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Relativistic electron-atom scattering in an extremely powerful laser field: Relevance of spin effect
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~Received 14 June 2001; published 8 February 2002!

We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in
an extremely powerful electromagnetic plane wave of frequencyv and linear polarization«. Since to a first
order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon
solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin
effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the
first-order Born approximation can be employed to represent the corresponding scattering matrix element. We
compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from
both approximations, for various parameter values and angular configurations and we find that in most cases
the spin effects are marginal, even at very high laser power. On the other hand, we recover the various
asymmetries in the angular distributions of the scattered electrons and their respective energies due to the
laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming
the findings of our previous work@Phys. Rev. A59, 2105~1999!; Laser Physics10, 163 ~2000!#.
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I. INTRODUCTION

Soon after the invention of the laser, two basic quant
processes were thoroughly investigated with emphasis on
laser-induced nonlinearities. The first of them was las
induced Compton scattering and the second was la
modified electron-atom scattering. A nice discussion of
early work on the first of these processes can be found in
review by Eberly@1#. The original work on free-free transi
tions in a powerful laser field is clearly summarized in t
overview by Bunkinet al. @2#. More elaborate introduction
into this field of research can be found in the books
Mittleman @3# and by Faisal@4# and summaries of more re
cent work are presented in several reviews@5–9#. With the
advent of very powerful laser sources, yielding intensities
1018 W cm22 and above, it has become important to co
sider laser-modified and laser-induced processes relativ
cally @10,11#. Hence, Mott scattering in a powerful, circu
larly polarized radiation field was reconsidered very recen
by Szymanowskiet al. @12# with reference to much earlie
investigations of this process@13–25#. By evaluating the
nonlinear cross sections numerically, large relativistic corr
tions were found by these authors, if their data are compa
with the results of the Bunkin-Fedorov@26# or Kroll-Watson
@27# formulas. On the other hand, this work appears to h
shown that electron-spin effects become relevant only if
laser intensity is such that the critical parameterm
5ueuF0 /mvc comes close to unity. In this parametere is the
electric charge,F0 is the electric-field strength,m is the elec-
tron mass,v is the laser frequency, andc is the speed of
light. For a Nd:YAG Yttrium aluminum garnet laser th
value of m.1 corresponds to a laser-field intensity of t
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order of magnitude mentioned above. For somewhat lo
field intensities, it was found in the above work that sp
effects are negligible and instead of using the Volkov so
tion of the Dirac equation@28# for describing an electron
embedded in the laser field, one may safely use the co
sponding Gordon solution@29# of the Klein-Gordon equa-
tion. To simplify their calculations, Szymanowskiet al. @12#
considered electron scattering in a powerful circularly pol
ized laser field. The scattering process in this configurat
is, however, not so effective and rich in details as in the c
of linear polarization, as we were able to show in our ear
semirelativistic and relativistic work on this problem, n
glecting in a first-order approximation the effects of the ele
tron spin @30–32#. Apparently, for linearly polarized lase
light the oscillating electron will encounter more often th
target atom during the scattering process and therefore
laser-modified collision process will, in the relativistic cas
be much more effective and richer in its angular and po
ization dependences than for circular laser polarization,
we discussed in our earlier work@31#. It is the purpose of the
present work to reanalyze all these effects in more detail
particular, for a very powerful, linearly polarized laser fiel
and to compare the results of relativistic calculations
Bose and Dirac particles to find out the relevance of s
effects at very high laser-field strength, and to investig
whether effects can be encountered that are strong enou
be accessible to observation in the relativistic regime.

