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Atomic collision dynamics in optical lattices
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We simulate collisions between two atoms, which move in an optical lattice under the dipole-dipole inter-
action. The model describes simultaneously the two basic dynamical processes, namely the Sisyphus cooling of
single atoms, and the light-induced inelastic collisions between them. We consides+ thi2— J=3/2 laser
cooling transition for Cs and Na. We find that the hotter atoms in a thermal sample are selectively lost or heated
by the collisions, which modifies the steady-state distribution of atomic velocities, reminiscent of the evapo-
rative cooling process.
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[. INTRODUCTION for small-detuning lattices is expected to lead to strong loss
and heating of atoms due to collisions, which become
Laser cooling and trapping techniques have made it posstrongly inelastic in the presence of the near-resonant cooling
sible to study and manipulate samples of cold neutral atomkght [2,7]. By a “small-detuning lattice” we mean one that
[1]. It has lead to the precision control of atomic matter, ands detuned a few atomic linewidths below the transition
also opened new possibilities for investigations of interactiorfrequency.
dynamics between atoms, especially those mediated by light The light-assisted collisions are based on the fact that the
[2]. By controlling the internal states of the atoms we obtaintwo slowly approaching atoms form a quasimolecule, which
access to their center-of-mass motjdr8]. Sisyphus cooling the light can excite resonantly during the approach, even
and polarization gradient cooling metholdd, which allow  though the cooling beams are clearly off the resonance with
one to break the Doppler limit for low temperatures, arethe atomic transition energy which corresponds only asymp-
based on the way polarized light connects to the atomig¢otically to the molecular state transition energy. The reso-
states. By combining more than one laser beam we can ifance occurs at relatively long distan¢g$ where the domi-
troduce a spatially changing polarization state into the totahant contribution to the molecular behavior, i.e., the
light field interacting with atoms. As light introduces Stark interaction potential between atoms, comes from the dipole-
shifts on atomic states, the spatially changing polarizatiorlipole interactior(DDI). We describe these collisions in Sec.
appears as a spatially changing potential for atoms with &1, and derive an expression for DDI in Sec. IV. We have
suitable angular momentum state structure. In addition to theresented the first results of our work in a previous short
cooling effect, this has made it possible to build periodic orpublication[9], where details of the derivation were omitted,
quasiperiodic lattice$5], where the light field traps the at- S0 here we present them in full. It should be noted that one

oms. We describe the Sisyphus cooling and lattice structurean develop, e.g., a mean-field approach to atom-atom pro-
in Sec. Il. cesses via the DD[10—13. In our approach, albeit with

The basic laser cooling method is Doppler coolirdg, some limitations, we allow the atoms to move. Furthermore,
which is produced by the random scattering of photons abwe consider the problem in the atom-atom basis, with the full
sorbed from the laser beam. This cooling mechanism is nofeeman substate structure, in the presence of the cooling/
related to the polarization states of light. For alkali atoms thidattice-building laser beams with spatially changing polariza-
method has a limiting temperature, the Doppler temperaturion structure. Thus our model treats the Sisyphus cooling
Tpo=#I'/2kg, wherel is the atomic linewidth. Using the and localization of the atoms, and the atomic collision dy-
polarization states, i.e., Sisyphus cooling and polarizatioamics consistently, within the same framework.
gradient cooling, one can go beldly, until the photon re- In order to describe two multistate atoms moving quan-
coil limit, Tg, is reached, and creating a lattice as a byprodtum mechanically as wave packets in position and momen-
uct. The values ofr and Ty, for used elements are given in tum space, and being coupled both to the spatially changing
Table I. Typically one reaches a thermal equilibrium where ) ) _ o
the atoms are more or less localized at lattice sites, but can TABLE I. Atomic properties. Massed in a.u. and linewidth
also move between them. The efficiency and the degree &nergiese= (AI')/E, (for the definition of the reco_ll uni€, see
localization have been studied thoroughly in the p&st Table IIZI).ZThe qupler temperaFurED and the recoil temperature
Since the best filling ratiogumber of atoms per siavith 'R~ (2°Kr)/MKg in uK. Herek, is the wave number of the laser.
small-detuning lattices are on the order of 1084 one can

. . . . M € Tp Tr
consider the gas sample as noninteracting. Larger filling ra-
tios have been achieved lately by special techniques in far-cs 133 2400 120 0.20
detuned optical latticel6]. Based on the experience in stan- Na 23 400 238 2.4

dard magneto-optical trapdOTs), the increasing density
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laser field as well as the vacuum field producing spontaneous me= -3/2 -172 +1/2 +3/2
emission, we would in principle have to use the density- 5

matrix description. This is not computationally possible cur- \ /
rently, but we can go around the problem by describing the

spontaneous emission with quantum jumps. As described in @ (W 1 23 13 23 1

Sec. V, we use the Monte Carlo wave-functiddCWF)

method to build a statistical ensemble of time evolution his-

tories, which approximates adequately the actual density ma- 1 N \/

trix [14—16. To implement this approach on our description m= -1/2 172

of atomic collisions in lattices is not straightforward, and in

Sec. VI we describe the details related to numerical simula- FIG. 1. The level structure of a single atom. We show the
tions. Inelastic collisions in MOTs have been modeled extensquares of the Clebsch-Gordan coefficients of corresponding transi-
sively with semiclassical modelgl7]. We describe these tions describing the strengths of couplings between the Zeeman
models briefly in Sec. VII. They provide a tool for under- sublevels. The difference between the laser frequencynd the
standing some of the physics behind the numerical data, argiomic frequencyy, i.e., the laser detuning, i&

for estimating the processes affecting the multitude of

boundaries for the numerical methods. _ tween the states i8, SO thath wy= E.— E, whereE, andE,
Vlll(jdeonte hCarIﬁ sr']mUIat'O” results, prehsente;j In S?Care energies of the ground and the excited states in zero field.
, indicate that the hotter atoms in our thermal sample, s ginoie atom has wo ground-state sublevigs y) and

due to their stronger mobility between the lattice sites, arg i excited-state sublevele. 5,) and |e. ;) where the
- +3/ +1/.

more likely to collide inelastically than the colder ones. On . S
the other hand, the simulations, supported by semicIassic;tllf”uf"meger subscripts indicate the qgantum ”“’T'b““f the
ngular momentum along the direction, see Fig. 1. The

estimates, show that inelasticity plays a relevant role only i . ! . .
the atoms end up in the same lattice site simultaneously. Malues of ato_mlc masses that are used in our_5|mulat|ons are
other words, the effect of the dipole-dipole interaction re-tose of cesium€%Cs) and sodium ¥Na) which are the

mains small if the atoms do not share the same lattice sit&onventional alkali-metal elements used for laser cooling of
This, of course, also depends on the chosen laser field pg_eutral atoms, see Table I. Lithium would also be an inter-
rameters such as intensity and detuning_ When the C|os@’5ting candidate for simulations but we have to leave it out
same-site encounter occurs, however, it is most likely dere[18].
strongly inelastic one leading to the loss of atoms. Basically, The laser field consists of two counter-propagating beams
we see a process similar to evaporative cooling, where thwith orthogonal linear polarizations and with frequenay.
hotter atoms are selectively heated or ejected from the latticd.he total field has a polarization gradient in one dimension
It should be noted, though, that despite the fully quantumand reads
mechanical nature of our approach, it still omits many other , , ,
effects affecting the atomic cloud in the lattice. Photons scat- E(zt)=&(ee*—ige e '+ c.c, 1)
tered incoherently by atoms can be reabsorbed, which pro-
duces a radiation pressure; this process also heats the atomic
cloud as its density and thus optical thickness increfses where& is the amplitude and, the wave number. With this
The observations made in this paper follow those fromfield, the polarization changes from circular to linear and
our previous study9]. The results given in this paper, how- back to circular in the opposite directier whenz changes
ever, have been obtained with an improved approach conby \ /4 where), is the wavelength of the lasers.
pared to Ref[9], and we have also extended our studies t0  The periodic polarization gradient of the laser field is re-
other basic alkali species. Furthermore, here we give the dgrected in the periodic light shifts, ac-Stark shifts, of the
tailed description of our approach and its computational asatomic sublevels creating the optical lattice structure, cf. Fig.
pects. Finally, the discussion in Sec. IX concludes oury \when the atomic motion occurs in a suitable velocity
presentation. range, optical pumping of the atom between ground-state
sublevels reduces the kinetic energy of the aidr After
IIl. SISYPHUS COOLING AND OPTICAL LATTICES several cooling cycles the atom localizes into the optical po-

In this section we present the atom-laser system undetﬁntial \_/vell, ie., _into an optical lattice site. Figure 3 shows
study and describe briefly the basics of Sisyphus laser coof— e optical pumping cycles between the ground-state sublev-

ing of neutral atoms in an optical lattice. A detailed review ofels cooling an ato_m, .and_ the oscﬂlapons Of the .atomlc wave
the subject can be found in Refd. 4,5. packet after localization into an optical lattice site.

