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We present a family of generalized unitary transformations that simplifies the Hamiltonian for a harmoni-
cally trapped two-level atorfor ion) interacting with a plane wave laser field. Near-resonant single as well as
double vibrational phonon dynamical regimes are found. The validity condition of the often used motional
rotating-wave approximatiotMRWA) is examined both numerically and analytically. Large errors are found
within typical regimes of the MRWA with respect to the motional degrees of freedom. The effects of the
MRWA in trapped ion systems are shown to be opposite to that of the rotating-wave approximation in the usual
Jaynes-Cummings model. Our study points to a more restrictive condition on the particle localizatidmn
Dicke) parameter for the validity of the MRWA in the single phonon dynamical regime. It also sheds light on
quantum information storage and processing with trapped atoms.
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[. INTRODUCTION the back transformation when dynamical observables are cal-
culated in the original frame.

In the last few years, much attention has been focused on In this article we study the quantum dynamics of a single
quantum dynamics and coherence properties of trapped dt-apped atom by employing a numerical diagonalization pro-
oms or ions[1-5]. These studies led to many potentially cedure without employing the MRWA. We assess the validity
attractive applications of harmonically trapped particles, e.g.fegime for the MRWA by comparing with results from ana-
in generating nonclassical vibrational phondi, imple- lytical models obtained under the MRWA. This paper is or-
menting fast quantum gatég]' and achieving phonon-ion ganized as follows. In Sec. Il, our model system of a single
entanglemenf1]. In most of these studies, a coherent planetrapped two-level atom is described and a review of the uni-
wave laser field near-resonantly couples two electronic statd@ry transformation method for linearizing the Hamiltonian is
of an atom. The inclusion of motional degrees of freedompresented. Our result, the existence of a family of general
leads to tremendous complication. Several simplificationginitary transformations for linearizing our model Hamil-
have been developed that reduce the trapped particle dynaﬁﬂnian, is then introduced. In Sec. lll, we discuss two linear-
ics to the familiar Jaynes-Cummings mod&CM) form with  ized models obtainable from our transformations. In Sec. IV,
the use of the Lamb-Dicke limitLDL), the strong confine- We outline several technical points about analytical solutions
ment limit, or the motional rotating wave approximation of the transformed model Hamiltonian under the MRWA. We
(MRWA). In fact, the JCM description can be achieved re-also discuss a numerical diagonalization procedure used for
gardless of the laser field configuration, i.e., whether it is &xact dynamic solutions. Selected results and comparisons
traveling wave[3] or a standing wav¢l,4]. The LDL re- are presented in Sec. V. Finally, we conclude in Sec. VI.
quires the particle localization size, given by the harmonic
trap ground state widtla, to be much less than the near- II. THE MODEL SYSTEM AND A FAMILY OF GENERAL
resonant laser wavelenghh i.e., n=(2m)a/A<1. It is of- UNITARY TRANSFORMATIONS
ten believed that the MRWA for harmonically trapped par-
ticles works well within the LDL as it demands a less
restrictive conditionp<2 [3] or n<4 [2].

In our ongoing effort to understand motional effects of
trapped particles for quantum information processjiid
this issue of the validity regimes for the trapped particle
MRWA again arises. We note that some earlier investigations
show that the rotating-wave approximatidRWA) does not p2
work_ §at|sfactorlly for Hamllt.or_n.ans containing multiple Hozm+vtg(x)ggg+[ﬁweg+ Vie(X)]0ee
transitions[8,9] or for systems initially prepared in a super-
position of internal state$10]. Furthermore, multiparticle
properties such as entanglement can have a different sensi-
tivity dependence on the single particle MRWAL]. With
harmonically trapped particles, this issue becomes particu-
larly acute as the equal distant motional states span an infivhere ), «_, and k. denote, respectively, the Rabi fre-
nite dimensional Hilbert space. The MRWA is typically made quency, carrier frequency, and wave number of a coherent
after a linearization by either taking the LDL or applying an driving laser. The electron transition frequency between the
exact simplifying unitary transformation. Within the latter excited (e)) and ground statesd)) is weq. 0ap=|a)(b|
approach, errors from the MRWA can be further modified by(a/b=e,g) are atomic projection operators. Consistently

To simplify our discussion, we consider a one-
dimensional model of a harmonically trapped two-level par-
ticle interacting with a near-resonant laser figgj12]. The
system Hamiltonian is given by

H:Ho+ Hla

Hy=2 ghonte KXo 1
1 2 g_ .C.,
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with convention, we denotes_=|g)(e| and o,= 0.