During the investigation of laser-induced Compton sc
tering @1#, a laser-induced electron drift motion and, cons
quently, an intensity-dependent frequency shift of the Com
ton light was predicted. This shift is proportional tom2 and
was very small for the available laser intensities in the ea
days of laser research. One of the present authors was th
fore looking for a process that would more easily permit
observe the effect of the laser-induced drift motion of t
©2002 The American Physical Society08-1
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electron. Considering in a semirelativistic approximatio
potential scattering of electrons in a laser field, he found
the low-frequency limit the following asymmetry in the tot
laser-assisted differential scattering cross sections@33#:

ds (2)2ds (1)

ds (2)1ds (1)
.

m2

2b
sinu. ~1!

m2 is related to the electron drift velocity in the laser field
the relationvd5m2c andb5v/c wherev is the velocity of
the scattered electron.u denotes the scattering angle. Th
scattering configuration considered, leading to the ab
asymmetry relation, was depicted in Fig. 1 of@30# in which
the scattering plane is determined by the vectore of linear
polarization of the laser beam and by the directionn of its
propagation. The momentump of the ingoing electrons is
oriented parallel toe and the momentump8 of the outgoing
electrons can be either in the direction denoted by (2), hav-
ing an anglep/21u with the directionn, or in the direction
(1) with an anglep/22u with respect ton. Even though
the laser-induced effect is here proportional tom2/b and not
like the Compton-drift effect proportional tom2, at the time
of writing the above paper, laser powers and thusm2 were
still much too low and therefore the process remained
little interest. Nowadays the experimental situation has d
tically changed and the electron’s drift motion in a power
laser field has been verified experimentally@10# and thus the
above effect appeared to be accessible to experimental
fication. But we were able to show in our preceding inves
gations @30–32# that actually such asymmetries are mu
more complicated and that in the same semirelativistic
proximation a similar asymmetry relation, as Eq.~1!, can be

FIG. 1. The upper left panel shows a contour plot of the fi
kinetic electron energiesEkin8 , measured in units of the electron
rest-energym, as a function ofu andu8 and in the panels~A!, ~B!,
and ~C! these energies are presented for the cuts A, B, and C i
cated in the contour plot. The initial kinetic energy is Ekin

50.5 m, the laser intensityI 51.2831018 W cm22 (m51), the
laser frequencyv51.17 eV, and the number of absorbed photo
N5103.
03340
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derived for the observed electron kinetic energies in the
rection (1) and (2), respectively, namely,

DEkin8

2Ekin
5

m2

2b
sinu, ~2!

where DEkin8 5Ekin
(2)2Ekin

(1) is evaluated fromEkin
8 5Ekin

2(m2/4)(p82p)•n1Nv with N being the number of emit-
ted or absorbed laser photons. The above asymmetry
tion, Eq.~2!, for the observed electron energies is more r
sonably well fulfilled in exact relativistic calculations.

In order to show that spin effects in the present proc
should be rather marginal, we shall perform the followi
quasiclassical consideration. We start from the Dirac eq
tion, in its quadratic form, for a particle in an electroma
netic field, which can be found in Schiff’s book on quantu
mechanics@34# ~using throughout this paper units\5c
51),

@~E2ef!22m2#c5@~p2eA…

22es8B1 ieaE#c, ~3!

in which A andf are the electromagnetic potentials whileE
andB are the electric- and magnetic-field strengths, resp
tively. s8 and a are Dirac’s spin matrices. Considering a
electromagnetic, linearly polarized plane wave of frequen
v, unit vector of polarizatione5ey , and direction of propa-
gationn5ex in the Coulomb gauge,A5A0eycosv(t2x) and
f50, we can infer from Eq.~3! a semiclassical expressio
for the final kinetic energyEkin8 5E82m of an electron
placed into this field with initial momentump along they
axis. SinceE points along they axis,B will point into the z
direction. Therefore the magnetic term in Eq.~3! can be re-
placed by 2eA0vsz8sinv(t2x) and the electric term by
ieA0vaysinv(t2x). For sz8 we can take in our quasiclass
cal calculation the two values61, while ay couples in a
matrix element the two large components of a Dirac spi
with the two small components and therefore we have to t
6 ip/(E1m), where the initial energy isE5Ekin1m.
Therefore we obtain from Eq.~3!

Ekin8 S 11
Ekin8

2m D 5EkinS 11
Ekin

2m D
22A2EkinS 11

Ekin

2m DUpcosv~ t2x!

1Up@11cos 2v~ t2x!#

7AUp

m
vF11A Ekin

Ekin12mGsinv~ t2x!.

~4!