The intensity of the laser field and the strength of the
coupling between the field and the atom is described by the
Rabi frequencyQ)=2d&,/n whered is the atomic dipole

We consider here atoms having ground-state angular maenoment of the strongest transition between the ground and
mentum J,=1/2 and excited-state angular momentun  excited states. The detuning of the laser field from the atomic
=3/2 corresponding to alkali-metal elements when the hyresonance is given b§= w; — wq. As a unit for( and s we
perfine structure is neglected. The resonance frequency base the atomic linewidtf'.

A. Sisyphus cooling
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atom is optically pumped to neighboring siteld]. It must

be noted that tight localization and occupation of the lowest
vibrational levels of a periodic lattice potential increases the
optical pumping timer, and the time of localization within a

single lattice site becomes longer compared to the semiclas-
sical values presented in Table II.

Energy

We are interested in the effect of inelastic collisions be-
tween atoms in the presence of near-resonant [ightin
optical lattices. These collisions occur when two atoms oc-
cupy the same lattice site. To observe efficiently the effect of
inelastic collisions we have choséhand § in most of the
simulations so that the lattice is in the “jumping” regime,
i.e., semiclassically speaking the atoms on average do not

have time for a single full oscillation before optical pumping
transfers them to a neighboring lattice site.
. . . Steady-state properties of the atomic cloud in the lattice
0 0.25 0.5 0.75 1 are characterized, e.g., by the average kinetic energy per
z() atom, the spatial probability distribution, or the momentum
FIG. 2. Schematic view of the opticgl potentials _for the two ﬁz)orga(?&?t)s/ircrjlljltz;ltki)::g_n\./vlhé Seep ?rr]i :jeeiﬂlrt“sn;v?)gﬁzw_em?? tain
ground-state Zeeman sublevels. The lattice structure is created duge . . . .
to the periodic polarization gradient of the laser field. and vary the Rabi frequend, which gives various values

for the optical potential modulation depth
B. Localization in lattice

2
When the steady state is reached after a certain period of Yo 3ﬁ5$0' &
cooling, atoms are to a large extent localized into the lattice
sites. In this study we deal with near-resonant bright OpticaWhereso is the saturation parameter given by
lattices where the laser field is detuned a few atomic line-
widths to the red of the atomic transition. The laser param- 5
eters() and é determine if the lattice is in the “jumping” or o= 02 3)
in the “oscillating” regime, depending on the average num- 0 S2+T2/4°
ber of atomic oscillations in a single lattice site before the
@ o) The spatially modulated optical potentials are
m =—1/2 m =+1/2

U_=Ugsirt(k,z),

il

U, =Ugcog(k,2),

T

\\\

S—————

4

for ground-statesmy=—1/2 and my=+1/2, respectively
[19]. The parameters used in our simulations along with rel-
evant lattice properties are summarized in Table II.
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Collisions and radiative heating increase the relative ve-
locity between the atom[®]. This heats up the atoms and it
is possible for a colliding pair to escape from the lattice. One
can calculate semiclassically the critical momentpithgiv-
ing the point in momentur(p) space where the cooling force

has its maximum valug4]. In Sec. VI F below, we discuss

for which values of the momentum, we may neglect ener-
optical lattice. We show a possible time evolution for a single atomfrom the lattice
wave packet for two ground-state Zeeman levi@smg= — 1/2, (b) '

getic histories and consider the corresponding atoms lost
my=+1/2. The result shows the optical pumping cycles and the

z ()
FIG. 3. Sisyphus cooling and the localization of an atom into the,

localization of a single atom into the optical lattice. This example |||. BINARY INTERACTIONS BETWEEN COLD ATOMS
forms one member of a Monte Carlo simulation, and the discon-

tinuous changes between the two ground states are due to quantum In this section we give a simple description of collisions
jump events from the excited stafeot shown, selected to happen between two cold atoms in the presence of near-resonant
randomly with an appropriately weighted probability. If the run is light [2] and discuss the background of this phenomenon to
repeated, the jumps would appear at different times again. occur in an optical lattice.
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TABLE Il. Laser parameters used in the simulations and the TABLE lll. Characteristic units. Distances are given in nm, mo-
corresponding lattice properties: DetunifigRabi frequency), lat- menta in 1028 kgm/s, time in ns, and energy in 1% J.
tice modulation depttJ,, semiclassical average number of oscilla-

tions in a lattice siteNygc={sc7p, and saturation parameteg. Quantity Characteristic unit Cs Na
We use the semiclassical average oscillation frequengy. dis- }
cussed iM19]. Units are given in parentheses and the simulation2iStance A=1k; 136 94
are labeled by the element and the lattice depth. Momentum p,=fik; 7.77 11.25
Time rt 193 99
Q) SI)  Ug(E;) Ngsc  So Simulation label Energy E,=(%?k?)/2m 1.37 16.57
1.2 -3.0 374 0.93 0.08 Cs374
1.5 -3.0 584 074 012 Cs584 . :
o5 30 1621 047 033 Cs1621 other that their elv_actron clouds begin to overlap. Thus we
28 30 339 098 042 Na339 neglect the hyperfine structure of the atoms and do not con-
35 30 530 078 066 Na530 sider the ground state hyperfine structure changing colli-

sions, but concentrate on the effects based on radiative heat-
ing and escape of the colliding pair. In this process, the
resonant excitation of a quasimolecule terminates in sponta-
] i ] . neous decay and the colliding pair of atoms gains kinetic
_ In this paper, we consider atomic gases with an occupganergy due to acceleration on an attractive molecular excited
tion density ofp,=25%, i.e., every fourth lattice site is 0C- gtate hefore decay occurs, see Fig. 4. In principle it is also
cupied and the average distance between two atonzg iS possible to lose atoms from the trap via fine-structure chang-
=\ 2For Cs this corresponds to a density of 1.62j,q cojisions[2]. In this paper, the loss fraction of fine-

