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Motional rotating-wave approximation for harmonically trapped particles
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We present a family of generalized unitary transformations that simplifies the Hamiltonian for a harmoni-
cally trapped two-level atom~or ion! interacting with a plane wave laser field. Near-resonant single as well as
double vibrational phonon dynamical regimes are found. The validity condition of the often used motional
rotating-wave approximation~MRWA! is examined both numerically and analytically. Large errors are found
within typical regimes of the MRWA with respect to the motional degrees of freedom. The effects of the
MRWA in trapped ion systems are shown to be opposite to that of the rotating-wave approximation in the usual
Jaynes-Cummings model. Our study points to a more restrictive condition on the particle localization~Lamb-
Dicke! parameter for the validity of the MRWA in the single phonon dynamical regime. It also sheds light on
quantum information storage and processing with trapped atoms.
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I. INTRODUCTION

In the last few years, much attention has been focused
quantum dynamics and coherence properties of trapped
oms or ions@1–5#. These studies led to many potential
attractive applications of harmonically trapped particles, e
in generating nonclassical vibrational phonons@6#, imple-
menting fast quantum gates@2#, and achieving phonon-ion
entanglement@1#. In most of these studies, a coherent pla
wave laser field near-resonantly couples two electronic st
of an atom. The inclusion of motional degrees of freed
leads to tremendous complication. Several simplificatio
have been developed that reduce the trapped particle dyn
ics to the familiar Jaynes-Cummings model~JCM! form with
the use of the Lamb-Dicke limit~LDL !, the strong confine-
ment limit, or the motional rotating wave approximatio
~MRWA!. In fact, the JCM description can be achieved
gardless of the laser field configuration, i.e., whether it i
traveling wave@3# or a standing wave@1,4#. The LDL re-
quires the particle localization size, given by the harmo
trap ground state widtha, to be much less than the nea
resonant laser wavelengthl, i.e., h5(2p)a/l!1. It is of-
ten believed that the MRWA for harmonically trapped pa
ticles works well within the LDL as it demands a le
restrictive conditionh!2 @3# or h!4 @2#.

In our ongoing effort to understand motional effects
trapped particles for quantum information processing@7#,
this issue of the validity regimes for the trapped parti
MRWA again arises. We note that some earlier investigati
show that the rotating-wave approximation~RWA! does not
work satisfactorily for Hamiltonians containing multipl
transitions@8,9# or for systems initially prepared in a supe
position of internal states@10#. Furthermore, multiparticle
properties such as entanglement can have a different s
tivity dependence on the single particle MRWA@11#. With
harmonically trapped particles, this issue becomes part
larly acute as the equal distant motional states span an
nite dimensional Hilbert space. The MRWA is typically ma
after a linearization by either taking the LDL or applying a
exact simplifying unitary transformation. Within the latte
approach, errors from the MRWA can be further modified
1050-2947/2002/65~3!/033412~7!/$20.00 65 0334
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the back transformation when dynamical observables are
culated in the original frame.

In this article we study the quantum dynamics of a sin
trapped atom by employing a numerical diagonalization p
cedure without employing the MRWA. We assess the valid
regime for the MRWA by comparing with results from an
lytical models obtained under the MRWA. This paper is o
ganized as follows. In Sec. II, our model system of a sin
trapped two-level atom is described and a review of the u
tary transformation method for linearizing the Hamiltonian
presented. Our result, the existence of a family of gene
unitary transformations for linearizing our model Ham
tonian, is then introduced. In Sec. III, we discuss two line
ized models obtainable from our transformations. In Sec.
we outline several technical points about analytical solutio
of the transformed model Hamiltonian under the MRWA. W
also discuss a numerical diagonalization procedure used
exact dynamic solutions. Selected results and comparis
are presented in Sec. V. Finally, we conclude in Sec. VI.