From this expression we obtain the maximum electron
netic energyEkin

max in the laser field with maximum spin con
tribution, if we choose the radiation phase to bev(t2x)
5p/4 or 3p/4 in which case sinv(t2x)561/A2 and
cos 2v(t2x)50. With this choice we find

l
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s
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Ekin
maxS 11

Ekin
max

2m D 5EkinS 11
Ekin

2m D1Up

6
v

A2
AUp

m F11A Ekin

Ekin12mG , ~5!

whereEkin is the initial kinetic energy of the electron ente
ing the radiation field.Up5mm2/4 is the ponderomotive en
ergy of the electron in the laser field withm being the inten-
sity parameter defined above. The formula~5! immediately
tells us that for laser-field intensities in the relativistic r
gime, i.e., form51 and thusUp5m/4, the ratio between
laser-induced spin effects and laser-induced dynamical
fects will be 2v/m.1026 for a Nd:YAG laser with v
51.17 eV. Consequently, on the basis of these quasicla
cal considerations, the spin effects in the potential scatte
of electrons in a very powerful laser field should be m
ginal. It is also interesting to remark that according to Eq.~4!
the contributions of the laser-induced spin effects and of
laser-induced dynamical effects are out of phase byp/2 in
their influence on the total final energy of the electron in
field. Moreover, we recognize that for relativistic initial ele
tron kinetic energies,Ekin5m, the electric spin term in Eq
~3! will contribute in the square brackets of the last term
Eq. ~5! a factorA1/3, showing that also in the relativisti
case the magnetic-spin term yields the dominant contr
tion. On the other hand, for lower laser intensities we usu
have Up!Ekin and m!1 so that in this case the releva
ratio isvm/2Ekin!1 and therefore also in the nonrelativist
regime spin effects are negligible. Our numerical results, p
sented below, will confirm the findings of these heuris
considerations.

II. RELATIVISTIC CROSS-SECTION FORMULAS

A. Scattering of a Klein-Gordon particle

In our earlier work@30–32# the laser-dressed electron w
described by the Gordon solution@29# of the Klein-Gordon
equation and the scattering process was described in the
order Born approximation using as target a screened C
lomb potential. Since in the following investigation we sh
consider electron scattering in the relativistic region of
laser-field intensity and of the electron kinetic energy,
first-order Born approximation should be sufficiently acc
rate and we can take over the main results from our w
quoted before. We derived the exact solution of the Kle
Gordon equation for a particle of massm and chargee placed
into an electromagnetic plane-wave field, described by
vector potentialA(t) in the Coulomb gauge, wheret5t
2n•x and n is the direction of propagation of the field. I
case the powerful laser field is approximately described b
monochromatic plane wave of amplitudeA05F0 /v, linear
polarization «, frequencyv, and wave vectork5kn, the
vector potential reads

A~t!5A0e cosvt ~6!

and for a particle of initial energyE and momentump, as-
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suming adiabatic decoupling of the particle from the field
t→2`, the Gordon solution, normalized to the volumeV,
has then the form@35#

cp5~2EV!21/2exp@2 i ~Ēt2p̄•r …‡exp@ ia sinvt

2b sin 2vt#, ~7!

where in this expression the following abbreviations ha
been introduced:

Ē5E1d,p̄5p1dn,d5
m2m2/4

E2p•n
,

a5
m~m/k!p•e

E2p•n
,b5

m2m2/8v

E2p•n
,m25~eA0 /m!2. ~8!

The renormalized energyĒ and momentump̄ fulfill the con-
servation relationĒ25m̄21p̄2, which corresponds to an on
shell particle of effective massm̄5m(11m2/2)1/2 @36#. The
characteristic intensity parameter, introduced in the Introd
tion, is given bym25I /I c , whereI is the average intensity o
the laser radiation andI c5av2/8pr 0

2 (a5e2,r 05e2/m) is
the critical laser intensity at whichm251 in which case the
problem has to be treated relativistically. Similarly, we c
find the wave functioncp8

* , which describes the scattere
electron of energyE8 and momentump8 with the corre-
sponding coefficientsa8,b8, andd8 like in Eq. ~8!. Then we
obtain from the first-order Born approximation, using for t
scattering potentialU(r ) a screened Coulomb potential o
chargeeZ and screening lengthl , in a straightforward man-
ner the differential cross sections of the laser-induced n
linear bremsstrahlung processes,

dsN5
~e2Z!2~ĒN8 1Ē!2dV8

@~ p̄82p̄2Nk!21l 22#2

pN8

pFN
MN

2 , ~9!

where scattering takes place into the solid angledV8 and the
energy conservation relation reads for these processes

ĒN8 5Ē1Nv p̄N8 5~ĒN8
22m̄2!1/2. ~10!