X 10° a_to_ms/crﬁ. This atomic gas _den5|ty IS '°W_ enough structure changing collisions is assumed to be negligible
E:r;)zlilﬁs(i:cﬂhrséznz i(;agnboer dt(;??)tfer?waasnigjgirgn?a:ﬁgftsseszzz compared to the radiative escape mechanism. The small de-
(i) for a ngatomic mass, atomgsJ with typical max?rrr:um Ve_tuning O.f .the lasers makaf§ very large, gnd the proba_bility
locities produced in our simulations need to have evolve ELS#:é'_‘g;g;&:gecﬂgﬁgénit:Taliﬁl:ra;ﬂ:l}fmgsrstgsgmug?: ft%re

over a time larger than T5 ! to travel a distance, and they . . o
scatter a large enough number of photons that there is negff1€9Y INcrease caused by this mechanism is large and leads

gible memory effects between two collision events. Thus, thdn@inly to a loss of atoms, contributing to heating only via
binary collision picture is justified in our calculations. secondary _coII|S|ons. Thesg secondary collisions are still
Let us consider two atoms with a temperature around ofather rare in the low-density gas samples of laser cooled
below the Doppler temperatuf, . If such two atoms col- atoms. o o o . .
lide they form a quasimolecule which a near-resonant light An essential ingredient in the kinetic-energy increasing
may excite when the atoms approach each other. This occufllision process is the excitation of the large fraction of the
at an internuclear distance called the Condon poind ( population into the attractive excited state. The excited-state
where the excited-state electronic molecular potential bePOPulation fraction in turn depends on the relative velocity
comes resonant with the ground-state potential as displaydiftween the interacting atoms when they reagifor the
in Fig. 4. attractive molecular states. For the collisions in the lattice,
We do not include in the description the short-range spirfhe relative velocity in turn depends on the optical lattice

which come into play when the atoms are so close to eacHve Velocity of the atoms when they end up in the same
lattice site and collide. We consider here lattices with modu-

lation depths in the range 3B9<U,<1621E,, whereE, is

the recoil energy, cf. Table Ill. Thus, the relative velocities
before a collision remain low, which keeps the excitation
probability large. The small detuning keeps the excitation
probability large also since the excited-state slope decreases
with the detuning; this increases the interaction time for
moving atoms at the vicinity of the resonance paint

A. Binary interactions

B. Collisions in lattices

Theoretical and experimental collision studies in MOTs
show that the atomic cloud is heated by the radiative mecha-
nism described above. Atoms may also escape from a MOT
by this mechanismh2,7]. Thus these collisions set a limit for

FIG. 4. Schematic view of radiative heating of colliding atoms. atomic densities and temperatures of the cloud in a MOT
The quasimolecule is excited at the Condon pojrand accelerated when the density is increased so that binary interactions
on the upper level before spontaneous decay terminates the procebggin to have a clear effect. Typical densities achieved in

re

A AN
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MOTs are around T atoms/cm and temperatures around ponent ofj along the quantization axisfor atom 1 and 2,
or below the Doppler cooling limif2]. respectively. The total number of states is@-=36.

Similar effects are expected in an optical lattice when the We have to fix the position of one atom, as described in
occupation density of the lattice increases. What is not diSec. VI B. If the position of atom 1 is fixed, the binary sys-
rectly expected is that there is a parameter region where ®&m wave function depends now only on the position of the
possible cooling process in a dense lattice occurs due to comoving atom 2,
lisions. This is due to the fact that the colliding pair of atoms
carry more kinetic energy than localized ones and during a _ j1.mg i ;
collision they almost always gain sufficient energy to escape |¥(z2.0) jl,jz,Eml,mz wjzvmz(zz’t)“lml>1|]2m2>2' ©)
from the lattice. Thus those atoms that have not collided
inelastically and remain in a lattice, have less kinetic energylhe atomic spatial dimensionality of the problem is reduced
per atom. Moreover, they can also thermalize via elastidrom two to one. The relative coordinatebetween atoms is
ground-ground collisions. In our paper, we neglect the resnow z=z,— z; wherez; is the position of the fixed atom, see
cattering of photons and consequently the total pattern obec. VI B.
cooling and heating is not studied. Here we only consider the In the atomic product state ba$0], our system Hamil-
effects of collisions. The complete problem is simply nottonian is
computationally tractable within our framework.

Atomic interactions in lattices are usually modeled as- Hs=Hi+Ha+ Vgip- @)
suming fixed positions for both atoms and calculating how . . :
the atomic energy levels are shifted by the interacfib®— Here,~Vdip includes the |n~teract|on between the atoms and
13]. These static models ignore the dynamical nature of thél1=H1®1, and H,=1;®H,, where the operators$, are
collision processes described here. When allowing the atomi#Nity operators in atomx subspace, and the single atom
to move the problem becomes complicated and computatiordamiltonian for atome (a=1,2) is, after the rotating wave
ally extremely tedious. To make numerically feasible calcu-approximation
lations, we have fixed one atom and allow the other one to 5
move freely, as described further in Sec. VI B. B :&—ﬁaP My )

As a summary, the complete list of the features we “ 2M G Tar
have ignored in this paper due to the limits of computability
is: (@) hyperfine structure(b) fine structurec) rescattering Here, Pe,a=2‘?n’i,3,2| Ema o €ml, and the interaction be-
of photons,(d) Doppler cooling(see Sec. VI ¢ (e) mobility  tween a single atora and the field is
of both atoms(see the previous paragraph(f) three-
dimensional nature of the problem, afg) thermalization by ~ RO
elastic collisions and other thermodynamical aspects of theVa= —i ES”‘(kZa) €32 {9172
atom cloud. But we emphasize that the dynamical nature of
cooling and inelastic binary collisions is included in our re- 1 70
stricted model. This has not been done before, to the best of + ﬁ|e1,2>a a<91/2|] + ——=coskz,)

our knowledge. V2
1
IV. ATOMIC BASIS FORMULATION
Xqle_ _qp+—=|e_ +H.c,
AND DIPOLE-DIPOLE INTERACTION {' e ol0-u2 @' 1) “<gl’2|]
In this section, we describe the two-atom product state 9)

basis[20] and the dipole-dipole interactiofDDI) between ) N

two atoms in our one-dimensionélD) study. wherez, is the position operator of atoia.

A. Atomic basis formulation B. Resonant dipole-dipole interaction

We do not use the adiabatic elimination of the excited In order to get the DDI potentiaVy;,, in Eg. (7), we
states, which is typically employed in order to simplify the have calculated the master equation for the atom and laser
equations for atomic motiof21]. By keeping the excited field in question, and identified the DDI. Our approach fol-
states in the calculation we are able to account for the dylows the lines of Appendix A in Ref22] but we note that we
namical nature of atomic interactions and the radiativedeal with six-level atoms whereas Rg22] deals with two-

heating/escape mechanism. level atoms. As it is beyond the scope of this paper to go
In general the product state basis vectors are through the derivation of the DDI pOtential in detail, we shall
refer to Eq.(Ax) in Ref.[22] as Eq.(LMAXx). We identify
[j1m1)1]joms)s, (5)  Vgip as the terms similar td ; andA,, with (n,+1)=1 in
Eq. (LMA21).
wherej, andj, denote the ground or excited stdia our First, it is convenient to write the noninteracting system

caseg for the ground-state’S,,,, e for the ?P5, excited HamiltonianH;+H, in a basis of center-of-mass and rela-
statg¢ andm,;, m, denote the quantum number for the com- tive coordinates:
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B ~ P2—P1 ¢, are the angles of the relative coordinati the spherical
P=pi+p2, p=—%5—- (10 pasis. We have also introduced the operators
With these coordinates, the interaction potential with the la- SiqS_q=(S} ;S o q,+52 st a) (14)

ser field, V=V, ®1,+1,8V,, reads
whereS? =(S% ).
Thus, we need to calculate integrals of the type

el A vl
I/(Qof)—;ﬁ) do g P w—wg)1719C) (15

with o= wg/c. We may change the lower limit in the inte-

RV z\ )
V=—i—=sin(kZ)co kE (S} 2L +1,®S] 1)

V2

+|—cos(kZ sm( )(S 4®lL— 11®S+ +)

z gral to —, enabling us to calculate the integral by contour
+i —cos(kZ)co{ kE) Si‘,®12+ll® Siy,) integration[23]. The results are
. . ~ cosqor
+|—sm(kZ sm(k§>(81 _®1,-1,®S% )+H.c, o(dor) = qof
(11) cosqor singor  cosqgqr
To(Gor) = — ?O +3 q°2 + q°3 . (18
whereZ andz are the center-of-mass and relative coordinates Ao (dor) (dor)

along thez axis and
and the three-dimensional DDI potential is
m=1/2
S 2 CGm|em+q>a o Im- 12 1 cosqor
Vip= Shl“ 3 Qo [1-2P,(cosb,)]

