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Atomic collision dynamics in optical lattices
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We simulate collisions between two atoms, which move in an optical lattice under the dipole-dipole inter-
action. The model describes simultaneously the two basic dynamical processes, namely the Sisyphus cooling of
single atoms, and the light-induced inelastic collisions between them. We consider theJ51/2→J53/2 laser
cooling transition for Cs and Na. We find that the hotter atoms in a thermal sample are selectively lost or heated
by the collisions, which modifies the steady-state distribution of atomic velocities, reminiscent of the evapo-
rative cooling process.
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I. INTRODUCTION

Laser cooling and trapping techniques have made it p
sible to study and manipulate samples of cold neutral ato
@1#. It has lead to the precision control of atomic matter, a
also opened new possibilities for investigations of interact
dynamics between atoms, especially those mediated by
@2#. By controlling the internal states of the atoms we obt
access to their center-of-mass motion@1,3#. Sisyphus cooling
and polarization gradient cooling methods@4#, which allow
one to break the Doppler limit for low temperatures, a
based on the way polarized light connects to the ato
states. By combining more than one laser beam we can
troduce a spatially changing polarization state into the to
light field interacting with atoms. As light introduces Sta
shifts on atomic states, the spatially changing polarizat
appears as a spatially changing potential for atoms wit
suitable angular momentum state structure. In addition to
cooling effect, this has made it possible to build periodic
quasiperiodic lattices@5#, where the light field traps the at
oms. We describe the Sisyphus cooling and lattice struc
in Sec. II.

The basic laser cooling method is Doppler cooling@1#,
which is produced by the random scattering of photons
sorbed from the laser beam. This cooling mechanism is
related to the polarization states of light. For alkali atoms t
method has a limiting temperature, the Doppler tempera
TD5\G/2kB , whereG is the atomic linewidth. Using the
polarization states, i.e., Sisyphus cooling and polariza
gradient cooling, one can go belowTD until the photon re-
coil limit, TR , is reached, and creating a lattice as a bypr
uct. The values ofTR andTD for used elements are given i
Table I. Typically one reaches a thermal equilibrium whe
the atoms are more or less localized at lattice sites, but
also move between them. The efficiency and the degre
localization have been studied thoroughly in the past@5#.
Since the best filling ratios~number of atoms per site! with
small-detuning lattices are on the order of 10%@5#, one can
consider the gas sample as noninteracting. Larger filling
tios have been achieved lately by special techniques in
detuned optical lattices@6#. Based on the experience in sta
dard magneto-optical traps~MOTs!, the increasing density
1050-2947/2002/65~3!/033411~16!/$20.00 65 0334
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for small-detuning lattices is expected to lead to strong l
and heating of atoms due to collisions, which beco
strongly inelastic in the presence of the near-resonant coo
light @2,7#. By a ‘‘small-detuning lattice’’ we mean one tha
is detuned a few atomic linewidths below the transiti
frequency.

The light-assisted collisions are based on the fact that
two slowly approaching atoms form a quasimolecule, wh
the light can excite resonantly during the approach, e
though the cooling beams are clearly off the resonance w
the atomic transition energy which corresponds only asym
totically to the molecular state transition energy. The re
nance occurs at relatively long distances@8#, where the domi-
nant contribution to the molecular behavior, i.e., t
interaction potential between atoms, comes from the dipo
dipole interaction~DDI!. We describe these collisions in Se
III, and derive an expression for DDI in Sec. IV. We hav
presented the first results of our work in a previous sh
publication@9#, where details of the derivation were omitte
so here we present them in full. It should be noted that o
can develop, e.g., a mean-field approach to atom-atom
cesses via the DDI@10–13#. In our approach, albeit with
some limitations, we allow the atoms to move. Furthermo
we consider the problem in the atom-atom basis, with the
Zeeman substate structure, in the presence of the coo
lattice-building laser beams with spatially changing polariz
tion structure. Thus our model treats the Sisyphus coo
and localization of the atoms, and the atomic collision d
namics consistently, within the same framework.

In order to describe two multistate atoms moving qua
tum mechanically as wave packets in position and mom
tum space, and being coupled both to the spatially chang

TABLE I. Atomic properties. MassesM in a.u. and linewidth
energiese5(\G)/Er ~for the definition of the recoil unitEr see
Table III!. The Doppler temperatureTD and the recoil temperature
TR5(\2kr

2)/MkB in mK. Herekr is the wave number of the lase

M e TD TR

Cs 133 2400 120 0.20
Na 23 400 238 2.4
©2002 The American Physical Society11-1
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laser field as well as the vacuum field producing spontane
emission, we would in principle have to use the dens
matrix description. This is not computationally possible c
rently, but we can go around the problem by describing
spontaneous emission with quantum jumps. As describe
Sec. V, we use the Monte Carlo wave-function~MCWF!
method to build a statistical ensemble of time evolution h
tories, which approximates adequately the actual density
trix @14–16#. To implement this approach on our descripti
of atomic collisions in lattices is not straightforward, and
Sec. VI we describe the details related to numerical simu
tions. Inelastic collisions in MOTs have been modeled ext
sively with semiclassical models@17#. We describe these
models briefly in Sec. VII. They provide a tool for unde
standing some of the physics behind the numerical data,
for estimating the processes affecting the multitude
boundaries for the numerical methods.

Our Monte Carlo simulation results, presented in S
VIII, indicate that the hotter atoms in our thermal samp
due to their stronger mobility between the lattice sites,
more likely to collide inelastically than the colder ones. O
the other hand, the simulations, supported by semiclass
estimates, show that inelasticity plays a relevant role onl
the atoms end up in the same lattice site simultaneously
other words, the effect of the dipole-dipole interaction
mains small if the atoms do not share the same lattice
This, of course, also depends on the chosen laser field
rameters such as intensity and detuning. When the cl
same-site encounter occurs, however, it is most likely
strongly inelastic one leading to the loss of atoms. Basica
we see a process similar to evaporative cooling, where
hotter atoms are selectively heated or ejected from the lat
It should be noted, though, that despite the fully quantu
mechanical nature of our approach, it still omits many ot
effects affecting the atomic cloud in the lattice. Photons sc
tered incoherently by atoms can be reabsorbed, which
duces a radiation pressure; this process also heats the a
cloud as its density and thus optical thickness increases@1#.

The observations made in this paper follow those fr
our previous study@9#. The results given in this paper, how
ever, have been obtained with an improved approach c
pared to Ref.@9#, and we have also extended our studies
other basic alkali species. Furthermore, here we give the
tailed description of our approach and its computational
pects. Finally, the discussion in Sec. IX concludes o
presentation.

II. SISYPHUS COOLING AND OPTICAL LATTICES

In this section we present the atom-laser system un
study and describe briefly the basics of Sisyphus laser c
ing of neutral atoms in an optical lattice. A detailed review
the subject can be found in Refs.@1,4,5#.

A. Sisyphus cooling

We consider here atoms having ground-state angular
mentum Jg51/2 and excited-state angular momentumJe
53/2 corresponding to alkali-metal elements when the
perfine structure is neglected. The resonance frequency
03341
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tween the states isv0 so that\v05Ee2Eg whereEe andEg

are energies of the ground and the excited states in zero fi
A single atom has two ground-state sublevelsug61/2& and
four excited-state sublevelsue63/2& and ue61/2& where the
half-integer subscripts indicate the quantum numberm of the
angular momentum along thez direction, see Fig. 1. The
values of atomic masses that are used in our simulations
those of cesium (133Cs) and sodium (23Na) which are the
conventional alkali-metal elements used for laser cooling
neutral atoms, see Table I. Lithium would also be an int
esting candidate for simulations but we have to leave it
here@18#.