The factorFN that appears in the denominator of the cro
section formula~9! has the form

FN512
dN8

EN8 2pN8 •n
S 12

EN8 pN8 •n

pN8
2 D . ~11!

Moreover, the matrix elementsMN are found to be

MN5BN~x,y!2
v~a81a!

2~Ē81Ē!
@BN11~x,y!1BN21~x,y!#

1
v~b81b!

Ē81Ē
@BN12~x,y!1BN22~x,y!#. ~12!

In this expression we have introduced the following gene
ized Bessel functions:
8-3
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BN~x,y!5 (
l52`

1`

JN22l~x!Jl~y! ~13!

in which JN22l(x) and Jl(y) represent ordinary Besse
functions of the first kind. The coefficientsx andy in these
functions are defined by

x5a82a, y5b2b8, ~14!

wherea andb and similarlya8 andb8 are given by Eqs.~8!.
From the energy-conservation relation, Eq.~10!, it becomes
clear that all primed quantities depend on the order of n
linearity N. In the case of low laser intensities, i.e.,m2!1,
and small kinetic energies, i.e., (E2m)/m!1, the expres-
sion in Eq. ~9! reduces to the nonrelativistic formula o
Bunkin and Fedorov@26#

dsN
NR5

~2r 0Z!2m4dV8

~QN
2 1l 22!2

pN8

p
JN

2 ~mQN•e/v!, ~15!

in which QN5p2pN8 . The corresponding nonrelativisti
energy-conservation relation readsEkin8 5Ekin1Nv. To
these formulas we shall refer later on in our discussion of
numerical data obtained from the relativistic theories.

B. Scattering of a Dirac particle

The evaluation of the nonlinear cross sections for the
tential scattering of a Dirac electron of spin 1/2, embedde
a powerful electromagnetic plane-wave field, can procee
a very similar manner as was done for a Klein-Gordon p
ticle in the foregoing section. We start from the Dirac equ
tion in an arbitrary plane-wave field,

~ igm]m2egmAm2m!c~x!50, ~16!

where the vector potentialAm has the general form

Am5Am~k•x!, A•k5k•k50 ~17!

and we use the Einstein summation convention and nota
namely,vmwm5v•w, wherem50,1,2,3. The solution of the
above Dirac equation~16! in a plane-wave field was derive
by Volkov @28# and its explicit form can be found in th
paper by Denisov and Fedorov@13#,

c~x!5@11kgmkmgnAn~k•x!#

3expF2 ip•x2 i E
0

k•x

S~f!dfGup , ~18!

whereup is a free-particle solution of (gmpm2m)up50 with
pm being a four-vector. The constantk and the function
S(f) can be evaluated and we find

S~f!5
eA~f!•p

p•k
1

e2A2~f!

2p•k
, k5

e

2p•k
, ~19!
03340
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where A(f) is the four-vector of the vector potential Eq
~17!. Then, after normalization to the volumeV, the required
Volkov solution for an electron of initial four-momentump
reads

cp~x!5A m

VEp
F12

egmAm~k•x!gnkn

2k•p GexpF2 ip•x

2 i E
0

k•xS eA~f!•p

p•k
1

e2A2~f!

2p•k D dfGup . ~20!