II. THE MODEL SYSTEM AND A FAMILY OF GENERAL
UNITARY TRANSFORMATIONS

To simplify our discussion, we consider a on
dimensional model of a harmonically trapped two-level p
ticle interacting with a near-resonant laser field@3,12#. The
system Hamiltonian is given by

H5H01H1 ,

H05
P2

2M
1Vtg~x!sgg1@\veg1Vte~x!#see,

H15
V

2
ei\vLte2 ikLxs21H.c., ~1!

where V, vL , and kL denote, respectively, the Rabi fre
quency, carrier frequency, and wave number of a cohe
driving laser. The electron transition frequency between
excited (ue&) and ground states (ug&) is veg . sab5ua&^bu
(a/b5e,g) are atomic projection operators. Consisten
©2002 The American Physical Society12-1
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with convention, we denotes25ug&^eu and sz5see
2sgg . For a neutral particle, typically the approximate ha
monic trap potential is internal state dependent, i.e.,Vta

5(1/2)Mna
2x2 with a corresponding trap frequencyna . P is

the motional momentum andM is the mass of the particle.
We first simplify Eq.~1! by changing into the interaction

picture ~rotating frame! with the unitary transformationH
→ei\vLt seeHe2 i\vLt see2\vLsee. This leads to

H05
P2

2M
1Vtg~x!1

\d

2
sz1@Vte~x!2Vtg~x!#see1

\d

2
,

H15
V

2
e2 ikLxs21H.c., ~2!

whered5veg2vL is the laser field detuning. We now intro
duce the motional phonon annihilation~creation! operator for
the ground statea (a†) according toP5A\Mng/2p and x
5A\/2Mngq with p5 i (a†2a) and q5a†1a. The dis-
placement operator becomesD(b)5eba†2b* a, and Eq.~2!
simplifies to (\51)

H05ngn1
d

2
sz1z q2see1

ng1d

2
,

H15
V

2
D†~ ih!s21H.c., ~3!

where n5a†a is the phonon number operator andz5(ne
2

2ng
2)/4ng . The Lamb-Dicke parameter is nowh

5kLA1/2Mng. For this particular form of the Hamiltonian
we note that its interaction part (H1) can be diagonalized by
a general transformation matrixT̃5E†T, with

E5
E21E1

2
Î 1

E22E1

2
sz ,

T5
1

A2
S D†~ ih!11

2
Î 1

D†~ ih!21

2
sz1s12D†~ ih!s2D .

~4!

We chooseVPR without loss of generality. It is easy t
check thatT̃H 1T̃†5(V/2)sz , is independent of the arbitrar
unitary functional operatorsE1,2 of a anda†. For any opera-
tor Q, the transformed operator will be denoted byQ̃

5T̃QT̃†. Î 5see1sgg is the identity operator. This transfo
mation can be compared to the generalized Power-Zie
transformation discussed earlier@13#. In the phonon Fock
state basis, it generates coherent superpositions of mot
wave-packet states which were previously used in study
motional decoherence of atomic qubit operations@7#. It re-
duces to the simplifying transformation used by Moya-Ce
et al. @3# when we takeE15E25D(2 ih/2). TheT̃ transfor-
mation on theH0 term can be conveniently calculated usi
the following properties:

D~a!D~b!5e(ab* 2a* b)/2D~a1b!, ~5!
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D~7 ih!a†aD~6 ih!5a†a6 ih~a†2a!1h2, ~6!

for arbitrary complex numbersa andb. We note that Eq.~5!
simplifies to D(a)D(b)5D(a1b) when a and b are
purely imaginary. The second and the last terms in the rig
hand side of Eq.~6! correspond to the Doppler and reco
shifts. After this general transformation, we obtain

H̃05E†F S ngn1gp1hg1
d1ng

2
1

z

2
q2D Î 2S gp1

z

2
q2

1hg1
d

2DsxGE, ~7!

with g5hng/2 andsx5s11s2 . Different simplifications
can be pursued by exploiting other forms ofE1,2. We note
that the first term in Eq.~7! is in the form of a squeezed
displaced harmonic oscillator. Therefore it can be diagon
ized in the Fock state basis by the squeezed coherent
transformationE25E15D(b)S(j). To eliminate thep de-
pendence in the coefficient ofÎ we chooseb52 ih/2, which
transforms according ton→n2(h/2)p1h2/4, p→p2h,
andq→q. We then obtain

H̃05S†~j!F S ngn1
z

2
q21

d1ng1hg

2 D Î

2S gp1
z

2
q21

d

2DsxGS~j!. ~8!

