Eritsche E Jones Evche 0.14 1 Dirac —— /7
0.2 Fritsche -->-- x 7
1 —2.1370 —2.1764 —2.2321 —2.2182 01} Jones --%-- -~
2 —2.6780 —2.7273 —2.7769  —2.7501 0.08 T
5 —3.6507 —3.7188  —3.7657 —3.7034  AE/Eyes 00 i
10 46283  —47162  —47550  —4.6522 ool I i
20 —5.8639 —5.9779 —5.9990 —5.8353 ok i
50 —~7.9864  —8.1482  —81213 —7.8251 0.02 i
100 —10.0539 —10.2575 —10.1720 —9.706 -0.041 .
200 —12.5826 —12.8593 —12.6595 —11.958 006 1'0 s ""1'(')0 T
500 —16.8235 —17.2188 —16.7861 —15.577 Bz
1000 —20.8282 —21.3452 —20.6337 —18.86

FIG. 3. As in Fig. 1 but for thé(0,0)(—2,0)) state of helium.
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FIG. 4. As in Fig. 1 but for thé(0,0)(—2,1)) state of helium. FIG. 6. As in Fig. 1 but for thé(0,0)(— 3,1)) state of helium.

whereA=10"5. To speed up our calculations, we evaluateCrease from left to right. In Fig. 1, the relative deviation of
the self-consistent potential-terms at the grid points of outhe density-functional results from the MCHF results is
finite-element grid and interpolate the potential with theShown as function of3;. It is seen that the degree of
same basis that is used for the wave functions. Once selfverbinding increases witB; for all functionals considered.
tion for Z:=Z—1 can be done. This will be necessary for the functional due_to Jone; performs best at sifBalNalues,
convergence in cases where neutral or nearly neutral atonig€ one due to Fritsche gives a better performance for mod-
are to be calculated, since an attempt to calculate the systeffately large values g8z, while the functional due to Dirac

starting with Z=n, will often, especially forZ=10, not binds slightly less strongly than and shows a nearly constant
converge. distance from the one due to Fritsche, which is not surprising

since they only differ by a factor, and all functionals
overbind very strongly at very large values 8§ . We have
not yet found an explanation for this behavior.

For helium and heliumlike atoms in very strong magnetic In Table I, we show the ground-state energies obtained
fields, there are quite a number of atomic data results in thwith the functional due to Jones for helium, carbon, and neon
literature[4,6,7,13 and it is thus the natural starting point for at magnetic-field values, for which density-functional calcu-
a comparison. For heavier atoms there are also some resul@ions have previously been done. We obtain slightly more
available[12,11,22, but most of them only consider ground binding, since the results in the literature were done in the

V. RESULTS

states.

A. Ground-state energies

adiabatic approximation, i.e., using only one Landau chan-

nel. This is especially true fo£=10, wherep; is smaller

and thus the higher Landau channels will be more important.
In Table 1ll we show the results obtained for the ground-

In Table I, we show the ground-state energies obtained fog; e energies of carborZ £6) and neon Z=10) in very

helium for a wide range of values @

using the functionals  gyong magnetic fields using the functional due to Fritsche on

due to Dirac, Fritsche, and Jones. For comparison, the eXpe sames,, grid as used for helium. Due to the lack of prior

trapolated results of a multi-Landau-channel Hartree-Fock ,.uiations in this field

it is admittedly difficult to estimate

(MCHF) calculation[6] are also shown. Itis evident, that the yhe accuracy of our results obtained for those atoms. Based

density-functional calculations agree reasonably well with

on the above comparison for helium with MCHF calcula-

the HF-results fo3,=<100, but givg much more binding for ions we extrapolate that these results should have an accu-
Bz=100. For 8,<200, the density-functional results de- racy of about 3 to 5%.

0.14

" Dirac —— ) B. Energies of excited states
0.12 |- Fthsche _--—X—_: 4 _
o1k ones -+ For the excited state$(0,0)(—1,1)), |(0,0)(—2,0)),
0.08 - [(0,0)(—2,1)), |(0,0)(—3,0)y, and|(0,0)(— 3,1)) of helium,
0.06 we show in Tables IV-VIII, the results obtained for the same
AE [Eyese 004 | functionals as in Table | in comparison to the extrapolated
' HF-calculations. In Figs. 2—6, we also show the relative en-
0021 ergy differences as in Fig. 1 as a function of the magnetic
U field. The deviation of the density-functional results from our
-0.02 MCHF values shows a similar behavior as for the ground
-0.04- ol "'1'(')0 T state except that the intercept between results for the Fritsche

FIG. 5. As in Fig. 1 but for thé(0,0)(— 3,0)) state of helium.

1

Bz

and Jones functionals happens at a smaller valugaf
again for 8,=100 the functional due to Fritsche seems on
average to be the best choice among the three considered.
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Since we expect the main applications of our results to be imletermining the width of the Gaussian self-consistently from
the region X 8,=100, we will, in future, use the functional the density. This method was applied to atoms in the field-

due to Fritsche for our calculations. free case by Cordes and Fritsdl28], who report results that
are quite close to Hartree Fock, while still retaining most of
VI. SUMMARY the advantages of the density-functional approach. Investiga-

o tions in this regard are planned. In a forthcoming paper we
We have shown, how the method of finite elements angyjan to give results for the oscillator strengths of selected

the density-functional approach can be combined to yielgjipole transitions for some multielectron atoms in strong
results for atoms in very strong magnetic fields, that shoulgnagnetic fields.
be sufficiently accurate for the application in neutron star

spectroscopy. It has also been demonstrated, that the func-

tional due to Fritsche, which is derived from the assumption

of a Gaussian correlation factor seems to be the best choice

for 1<B,=<100. An additional advantage of this functional =~ We thank the University of South Africa for financial sup-
is that it can be improved upon in a systematic manner byort.
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