Here CG}, are the appropriate Clebsch-Gordan coefficients

and g is the polarization label in the spherical basis. We X(E1 4S84 +84 -8 -—28,05-0)
rewrite similarly the interaction with the vacuum electromag- .

netic field in terms of the relative coordinatéi©). The DDI _ [ 3MYl  COSqo P,(C0S0,)(Ss .S .
terms are identified after we have considered the damping (Qor)?  (qor)®

part of p [cf. Eq. (LMA17)] in the derivation of the master

: 1 COSsqgr
equation for our two-atom system. N 5 0
Following[22], we note that the DDI potential is found as S -8--28405-0) qof
3 1(= w3 1 o singor  cosqer | || 1
Vdip:__hr—f do|—]| P jol @—= +3 ST —3 (cos&)cosq&r
8 mlo ®Wo @ W c (Qor)?  (gor)® \/—

X(_S++S—0+S+OS——_S+OS—++S+—S—O)

|

1
X §(S++'S—++S+ ——) S+0$ )

+P3(c0s6,)cos 2, (S, ;S _+S,_S_,)

. r 2
+12 wE) P2(C050r)( _§(8++S—++S+—S——)
17
+ meS,o + 1 P%(COSH )CoSd(—Ss 1+ S_o If the two atoms are positioned on tlzeaxis, the DDI
3 3\/5 potential reduces to the one-dimensional potential
T8105- =805+ 54 -5-0) axis. 3 1 cosqr Singer  €cosqgr
1 Vdip ﬁ 3 Jof 2 + 3
+ SP3(cosO)COS 2, (S, S +5. S ) ] 0 (Gor)”  (Gor)
X(8, 1S +8,. 8  —285,05 9). (19

13
By diagonalizingV;, it is possible to obtain the molecular
where PK) is Cauchy’s principal valuej, are spherical potentials shown in Fig. 5. One also notes that the DDI in-
Bessel functions of the first kind?, is Legendre polynomial, duces ther-polarization couplings which the laser fields do
andPy, are associated Legendre functions. The anglesnd  not do here.
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0 ' ' ' constructed from appropriate jump operatGrscorrespond-
ing to a decay channgland to the detection scheme of the
system. The general form of the non-Hermitian part reads

if
Hgec™ — 2 2 CJ'TCJ' . (22)

w During a time evolution ste@t the norm of the wave
> function may shrink due tél 4o and the amount of shrinking
_10000L | gives the probability of a quantum jump to occur during the
short intervalst. Based on a random number one then de-
cides whether a quantum jump occurred or not. Before the
next time step is taken, the wave function of the system is
0.4 06

renormalized. In the case that a jump occurs, one performs a
\ s rearrangement of the wave-function components according
08 ! 2 {0 the jump operato€;, corresponding to decay chanigl
before renormalization df).
FIG. 5. The shifted ground-state and the attractive excited-state
[labeled by Hund’s casg) notatior] molecular potentials of Cs for B. Time evolution
6=-3.0I.

~15009~
' "z (2

A natural termination for a simulation occurs if a steady
V. MONTE CARLO WAVE-FUNCTION METHOD state appears. One must note that the time to reach steady
] ) ] ] ) state varies even for the same system studied when the laser
In this section we describe briefly the main features of thgyarameters are changed. Therefore one has to be careful to
Monte Carlo wave-functiofMCWF) method[14] which  haye Jong evolution times to make sure that the steady state

was developed for problems in quantum optics and discusg reached and ensemble averaging can be done in a reliable
the implementation of the method to solve the cold collisionyyay,

problem in optical lattices. We solve the time-dependent Sctiimger equation Eq.
(19 by the split operator-Fourier transform meth{2b].
A. Basic Monte Carlo method Formally solving Eq(19) over 6t gives

Various types of Monte CarldMC) methods[14-16 _
have been developed for problems where a direct analytical [(to+ 60)) =Ul¢(to)), (22)
or numerical quantum-mechanical solution of the densityyyhere the time evolution operator U reads
matrix master equation is very difficult or impossible due to
the complexity of the problem. Complexity usually arises iH St
because of the coupling of the system studied to a reservoir U =exp( - T) (23
with a large number of degrees of freedom and also because
of a large number of elements in the system density matrix. \we split the time evolution operatdd including the
Problems of this kind are common in laser cooling of neutralyamiltonianH of Eq. (20) into three parts asl =Hy+ Hy
atoms. Various types of quantum approaches are possible iy . whenH is in matrix form, Hy has an off-diagonal
2D systemg24] but in 3D a full quantum treatment of laser 4t accounting for the atom-field coupling and the interac-
cooling of atoms has only been given in terms of the Mont&;o, petween atomsHy is the diagonal kinetic part, and
Carlo method 25]. _ , Hp includes the nonkinetic diagonal part, i.e., decay and

The core idea of the MCWF method is the generation of &etuning.
large number of single wave-function histories including sto- g, noncommuting operatord and B we can write to
chastic quantum jumps of the system studied. Solutions fogecond-order accuragg6]
the steady-state density-matrix and system properties can

then be calculated as ensemble averages of single histories. exp(A+ B)=exp(A/2)exp(B)exp(A/2). (24)
To generate single histories of the system wave-function
|), one solves the time-dependent Sclinger equation As we take many consecutive time steps during the evolu-
tion, we finally approximate the wave function at ting
gy +nét by
n—-1
Here the non-Hermitian Hamiltonia is l(z,t0+ nat))z[kﬂo UyUHU U2 | g(z,to)). (25

H=Hgs+Hgec, 20
ST Hdec 20 Here, Up=exp(~iHp&/%) and U= F L exp(—i&thk¥2M)

whereHg is the system Hamiltonian, E¢7) in our case, and where F and 7~ denote the Fourier and inverse Fourier
the non-Hermitian part 4. includes the decay paftiy..is  transforms. FinallylJ, can be written a),=Sexp0)S !
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whereS contains eigenvectors amieigenvalues oH,,. Uy, TABLE V. Simulation times: Total time for collision simula-
corresponds now to a change of basis, multiplication by extions T, ensemble averaging tini,, time step sizest, and maxi-

ponentials of eigenvalues and change of basis back to tH8Um momentump|yax given by ét for the numerics to remain
product state basis. The above form for the temporal evoluteliable.

tion of |¢) is straightforward to implement and fast on a = : - — »
computer, e.g., 20% faster than the Crank-Nicholson method®imufation  T(I'™%)  T(I7sg™) ST [plmadPr)

Cs374 1600 78-125 0.2 110

C. Decay channels Cs584 1600 97-194 0.2 110

A single atom has six different ways to spontaneousl;f:81621 760 178-256 0.1 155
emit a photon so the total number of decay channels is 12 fdNa339 470 99-198 0.05 90
two atoms(channels 1—6 for atom 1, 7—12 for atorh Eor ~ Na530 470 155-311 0.05 920

each decay channgl, the jump probability is given by

+ D. Ensemble averaging

Pj=8t(y|C/Cj| ), (26) .
We calculate the results as an ensemble average of single

where the jump operator§; are constructed from single- history time averages in the steady-state time dorha}

particle jump operators. In the single-particle subspace fofl NiS @veraging method requires a smaller number of histo-
atoma and decay channglwe have ries calculated to achieve reasonable error bars than a simple

ensemble averaging at a single steady-state time point. In our
~a_ paper, extra complications arise because the number of col-
Ci'=CgG,; VT 10.Ma)a o{€amal, @7 Jision processes in the whole ensemble also comes into play.
) ) Atoms do not end up in the same lattice site, producing col-
wheree,m, labels the excited level from which, amdm, |isions, in all the calculated histories. Atomic hopping be-
the ground level to which jump occurs. Extension to they,een Jattice sites is a stochastic process and only in a frac-
product state basis is simpl@0]: For atom 1,C;=C/®l,,  tion of the total number of histories, collision processes
and for atom ij=]1®6j2. occur. We need a sufficiently large ensemble to produce
For example, if we denote the jump of atom 1 from enough collision events to have reliable results. This is why
le_ 1)1 to |g_121 as channel 2, the jump operator in the we have a much larger ensemble size, 96—-128 members,