— 044 For a neutral particle, typically the approximate har-

monic trap potential is internal state dependent, \g,

=(1/2)M vgx2 with a corresponding trap frequeney. P is

the motional momentum and is the mass of the particle.
We first simplify Eq.(1) by changing into the interaction

picture (rotating frame with the unitary transformatiori

— et veepeTihott dee— 7 ) oo This leads to

P2

Moo

ho
+Vtg(x)+702+[Vte(x)_vtg(x)]0—ee+ 2

Q
H1=§e*'kaa_ +H.c., 2)
wheres= weq— o is the laser field detuning. We now intro-
duce the motional phonon annihilati¢ereatior) operator for
the ground state (a') according toP=\AM vg/2p andx
=\hI2Mvyq with p=i(a'—a) and q=a'+a. The dis-
placement operator becomex 8)=e®* ~#*2, and Eq.(2)
simplifies to i =1)

vg+5
2 7

2 o+ qzo'ee+

H(): Vgn+

Q .
H1=EDT(| n)o_+H.c., )
wheren=a'a is the phonon number operator az;jek(vg
- vé)/4vg. The Lamb-Dicke parameter is nowy
=k V1/2Mvy. For this particular form of the Hamiltonian,
we note that its interaction partf;) can be diagonalized by
a general transformation matrix=E'T, with

E2+El’l\ EZ_El

= | +
2 2 7z
DY(in) —1

1 DT(in)+1T
2

NG 2

2

o,t+ o, —DTi n)o_|.
4

We choose() e 'R without loss of generality. It is easy to

check thafl # ,TT=(Q/2)c,, is independent of the arbitrary
unitary functional operatorg, , of a anda'. For any opera-

tor ©, the transformed operator will be denoted By
=TOT". 1=0eet 0y is the identity operator. This transfor-

mation can be compared to the generalized Power-Zienau

transformation discussed earligt3]. In the phonon Fock

state basis, it generates coherent superpositions of motional
wave-packet states which were previously used in studying

motional decoherence of atomic qubit operatipk It re-
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D(xipa'aD(xip)=a'axin(a’™—a)+ 7%  (6)

for arbitrary complex numberg and 8. We note that Eq(5)
simplifies to D(a)D(B8)=D(a+B) when a« and B8 are
purely imaginary. The second and the last terms in the right-
hand side of Eq(6) correspond to the Doppler and recoil
shifts. After this general transformation, we obtain

¢ z)r_

+v
g_l_zq

2

P ) ¢,
Ho=E'|| vgn+gp+ ng+ gp+§q

E, (7)

Ox

g+ 2
79+ 5

with g= nv¢/2 andoy=o0, +o_ . Different simplifications
can be pursued by exploiting other formsBf ,. We note
that the first term in Eq(7) is in the form of a squeezed
displaced harmonic oscillator. Therefore it can be diagonal-
ized in the Fock state basis by the squeezed coherent state
transformationE,=E;=D(B)S(£). To eliminate thep de-
pendence in the coefficient bfwe chooseB= —i7/2, which
transforms according to—n—(7/2)p+ %4, p—p—7,
andg—q. We then obtain

~ 14 o+ vgt 10|«
HOZST(f) vgn+§q2+ T)I
~|ap+ Sat+ o) s(6) ®
ap 2q 2/ %x .

The squeezing transformatioB(é=re'’) causesa—ua'

—vp*a with u=coshr andv=e¢'%sinfr. For our model/ is

required to be real, i.e4=0. The action ofSresults in
p—e'p,

qg—e 'q,

(©)

1 .
n—e’n— 5 sinh 2q2+e' sinhr.