For considering Mott scattering in a powerful laser fie
in the first-order Born approximation we have to evaluate
T-matrix element

Tf i52 i E dxc̄p8~x!gmUm~x!cp , ~21!

where scattering takes place for an electron of initial fo
momentump to a final momentump8. In Eq. ~21! we de-
scribe the ingoing and outgoing electron by Volkov waves
the form~20! and we decompose this matrix element into
Fourier components in space and time, using the definitio
the generalized Bessel functions~13!. Then we find by
straightforward calculation

Tf i52 i
m

VAE8E
(
N

E dt exp@ i ~Ē82Ē2Nv!t#

3E drU~r !exp@2 i ~ p̄82p̄2Nvn!•r #MN , ~22!

whereU(r ) is a screened Coulomb potential of chargeeZ
and screening lengthl and the nonlinear matrix elemen
MN are given by

MN5BNūp8g
0up1

eA0

4k•p8
~BN111BN21!ūp8g

memkngng0up

2
eA0

4k•p
~BN111BN21!ūp8g

0gmemkngnup

2
e2A0

2

8~k•p8!~k•p!
FBN1

1

2
~BN121BN22!G

3ūp8g
memkngng0gsesktgtup , ~23!

in which we assumed the plane-wave field to be monoch
matic and linearly polarized so that in the Coulomb gau
Am has the explicit form

Am~k•x!5A0emcos~k•x!, em[~0,e!,
~24!

e2521, e251.

Under these conditions, in the matrix element of Eq.~23! the
argumentsx and y, defined in Eq.~14! of the generalized
Bessel functions, are the same as those in Eq.~8! for a Klein-
Gordon particle. Since the Fourier transformU(q) of the
8-4
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screened Coulomb potential in Eq.~22! can be easily calcu
lated, we are able to evaluate from Eq.~22! the transition
probability per unit time to read

wf i5 lim
T→`

uTf i u2

T
5(

N

2pm2

V2E8E

3uU~ p̄82p̄2Nvn!MNu2d~Ē82Ē2Nv!,

~25!

where for the laser-dressed electron momenta and ene
the same notation is used as in Eq.~8! of the preceding
section. From the transition probabilities, Eq.~25!, we can
finally evaluate the differential cross sections of the non
ear scattering processes of the orderN. We find

dsN
(s,s8)

dV8
5

pN8

p

4~mZa!2

FN

uMNu2

@~ p̄82p̄2Nk!21l 22#2
. ~26!

In this equation, the indicess ands8 label the spin polariza-
tions of the incoming and outgoing electrons and have
possible values1 or 2. These indices,6, have the meaning
that the spin polarization of an electron in its rest frame
the values61/2 with respect to thez axis. For an unpolar-
ized beam of electrons, we should average over the in
and sum over the final spin polarizations, viz.,

dsN

dV8
5

1

2 (
s,s856

dsN
(s,s8)

dV8
. ~27!

The energy-conservation relation, which follows from E
~25!, is the same as in Eq.~10! for scattering of a Klein-
Gordon particle and the same is true for the generali
Bessel functrionsBN and their arguments, defined in Eq
~13! and ~14!. Similarly, we obtain in evaluating the phas
space the same functionFN defined in Eq.~11!. The evalua-
tion of the matrix elements, appearing in the Eq.~23! and
containing Dirac spinors andg matrices, is performed nu
merically and therefore their explicit result will not be wri
ten down here. In the following section we shall presen
comparison of the cross sections calculated for scatterin
a spin-0 or a spin-(1/2) particle in a very powerful laser fie
and we shall see that spin effects are maginal even at
high laser powers and/or electron energies, as anticipate
our heuristic analysis in Sec. I. On the other hand there
some interesting phenomena observable at very powerfu
ser fields that we shall discuss in more detail below.

III. NUMERICAL EXAMPLES AND DISCUSSION

The following numerical analysis of the differential cro
sections~9!, ~26!, and ~27! for a linearly polarized electro
magnetic plane wave, leading to the generalized Bessel f
tions ~13!, was made possible by the work of Leubner@37#
who has shown in his investigations how to efficiently eva
ate these functions by using generalized saddle-point m
ods. His program developed for that purpose was mod
ized and adapted by us for our present problem. We shal
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the screening lengthl of the scattering potential tol 51
a.u. and take for the nuclear chargeZ51. As frequency of
the radiation field we shall choosev51.17 eV of a
Nd:YAG laser. We investigate the angular and intensity d
pendence of the energy-conservation relation~10! and of the
differential cross sectionsdsN /dV8, given by Eqs.~9!, ~26!,
and ~27! for selected values of the laser-field intensityI,
initial kinetic electron energyEkin , and order of nonlinearity
N. As it turns out, it is of particular interest to consider hig
energy electrons in the MeV range and, similarly, to choo
radiation powers for which the ponderomotive energyUp
5mm2/4 is of the order of magnitude of the electron re
energym.