product state basis for this jump is than, e.g., used in 3D laser cooling Monte Carlo simulations
using the same ensemble averaging meft&id.
C,= \/73\/fﬂg_1/2>1|g_1/2>2 e 1d A9-1/ In order to be able to use this averaging method, we need
to be sure that time averages of single histories have been
+19- 121941202 1(€- 172 294172 calculated in the steady-state time domain. The simulation
o 1ile s (e 1d e sl times used are displayed in .Table (\VA We have carefully
—VZ11F-8272 1\E-121 2\=-302 checked from the time evolution of the kinetic energy that
+lo_uile— 12 e_ud e_1s the simulation time was long enough to reach well into the

steady-state time domain.
+lg-121ler122 {e_1d 2({er1d
+lg-121lers22 {e-1d 2A{ersall (28) VI- SIMULATION SCHEME
In this section, we present the characteristic units used in
and the corresponding jump probability for channel 2is  our calculations and discuss the various criteria which set the
numerical limits for the simulations. The approximations
used and the numerical details related to the wave-packet

94172 e 3 initial conditions and dynamics are also presented.

2
Po=7 SUN{|yg 27+ |y 222+ g9

e_ e_ e_ . . . .
+|‘/’e,i§|2+|'/’e+ig|2+|‘/’e+zg|2)}' (29 A. Scaling and discretization of space

It is useful from a practical point of view to choose suit-

We neglect here the case where both atoms jump and twable units and scale the time-dependent Sdinger equation
photons are detected simultaneously. The probability for 419) accordingly. Convenient physical units and their nu-
single atom jump duringdt is <1 so the joint jump prob- merical values for the three appropriate alkali-metal elements
ability is negligible compared to the single atom jump prob-are listed in Table Ill. In the discussion below, we list all
ability. In principle it would be possible in simulations to quantities and scale equations in units of the characteristic
take into account joint jumps but this unnecessarily compli-quantities displayed in Table Il unless explicitly stated oth-
cates the jump procedure. After applying the jump operatoerwise.
C;, the wave function is still in a superposition state, but it As the phase factor exp(Edt/e) has to be well defined,
has collapsed onto product state basis vectors, leaving onlf. Eq. (23), we obtain a criterion for the maximum size of
one ground-state level component of the jumped atonthe time stepst dictated by the maximum kinetic energy
populated. since we should fulfill the relatiodt<e/p?. Heree is the
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energy of the linewidth of the transition in recoil units, as sition z; of the fixed atom is now selected randomly in the
previously displayed in Table I. Collisions increase theinterval|z;|<0.125\ for each ensemble member. This range
atomic kinetic energies which makes the criterion #mu-  covers all the interesting physics as an atom fixed outside the
merically more strict for the two-atom case, compared to theurrent range would be rapidly optically pumped to the op-
one-atom Sisyphus cooling simulatidcf. Fig. 3. We give  posite lattice well and the situation would correspond to that
in Table 1V the values obt for various simulations and the with the above-mentioned range of.

maximum momentunip| ., for the numerics to remain re- The change of; also moves the Condon point with
liable. The total simulation times are 125-311 in units ofrespect to the lattice and nokwx may be located anywhere
1/(I'sp). These depend on the properties of the alkali-metabetween the lattice well and peak. This is an important point
elements and the laser parameters. for making our model more realistic: Since the kinetic en-

For the numerical simulations, one has to discretize thergy of the atom changes when it moves in the periodic
position and momentum spaces, and the resolution has to laptical potential, the relative velocity between the atoms and
fine enough to ensure valid results. We have used 8192 grithus the excitation probability to the attractive molecular
points when the length of the entire spatial gridLis=5\ state atr, depends on its position in the lattice. Whenis
=31.4X. This gives the step sizes in position and momenturmocated at the peak of the optical potential, the atom has to
spaces 06z=0.0038 andsp=0.2. The width of the Gauss- move up the potential hill to reach it. The relative velocity
ian wave packet at the beginning of the simulatiom\&  between the two atoms is now less and the excitation prob-
=0.02A=0.125% giving Az,/6z=33 and in momentum ability higher than in the case where the locatiorr gis at
spaceApy/op=20, ensuring sufficiently fine resolution. the bottom of the optical potential.

The inverse spacéhere momentum spacéas reflecting
boundary conditions when using the fast Fourier transform
method. Thus the size of the momentum space has to be
large enough to avoid the reflection of high kinetic-energy At the beginning of the simulation, the wave packet is
atoms at the edges of the momentum space. This requirgdaced in a randomly chosen ground-state sublevel. The ini-
special attention when considering the interaction simulatial Gaussian packet has a full spatial width of QW0Zhus
tions where the kinetic energies of the atoms increase due the initial position of the spatially relatively narrow wave
the inelastic collisions. packet in the lattice is random but completely out of the

The momentum space grid has a total size lgf range of the molecular resonance.
=2m/6z=1638 so that the atomic momenta may have val- Each wave packet has a randomly selected mean initial
ues|p|<819. The depths of the lattices in our simulationsvelocity given by the Maxwell-Boltzmann distribution corre-
are such that atoms localized at a lattice site have momengponding to the selected initial temperature of the atomic
|p[<50. The momenta increase when the atoms wandeioud. We emphasize that the momentum space width of the
around in the lattice, especially due to the inelastic collisionsintial wave packet has no association with the thermal dis-
The probability of gaining a sufficient momentum to reachypytion, as it is merely needed to satisfy the Heisenberg
the edge of our momentum space grid in a single CO"'S'(_)rhncertainty relation for a spatially localized initial state. As
event is now negligible. On the other hand many consecutivgisieq ahove, the connection between the wave packet and
collisions do not shift the population for large and the ho temperature takes place via the mean momentum of the

reflection effect is avoided. This is due to the fact that thewave packet. By selecting this mean momentum randomly
increasing relative velocity between the atoms reduce th? y

o e ; . . or each ensemble member but weighting the occurrences
excitation probability and increases in momentum termmatt%m,[h the Maxwell-Boltzmann distribution. we create within
before the edges of the space are reached. '

the Monte Carlo ensemble another ensemble of possible ini-
tial collision velocities. This is the wave-packet version of
the standard collisional energy averd@é|.

We simulate the behavior of a 36-level dissipative quan- As mentioned above only the ensemble averaged momen-
tum system with a position-dependent coupling to the lasetum probability distribution has a relation to temperature.
field and a position-dependent coupling between two atomsThis initial distribution gets narrower when the system
This requires large computational resources. With the currergvolves and the simulation progresses corresponding to cool-
computer capacity, it is not possible to simulate the situationng of the whole atomic cloud. Moreover, it must be stressed
where both atoms are allowed to move freely. Instead wehat the steady state reached does not depend on the initial
have to fix one atom spatially and let only the other atomwidths of the single wave packets nor on the initial tempera-
move. This reduces the dimensionality of the problem to onéure as long as the atoms are in the reach of Sisyphus cool-
since the relative position of the atoms with respect to theng. The simulation times get longer when the initial tem-
laser field is now fixed. This also means that an inelastigerature is increased but we want to take into account the
interaction process will not change the kinetic energy foreffect of collisions on the cooling dynamics in a realistic
both atoms, but we use the relative kinetic energy as amway. We also note that the steady state after cooling in the
estimate for the kinetic-energy change per atom. lattice does not necessarily correspond to a Maxwell-

In our previous study9] the position of the fixed atom Boltzmann distribution of velocities but a clear steady state
was kept constant but here we relax this condition. The poeorresponding to the lattice properties is still reack].