Substitution of these results into E@®) leads to the elimi-
nation of theg? term in the coefficient of thé term provided
we choose = (In €)/4 with e=1+2{/v4. This yields

vg\/z-i—gr;-i— o

2
5)
Oy -

HOZ

v \/;n-i-
g

|

g 61/4p 4

2\e

g2+ > (10

duces to the simplifying transformation used by Moya-CessdVe can now redefine the parameters according vto

et al.[3] when we také&E,;=E,=D(—i75/2). TheT transfor-
mation on theH, term can be conveniently calculated using
the following properties:

D(a)D(B)=el®F* ~«*P2D(a+p), (5)

=vg\e, g—ge'* and {—¢/\e. Finally, we arrive at the
transformed Hamiltonian

~ Q
H=vn+ E(r

{, s
9p+50°+ 5 (12)

z— Oy,
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where the constant term in the coefficient lothas been trast to the single phonon JCM in E(3), the two-phonon
dropped. We note that for ions with internal state indepensgueezing model can be achieved beyond the LDL and is
dent trap frequencie§=r=¢=0. We recover the same re- described by

sult as in Ref.[3] by choosings=—i»/2. The effects of

different trap frequencies for different internal levels are a HER) = HZ) 4+ v(2P),
renormalization of energy parameters in the single vibra-
tional phonon Hamiltonian and a double vibrational phonon H%,Ze'2= va'a+vo,,

interaction through a term quadratic in the position operator.
Double phonon transitions are the typical interactions that ¢
can lead to squeezed and entangled states for the vibrational V=2 (a%¢_+a’0,). (14)
phonons. In the next section, we will see that such two- 2
phonon transitions can dominate the single phonon transi-

tions in the system, independent of the Lamb-Dicke param- Equgtions(13) and (%4) are the majpr resulps of the gen-
eter . eral unitary transform introduced earlier. Their complete dy-

namics, however, can be complicated as transformation back

into the original Schrodinger picture induces coherent mix-
IIl. MOTIONAL ROTATING-WAVE APPROXIMATION ing of different states. In particular, if the system is initially

The simplified model Hamiltonian Eq11) is of the form prepared in a statg(0), th~elinearized model Hamiltonian,
of a generalized JCM involving quadratic two-phonon tran-Eg. (13), has an initial state/(0)=T(0), which is always a
sitions. It can be analytically solved for small squeezing pasuperposition of both internal states. In other words, even for
rameters without external drivel=0) [14]. Alternatively,  Systems initially in only one internal state such that it has a
when|v—Q|<Q or |2v—Q|<Q, andg and/<(Q, an ap-  Vvanishing dipole moment, the transformed system will al-
proximate analytic solution can be obtained by an explicitways have a nonvanishing dipole moment. Itis known in this
diagonalization upon the elimination of the rapidly oscillat- case that counter-rotating terf@RT'’s) neglected in making
ing terms, i.e., the application of the MRWA. In the interac- the MRWA become more significant and the validity regimes
tion picture, Eq.(11) becomes for the MRWA more restricted10].
We are now in a position to discuss the validity regimes of

- , , l , S the commonly used MRWA for the simplified model Hamil-
H,=|—ig(a'e ”t—ae_'”t)+§(ame'2”t+ a'a+ He)+s tonians Eqs(13) and(14). We will focus on the single pho-
non model in Eq.(13) as it can be compared directly to
X (o, e+ g_e 10, (12 existing result{under the MRWA in the literature[3]. Fur-

thermore, while the single phonon JCM can be obtained for
There exist two resonance conditions, on€at v where the ~ small restricted values of the Lamb-Dicke parameter, the
validity condition for the MRWA becomes 7}(,,9/2)61/4 two-phonon model is obtained without any restriction on the
<V961/2 [14], i.e., p<2€Y* When the difference in trap fre- Lamb-Dicke parameter. Thus, determining the validity re-
quencies is small we 99i<7/4+(ve/2vg)2- We see that the 9gime of the MRWA is more essential for the single phonon
validity regime of the MRWA depends on for this case of JCM.
the single phonon JCM. Physically, the trap frequency differ-
ence can be controlled experimentdlhp]. Whenv,=r, as IV. NUMERICAL METHOD
for an ion, we recover the condition<2 as discussed by
Moya-Cessat al.[3]. Under this condition, we arrive at the
single phonon model:

In the following discussion we focus on the single phonon
model and thus ignore the unnecessary supers¢ptfor
notational simplicity. In the numerical studies, for the ap-
proximate JCM Eq.(13) we propagate any given initial
states according tg(t) =e~red U (t)%(0) with the known
propagatoiJ,(t)=e """V in the interaction picturg17],

2/(1 _ 1
Hl(\/lg\)NA - nge%) + V( lp),

14
H{P=vala+

free 20'2! a
coggtyaa'] simgtyaa'l—
V)= —ig(a’o_—ac,). 13 (t)= — vaa
()=
V2 a'
This Hamiltonian is the same as in the Jaynes-Cummings - sinfgtyaa'] coggtya'a]
model H,cy=rva'a+(v/2)o,—gpo, with the counter- vaa
rotating termsa’o, ,ao_ dropped under the RWA. (15)

Alternatively, there is a second resonancélat 2v. The o )
condition for the MRWA in this case i§/2<(Q [16], which ~ Transformed states are denoted #y-T. In the Schre
becomes z§+ 9V§>0. Hence, the validity regime of the dinger picture, where observables are computed, the wave
MRWA becomes independent of in this case and can be function becomesw(t)='~I'Te“HfreetU,(t)T</f(O). For ex-
realized simply by choosing larger trap frequencies. In conample, the mean phonon numldar'a) is found to be
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(ny=y(0)"TTU]eredTalaTle MredU, (1) Ty(0), = S AL (B]AN), 22
(16) n=1A=e\g A

which can be further simplified with the use of the displace- . . . .
ment operator property with coefficientsA; for (j=1,2, ... ,N) given by

TafaTl=

2 N
7\~ .7 1
tar L )T i Lat 7
a'a+— )| i5(a'—a)oy. A7 Apen (D= 7 m; DnLm1(sA2)[xm(t)+sAxm+N(t)].
We note that the last term in the above equation involves the (23

momentum operator. Therefore, it does not commute with ) ) ) )
H, and introduces fast oscillations due to #ie2" factor. The displacement operator matrix elements in the Fock basis

We finally get are known analytically in terms of Laguerre polynomials
[19]. Therefore, the complete time evolution is obtained pro-

~ ol [y 772 P i vided the transformed Hamiltonian is diagonalized. This is
(n)=¥(0)'Uy|| a’a+ S |I-is(ae”—ae ™) achieved through the standard expression
it ot ~ =
I —1 .
X(0'+e +o_e )}Uﬂﬂ(o) (18) Xi=l """" N(t):jél Vijvjikle_letxk(o)l (24)

We immediately see that CRT's contribute to the dynamics
of (n) because of multiple transitions in the original Hamil- where W; are the eigenvalues of the transformed Hamil-
tonian. In addition tan), CRT’s also affect other dynamical tonian andV is the diagonalizing matrix whose columns are
variables of interest, e.g., the Mand@l factor [((a'a)?) the corresponding eigenvectors. In the following section we
—(a'a)?]/2, which characterizes phonon statistics and thevill compare MRWA results with the numerical diagonaliza-
impurity factorZ=1—tr(p2) [18]. p, is the reduced density tion method(NDM).
operator in the phonon subsystem.