The squeezing transformationS(j5reiu) causesa→ua†

2v* a with u5coshr and v5eiusinhr. For our model,z is
required to be real, i.e.,u50. The action ofS results in

p→erp,

q→e2rq,

n→e2rn2
1

2
sinh 2rq21er sinhr . ~9!

Substitution of these results into Eq.~8! leads to the elimi-
nation of theq2 term in the coefficient of theÎ term provided
we chooser 5(ln e)/4 with e5112z/ng . This yields

H̃05FngAe n1
ngAe1gh1d

2 G Î
2S ge1/4p1

z

2Ae
q21

d

2D sx . ~10!

We can now redefine the parameters according ton
5ngAe, g→ge1/4 and z→z/Ae. Finally, we arrive at the
transformed Hamiltonian

H̃5nn1
V

2
sz2S gp1

z

2
q21

d

2Dsx , ~11!
2-2
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MOTIONAL ROTATING-WAVE APPROXIMATION FOR . . . PHYSICAL REVIEW A65 033412
where the constant term in the coefficient ofÎ has been
dropped. We note that for ions with internal state indep
dent trap frequenciesz5r 5j50. We recover the same re
sult as in Ref.@3# by choosingb52 ih/2. The effects of
different trap frequencies for different internal levels are
renormalization of energy parameters in the single vib
tional phonon Hamiltonian and a double vibrational phon
interaction through a term quadratic in the position opera
Double phonon transitions are the typical interactions t
can lead to squeezed and entangled states for the vibrat
phonons. In the next section, we will see that such tw
phonon transitions can dominate the single phonon tra
tions in the system, independent of the Lamb-Dicke para
eterh.

III. MOTIONAL ROTATING-WAVE APPROXIMATION

The simplified model Hamiltonian Eq.~11! is of the form
of a generalized JCM involving quadratic two-phonon tra
sitions. It can be analytically solved for small squeezing
rameters without external drive (V50) @14#. Alternatively,
when un2Vu!V or u2n2Vu!V, andg andz!V, an ap-
proximate analytic solution can be obtained by an expl
diagonalization upon the elimination of the rapidly oscilla
ing terms, i.e., the application of the MRWA. In the intera
tion picture, Eq.~11! becomes

H̃I5F2 ig~a†eint2ae2 int!1
z

2
~a†2ei2nt1a†a1H.c.!1

d

2G
3~s1eiVt1s2e2 iVt!. ~12!

There exist two resonance conditions, one atV5n where the
validity condition for the MRWA becomes (hng/2)e1/4

!nge1/2 @14#, i.e.,h!2e1/4. When the difference in trap fre
quencies is small we geth!7/41(ne/2ng)2. We see that the
validity regime of the MRWA depends onh for this case of
the single phonon JCM. Physically, the trap frequency diff
ence can be controlled experimentally@15#. Whenne5ng as
for an ion, we recover the conditionh!2 as discussed by
Moya-Cessaet al. @3#. Under this condition, we arrive at th
single phonon model:

H̃MRWA
(1p) 5Hfree

(1p)1V(1p),

Hfree
(1p)5na†a1

n

2
sz ,

V(1p)52 ig~a†s22as1!. ~13!

This Hamiltonian is the same as in the Jaynes-Cummi
model HJCM5na†a1(n/2)sz2gpsx with the counter-
rotating termsa†s1 ,as2 dropped under the RWA.

Alternatively, there is a second resonance atV52n. The
condition for the MRWA in this case isz/2!V @16#, which
becomes 7ne

219ng
2@0. Hence, the validity regime of th

MRWA becomes independent ofh in this case and can b
realized simply by choosing larger trap frequencies. In c
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trast to the single phonon JCM in Eq.~13!, the two-phonon
squeezing model can be achieved beyond the LDL an
described by

H̃MRWA
(2p) 5Hfree

(2p)1V(2p),

Hfree
(2p)5na†a1nsz ,

V(2p)5
z

2
~a†2s21a2s1!. ~14!