C. Initial wave packet

B. Position fixing of one atom
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It should be noted that although we include by default the TABLE V. Values ofb. Numerical values which are used for the
recoil effects by absorption and stimulated emission, we canvarious attractive molecular states and atomic species. See also Eq.
not in our fully quantum approach take proper account of thé30) and Figs. 5 and 6.

Doppler shift which is the basis of the semiclassical descrip=

N -
tion of Doppler cooling[28]. One could consider making a =ement Oy 1 Og 2y 1y

kind of semiclassical linear friction description in momen- cs 22 22 20 20 13
tum space and add it to the quantum model, but we do nafja 13.5 135 125 125 10

see any clear way how to incorporate that into the wave
packet dynamics and Monte Carlo description of dissipation.

Although we cannot describe Doppler shift in our paper, wesity: The moving atom travels on average a distance)of 1
can at least add the recoil from spontaneous emission evenfisr the first collision. After this event it has to travel a dis-
(quantum jumpyto our paper, but we have seen that it doestance 2 (from z; to z;+1 and backto collide again. The
not change the simulation results. In any case, the role gbrobability is high for a large kinetic-energy increase during
Doppler cooling is negligible when compared to the Sisy-the first collision. Thus the first collision has the dominant
phus cooling force for the velocities of atoms localized in theeffect on the kinetic-energy scale relevant to the lattice dy-
lattice[4]. It can, however, have a role in the recapture of thenamics. This is why we would rather use hgrg=25%
hotter atoms heated by collisions, so in that sense our mod&thich corresponds to the average collision distanceof 1
is limited. It is not trivial to connect the one-dimensional occupation
density to the two- or three-dimensional density, as that will
D. Occupation density of lattice depend on the particular form of the lattice. It suffices to

) ) ) _note, though, that a certain occupation density in one dimen-
We have performed all the SIITIUE:IIIO?S presented in thigjon il typically correspond to a lower value in higher
paper for an occupation density pf=25% in one dimen-  gimensions, so that, e.g., in three dimensions we expect to

sion, whereas in our earlier wofl], we presented also re- gee the effects studied here for three-dimensional occupation
sults for other one-dimensional densities in Cs lattices. Thesggnsities less than 25%.

previous simulations showed that an occupation density of
25% is sufficiently high for interesting effects to appear,
namely, an evaporative cooling process which works for at
least some parameters of the laser field. The occupation den- The DDI , Eq.(18), becomes singular at short range. The
sity used in this paper is also nearly the largest density weingularity inH,, is simply removed by replacing with r
can use when the simulations are done in the way presentetr o and choosing 4= 10 8. When constructing the time
here. The purpose of the paper is to further explore the paevolution operatol), we diagonalized,, and the DDI part in
rameter space and to extend our simulations to other atomidy produces the eigenvalue manifolds corresponding to the
masses in addition to describing the details of our simulatiorattractive and repulsive molecular potentials.
approach. We replace the position dependencies of the attractive
For p,=25% the available spatial length for the moving states which are the same asvf;°, Eq. (18), by
atom should be equal ta, corresponding to the average
distance between the atoms. But decreasing the spatial size 1 1
increases the step size in the momentum space sipce r_n_>(rb+r—)n/b (n=12,3 (30)
=2m/L,. So to have a sufficiently fine resolution in momen- off
tum space and still keep,=25%, we choosé ,=5\ and
set an elastic repulsive potential barrier such that the alloweth a manner similar to what was done in RE?]. Table V
spatial length is\. The forbidden spatial region thus makes gives the used values d&f and we show the potentials in
the numerics work properly without altering the physics. OfFig. 6.
course the forbidden region does not affect the momentum The main reason for this “flattening” of the attractive
space. state potentials is that considering the numerics, we have an
Every fourth lattice is occupied when=25% or in other  upper limit to momentum. Thus we need to set a maximum
words there is one atom per wavelengthThis corresponds momentum which can be reached in our simulations by ac-
to a situation where the fixed atom sits, e.g.z&t0 and the celeration, but which can still be treated reliably numerically
repulsive elastic potential barrier for the moving atom is setn our integration grid, and is nevertheless large enough to
atz=\. Then two consecutive collisions are described whercorrespond to a clear loss process. By selecting different val-
the moving atom travels from the first collision region to the ues forb for each molecular potential we take into account
repulsive barrier, turns back, and collides again. Memory efthe individual characteristics of the different attractive states
fects from previous collisions are rapidly removed due toand of the atomic elements. It should be noted that by the
decoherence, as also discussed in Sec. lll. This is why weme the atoms reach the artificially modified part of the at-
can say that the present paper describes collisions in genetahctive potentials, they move fast enough to make decay
in a lattice and not only between the same two atoms. unlikely before they are reflected and move again to the re-
The dimensionality of the problem and the position fixing gion where the modification does not affect the potentials.
of one atom causes subtleties related to the occupation deithus the flattening of the potentials does not increase the

E. Interaction at short range
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x 10" structure change loss mechanism over the radiative process.
' ' ' ' ' But we have typicallyr .<0.8x, which means that the 2
state is already hard to excite as wilee Ref[27] for a
detailed discussionin order to make the quantum jump pro-
cess tractable we use the atom-atom basis, and, unfortu-

-1.5¢ nately, we cannot just transform into the molecular basis,
—of change the linewidths into retarded ones, and then transfer
o o5 into the atom-atom basi@s we do when flattening the po-
37 tentialg. This is because for decay, the lifetimes appear in
=3r the jump operators in addition to the Hamiltonian.
-3.5¢
-4r F. Atoms escaping the lattice
-4.5¢ 1 One needs to define the critical momentpmto be able
_5 . . . . . to calculate the MC ensemble averages and the properties of
0 0.1 02 0.3 0.4 05 06 the atoms remaining in the lattice. |if| <p. atoms are con-

A2 . X C e ¢
z {p2m) sidered to remain/relocalize in the lattice, whereas when

FIG. 6. The short-range attractive excited molecular potential§p|=p. they are considered lost from the lattice due to a
for Cs. Repulsion of exponential form has been added and the deegllision or a series of collisions. Semiclassically, we can
part of the potentials flattened to allow reliable numerical treatmentalculate the criticalp?® where the cooling force has its
of momentum(see text maximum value for the parameters use. The cooling

force is, of course, still effective for momenta abqu.
time the atoms spend inside the modified part of the poten- Due to the stochastic nature of the jumps, it is not possible
tial, i.e., this does not enhance radiative decay artificially. to say if a given high-momentum atom will relocalize or if it

We concentrate on the radiative heating which occurs beis lost from the lattice. Assume that an atom has a momen-
cause of the strong decay in the vicinityrf. In this region  tum |p|>pZ°. If the following few quantum jumps reduce
the treatment of the singularity in the DDI and in the attrac-the kinetic energy of the atom, depending on the atomic po-
tive molecular states does not yet affect the potentials. Fosition in the lattice, it has a good chance to relocalize in the
example, the removal of the singularity causes a change imttice. In the opposite case, where the next few jumps in-
the value of the Cs ) potential of 0.7% at the position  crease the kinetic energy of the atom, corresponding to
=0.50 whenr;=0.83 for the detuning used=—3I". jumps from the vicinity of the bottom of the potential well to