When all CRT’s are included, i.e., no MRWA is made, it is 25
no longer possible to solve the dynamic propagation analyti-
cally. However, the transformed Hamiltonian can be diago-  252°
nalized numerically in a truncated phonon Fock state basis. I'_._
is easy to check the accuracy of such a truncation by testincS 25
for convergence with successively larger basis states. For a
initial Poisson distribution of vibrational phonons, the di- 24
mension of the truncated space becomes small enough th:
efficient algorithms are readily available. To illustrate this, 23
let us consider an initial state where the particle is in the 1.1
internal statele) with a motional coherent statey), i.e.,
#(0)=|e)|a). The transformed initial condition becomes

1.025

T o9

~l//(0)_ei”Re(“)|e>\E|®a—iZ>. (19)

1.1

0.8

In a truncated Fock space of dimensibin(>|a—in/2|?),

the state vector is expanded as 05 ™
N 0.25
= > Xoen (D]AN), 20
n=1A=e\g g 0 T T T T 1711 e

with n,=0,N andA =e, g, respectively. The initial condition 0.25/—

(19) then becomes | |
0 | I I | | L 1 1111
10' 10° 10°

Time

1 .7
Xn+n (O)ZS/\e_IﬂRe(a)Fnl( al), (21)
a \/2 2 FIG. 1. Comparison of the mean phonon numg®r, the Man-
) - ) del Q factor, and the impurity parametér for »=0.5 and «
with sy=+1,—1. The coherent state probability amplitudes — (¢ 5 5). Always, the upper subfigures are from the exact numeri-
in Fock space ar€ (@) =exp(—|¢|%/2)a"//n!. After back  cal diagonalization, while the lower ones are from the MRWA. The
transformation, the original state vector evolution is then detime axis is in dimensionless foriiscaled byg= 7»/2). Note the

termined by differences as compared with RE8].
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FIG. 2. The same as in Fig. 1 but fgr=0.5 anda=(5,0.5).

V. RESULTS AND DISCUSSIONS

We focus in this section on the comparison of exact nu-
merical results with results from the MRWA for an initial
motional coherent statéa) with a=|alexp(B). Moya-
Cesseet al. [3] have discussed a restricted form of the uni-
tary transformation that led to a similar linearized model
Hamiltonian earlier. Although formally independent of the
Lamb-Dicke parameter, their results were obtained under the
MRWA. In this first example, we demonstrate that their il-
lustrative figure as presented in RE3] is in fact invalid at
the presumed marginal LDly=0.5. In Fig. 1, we see that
the MRWA result predicts regular behaviors for several dy-
namical variables, while the exact result from the NDM at
n=0.5 anda=(0.5,5) displays significant differences. In
general, we find that with the NDM the initial state loses its O
purity faster and ends up with a larger value for the time
averaged mean phonon number. On the other hand, th
MRWA results typically give larger widths of temporal fluc-
tuations for the MandeQ factor, especially at earlier times.
Perhaps most importantly, the MRWA results predict super-
revivals[3] in Q and({n) that were never observed with the
NDM.

Differences of similar orders of magnitude are also found
for a=(5,0.5) as detailed in Fig. 2. We also note the signifi-
cantly improved quantitative agreement far) in this case.

In fact, such improved agreement with MRWA results always
seems to occur whefi=0.

Now we compare the deeper LDL regime p&0.1. As
shown in Figs. 3 and 4, noticeable errors with the MRWA

033412-5
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10° 10°

Time

FIG. 3. The same as in Fig. 1 but far=0.1 anda=(0.5,5).

Note the super-revivals fap.
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FIG. 4. The same as in Fig. 1 but fgr=0.1 anda=(5,0.5).
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FIG. 5. The mean phonon numbgr), the MandelQ factor, and FIG. 6. The same as in Fig. 5 but now for the full ion-trap

the impurity parametef with 7=0.1 anda=(3,0) for the simple  Hamiltonian which includes multiple phonon transition effects.
single phonon JCMH ;¢ with and without the RWA. In both cases Within each subfigure, the uppélower) curve, obtained by the
no back transformation is employed but an initial condition of theNDM (MRWA), is for the Hamiltonian with(without) counter-
form Ty(0) is used to compare with the multiple phonon transition "Otating terms.

effects in Fig. 6. Within each subfigure, the upflewer) part is for

H o With (without) counter-rotating terms. the MRWA introduces more nutations in the actually

smoother behavior. The basic difference between the JCM
and the ion-trap system is the requirement of an additional

*back transformation for the latter, Vil in determining the
wave function evolution. From the physical point of view,
this transformation brings back the effect of multiple phonon
transitions, present in the ion-trap case, after a simplified
single phonon transition dynamics has been determined con-
veniently in the interaction picture. Neglecting counter-
rotating terms in the effective single phonon model &),
however, ignores too many multiple phonon processes at the
end of the transformation, thus introducing more noise
around the otherwise smoother collapse-revival patterns. We
note that thigthe MRWA in ion-trap modelsis opposite to

were still found, although at significantly reduced levels a
compared with Figs. 1 and 2.