The laser field consists of two counter-propagating bea
with orthogonal linear polarizations and with frequencyvL .
The total field has a polarization gradient in one dimens
and reads

E~z,t !5E0~exe
ikrz2 ieye

2 ikrz!e2 ivLt1c.c., ~1!

whereE0 is the amplitude andkr the wave number. With this
field, the polarization changes from circulars2 to linear and
back to circular in the opposite directions1 whenz changes
by lL/4 wherelL is the wavelength of the lasers.

The periodic polarization gradient of the laser field is r
flected in the periodic light shifts, ac-Stark shifts, of th
atomic sublevels creating the optical lattice structure, cf. F
2. When the atomic motion occurs in a suitable veloc
range, optical pumping of the atom between ground-s
sublevels reduces the kinetic energy of the atom@4#. After
several cooling cycles the atom localizes into the optical
tential well, i.e., into an optical lattice site. Figure 3 show
the optical pumping cycles between the ground-state sub
els cooling an atom, and the oscillations of the atomic wa
packet after localization into an optical lattice site.

The intensity of the laser field and the strength of t
coupling between the field and the atom is described by
Rabi frequencyV52dE0 /\ where d is the atomic dipole
moment of the strongest transition between the ground
excited states. The detuning of the laser field from the ato
resonance is given byd5vL2v0. As a unit forV andd we
use the atomic linewidthG.

FIG. 1. The level structure of a single atom. We show t
squares of the Clebsch-Gordan coefficients of corresponding tra
tions describing the strengths of couplings between the Zee
sublevels. The difference between the laser frequencyvL and the
atomic frequencyv0, i.e., the laser detuning, isd.
1-2
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B. Localization in lattice

When the steady state is reached after a certain perio
cooling, atoms are to a large extent localized into the lat
sites. In this study we deal with near-resonant bright opt
lattices where the laser field is detuned a few atomic li
widths to the red of the atomic transition. The laser para
etersV andd determine if the lattice is in the ‘‘jumping’’ or
in the ‘‘oscillating’’ regime, depending on the average nu
ber of atomic oscillations in a single lattice site before t

FIG. 2. Schematic view of the optical potentials for the tw
ground-state Zeeman sublevels. The lattice structure is created
to the periodic polarization gradient of the laser field.

FIG. 3. Sisyphus cooling and the localization of an atom into
optical lattice. We show a possible time evolution for a single at
wave packet for two ground-state Zeeman levels,~a! mg521/2, ~b!
mg511/2. The result shows the optical pumping cycles and
localization of a single atom into the optical lattice. This exam
forms one member of a Monte Carlo simulation, and the disc
tinuous changes between the two ground states are due to qua
jump events from the excited state~not shown!, selected to happen
randomly with an appropriately weighted probability. If the run
repeated, the jumps would appear at different times again.
03341
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atom is optically pumped to neighboring sites@19#. It must
be noted that tight localization and occupation of the low
vibrational levels of a periodic lattice potential increases
optical pumping timetp and the time of localization within a
single lattice site becomes longer compared to the semic
sical values presented in Table II.

We are interested in the effect of inelastic collisions b
tween atoms in the presence of near-resonant light@2# in
optical lattices. These collisions occur when two atoms
cupy the same lattice site. To observe efficiently the effec
inelastic collisions we have chosenV and d in most of the
simulations so that the lattice is in the ‘‘jumping’’ regime
i.e., semiclassically speaking the atoms on average do
have time for a single full oscillation before optical pumpin
transfers them to a neighboring lattice site.

Steady-state properties of the atomic cloud in the latt
are characterized, e.g., by the average kinetic energy
atom, the spatial probability distribution, or the momentu
probability distribution. These are results which we obta
from our simulations. We keep the detuning fixed~d523G!
and vary the Rabi frequencyV, which gives various values
for the optical potential modulation depth

U052
2

3
\ds0 , ~2!

wheres0 is the saturation parameter given by

s05
V2/2

d21G2/4
. ~3!

The spatially modulated optical potentials are

U25U0 sin2~krz!,

U15U0 cos2~krz!, ~4!

for ground-statesmg521/2 and mg511/2, respectively
@19#. The parameters used in our simulations along with r
evant lattice properties are summarized in Table II.

Collisions and radiative heating increase the relative
locity between the atoms@2#. This heats up the atoms and
is possible for a colliding pair to escape from the lattice. O
can calculate semiclassically the critical momentumpc

sc giv-
ing the point in momentum~p! space where the cooling forc
has its maximum value@4#. In Sec. VI F below, we discuss
for which values of the momentumpc we may neglect ener
getic histories and consider the corresponding atoms
from the lattice.

III. BINARY INTERACTIONS BETWEEN COLD ATOMS

In this section we give a simple description of collisio
between two cold atoms in the presence of near-reso
light @2# and discuss the background of this phenomenon
occur in an optical lattice.
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A. Binary interactions

In this paper, we consider atomic gases with an occu
tion density ofro525%, i.e., every fourth lattice site is oc
cupied and the average distance between two atoms iza
5l. For Cs this corresponds to a density of 1.
31012 atoms/cm3. This atomic gas density is low enoug
that collisions can be treated as binary processes:~i! The
collision range is an order of magnitude smaller thanza , and
~ii ! for a Cs atomic mass, atoms with typical maximum v
locities produced in our simulations need to have evolv
over a time larger than 75G21 to travel a distanceza and they
scatter a large enough number of photons that there is n
gible memory effects between two collision events. Thus,
binary collision picture is justified in our calculations.

Let us consider two atoms with a temperature around
below the Doppler temperatureTD . If such two atoms col-
lide they form a quasimolecule which a near-resonant li
may excite when the atoms approach each other. This oc
at an internuclear distance called the Condon point (r c)
where the excited-state electronic molecular potential
comes resonant with the ground-state potential as displa
in Fig. 4.

We do not include in the description the short-range s
exchange processes and we do not include the interac
which come into play when the atoms are so close to e

TABLE II. Laser parameters used in the simulations and
corresponding lattice properties: Detuningd, Rabi frequencyV, lat-
tice modulation depthU0, semiclassical average number of oscill
tions in a lattice siteNosc5Vosctp , and saturation parameters0.
We use the semiclassical average oscillation frequencyVosc dis-
cussed in@19#. Units are given in parentheses and the simulatio
are labeled by the element and the lattice depth.

V~G! d~G! U0(Er) Nosc s0 Simulation label

1.2 23.0 374 0.93 0.08 Cs374
1.5 23.0 584 0.74 0.12 Cs584
2.5 23.0 1621 0.47 0.33 Cs1621
2.8 23.0 339 0.98 0.42 Na339
3.5 23.0 530 0.78 0.66 Na530

FIG. 4. Schematic view of radiative heating of colliding atom
The quasimolecule is excited at the Condon pointr c and accelerated
on the upper level before spontaneous decay terminates the pro
03341
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other that their electron clouds begin to overlap. Thus
neglect the hyperfine structure of the atoms and do not c
sider the ground state hyperfine structure changing co
sions, but concentrate on the effects based on radiative h
ing and escape of the colliding pair. In this process,
resonant excitation of a quasimolecule terminates in spo
neous decay and the colliding pair of atoms gains kine
energy due to acceleration on an attractive molecular exc
state before decay occurs, see Fig. 4. In principle it is a
possible to lose atoms from the trap via fine-structure cha
ing collisions @2#. In this paper, the loss fraction of fine
structure changing collisions is assumed to be neglig
compared to the radiative escape mechanism. The smal
tuning of the lasers makesr c very large, and the probability
for surviving to the small internuclear distances required
the fine-structure change is rather small. Furthermore,
energy increase caused by this mechanism is large and l
mainly to a loss of atoms, contributing to heating only v
secondary collisions. These secondary collisions are
rather rare in the low-density gas samples of laser coo
atoms.