We start with analyzing the energy-conservation relat
~10! for the large valueN5103 of absorbed photons at
laser power of the magnitudeI 51.2831018 W cm22 for
which the parameterm, defined in Eq.~8!, has the valuem
51 and we take for the initial kinetic electron energy, befo
entering the laser beam,Ekin50.5m. The energy-
conservation relation Eq.~10!, written down for quantities
considered outside the laser beam, can be presented in
form

E85E2
1

4
m2m2S 1

E82p8•n
2

1

E2p•nD 1Nv, ~28!

whereE85m1Ekin8 andE5m1Ekin are the relativistic en-
ergies of the scattered and ingoing electron, respectively.
choosing the laser beam to propagate in thex direction, i.e.,
niex , we define the anglesu and u8 by the relationsp•n
5cosu andp8•n5cosu8, respectively. In Fig. 1 we presen
the corresponding dependence of the final kinetic ene
Ekin8 on the scattering geometry. In the upper left frame
show for the above parameter data a contour plot of
energy distributionEkin8 in the (u8,u) plane and, for getting a
better idea, we present in the frames, denoted by~a! and~b!,
the energy values along two cuts through this plot for fix
u8, namely, in~a! for u8520° and in~b! for u85150°, while
in ~c! the cut is made at the fixed valueu520°. These plots
show very clearly the strong dependence of the final kine
energyEkin8 on the angles of electron incidence and of sc
tering. The energies in these plots are presented in unit
the electron’s rest energym. As can be clearly seen in plo
~c!, the final energyEkin8 has its smallest values where th
outgoing electron moves in the direction of propagationn of
the laser beam. On the other hand, the largest kinetic en
gain is observed when the incoming electron moves para
to the propagation direction.

In Figs. 2 and 3 we analyze the dependence of the dif
ential cross sections, either evaluated from Eq.~9! for a
Klein-Gordon particle or from Eqs.~26! and~27! for a Dirac
particle. For presenting our data, we chose in both Figu
the laser beam to propagate along thex axis and its unit
vector of linear polarization,e, to define thez direction,
which also determines our polar axis whereas the azimu
anglew is measured with respect to thex axis in the (x,y)
plane. Our results are shown for fixed polar angles of el
tron incidence (u,w) and of scattering (u8,w8) as a function
8-5
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of the numberN of absorbed or emitted laser photonsv.
Both relativistic cross-section formulas yield, in general,
same results. We shall discuss deviations between the
for a particle of spin 0 and spin 1/2 further below. As it tur
out, the cross sections are particularly large for small sca
ing angles. Therefore the angles of electron incidence w
respect to thez axis are chosen asu50° andw50° and we
consider scattering at a very small angle withu851° and
w850°. The laser frequencyv will be the same as befor
but for the intensity we choseI 51019 W cm22 and for the
initial kinetic electron energy we tookEkin52 m. In Fig. 2
we present the evaluated differential cross sections as a f
tion of N in panel~a!, which shows that these cross sectio
~presented in atomic units, denoted by a.u.! are considerably
larger for photon absorption than for photon emission. A r
sonable estimate for the cutoff valueN0 of the electron spec
trum can be found from the approximate formulaN05
6uxu62uyu, where x and y are the two arguments of th
generalized Bessel functions, Eq.~13!. In our present case
the numerical calculations for the data shown in panel~a!
yield the cutoff atN0.22 352. For this case, the argumentsx
and y are found to bex.223 238 andy.126 so thatuxu
22uyu.22 986, which is in reasonable agreement with
value ofN0 given before. In panel~b! we show the deviation
of the relativistic energy-conservation law, Eq.~28!, from the
nonrelativistic energy relationEkin8 5Ekin1Nv. This devia-
tion represents an intensity-dependent energy excess. In
3 we present on an enlarged scale certain parts of the s

FIG. 2. Panel~a! presents the differential cross sections for t
parametersI 51019 W cm22 andEkin52m as a function ofN"0
for u851°,w850° and electron incidence alonge. The cross sec-
tions are large forN@0 and the cutoff is nearN0522 352. Panel
~b! demonstrates the deviation of the relativistic energ
conservation law from the nonrelativistic one.