Figure 4 compares early time dynamics for the same
=0.1 but witha=(5,0.5). We note that thé=0 value pre-
dicts the existence of Schiimger cat states from both
MRWA and NDM results[18]. Also the agreement fofn)
and Q is better than the case @f=(0.5,5). These results
show clearly that errors in the MRWA are sensitive to the
phase of the initial coherent state amplitude.

To further elucidate the effects of the MRWA, we have
carried out additional comparisons. In Fig. 2 and in Fig. 4,

we notice that the MRWA results predlct larger oscﬂlgﬂonsthe effects of the RWA in the JCM and has been found for
than the actually smoother behavior @f), Q, andl. This . .~ . . .
initial motional states with almost real coherent state ampli-

observation is in contrast to our expectations that stem frorrt1udes ie.3~0
the effects of the RWA in the usual JCM. Let us first recall T '
the effect of neglecting counter-rotating termsHgcy,. For

comparison, we consider an initial condition of the form

Ty(0). Theresults obtained by propagating this initial con- We have investigated the regimes of validity for the
dition underH ;cy dynamically with and without counter- MRWA of a trapped particle under its coherent interaction
rotating terms are given in Fig. 5. We see that results fomwith a plane wave laser field. Our study is based on a family
H;cm with the RWA exhibit smoother behavior while the of general unitary transformations that incorporate several
actual H;c) results carry small nutations due to counter-earlier transforms as special ca$8s/]. This general trans-
rotating effects. For the ion-trap system considered in Fig. 6formation facilitates the linearization of the system Hamil-
the results are just the opposite. In the ion-trap Hamiltoniantonian including the particle’s motional degrees of freedom.

VI. CONCLUSION

033412-6
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In model studies presented here, two distinct dynamical resmoother dynamical behaviors than the results obtained un-
gimes appear, the single phonon dynamics and the doubléer the MRWA, which introduces larger nutations around the
phonon dynamics. The single phonon model is standard istherwise smoother dynamical patterns. This is in stark con-
the deep LDL. The two-phonon model, on the other handtrast to CRT effects in the usual JCM problems. Physically,
does not impose any restrictions on the Lamb-Dicke paramthis effect arises because of the existence of multiple transi-
eter. Thus, addressing the validity regimes of the MRWA istions in motional states. Our study indicates that the connec-
necessary only for the single-phonon dynamics used exteRipn between cavity QED and ion-trap systems in JCM-type
sively in the literature. For this aim, we have employed aformalisms is possible as long as the ranges of the Lamb-

numerical diagonalization proceduteithout the MRWA  pjcke parameter are carefully analyzed to enforce the valid-
and comparatively assessed the validity conditions of thgy of the MRWA.

MRWA. We find that remarkable errors exist in regimes
where the MRWA was believed to be applicable. Further-
more, our simulations show that the accuracy and detailed
guantitative effects of the MRWA depend on the phase of the
initial motional coherent state. When this phase is close to This work was supported by a grant from the National
zero, the time averaged mean phonon numperdisplays  Security Agency(NSA), Advanced Research and Develop-
improved agreement with MRWA results. The agreementment Activity (ARDA), and the Defense Advanced Research
however, is far from perfect even in the deep LDL. Qualita-Projects Agency(DARPA) under Army Research Office
tively, for almost real initial coherent state amplitudes, keep{ARO) Contract No. DAAD19-01-1-0667, and by the NSF
ing the counter-rotating terms in the ion-trap model leads tdGrant No. PHY-9722410.
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