An essential ingredient in the kinetic-energy increas
collision process is the excitation of the large fraction of t
population into the attractive excited state. The excited-s
population fraction in turn depends on the relative veloc
between the interacting atoms when they reachr c for the
attractive molecular states. For the collisions in the latti
the relative velocity in turn depends on the optical latti
modulation depth. The deeper the lattice, the higher the r
tive velocity of the atoms when they end up in the sa
lattice site and collide. We consider here lattices with mod
lation depths in the range 339Er<U0<1621Er , whereEr is
the recoil energy, cf. Table III. Thus, the relative velociti
before a collision remain low, which keeps the excitati
probability large. The small detuning keeps the excitat
probability large also since the excited-state slope decre
with the detuning; this increases the interaction time
moving atoms at the vicinity of the resonance pointr c .

B. Collisions in lattices

Theoretical and experimental collision studies in MO
show that the atomic cloud is heated by the radiative mec
nism described above. Atoms may also escape from a M
by this mechanism@2,7#. Thus these collisions set a limit fo
atomic densities and temperatures of the cloud in a M
when the density is increased so that binary interacti
begin to have a clear effect. Typical densities achieved

e

s

.

ess.

TABLE III. Characteristic units. Distances are given in nm, m
menta in 10228 kgm/s, time in ns, and energy in 10230 J.

Quantity Characteristic unit Cs Na

Distance |51/kr 136 94
Momentum pr5\kr 7.77 11.25
Time G21 193 99
Energy Er5(\2kr

2)/2m 1.37 16.57
1-4
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MOTs are around 1011 atoms/cm3 and temperatures aroun
or below the Doppler cooling limit@2#.

Similar effects are expected in an optical lattice when
occupation density of the lattice increases. What is not
rectly expected is that there is a parameter region whe
possible cooling process in a dense lattice occurs due to
lisions. This is due to the fact that the colliding pair of atom
carry more kinetic energy than localized ones and durin
collision they almost always gain sufficient energy to esc
from the lattice. Thus those atoms that have not collid
inelastically and remain in a lattice, have less kinetic ene
per atom. Moreover, they can also thermalize via ela
ground-ground collisions. In our paper, we neglect the r
cattering of photons and consequently the total pattern
cooling and heating is not studied. Here we only consider
effects of collisions. The complete problem is simply n
computationally tractable within our framework.

Atomic interactions in lattices are usually modeled a
suming fixed positions for both atoms and calculating h
the atomic energy levels are shifted by the interaction@10–
13#. These static models ignore the dynamical nature of
collision processes described here. When allowing the at
to move the problem becomes complicated and computat
ally extremely tedious. To make numerically feasible calc
lations, we have fixed one atom and allow the other one
move freely, as described further in Sec. VI B.

As a summary, the complete list of the features
have ignored in this paper due to the limits of computabi
is: ~a! hyperfine structure,~b! fine structure,~c! rescattering
of photons,~d! Doppler cooling~see Sec. VI C!, ~e! mobility
of both atoms ~see the previous paragraph!, ~f! three-
dimensional nature of the problem, and~g! thermalization by
elastic collisions and other thermodynamical aspects of
atom cloud. But we emphasize that the dynamical nature
cooling and inelastic binary collisions is included in our r
stricted model. This has not been done before, to the be
our knowledge.

IV. ATOMIC BASIS FORMULATION
AND DIPOLE-DIPOLE INTERACTION

In this section, we describe the two-atom product st
basis@20# and the dipole-dipole interaction~DDI! between
two atoms in our one-dimensional~1D! study.

A. Atomic basis formulation

We do not use the adiabatic elimination of the excit
states, which is typically employed in order to simplify th
equations for atomic motion@21#. By keeping the excited
states in the calculation we are able to account for the
namical nature of atomic interactions and the radiat
heating/escape mechanism.

In general the product state basis vectors are

u j 1m1&1u j 2m2&2 , ~5!

where j 1 and j 2 denote the ground or excited state~in our
caseg for the ground-state2S1/2, e for the 2P3/2 excited
state! andm1 , m2 denote the quantum number for the com
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ponent ofj along the quantization axisz for atom 1 and 2,
respectively. The total number of states is 636536.

We have to fix the position of one atom, as described
Sec. VI B. If the position of atom 1 is fixed, the binary sy
tem wave function depends now only on the position of
moving atom 2,

uc~z2 ,t !&5 (
j 1 , j 2 ,m1 ,m2

c j 2 ,m2

j 1 ,m1~z2 ,t !u j 1m1&1u j 2m2&2 . ~6!

The atomic spatial dimensionality of the problem is reduc
from two to one. The relative coordinatez between atoms is
now z5z22zf wherezf is the position of the fixed atom, se
Sec. VI B.

In the atomic product state basis@20#, our system Hamil-
tonian is

HS5H11H21Vdip . ~7!

Here, Vdip includes the interaction between the atoms a
H15H̃1^ 12 and H2511^ H̃2, where the operators1a are
unity operators in atoma subspace, and the single ato
Hamiltonian for atoma (a51,2) is, after the rotating wave
approximation

H̃a5
pa

2

2M
2\dPe,a1Ṽa . ~8!

Here, Pe,a5(m523/2
3/2 uem&a a^emu, and the interaction be

tween a single atoma and the field is

Ṽa52 i
\V

A2
sin~kza!H ue3/2&a a^g1/2u

1
1

A3
ue1/2&a a^g21/2uJ 1

\V

A2
cos(kza)

3H ue23/2&a a^g21/2u1
1

A3
ue21/2&a a^g1/2uJ 1H.c.,

~9!

whereza is the position operator of atoma.

B. Resonant dipole-dipole interaction

In order to get the DDI potential,Vdip , in Eq. ~7!, we
have calculated the master equation for the atom and l
field in question, and identified the DDI. Our approach fo
lows the lines of Appendix A in Ref.@22# but we note that we
deal with six-level atoms whereas Ref.@22# deals with two-
level atoms. As it is beyond the scope of this paper to
through the derivation of the DDI potential in detail, we sh
refer to Eq.~Ax! in Ref. @22# as Eq.~LMAx !. We identify
Vdip as the terms similar toD11 andD22 with ^nv11&51 in
Eq. ~LMA21!.

First, it is convenient to write the noninteracting syste
HamiltonianH11H2 in a basis of center-of-mass and rel
tive coordinates:
1-5
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P5p11p2 , p5
p22p1

2
. ~10!

With these coordinates, the interaction potential with the
ser field,V5Ṽ1^ 12111^ Ṽ2, reads

V52 i
\V

A2
sin~kZ!cosS k

z

2D ~S1,1
1

^ 12111^ S1,1
2 !

1 i
\V

A2
cos~kZ!sinS k

z

2D ~S1,1
1

^ 12211^ S1,1
2 !

1 i
\V

A2
cos~kZ!cosS k

z

2D ~S1,2
1

^ 12111^ S1,2
2 !

1 i
\V

A2
sin~kZ!sinS k

z

2D ~S1,2
1

^ 12211^ S1,2
2 !1H.c.,

~11!

whereZ andz are the center-of-mass and relative coordina
along thez axis and

S1,q
a 5 (

m521/2

m51/2

CGm
q uem1q&a a^gmu. ~12!

Here CGm
q are the appropriate Clebsch-Gordan coefficie

and q is the polarization label in the spherical basis. W
rewrite similarly the interaction with the vacuum electroma
netic field in terms of the relative coordinates~10!. The DDI
terms are identified after we have considered the damp
part of ṙ @cf. Eq. ~LMA17!# in the derivation of the maste
equation for our two-atom system.

Following @22#, we note that the DDI potential is found a

Vdip52
3

8
\G

1

pE0

`

dvS v

v0
D 3

PS 1

v2v0
D H j 0S v

r

cD
3S 1

3
~S11S211S12S22!2

2

3
S10S20D

1 j 2S v
r

cD F P2~cosu r !S 2
2

3
~S11S211S12S22!