FIG. 3. On an enlarged scale, the behavior of the cross-sec
data of Fig. 2 in~a! in the vicinity of their maximum values and in
~b! near the cutoff atN0.
03340
e
ata

r-
th
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s
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e

ig.
ec-

trum shown in panel~a! of Fig. 2. In the left panel~a! we see
on a larger scale, a section of the rising part of the spect
for N.0 presented in panel~a! of Fig. 2, and we recognize
that this spectrum is actually not smooth but shows ra
quasiperiodic oscillations. Similarly, we see in panel~b! the
rapid oscillations of the data near the cutoff of the spectr
shown in panel~a! of Fig. 2. Summarizing, our results in
Figs. 2 and 3 show that the cross-section data perform ra
oscillations as a function of the nonlinear orderN. Such rapid
changes with an almost periodic sequence of maxima
minima can be qualitatively well explained by analyzing t
properties of the generalized Bessel functionsBN defined in
Eqs. ~13! and ~14!. This analysis, however, cannot be do
analytically due to the complicated dependence of both ar
ments in Eq.~14!, via Eq.~8!, on the numberN of emitted or
absorbed photons, but requires a numerical evaluation.
result is very much different than the findings in nonrelat
istic potential scattering in a laser field, since in the lo
frequency limit the argument of the Bessel functionsJN in
Eq. ~15! becomes independent ofN.

As we have indicated before, in the relativistic regime
electron kinetic energiesEkin , being of the same order o
magnitude as the electron rest energym, the scattering for-
mulas for a Klein-Gordon particle and a Dirac particle yie
almost the same cross-section values, in particular, for c
to forward scattering where the cross-section data are larg
On the other hand, the expression~9! and Eqs.~26! and~27!
yield significantly different values for the cross sections
the backward direction where, however, the cross-sec
values are particularly small. In order to show this, w
present in panel~a! of Fig. 4 a comparison of the Klein
Gordon and Mott scattering data for the same scattering
ometry as before, i.e., with electrons impinging on the tar
along thez axis (u5w50°) and scattered by an angleu8
.0° for w850° or scattered by an angleu8,0° for w8
5180°. The ingoing kinetic energy of the electron isEkin
51 MeV.2m and we consider the elastic case withN50.
As we recognize, the cross-section data~dashed line for
Klein-Gordon particles and solid line for Dirac particles! are
almost identical except for backward scattering. This can
seen even more clearly in panel~b! of Fig. 4 where we
present the normalized differenceDs of these cross-section
data defined by

-

on

FIG. 4. Presents for the same scattering configuration and
rameter values as in Fig. 2 and for elastic scattering, withN50, in
the left panel the differential cross sections of Mott scattering~solid
line! and Klein-Gordon scattering~dashed line! as a function ofu8.
In the right panel is shown the normalized differenceDs of these
cross sections. Apparently, spin effects are visible only at large s
tering angles.
8-6
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Ds[

UdsD

dV
2

dsKG

dV U
dsD

dV
1

dsKG

dV

, ~29!

which can have the values 0<Ds<1. As this panel shows
for uu8u.0° the deviations between the cross-section d
for Dirac and Klein-Gordon particles are very small and on
gradually increase foruu8u approaching backscattering
180°.