Equations~13! and ~14! are the major results of the gen
eral unitary transform introduced earlier. Their complete d
namics, however, can be complicated as transformation b
into the original Schrodinger picture induces coherent m
ing of different states. In particular, if the system is initial
prepared in a statec(0), thelinearized model Hamiltonian
Eq. ~13!, has an initial statec̃(0)5Tc(0), which is always a
superposition of both internal states. In other words, even
systems initially in only one internal state such that it ha
vanishing dipole moment, the transformed system will
ways have a nonvanishing dipole moment. It is known in t
case that counter-rotating terms~CRT’s! neglected in making
the MRWA become more significant and the validity regim
for the MRWA more restricted@10#.

We are now in a position to discuss the validity regimes
the commonly used MRWA for the simplified model Ham
tonians Eqs.~13! and~14!. We will focus on the single pho-
non model in Eq.~13! as it can be compared directly t
existing results~under the MRWA! in the literature@3#. Fur-
thermore, while the single phonon JCM can be obtained
small restricted values of the Lamb-Dicke parameter,
two-phonon model is obtained without any restriction on t
Lamb-Dicke parameter. Thus, determining the validity
gime of the MRWA is more essential for the single phon
JCM.

IV. NUMERICAL METHOD

In the following discussion we focus on the single phon
model and thus ignore the unnecessary superscript~1p! for
notational simplicity. In the numerical studies, for the a
proximate JCM Eq.~13! we propagate any given initia
states according toc̃(t)5e2 iHfreetUI(t)c̃(0) with the known
propagatorUI(t)5e2 i tV in the interaction picture@17#,

UI~ t !5
1

A2 S cos@gtAaa†# sin@gtAaa†#
a

Aaa†

2
a†

Aaa†
sin@gtAaa†# cos@gtAa†a#

D .

~15!

Transformed states are denoted byc̃5T̃c. In the Schro¨-
dinger picture, where observables are computed, the w
function becomesc(t)5T̃†e2 iHfreetUI(t)T̃c(0). For ex-
ample, the mean phonon number^a†a& is found to be
2-3
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^n&5c~0!†T̃†UI
†eiHfreetT̃a†aT̃†e2 iHfreetUI~ t !T̃c~0!,

~16!

which can be further simplified with the use of the displac
ment operator property

T̃a†aT̃†5S a†a1
h2

2 D Î 2 i
h

2
~a†2a!sx . ~17!

We note that the last term in the above equation involves
momentum operator. Therefore, it does not commute w
H0 and introduces fast oscillations due to thee2 i2nt factor.
We finally get

^n&5c̃~0!†UI
†F S a†a1

h2

2 D Î 2 i
h

2
~a†eint2ae2 int!

3~s1eiVt1s2e2 iVt!GUI c̃~0!. ~18!

We immediately see that CRT’s contribute to the dynam
of ^n& because of multiple transitions in the original Ham
tonian. In addition tô n&, CRT’s also affect other dynamica
variables of interest, e.g., the MandelQ factor @^(a†a)2&
2^a†a&2#/2, which characterizes phonon statistics and
impurity factorI512tr(rp

2) @18#. rp is the reduced density
operator in the phonon subsystem.

When all CRT’s are included, i.e., no MRWA is made, it
no longer possible to solve the dynamic propagation ana
cally. However, the transformed Hamiltonian can be dia
nalized numerically in a truncated phonon Fock state basi
is easy to check the accuracy of such a truncation by tes
for convergence with successively larger basis states. Fo
initial Poisson distribution of vibrational phonons, the d
mension of the truncated space becomes small enough
efficient algorithms are readily available. To illustrate th
let us consider an initial state where the particle is in
internal stateue& with a motional coherent stateua&, i.e.,
c(0)5ue&ua&. The transformed initial condition becomes

c̃~0!5e2 ih Re(a)
ue&2ug&

A2
Ua2 i

h

2 L . ~19!

In a truncated Fock space of dimensionN (@ua2 ih/2u2),
the state vector is expanded as

c̃~ t !5 (
n51,L5e,g

N

Xn1nL
~ t !uLn&, ~20!