1
4

3
S10S20D1

1

3A2
P2

1~cosu r !cosf r~2S11S20

1S10S222S10S211S12S20!

1
1

3
P2

2~cosu r !cos 2f r~S11S221S12S21!G J ,

~13!

where P(x) is Cauchy’s principal value,j l are spherical
Bessel functions of the first kind,P2 is Legendre polynomial,
andPm

n are associated Legendre functions. The anglesu r and
03341
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f r are the angles of the relative coordinater in the spherical
basis. We have also introduced the operators

S1qS2q8[~S1,q
1 S2,q8

2
1S1,q

2 S2,q8
1

!, ~14!

whereS2,q
a 5(S1,q

a )†.
Thus, we need to calculate integrals of the type

Il ~q0r !5
1

pE0

`

dvS v

v0
D 3

PS 1

v2v0
D j l S v

r

cD , ~15!

with q05v0 /c. We may change the lower limit in the inte
gral to 2`, enabling us to calculate the integral by conto
integration@23#. The results are

I0~q0r !5
cosq0r

q0r
,

I2~q0r !52
cosq0r

q0r
13S sinq0r

~q0r !2
1

cosq0r

~q0r !3 D , ~16!

and the three-dimensional DDI potential is

Vdip52
3

8
\GH 1

3

cosq0r

q0r
@122P2~cosu r !#

3~S11S211S12S2222S10S20!

22S sinq0r

~q0r !2
1

cosq0r

~q0r !3 D P2~cosu r !~S11S21

1S12S2222S10S20!1
1

3 F2
cosq0r

q0r

13S sinq0r

~q0r !2
1

cosq0r

~q0r !3 D GF 1

A2
P2

1~cosu r !cosf r

3~2S11S201S10S222S10S211S12S20!

1P2
2~cosu r !cos 2f r~S11S221S12S21!G J .

~17!

If the two atoms are positioned on thez axis, the DDI
potential reduces to the one-dimensional potential

Vdip
axis5

3

8
\GH 1

3

cosq0r

q0r
12Fsinq0r

~q0r !2
1

cosq0r

~q0r !3 G J
3~S11S211S12S2222S10S20!. ~18!

By diagonalizingVdip it is possible to obtain the molecula
potentials shown in Fig. 5. One also notes that the DDI
duces thep-polarization couplings which the laser fields d
not do here.
1-6
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V. MONTE CARLO WAVE-FUNCTION METHOD

In this section we describe briefly the main features of
Monte Carlo wave-function~MCWF! method @14# which
was developed for problems in quantum optics and disc
the implementation of the method to solve the cold collis
problem in optical lattices.

A. Basic Monte Carlo method

Various types of Monte Carlo~MC! methods@14–16#
have been developed for problems where a direct analy
or numerical quantum-mechanical solution of the dens
matrix master equation is very difficult or impossible due
the complexity of the problem. Complexity usually aris
because of the coupling of the system studied to a reser
with a large number of degrees of freedom and also beca
of a large number of elements in the system density ma
Problems of this kind are common in laser cooling of neu
atoms. Various types of quantum approaches are possib
2D systems@24# but in 3D a full quantum treatment of lase
cooling of atoms has only been given in terms of the Mo
Carlo method@25#.

The core idea of the MCWF method is the generation o
large number of single wave-function histories including s
chastic quantum jumps of the system studied. Solutions
the steady-state density-matrix and system properties
then be calculated as ensemble averages of single histo

To generate single histories of the system wave-func
uc&, one solves the time-dependent Schro¨dinger equation

i\
]uc&
]t

5Huc&. ~19!

Here the non-Hermitian HamiltonianH is

H5HS1Hdec, ~20!

whereHS is the system Hamiltonian, Eq.~7! in our case, and
the non-Hermitian partHdec includes the decay part.Hdec is

FIG. 5. The shifted ground-state and the attractive excited-s
@labeled by Hund’s case~c! notation# molecular potentials of Cs fo
d523.0G.
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constructed from appropriate jump operatorsCj correspond-
ing to a decay channelj and to the detection scheme of th
system. The general form of the non-Hermitian part read

Hdec52
i\

2 (
j

Cj
†Cj . ~21!

During a time evolution stepdt the norm of the wave
function may shrink due toHdec and the amount of shrinking
gives the probability of a quantum jump to occur during t
short intervaldt. Based on a random number one then d
cides whether a quantum jump occurred or not. Before
next time step is taken, the wave function of the system
renormalized. In the case that a jump occurs, one perform
rearrangement of the wave-function components accord
to the jump operatorCj , corresponding to decay channelj,
before renormalization ofuc&.

B. Time evolution

A natural termination for a simulation occurs if a stea
state appears. One must note that the time to reach st
state varies even for the same system studied when the
parameters are changed. Therefore one has to be care
have long evolution times to make sure that the steady s
is reached and ensemble averaging can be done in a rel
way.

We solve the time-dependent Schro¨dinger equation Eq.
~19! by the split operator-Fourier transform method@26#.
Formally solving Eq.~19! over dt gives

uc~ t01dt !&5Uuc~ t0!&, ~22!

where the time evolution operator U reads

U5expS 2
iHdt

\ D . ~23!

We split the time evolution operatorU including the
HamiltonianH of Eq. ~20! into three parts asH5HV1HK
1HD . When H is in matrix form, HV has an off-diagonal
part accounting for the atom-field coupling and the inter
tion between atoms,HK is the diagonal kinetic part, and
HD includes the nonkinetic diagonal part, i.e., decay a
detuning.

For noncommuting operatorsA and B we can write to
second-order accuracy@26#

exp~A1B!.exp~A/2!exp~B!exp~A/2!. ~24!

As we take many consecutive time steps during the evo
tion, we finally approximate the wave function at timet0
1ndt by

uc~z,t01ndt !&.F )
k50

n21

UVUD
1/2UKUD

1/2G uc~z,t0!&. ~25!

Here,UD5exp(2iHDdt/\) and UK5F 21 exp(2idt\k2/2M )
where F and F 21 denote the Fourier and inverse Fouri
transforms. Finally,UV can be written asUV5Sexp(D)S21

te
1-7



ex
t

ol
a
o

sl
f

-
fo

he

m
e

tw
r

b
o
pl
to

t i
on
om

ingle

to-
mple
our
col-
lay.
ol-
e-
rac-
es
uce
hy
ers,
ns

eed
een

tion
lly
at
he

d in
the

ns
cket

it-

u-
nts
ll

istic
th-

,
f
y

J. PIILO, K.-A. SUOMINEN, AND K. BERG-SO”RENSEN PHYSICAL REVIEW A65 033411
whereScontains eigenvectors andD eigenvalues ofHV . UV
corresponds now to a change of basis, multiplication by
ponentials of eigenvalues and change of basis back to
product state basis. The above form for the temporal ev
tion of uc& is straightforward to implement and fast on
computer, e.g., 20% faster than the Crank-Nicholson meth

C. Decay channels

A single atom has six different ways to spontaneou
emit a photon so the total number of decay channels is 12
two atoms~channels 1–6 for atom 1, 7–12 for atom 2!. For
each decay channel,j, the jump probability is given by

Pj5dt^cuCj
†Cj uc&, ~26!

where the jump operatorsCj are constructed from single
particle jump operators. In the single-particle subspace
atoma and decay channelj we have

C̃j
a5CGjAG ugama&a a^eamau, ~27!

whereeama labels the excited level from which, andgama
the ground level to which jump occurs. Extension to t
product state basis is simple@20#: For atom 1,Cj5C̃j

1
^ 12,

and for atom 2,Cj511^ C̃j
2 .