The atoms repel each other at the very short range whethe vicinity of the top of the well, the atom has less prob-
their electron clouds begin to overlap. We do not have taability to relocalize into the lattice. This means that for two
consider the details of the short-range repulsion. Thus thdifferent MC histories with the same initial value ¢p|
short range repulsion is simply produced by adding the ex=p3° one atom may escape from the lattice whereas the

ponential terma exp(—Br)e to the eigenvalues dfly. For  other one may relocalize. Thus it is not possible to define
flat states(states other than attractive or repulsive excitedin a way that all atoms belowp, always relocalize while

state$ =30, 8=20 for Cs,a=100, 3=20 for Na[29]. For When|p| =p. they escape.
the attractive excited-state eigenvalue manifolds-25, When we calculate the kinetic energy per atom staying in
B=15 for Cs,a=90, p=15 for Na. Values ofe and g are  the lattice, we need a criterion for neglecting those MC his-
chosen such that they produce high enough repulsion withigories in the ensemble averaging that correspond to atoms
a sufficiently short range but without producing numericallost from the lattice. To solve the problem, we have calcu-
difficulties because of the contradictory requirements ofiated the kinetic energy per atom by using various values of
height and range. p.. Since there is an increase in the average kinetic energy
Finally we emphasize that apart from flattening the potenas a function of time when the value pf used is too large,
tials, we perform our calculations in the atom-atom baSiSWe may check from the time evolution of the kinetic energy
Thus the molecular states are not used directly. Unfortuthat our choice fop, is the proper one when we want to
nately our dipole-dipole potential takes care only of the forceca|culate the average kinetic energy per atom in the lattice.
part of the atomic interaction. Thedependence of the life- Thjs is because more collisions occur as the system evolves
times of the molecular states are ignored, i.e., each moleculgj time and if the gain in kinetic energy is too large for the
state ends up having the constant atomic linewidth, insteagtoms to relocalize in the lattice, the kinetic energy increases
of the retarded linewidth. This linewidth arises from the faCtas a function of time and no steady state is reached, as dem-
that the two atoms couple to the same vacuum modes @nstrated in Fig. 7. Whereas when we use an appropriate
different locations, leading to ae " phase difference value for p,, atoms still relocalize in the lattice and the
term. However, the atomic lifetimes differ at maximum only kinetic energy exhibits a steady-state behavior, cf. Fig. 7. Itis
by a factor of 2 from the atomic one. The main exception isat the transition point between these two different types of
the 2, state, which becomes strongly dipole forbidden andbehaviors of the kinetic energy that we should choose the
can support strong survival and thus, e.g., favor the fineeorrect value fomp,.
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200 ' ' : normal clock time is, of course, much short@oughly
22 hourg since we take advantage of powerful parallel
— steady state .
- -+ no steady state processing.

1501 I\

i

H

N VIlI. THE SEMICLASSICAL APPROACH
1

In this section, we describe the semiclassical approach to
calculate the excitation and survival probabilities on the mo-
lecular excited states of our two-atom system.

A. Landau-Zener formula and classical path approximation

One can calculate the semiclassical excitation probability
of the wave packet traveling through the crossing region be-
tween the two states of the system by using the Landau-
Zener formula

800 1 OIOO 1 2I09 1 4IOO 1600
tr) P,=1—exp —mA), (3D

FIG. 7. Kinetic-energy time evolution. F@,=60 (dashed line 0.0 A includes both the coupling between the two states
the steady state is not reached indicating a too large choige, for

Collisions increase the kinetic energy and the collided atoms are OLﬁnd theC, factor which 92’93 the |nversg cghlcdepend.ence
of the recapture range, and thus escape from the latticepfor of the excited stateG{3/r') [_2]' The b§15|c idea here _|s that
=40 (solid line) the steady state is reached. The dotted line indi-tN€ Short resonance region is approximated to consist of two
cates the steady-state val(€s584. spatially linearly behaving states and each component of the
wave packet arriving at the resonance region is indepen-
o ) dently excited. A more detailed description can be found in
Consequently, the atoms of a kinetic energy exceeding thg s, [2].
limit given by p. are neglected when we perform the en-  one can then calculate the time it takes to reach a point
semble averaging to find the result for the kinetic energy pepn the excited state by using the classical path approximation
atom remaining in the lattice. It is important to note that the
2 ( pgr C3 )

main result related to the narrowing of the momentum prob- r
ability distribution due to collisions still includes all the cal- t=t(r)=— fr dr’ EJF ri_hﬁ
culated histories and is totally independentpgf
If there is no constant injection of atoms into the lattice, wherep,, is the momentum at the Condon poipt There is
collisions slowly deplete it. Finally the density is sufficiently a direct correspondence between the reached paint the
low that the interactions between atoms are negligible aneéxcited state and the energy gain while accelerating on the
the atomic cloud regains the properties determined by thettractive excited molecular state. By using E2R) one can
laser parameters only. It should thus be realized that what we
describe here is a temporary cooling process which is not 100
effective when the density has decreased. What we emphe
size is the unexpected behavior of the system in the interme  ggl
diate regime where the effect of collisions is not heating but
cooling. This does not represent the nature of the complete
dynamics of the atomic cloud, of course, as there are othe
mechanisms, such as the radiation pressure from scattere .
photons, for both heating and cooling, which are not in- = 70r
cluded here. =

-1/2

. (32

m

80

601
G. Computational resources

The numerical simulations are demanding since we are sof
dealing with a 36-level quantum system including various
position-dependent couplings and dissipative coupling to the 40 ‘ , . . ,
environment. We use 32 processors of an SGI Origin 200C 10 15 20 o 2(% | 30 35 40
machine which has 128 MIPS R12000 processors of 1 GB er
memory per processdB0]. The total memory taken by a  FiG. 8. The total momentun,o=pe,+Ap as a function of
single simulation(fixed 3, (), p,, and atomic speci¢ss 14  resonance point momentupy, for the attractive } state by the
GB and generating a single history requires 6 hours of CPWemiclassical calculation. The wave packet has spent a duration
time. A simulation of 128 ensemble members then requires @orresponding td ~* accelerating on the excited state before spon-
total CPU time which is roughly equal to one month. Thetaneous decay back to the ground si@e584.
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TABLE VI. Semiclassical probabilities to gain kinetic energies  TABLE VII. Expectation values of kinetic energy per atom
on various attractive excited-state molecular levels, see Fig. 5, fof(E,)) for the simulations. The value g, gives the critical mo-
our Cs584 simulation. The probabilities are calculated [y mentum which is used in ensemble averaging to neglect atoms
=ptAp=40 andp,,= 24, this value ofp., corresponds to the which have escaped from the lattice. The absolute values of the
lattice depth. The wave packet spends a tirrd, on the excited standard deviation are given in parentheses.
state,P, , is the Landau-Zener excitation probability, aRd gives

the survival probability.P,,,=P,P, 7 is the total semiclassical (Ex(E;) (EW(E))

probability for the procesp> p;,;=40 to occur. Simulation Pe interactions no interactions

Potential to(I 7Y P, Pa Pot Cs374 35 625) 75(5)
Cs584 55 826) 110(7)

L, 0.21 0.71 0.81 057 cs1621 70 26430) 221(18)

2,04 0.40 0.88 0.67 0.59 Na339 40 46(3) 59 (3)

1, 0.48 0.91 0.62 0.57 Na530 45 636) 84 (6)

oy 0.49 0.92 0.61 0.56

potential excites and accelerates half of the colliding atoms

calculate classically how long it takes to reach a paoint only half of them is left for the remaining potentials.
corresponding to a given increase in kinetic energy or mo- The simple semiclassical calculation above is not able to
mentum due to the acceleration on the attractive excitegive quantitative results but it shows that the probability to
state. produce an atom of large momentum due to a collision is

It is now easy to numerically calculate the kinetic-energyhigh already when we consider one excited level only. This
increase due to the collisions if the wave packet stays on thprobability increases when we take into account that during
attractive excited state for a time corresponding to the naturaine collision process, the molecule may be excited at four
decay timel' 1. When the exponential decay from the ex- different values of . related to five different attractive states.
cited state is also taken into account, the probabilities for

vario_us kinetic_: energy gains_ d_ue to collisions as a function of VIIl. SIMULATION RESULTS
relative velocity of the colliding atoms at. may also be
calculated 7]. The calculated numerical values of kinetic energy per

atom for various simulations are shown in Table VII and
corresponding momentum probability distributions in Figs.
9-13.