with nL50,N andL5e,g, respectively. The initial condition
~19! then becomes

Xn1nL
~0!5sL

1

A2
e2 ih Re(a)Fn21S a2 i

h

2 D , ~21!

with sL511,21. The coherent state probability amplitud
in Fock space areFn(a)5exp(2uau2/2)an/An!. After back
transformation, the original state vector evolution is then
termined by
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c~ t !5 (
n51,L5e,g

An1nL
~ t !uLn&, ~22!

with coefficientsAj for ( j 51,2, . . . ,2N) given by

An1nL
~ t !5

1

A2
(

m51

N

Dn21,m21S sL

h

2 D @Xm~ t !1sLXm1N~ t !#.

~23!

The displacement operator matrix elements in the Fock b
are known analytically in terms of Laguerre polynomia
@19#. Therefore, the complete time evolution is obtained p
vided the transformed Hamiltonian is diagonalized. This
achieved through the standard expression

Xi 51, . . . ,N~ t !5 (
j ,k51

2N

Vi j Vjk
21e2 iWj tXk~0!, ~24!

where Wj are the eigenvalues of the transformed Ham
tonian andV is the diagonalizing matrix whose columns a
the corresponding eigenvectors. In the following section
will compare MRWA results with the numerical diagonaliz
tion method~NDM!.

FIG. 1. Comparison of the mean phonon number^n&, the Man-
del Q factor, and the impurity parameterI for h50.5 and a
5(0.5,5). Always, the upper subfigures are from the exact num
cal diagonalization, while the lower ones are from the MRWA. T
time axis is in dimensionless form~scaled byg5hn/2). Note the
differences as compared with Ref.@3#.
2-4
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V. RESULTS AND DISCUSSIONS

We focus in this section on the comparison of exact
merical results with results from the MRWA for an initia
motional coherent stateua& with a5uauexp(ib). Moya-
Cessaet al. @3# have discussed a restricted form of the u
tary transformation that led to a similar linearized mod
Hamiltonian earlier. Although formally independent of th
Lamb-Dicke parameter, their results were obtained under
MRWA. In this first example, we demonstrate that their
lustrative figure as presented in Ref.@3# is in fact invalid at
the presumed marginal LDLh50.5. In Fig. 1, we see tha
the MRWA result predicts regular behaviors for several d
namical variables, while the exact result from the NDM
h50.5 anda5(0.5,5) displays significant differences. I
general, we find that with the NDM the initial state loses
purity faster and ends up with a larger value for the tim
averaged mean phonon number. On the other hand,
MRWA results typically give larger widths of temporal fluc
tuations for the MandelQ factor, especially at earlier times
Perhaps most importantly, the MRWA results predict sup
revivals @3# in Q and^n& that were never observed with th
NDM.

Differences of similar orders of magnitude are also fou
for a5(5,0.5) as detailed in Fig. 2. We also note the sign
cantly improved quantitative agreement for^n& in this case.
In fact, such improved agreement with MRWA results alwa
seems to occur whenb'0.

Now we compare the deeper LDL regime ofh50.1. As
shown in Figs. 3 and 4, noticeable errors with the MRW

FIG. 2. The same as in Fig. 1 but forh50.5 anda5(5,0.5).
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FIG. 3. The same as in Fig. 1 but forh50.1 anda5(0.5,5).
Note the super-revivals forQ.

FIG. 4. The same as in Fig. 1 but forh50.1 anda5(5,0.5).
2-5
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were still found, although at significantly reduced levels
compared with Figs. 1 and 2.

Figure 4 compares early time dynamics for the sameh
50.1 but witha5(5,0.5). We note that theI50 value pre-
dicts the existence of Schro¨dinger cat states from bot
MRWA and NDM results@18#. Also the agreement for̂n&
and Q is better than the case ofa5(0.5,5). These results
show clearly that errors in the MRWA are sensitive to t
phase of the initial coherent state amplitude.