For example, if we denote the jump of atom 1 fro
ue21/2&1 to ug21/2&1 as channel 2, the jump operator in th
product state basis for this jump is

C25A2/3AG$ug21/2&1ug21/2&2 1^e21/2u 2^g21/2u

1ug21/2&1ug11/2&2 1^e21/2u 2^g11/2u

1ug21/2&1ue23/2&2 1^e21/2u 2^e23/2u

1ug21/2&1ue21/2&2 1^e21/2u 2^e21/2u

1ug21/2&1ue11/2&2 1^e21/2u 2^e11/2u

1ug21/2&1ue13/2&2 1^e21/2u 2^e13/2u%, ~28!

and the corresponding jump probability for channel 2 is

P25
2

3
dtG$ucg21/2

e23/2u21ucg11/2

e23/2u21uce23/2

e23/2u2

1uce21/2

e23/2u21uce11/2

e23/2u21uce13/2

e23/2u2!%. ~29!

We neglect here the case where both atoms jump and
photons are detected simultaneously. The probability fo
single atom jump duringdt is !1 so the joint jump prob-
ability is negligible compared to the single atom jump pro
ability. In principle it would be possible in simulations t
take into account joint jumps but this unnecessarily com
cates the jump procedure. After applying the jump opera
Cj , the wave function is still in a superposition state, bu
has collapsed onto product state basis vectors, leaving
one ground-state level component of the jumped at
populated.
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D. Ensemble averaging

We calculate the results as an ensemble average of s
history time averages in the steady-state time domain@16#.
This averaging method requires a smaller number of his
ries calculated to achieve reasonable error bars than a si
ensemble averaging at a single steady-state time point. In
paper, extra complications arise because the number of
lision processes in the whole ensemble also comes into p
Atoms do not end up in the same lattice site, producing c
lisions, in all the calculated histories. Atomic hopping b
tween lattice sites is a stochastic process and only in a f
tion of the total number of histories, collision process
occur. We need a sufficiently large ensemble to prod
enough collision events to have reliable results. This is w
we have a much larger ensemble size, 96–128 memb
than, e.g., used in 3D laser cooling Monte Carlo simulatio
using the same ensemble averaging method@25#.

In order to be able to use this averaging method, we n
to be sure that time averages of single histories have b
calculated in the steady-state time domain. The simula
times used are displayed in Table IV. We have carefu
checked from the time evolution of the kinetic energy th
the simulation time was long enough to reach well into t
steady-state time domain.

VI. SIMULATION SCHEME

In this section, we present the characteristic units use
our calculations and discuss the various criteria which set
numerical limits for the simulations. The approximatio
used and the numerical details related to the wave-pa
initial conditions and dynamics are also presented.

A. Scaling and discretization of space

It is useful from a practical point of view to choose su
able units and scale the time-dependent Schro¨dinger equation
~19! accordingly. Convenient physical units and their n
merical values for the three appropriate alkali-metal eleme
are listed in Table III. In the discussion below, we list a
quantities and scale equations in units of the character
quantities displayed in Table III unless explicitly stated o
erwise.

As the phase factor exp(2iEdt/e) has to be well defined
cf. Eq. ~23!, we obtain a criterion for the maximum size o
the time stepdt dictated by the maximum kinetic energ
since we should fulfill the relationdt!e/p2. Here e is the

TABLE IV. Simulation times: Total time for collision simula-
tions T, ensemble averaging timeTav, time step sizedt, and maxi-
mum momentumupumax given by dt for the numerics to remain
reliable.

Simulation T(G21) Tav(G
21s0

21) dt(G21) upumax(pr)

Cs374 1600 78–125 0.2 110
Cs584 1600 97–194 0.2 110
Cs1621 760 178–256 0.1 155
Na339 470 99–198 0.05 90
Na530 470 155–311 0.05 90
1-8
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ATOMIC COLLISION DYNAMICS IN OPTICAL LATTICES PHYSICAL REVIEW A 65 033411
energy of the linewidth of the transition in recoil units,
previously displayed in Table I. Collisions increase t
atomic kinetic energies which makes the criterion fordt nu-
merically more strict for the two-atom case, compared to
one-atom Sisyphus cooling simulation~cf. Fig. 3!. We give
in Table IV the values ofdt for various simulations and th
maximum momentumupumax for the numerics to remain re
liable. The total simulation times are 125–311 in units
1/(Gs0). These depend on the properties of the alkali-me
elements and the laser parameters.

For the numerical simulations, one has to discretize
position and momentum spaces, and the resolution has t
fine enough to ensure valid results. We have used 8192
points when the length of the entire spatial grid isLz55l
.31.4|. This gives the step sizes in position and moment
spaces ofdz.0.0038 anddp50.2. The width of the Gauss
ian wave packet at the beginning of the simulation isDz0
50.02l.0.1257| giving Dz0 /dz.33 and in momentum
spaceDp0 /dp.20, ensuring sufficiently fine resolution.

The inverse space~here momentum space! has reflecting
boundary conditions when using the fast Fourier transfo
method. Thus the size of the momentum space has to
large enough to avoid the reflection of high kinetic-ener
atoms at the edges of the momentum space. This requ
special attention when considering the interaction simu
tions where the kinetic energies of the atoms increase du
the inelastic collisions.

The momentum space grid has a total size ofLk
52p/dz51638 so that the atomic momenta may have v
ues upu<819. The depths of the lattices in our simulatio
are such that atoms localized at a lattice site have mom
upu,50. The momenta increase when the atoms wan
around in the lattice, especially due to the inelastic collisio
The probability of gaining a sufficient momentum to rea
the edge of our momentum space grid in a single collis
event is now negligible. On the other hand many consecu
collisions do not shift the population for largep and the
reflection effect is avoided. This is due to the fact that
increasing relative velocity between the atoms reduce
excitation probability and increases in momentum termin
before the edges of thep space are reached.

B. Position fixing of one atom

We simulate the behavior of a 36-level dissipative qu
tum system with a position-dependent coupling to the la
field and a position-dependent coupling between two ato
This requires large computational resources. With the cur
computer capacity, it is not possible to simulate the situat
where both atoms are allowed to move freely. Instead
have to fix one atom spatially and let only the other at
move. This reduces the dimensionality of the problem to o
since the relative position of the atoms with respect to
laser field is now fixed. This also means that an inela
interaction process will not change the kinetic energy
both atoms, but we use the relative kinetic energy as
estimate for the kinetic-energy change per atom.

In our previous study@9# the position of the fixed atom
was kept constant but here we relax this condition. The
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sition zf of the fixed atom is now selected randomly in th
interval uzf u,0.125l for each ensemble member. This ran
covers all the interesting physics as an atom fixed outside
current range would be rapidly optically pumped to the o
posite lattice well and the situation would correspond to t
with the above-mentioned range ofzf .

The change ofzf also moves the Condon pointr c with
respect to the lattice and nowr c may be located anywher
between the lattice well and peak. This is an important po
for making our model more realistic: Since the kinetic e
ergy of the atom changes when it moves in the perio
optical potential, the relative velocity between the atoms a
thus the excitation probability to the attractive molecu
state atr c depends on its position in the lattice. Whenr c is
located at the peak of the optical potential, the atom ha
move up the potential hill to reach it. The relative veloci
between the two atoms is now less and the excitation pr
ability higher than in the case where the location ofr c is at
the bottom of the optical potential.

C. Initial wave packet

At the beginning of the simulation, the wave packet
placed in a randomly chosen ground-state sublevel. The
tial Gaussian packet has a full spatial width of 0.02l. Thus
the initial position of the spatially relatively narrow wav
packet in the lattice is random but completely out of t
range of the molecular resonance.