We obtain the values df; for the attractive potentials by Most of the simulations with the selected parameters pro-
fitting near the resonance region the simple expressionduce a reduced value for the kinetic energy per atom when
—C,/r® to our molecular potentials obtained by diagonaliz-the interactions between the atoms are taken into account,
ing the dipole-dipole coupling presented in the two-atom basee Table VII. Since the inelastic collisions here always
sis, Eq.(18). Figure 8 shows an example of the total post-creasethe kinetic energy of the atoms via the radiative heat-
collision momentump,,;=pc,+Ap as a function ofpg, ing mechanism, our results suggest that the consequence of
when the wave packet spent a titnel’ ! on the 1, excited  collision almost every time is the escape of the colliding
state(Cs584. One notices thap., = 24 corresponding to the
lattice depth used already gives a total momentunpgf ? ? ' — 25%
=67 after a collision thus pushing the atom to the region in : - - - no interactions
momentum space where its probability for relocalizing back ‘ 3
to the lattice is small§s°=16.2). This shows in a clear way
that increases in kinetic energy that are large compared to th
Iattilce modulation depthJ, may occur on a time scale of
r—-

Moreover, when the exponential decay &g , Eq.(31),
are taken into account, one is able to calculate the probabili-
ties to gain various amounts of kinetic energies due to the
collision. The total probabilityP,,; for the atomic momen-
tum to have at least the valym,; after the collision is

B. Postcollision momentum in the lattice

Cs374

Piot=PaPLz, (33
whereP, gives the survival probability on the excited state. . i
An example of the results ¢, are shown in Table VI. This  —60 —40 -20 o) 20 40 60
suggests that the first resonance molecular potenfidids a '
dominant role in collisions. Fap,,;= 40 the probabilities for FIG. 9. Momentum probability distributions for interacting and

the various states are roughly equal but if the first resonanceoninteracting case€s374.
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— 25% — 5%

0358f4 ---no mtgractnons Na339 ---no |nt§ract|ons
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
Pp,) P(p,)

FIG. 10. Momentum probability distributions for interactingand  FIG. 12. Momentum probability distributions for interacting and
noninteracting case<s584. noninteracting caseiNa339.

high-energy atoms from the latti¢81]. The atoms left in the contrast when compared to the theoretical and experimental
lattice then have less average energy. This is due to the facbllision studies in MOTs where the heating of the trapped
that the more energetic atoms are favored to participate in thetoms due to the radiative mechanism is obsef2sd but
collision process due to their better ability to move betweemot the evaporative-type cooling process.
the lattice sites. The cooling process is observed for the two atomic
The cooling process is indeed observed when looking fomasses when similar lattice depths are u4]. The com-
the momentum probability distributions including all the MC putational resources that simulations require, see Sec. VI G,
histories for ensemble averaging, see Figs. 9—13. One caio not allow any extensive exploration of parameter space
see the slight narrowing of the momentum distributions corbut the Cs1621 result shows that with a deeper lattice the
responding to the cooling process. The narrow central peagituation may change, see Table VII. In shallow lattices the
corresponds to atoms localized in the lattice sites and theelative velocity before a collision is small, thus enhancing
broader background wing to atoms which are above the rethe excitation probability. In deep lattices the reduced exci-
capture range and do not relocalize in the lattice. This retation probability due to large relative velocity is compen-
sembles the evaporative cooling process with narrowed cersated by the use of more intense lasers. The Cs1621 result
tral peak and hot background atoms. Cooling here is nosuggests that in deeper lattices one may observe heating
dramatic but still present. Moreover, the result is in sharpwhich is similar to the results from MOT studies. But a sys-
tematic study of this is out of the reach of this paper.

—_25%
- - - no interactions

—_25%
- - - no interactions

Cs1621 -

Na530

50 100 -60 -40 -20 0 20 40 60

-100

FIG. 11. Momentum probability distributions for interacting and  FIG. 13. Momentum probability distributions for interacting and
noninteracting case¥s162). noninteracting caseiNa530.
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IX. DISCUSSION AND CONCLUSIONS lective heating. This is because the hotter atoms, naturally,

Our results show the basic aspects of one mechanism ag_:ove between the sites more frequently than the colder ones,

fecting the thermodvnamics of the atomic cloud in an optical eating the selectivity. If the lost atoms are not considered,
ting y . PUCAG r results show, however, that we can hold on to the concept
lattice, when the lattice has been prepared with near-resonan isti teady stat
(detuning a few linewidths red-detuned laser light. In this ofan existing steady state. . .
. ) . . . The collisionally induced velocity-selective loss of hot at-
case the role of inelastic collisions is strong, leading to the

heating and loss of atoms, but this requires that the interact > is similar to the evaporative cooling which is utilized in
) 9 7 qu . ) magnetic traps to reach ultracold temperatures for atoms. It
ing atoms are located in the same lattice site. This, on th

Femains to be seen, however, whether the resulting cooling

other hand, requires, first, large atomic densities. Thereforgﬁect for the atoms is significant enough to be observed in

in most Ia'Ftlge studies done so far, t_h_e role of collisions hasdensely filled lattices. In dense samples other processes such
been negligible due to the low densities, or at least not eas

to observe(with the exception of collisions producing a clear ¥s reabsorption of photons scattered by the atoms are another

signal such as Penning ionization of collidin metastabIeimportaInt source for heating, which may well overcome any
9 9 9 cooling effect. It should be noted, however, that if we ignore
rare-gas atomg33]).

Second, frequent collisions require clear mobility of at_the spatial structure of the cooling fields, the collisional pro-

oms. This takes place naturally during the Sisvohus coolinG€SSeS lose their velocity-selective nature, and as seen in the
' P y 9 yp Limulations of Ref[7], this leads to strong heating of atoms.

until the atoms are localized in lattice sites. Thus itis ImMpor-g o the simulations indicate that the lattice structure inhib-
tant for suitably dense samples to study the role of coII|S|on§ts this heating clearly

during the Sisyphus cooling, and our approach provides a Our simulations have been very intense computationally,

method which is both dynamical and consistent. For the se; .\ " o) oo it very difficult to make the model more real-

lected parameters our simulations show that the Sisyphu%tic. Our studies, however, to our opinion, demonstrate the

coolllng process and Iocgllzanon of atoms Is nqt prohibite asic features to be expected from the collisions in densely
by inelastic processes, i.e., the loss and heating of atorr%

remains small even when the average distance between t opulated near-resonant red-detuned lattices. There are
. . ; 9 agnetic-field-assisted cooling schemes for blue-detuned lat-
two atoms is only four lattice sites.

Once the localization in lattice sites has been achieved a’uces for, e.g.)=1—J=1 sysiems. The blue detning usu-

a steady state, the question about the mobility of atomaly leads to optical shielding, and the collisional contribu-

aOMIon to inelastic processes is reduced strongly for normal
changes to some extent. It should be noted that localizatio o " .
oo aser cooling intensities as the loss channel is expected to be
does not mean that an atom remains in the sameasite

infinitum In the steady state the atoms are localized at thé diabatically closed, see RgB4]. As a future prospect it

sites for most of the fime. but also move between the SitewiII be interesting to study the qualitative differences due to
. L . ’ : the color of the detuning in collisions between atoms in near-
via tunneling(in the picture where the lattice lasers and the

excited states are eliminated from the effective description resonant lattices.
For the selected parameters the dipole-dipole interaction
does not perturb the lattice potentials enough to have a sig-
nificant effect between atoms located at different sitee J.P. and K.-A.S. acknowledge the Academy of Finland
opposite situation is also possible, see REf]). The tunnel-  (Project Nos. 43336 and 50314NorFA, Nordita, and the

ing of atoms between sites is in the steady state the maiBuropean Union IHP CAUAC project for financial support,
process leading to inelastic collisions, and as the simulationand the Finnish Center for Scientific Computi@SQO for
show (supported by the semiclassical estimatesch en- computing resources. J.P. acknowledges support from the
counters lead mainly to the loss of hotter atoms or their seNational Graduate School on Modern Optics and Photonics.
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