To further elucidate the effects of the MRWA, we ha
carried out additional comparisons. In Fig. 2 and in Fig.
we notice that the MRWA results predict larger oscillatio
than the actually smoother behavior of^n&, Q, and I. This
observation is in contrast to our expectations that stem f
the effects of the RWA in the usual JCM. Let us first rec
the effect of neglecting counter-rotating terms inHJCM. For
comparison, we consider an initial condition of the for
T̃c(0). Theresults obtained by propagating this initial co
dition underHJCM dynamically with and without counter
rotating terms are given in Fig. 5. We see that results
HJCM with the RWA exhibit smoother behavior while th
actual HJCM results carry small nutations due to counte
rotating effects. For the ion-trap system considered in Fig
the results are just the opposite. In the ion-trap Hamilton

FIG. 5. The mean phonon number^n&, the MandelQ factor, and
the impurity parameterI with h50.1 anda5(3,0) for the simple
single phonon JCMHJCM with and without the RWA. In both case
no back transformation is employed but an initial condition of t

form T̃c(0) is used to compare with the multiple phonon transiti
effects in Fig. 6. Within each subfigure, the upper~lower! part is for
HJCM with ~without! counter-rotating terms.
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the MRWA introduces more nutations in the actua
smoother behavior. The basic difference between the J
and the ion-trap system is the requirement of an additio
back transformation for the latter, viaT̃† in determining the
wave function evolution. From the physical point of view
this transformation brings back the effect of multiple phon
transitions, present in the ion-trap case, after a simplifi
single phonon transition dynamics has been determined
veniently in the interaction picture. Neglecting counte
rotating terms in the effective single phonon model Eq.~13!,
however, ignores too many multiple phonon processes at
end of the transformation, thus introducing more no
around the otherwise smoother collapse-revival patterns.
note that this~the MRWA in ion-trap models! is opposite to
the effects of the RWA in the JCM and has been found
initial motional states with almost real coherent state am
tudes, i.e.,b'0.

VI. CONCLUSION

We have investigated the regimes of validity for th
MRWA of a trapped particle under its coherent interacti
with a plane wave laser field. Our study is based on a fam
of general unitary transformations that incorporate seve
earlier transforms as special cases@3,7#. This general trans-
formation facilitates the linearization of the system Ham
tonian including the particle’s motional degrees of freedo

FIG. 6. The same as in Fig. 5 but now for the full ion-tra
Hamiltonian which includes multiple phonon transition effec
Within each subfigure, the upper~lower! curve, obtained by the
NDM ~MRWA!, is for the Hamiltonian with~without! counter-
rotating terms.
2-6
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MOTIONAL ROTATING-WAVE APPROXIMATION FOR . . . PHYSICAL REVIEW A65 033412
In model studies presented here, two distinct dynamical
gimes appear, the single phonon dynamics and the do
phonon dynamics. The single phonon model is standar
the deep LDL. The two-phonon model, on the other ha
does not impose any restrictions on the Lamb-Dicke par
eter. Thus, addressing the validity regimes of the MRWA
necessary only for the single-phonon dynamics used ex
sively in the literature. For this aim, we have employed
numerical diagonalization procedure~without the MRWA!
and comparatively assessed the validity conditions of
MRWA. We find that remarkable errors exist in regim
where the MRWA was believed to be applicable. Furth
more, our simulations show that the accuracy and deta
quantitative effects of the MRWA depend on the phase of
initial motional coherent state. When this phase is close
zero, the time averaged mean phonon number^n& displays
improved agreement with MRWA results. The agreeme
however, is far from perfect even in the deep LDL. Quali
tively, for almost real initial coherent state amplitudes, ke
ing the counter-rotating terms in the ion-trap model leads
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smoother dynamical behaviors than the results obtained
der the MRWA, which introduces larger nutations around
otherwise smoother dynamical patterns. This is in stark c
trast to CRT effects in the usual JCM problems. Physica
this effect arises because of the existence of multiple tra
tions in motional states. Our study indicates that the conn
tion between cavity QED and ion-trap systems in JCM-ty
formalisms is possible as long as the ranges of the La
Dicke parameter are carefully analyzed to enforce the va
ity of the MRWA.
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