Each wave packet has a randomly selected mean in
velocity given by the Maxwell-Boltzmann distribution corre
sponding to the selected initial temperature of the atom
cloud. We emphasize that the momentum space width of
initial wave packet has no association with the thermal d
tribution, as it is merely needed to satisfy the Heisenb
uncertainty relation for a spatially localized initial state. A
stated above, the connection between the wave packet
the temperature takes place via the mean momentum of
wave packet. By selecting this mean momentum rando
for each ensemble member but weighting the occurren
with the Maxwell-Boltzmann distribution, we create withi
the Monte Carlo ensemble another ensemble of possible
tial collision velocities. This is the wave-packet version
the standard collisional energy average@27#.

As mentioned above only the ensemble averaged mom
tum probability distribution has a relation to temperatu
This initial distribution gets narrower when the syste
evolves and the simulation progresses corresponding to c
ing of the whole atomic cloud. Moreover, it must be stress
that the steady state reached does not depend on the i
widths of the single wave packets nor on the initial tempe
ture as long as the atoms are in the reach of Sisyphus c
ing. The simulation times get longer when the initial tem
perature is increased but we want to take into account
effect of collisions on the cooling dynamics in a realis
way. We also note that the steady state after cooling in
lattice does not necessarily correspond to a Maxw
Boltzmann distribution of velocities but a clear steady st
corresponding to the lattice properties is still reached@19#.
1-9
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It should be noted that although we include by default
recoil effects by absorption and stimulated emission, we c
not in our fully quantum approach take proper account of
Doppler shift which is the basis of the semiclassical desc
tion of Doppler cooling@28#. One could consider making
kind of semiclassical linear friction description in mome
tum space and add it to the quantum model, but we do
see any clear way how to incorporate that into the wa
packet dynamics and Monte Carlo description of dissipati
Although we cannot describe Doppler shift in our paper,
can at least add the recoil from spontaneous emission ev
~quantum jumps! to our paper, but we have seen that it do
not change the simulation results. In any case, the role
Doppler cooling is negligible when compared to the Sis
phus cooling force for the velocities of atoms localized in t
lattice@4#. It can, however, have a role in the recapture of
hotter atoms heated by collisions, so in that sense our m
is limited.

D. Occupation density of lattice

We have performed all the simulations presented in
paper for an occupation density ofro525% in one dimen-
sion, whereas in our earlier work@9#, we presented also re
sults for other one-dimensional densities in Cs lattices. Th
previous simulations showed that an occupation density
25% is sufficiently high for interesting effects to appe
namely, an evaporative cooling process which works for
least some parameters of the laser field. The occupation
sity used in this paper is also nearly the largest density
can use when the simulations are done in the way prese
here. The purpose of the paper is to further explore the
rameter space and to extend our simulations to other ato
masses in addition to describing the details of our simula
approach.

For ro525% the available spatial length for the movin
atom should be equal tol, corresponding to the averag
distance between the atoms. But decreasing the spatial
increases the step size in the momentum space sincedp
52p/Lz . So to have a sufficiently fine resolution in mome
tum space and still keepro525%, we chooseLz55l and
set an elastic repulsive potential barrier such that the allo
spatial length isl. The forbidden spatial region thus mak
the numerics work properly without altering the physics.
course the forbidden region does not affect the momen
space.

Every fourth lattice is occupied whenro525% or in other
words there is one atom per wavelengthl. This corresponds
to a situation where the fixed atom sits, e.g., atz50 and the
repulsive elastic potential barrier for the moving atom is
at z5l. Then two consecutive collisions are described wh
the moving atom travels from the first collision region to t
repulsive barrier, turns back, and collides again. Memory
fects from previous collisions are rapidly removed due
decoherence, as also discussed in Sec. III. This is why
can say that the present paper describes collisions in ge
in a lattice and not only between the same two atoms.

The dimensionality of the problem and the position fixi
of one atom causes subtleties related to the occupation
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sity: The moving atom travels on average a distance ofl
for the first collision. After this event it has to travel a di
tance 2l ~from zf to zf11 and back! to collide again. The
probability is high for a large kinetic-energy increase duri
the first collision. Thus the first collision has the domina
effect on the kinetic-energy scale relevant to the lattice
namics. This is why we would rather use herero525%
which corresponds to the average collision distance of 1l.

It is not trivial to connect the one-dimensional occupati
density to the two- or three-dimensional density, as that w
depend on the particular form of the lattice. It suffices
note, though, that a certain occupation density in one dim
sion will typically correspond to a lower value in highe
dimensions, so that, e.g., in three dimensions we expec
see the effects studied here for three-dimensional occupa
densities less than 25%.

E. Interaction at short range

The DDI , Eq.~18!, becomes singular at short range. T
singularity in HV is simply removed by replacingr with r
1r off and choosingr off51028. When constructing the time
evolution operatorU, we diagonalizeHV and the DDI part in
HV produces the eigenvalue manifolds corresponding to
attractive and repulsive molecular potentials.

We replace the position dependencies of the attrac
states which are the same as inVdip

axis , Eq. ~18!, by

1

r n
→ 1

~r b1r off!
n/b

~n51,2,3! ~30!

in a manner similar to what was done in Ref.@7#. Table V
gives the used values ofb, and we show the potentials i
Fig. 6.

The main reason for this ‘‘flattening’’ of the attractiv
state potentials is that considering the numerics, we have
upper limit to momentum. Thus we need to set a maxim
momentum which can be reached in our simulations by
celeration, but which can still be treated reliably numerica
in our integration grid, and is nevertheless large enough
correspond to a clear loss process. By selecting different
ues forb for each molecular potential we take into accou
the individual characteristics of the different attractive sta
and of the atomic elements. It should be noted that by
time the atoms reach the artificially modified part of the
tractive potentials, they move fast enough to make de
unlikely before they are reflected and move again to the
gion where the modification does not affect the potentia
Thus the flattening of the potentials does not increase

TABLE V. Values ofb. Numerical values which are used for th
various attractive molecular states and atomic species. See als
~30! and Figs. 5 and 6.

Element 0u
1 1g 0g

2 2u 1u

Cs 22 22 20 20 13
Na 13.5 13.5 12.5 12.5 10
1-10
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time the atoms spend inside the modified part of the po
tial, i.e., this does not enhance radiative decay artificially

We concentrate on the radiative heating which occurs
cause of the strong decay in the vicinity ofr c . In this region
the treatment of the singularity in the DDI and in the attra
tive molecular states does not yet affect the potentials.
example, the removal of the singularity causes a chang
the value of the Cs 0u

1 potential of 0.7% at the positionr
50.50 whenr c.0.83 for the detuning used,d523G.

The atoms repel each other at the very short range w
their electron clouds begin to overlap. We do not have
consider the details of the short-range repulsion. Thus
short range repulsion is simply produced by adding the
ponential terma exp(2br)e to the eigenvalues ofHV . For
flat states~states other than attractive or repulsive exci
states! a530, b520 for Cs,a5100,b520 for Na@29#. For
the attractive excited-state eigenvalue manifoldsa525,
b515 for Cs,a590, b515 for Na. Values ofa and b are
chosen such that they produce high enough repulsion wi
a sufficiently short range but without producing numeric
difficulties because of the contradictory requirements
height and range.

Finally we emphasize that apart from flattening the pot
tials, we perform our calculations in the atom-atom ba
Thus the molecular states are not used directly. Unfo
nately our dipole-dipole potential takes care only of the fo
part of the atomic interaction. Ther dependence of the life
times of the molecular states are ignored, i.e., each molec
state ends up having the constant atomic linewidth, inst
of the retarded linewidth. This linewidth arises from the fa
that the two atoms couple to the same vacuum mode
different locations, leading to ane2 ikW•rW phase difference
term. However, the atomic lifetimes differ at maximum on
by a factor of 2 from the atomic one. The main exception
the 2u state, which becomes strongly dipole forbidden a
can support strong survival and thus, e.g., favor the fi

FIG. 6. The short-range attractive excited molecular potent
for Cs. Repulsion of exponential form has been added and the
part of the potentials flattened to allow reliable numerical treatm
of momentum~see text!.
03341
n-

e-

-
or
in

en
o
e
-

d

in
l
f

-
.
-

e

lar
d

t
at

s
d
-

structure change loss mechanism over the radiative proc
But we have typicallyr c&0.8|, which means that the 2u

state is already hard to excite as well~see Ref.@27# for a
detailed discussion!. In order to make the quantum jump pro
cess tractable we use the atom-atom basis, and, unfo
nately, we cannot just transform into the molecular ba
change the linewidths into retarded ones, and then tran
into the atom-atom basis~as we do when flattening the po
tentials!. This is because for decay, the lifetimes appear
the jump operators in addition to the Hamiltonian.

F. Atoms escaping the lattice

One needs to define the critical momentumpc to be able
to calculate the MC ensemble averages and the propertie
the atoms remaining in the lattice. Ifupu,pc atoms are con-
sidered to remain/relocalize in the lattice, whereas wh
upu>pc they are considered lost from the lattice due to
collision or a series of collisions. Semiclassically, we c
calculate the criticalpc

sc where the cooling force has it
maximum value for the parameters used@4#. The cooling
force is, of course, still effective for momenta abovepc

sc .
Due to the stochastic nature of the jumps, it is not poss

to say if a given high-momentum atom will relocalize or if
is lost from the lattice. Assume that an atom has a mom
tum upu.pc

sc . If the following few quantum jumps reduc
the kinetic energy of the atom, depending on the atomic
sition in the lattice, it has a good chance to relocalize in
lattice. In the opposite case, where the next few jumps
crease the kinetic energy of the atom, corresponding
jumps from the vicinity of the bottom of the potential well t
the vicinity of the top of the well, the atom has less pro
ability to relocalize into the lattice. This means that for tw
different MC histories with the same initial value ofupu
.pc

sc one atom may escape from the lattice whereas
other one may relocalize. Thus it is not possible to definepc
in a way that all atoms belowpc always relocalize while
when upu>pc they escape.

When we calculate the kinetic energy per atom staying
the lattice, we need a criterion for neglecting those MC h
tories in the ensemble averaging that correspond to at
lost from the lattice. To solve the problem, we have calc
lated the kinetic energy per atom by using various values
pc . Since there is an increase in the average kinetic ene
as a function of time when the value ofpc used is too large,
we may check from the time evolution of the kinetic ener
that our choice forpc is the proper one when we want t
calculate the average kinetic energy per atom in the latt
This is because more collisions occur as the system evo
in time and if the gain in kinetic energy is too large for th
atoms to relocalize in the lattice, the kinetic energy increa
as a function of time and no steady state is reached, as d
onstrated in Fig. 7. Whereas when we use an appropr
value for pc , atoms still relocalize in the lattice and th
kinetic energy exhibits a steady-state behavior, cf. Fig. 7. I
at the transition point between these two different types
behaviors of the kinetic energy that we should choose
correct value forpc .
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Consequently, the atoms of a kinetic energy exceeding
limit given by pc are neglected when we perform the e
semble averaging to find the result for the kinetic energy
atom remaining in the lattice. It is important to note that t
main result related to the narrowing of the momentum pr
ability distribution due to collisions still includes all the ca
culated histories and is totally independent ofpc .

If there is no constant injection of atoms into the lattic
collisions slowly deplete it. Finally the density is sufficient
low that the interactions between atoms are negligible
the atomic cloud regains the properties determined by
laser parameters only. It should thus be realized that wha
describe here is a temporary cooling process which is
effective when the density has decreased. What we em
size is the unexpected behavior of the system in the inter
diate regime where the effect of collisions is not heating
cooling. This does not represent the nature of the comp
dynamics of the atomic cloud, of course, as there are o
mechanisms, such as the radiation pressure from scat
photons, for both heating and cooling, which are not
cluded here.

G. Computational resources

The numerical simulations are demanding since we
dealing with a 36-level quantum system including vario
position-dependent couplings and dissipative coupling to
environment. We use 32 processors of an SGI Origin 2
machine which has 128 MIPS R12000 processors of 1
memory per processor@30#. The total memory taken by a
single simulation~fixed d, V, ro , and atomic species! is 14
GB and generating a single history requires 6 hours of C
time. A simulation of 128 ensemble members then require
total CPU time which is roughly equal to one month. T

FIG. 7. Kinetic-energy time evolution. Forpc560 ~dashed line!
the steady state is not reached indicating a too large choice forpc .
Collisions increase the kinetic energy and the collided atoms are
of the recapture range, and thus escape from the lattice. Fopc

540 ~solid line! the steady state is reached. The dotted line in
cates the steady-state value.~Cs584!.
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normal clock time is, of course, much shorter~roughly
22 hours! since we take advantage of powerful paral
processing.

VII. THE SEMICLASSICAL APPROACH

In this section, we describe the semiclassical approac
calculate the excitation and survival probabilities on the m
lecular excited states of our two-atom system.

A. Landau-Zener formula and classical path approximation

One can calculate the semiclassical excitation probab
of the wave packet traveling through the crossing region
tween the two states of the system by using the Land
Zener formula

PLZ512exp~2pL!, ~31!

whereL includes both the coupling between the two sta
and theC3 factor which gives the inverse cubicr dependence
of the excited state (C3 /r 3) @2#. The basic idea here is tha
the short resonance region is approximated to consist of
spatially linearly behaving states and each component of
wave packet arriving at the resonance region is indep
dently excited. A more detailed description can be found
Ref. @2#.

One can then calculate the time it takes to reach a poir
on the excited state by using the classical path approxima

t5t~r !52E
r c

r

dr8F 2

m S pcr
2

2m
1

C3

r 83
2\d D G21/2

, ~32!

wherepcr is the momentum at the Condon pointr c . There is
a direct correspondence between the reached pointr on the
excited state and the energy gain while accelerating on
attractive excited molecular state. By using Eq.~32! one can

FIG. 8. The total momentumptot5pcr1Dp as a function of
resonance point momentumpcr for the attractive 1u state by the
semiclassical calculation. The wave packet has spent a dura
corresponding toG21 accelerating on the excited state before spo
taneous decay back to the ground state~Cs584!.
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calculate classically how long it takes to reach a poinr
corresponding to a given increase in kinetic energy or m
mentum due to the acceleration on the attractive exc
state.

It is now easy to numerically calculate the kinetic-ener
increase due to the collisions if the wave packet stays on
attractive excited state for a time corresponding to the nat
decay timeG21. When the exponential decay from the e
cited state is also taken into account, the probabilities
various kinetic energy gains due to collisions as a function
relative velocity of the colliding atoms atr c may also be
calculated@7#.

B. Postcollision momentum in the lattice

We obtain the values ofC3 for the attractive potentials by
fitting near the resonance region the simple expressi
2C3 /r 3 to our molecular potentials obtained by diagonal
ing the dipole-dipole coupling presented in the two-atom
sis, Eq.~18!. Figure 8 shows an example of the total po
collision momentumptot5pcr1Dp as a function ofpcr
when the wave packet spent a timet5G21 on the 1u excited
state~Cs584!. One notices thatpcr524 corresponding to the
lattice depth used already gives a total momentum ofptot
567 after a collision thus pushing the atom to the region
momentum space where its probability for relocalizing ba
to the lattice is small (pc

sc516.2). This shows in a clear wa
that increases in kinetic energy that are large compared to
lattice modulation depthU0 may occur on a time scale o
G21.

Moreover, when the exponential decay andPLZ , Eq.~31!,
are taken into account, one is able to calculate the proba
ties to gain various amounts of kinetic energies due to
collision. The total probabilityPtot for the atomic momen-
tum to have at least the valueptot after the collision is

Ptot5PaPLZ , ~33!

wherePa gives the survival probability on the excited sta
An example of the results ofPtot are shown in Table VI. This
suggests that the first resonance molecular potential 0u

1 has a
dominant role in collisions. Forptot540 the probabilities for
the various states are roughly equal but if the first resona

TABLE VI. Semiclassical probabilities to gain kinetic energi
on various attractive excited-state molecular levels, see Fig. 5
our Cs584 simulation. The probabilities are calculated forptot

5pcr1Dp540 andpcr524; this value ofpcr corresponds to the
lattice depth. The wave packet spends a timet>te on the excited
state,PLZ is the Landau-Zener excitation probability, andPa gives
the survival probability.Ptot5PaPLZ is the total semiclassica
probability for the processp.ptot540 to occur.

Potential te(G
21) PLZ Pa Ptot

1u 0.21 0.71 0.81 0.57
2u ,0g

2 0.40 0.88 0.67 0.59
1g 0.48 0.91 0.62 0.57
0u

1 0.49 0.92 0.61 0.56
03341
-
d

e
al

r
f

-
-

-

n
k

he

li-
e

.

ce

potential excites and accelerates half of the colliding ato
only half of them is left for the remaining potentials.

The simple semiclassical calculation above is not able
give quantitative results but it shows that the probability
produce an atom of large momentum due to a collision
high already when we consider one excited level only. T
probability increases when we take into account that dur
one collision process, the molecule may be excited at f
different values ofr c related to five different attractive state

VIII. SIMULATION RESULTS

The calculated numerical values of kinetic energy p
atom for various simulations are shown in Table VII a
corresponding momentum probability distributions in Fig
9–13.

Most of the simulations with the selected parameters p
duce a reduced value for the kinetic energy per atom w
the interactions between the atoms are taken into acco
see Table VII. Since the inelastic collisions here alwaysin-
creasethe kinetic energy of the atoms via the radiative he
ing mechanism, our results suggest that the consequenc
collision almost every time is the escape of the collidi

or
TABLE VII. Expectation values of kinetic energy per atom

(^Ek&) for the simulations. The value ofpc gives the critical mo-
mentum which is used in ensemble averaging to neglect at
which have escaped from the lattice. The absolute values of
standard deviation are given in parentheses.

^Ek&(Er) ^Ek&(Er)
Simulation pc interactions no interactions

Cs374 35 62~5! 75 ~5!

Cs584 55 82~6! 110 ~7!

Cs1621 70 264~30! 221 ~18!

Na339 40 46~3! 59 ~3!

Na530 45 63~6! 84 ~6!

FIG. 9. Momentum probability distributions for interacting an
noninteracting cases~Cs374!.
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high-energy atoms from the lattice@31#. The atoms left in the
lattice then have less average energy. This is due to the
that the more energetic atoms are favored to participate in
collision process due to their better ability to move betwe
the lattice sites.

The cooling process is indeed observed when looking
the momentum probability distributions including all the M
histories for ensemble averaging, see Figs. 9–13. One
see the slight narrowing of the momentum distributions c
responding to the cooling process. The narrow central p
corresponds to atoms localized in the lattice sites and
broader background wing to atoms which are above the
capture range and do not relocalize in the lattice. This
sembles the evaporative cooling process with narrowed
tral peak and hot background atoms. Cooling here is
dramatic but still present. Moreover, the result is in sh

FIG. 10. Momentum probability distributions for interacting an
noninteracting cases~Cs584!.

FIG. 11. Momentum probability distributions for interacting an
noninteracting cases~Cs1621!.
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contrast when compared to the theoretical and experime
collision studies in MOTs where the heating of the trapp
atoms due to the radiative mechanism is observed@2,7# but
not the evaporative-type cooling process.

The cooling process is observed for the two atom
masses when similar lattice depths are used@32#. The com-
putational resources that simulations require, see Sec. V
do not allow any extensive exploration of parameter sp
but the Cs1621 result shows that with a deeper lattice
situation may change, see Table VII. In shallow lattices
relative velocity before a collision is small, thus enhanci
the excitation probability. In deep lattices the reduced ex
tation probability due to large relative velocity is compe
sated by the use of more intense lasers. The Cs1621 r
suggests that in deeper lattices one may observe hea
which is similar to the results from MOT studies. But a sy
tematic study of this is out of the reach of this paper.

FIG. 12. Momentum probability distributions for interacting an
noninteracting cases~Na339!.

FIG. 13. Momentum probability distributions for interacting an
noninteracting cases~Na530!.
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IX. DISCUSSION AND CONCLUSIONS

Our results show the basic aspects of one mechanism
fecting the thermodynamics of the atomic cloud in an opti
lattice, when the lattice has been prepared with near-reso
~detuning a few linewidths!, red-detuned laser light. In thi
case the role of inelastic collisions is strong, leading to
heating and loss of atoms, but this requires that the inter
ing atoms are located in the same lattice site. This, on
other hand, requires, first, large atomic densities. There
in most lattice studies done so far, the role of collisions h
been negligible due to the low densities, or at least not e
to observe~with the exception of collisions producing a cle
signal such as Penning ionization of colliding metasta
rare-gas atoms@33#!.

Second, frequent collisions require clear mobility of a
oms. This takes place naturally during the Sisyphus coo
until the atoms are localized in lattice sites. Thus it is imp
tant for suitably dense samples to study the role of collisi
during the Sisyphus cooling, and our approach provide
method which is both dynamical and consistent. For the
lected parameters our simulations show that the Sisyp
cooling process and localization of atoms is not prohibi
by inelastic processes, i.e., the loss and heating of at
remains small even when the average distance between
two atoms is only four lattice sites.

Once the localization in lattice sites has been achieve
a steady state, the question about the mobility of ato
changes to some extent. It should be noted that localiza
does not mean that an atom remains in the same sitead
infinitum. In the steady state the atoms are localized at
sites for most of the time, but also move between the s
via tunneling~in the picture where the lattice lasers and t
excited states are eliminated from the effective descriptio!.
For the selected parameters the dipole-dipole interac
does not perturb the lattice potentials enough to have a
nificant effect between atoms located at different sites~the
opposite situation is also possible, see Ref.@11#!. The tunnel-
ing of atoms between sites is in the steady state the m
process leading to inelastic collisions, and as the simulat
show ~supported by the semiclassical estimates! such en-
counters lead mainly to the loss of hotter atoms or their
le
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lective heating. This is because the hotter atoms, natur
move between the sites more frequently than the colder o
creating the selectivity. If the lost atoms are not consider
our results show, however, that we can hold on to the conc
of an existing steady state.

The collisionally induced velocity-selective loss of hot a
oms is similar to the evaporative cooling which is utilized
magnetic traps to reach ultracold temperatures for atom
remains to be seen, however, whether the resulting coo
effect for the atoms is significant enough to be observed
densely filled lattices. In dense samples other processes
as reabsorption of photons scattered by the atoms are an
important source for heating, which may well overcome a
cooling effect. It should be noted, however, that if we igno
the spatial structure of the cooling fields, the collisional p
cesses lose their velocity-selective nature, and as seen i
simulations of Ref.@7#, this leads to strong heating of atom
Here the simulations indicate that the lattice structure inh
its this heating clearly.

Our simulations have been very intense computationa
which makes it very difficult to make the model more rea
istic. Our studies, however, to our opinion, demonstrate
basic features to be expected from the collisions in dens
populated near-resonant red-detuned lattices. There
magnetic-field-assisted cooling schemes for blue-detuned
tices for, e.g.,J51→J51 systems. The blue detuning us
ally leads to optical shielding, and the collisional contrib
tion to inelastic processes is reduced strongly for norm
laser cooling intensities as the loss channel is expected t
adiabatically closed, see Ref.@34#. As a future prospect it
will be interesting to study the qualitative differences due
the color of the detuning in collisions between atoms in ne
resonant lattices.
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