In Fig. 5 we show a somewhat different presentation
the data evaluated for the previous figure. The scattering
ometry and the parameter values are the same as in Fig.
panel~a! and panel~c! we show, respectively, the differeren
tial cross sections evaluated for Mott scattering from E
~27!, summed and averaged over the spin orientations,
for scattering of a Klein-Gordon particle calculated from E
~9!. Almost no difference can be recognized between th
two spectra. In panel~b! we show once moreDs and we can
only recognize a discrepancy between the data for a s
(1/2) and spin-0 particle at large scattering anglesu8. At
these large anglesu8 we also find that the final electro
kinetic energyEkin8 has a considerable intensity and angul
dependent dip with a minimum value nearu8.90°. This
originates in the relativistic energy-conservation relat
~28!, as it implicitly shows this dependence onu andI since
the ponderomotive energyUp;I .

The properties of the differential cross sections, presen
in the Figs. 4 and 5, can be found, in general, for values
NÞ0 and for relativistic electron energies and laser inten
ties whereEkin and Up are in the MeV energy range. Th
differences between the cross sections for a Dirac an

FIG. 5. Shows on a larger scale forN50 in panel~a! the spin-
averaged cross sections of Mott scattering and in panel~c! the cor-
responding data for scattering of a spin-0 particle. In panel~b! we
see the normalized differencesDs of the data in~a! and~c!. These
differences are appreciable for large scattering angles but neglig
for u850°. In ~d! we see thatEkin8 can change significantly for larg
u8.
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Klein-Gordon particle will be significant only at large sca
tering angles where we shall simultaneously find a dip in
final electron energyEkin8 .

Finally, we investigate in some detail the dependence
the nonlinear cross sections for a Dirac particle on the s
orientation and spin flip. For the data presented in Fig. 6,
chose the same scattering geometry and parameter valu
before and consider the absorption of a very large numbe
photons from the laser beam during the scattering, nam
N5106. The differential cross sections, evaluated from E
~26! for the spin orientations (s51,s851) and for (s5
2,s852), are identical and the same holds for the cro
sections with spin flip (s51,s852) and (s52,s851). In
panel~a! we present the data fords (1,1) or, equivalently, for
ds (2,2) for electron incidence in the forward direction atu
50°,w50° and, similarly, the same is shown in panel~c!
for ds (1,2) or ds (2,1). If we compare the data in these tw
panels, we recognize that spin flip leads to cross sections
are by about one order of magnitude smaller than the data
no flip and we also see differences in the angular behav
except that the wide angular windows in which the cro
sections vanish and some other structures of the spectra
similar. An analogous comparison is made between
cross-section data for electron incidence atu550°,w50° in
the panels~b! for no spin flip and~d! for flip. Here too the
cross sections for spin flip are smaller than those for no
and the angular windows are at the same positions in~b! and
~d! but the detailed structure of the spectra is different.
may therefore conclude that the probabilities of changing
spin orientation during scattering are, in general, very mu
smaller than for no change of the spin orientation, at least
the highly relativistic electron energies and laser intensi
considered.

le

FIG. 6. In panels~a! and~c! are shown the cross-section data
Mott scattering for no spin flip and for spin flip, respectively, f
electron incidence atu50°,w50° and, correspondingly, the analo
gous data are found in~b! and~d! for u550°,w50°. The data with
spin flip are appreciably smaller than those without flip. Otherwi
the data in~a! and ~c! and correspondingly in~b! and ~d! show
certain similarities as regards cross-sectional angular windows
peak structures.
8-7
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IV. SUMMARY AND CONCLUSIONS

In the present work we have investigated the poten
scattering of relativistic electrons in a very powerful, linea
polarized laser field. The scattering process was describe
these energies by the first-order Born approximation and,
comparison, we represented the electron, embedded in
electromagnetic plane-wave field, either as a particle of s
0, using the Gordon solution@29#, or as a particle of spin 1/2
employing the Volkov solution@28#. In both cases the rela
tivistic energy-conservation relation in the laser field is t
same but it now depends on the initial and final elect
momenta and on the laser power. As our numerical anal
has shown, the spin effects on the differerential cross s
tions dsN /dV8 with the emission or absorption ofN laser
photons are, in general, marginal in the present proces
particular, for scattering in the close to forward directio
Small spin effects by spin flip can be observed at large s
tering angles where, however, the cross sections are
small. Even in this case, the data with spin flip are by ord
of magnitude smaller than those with no flip. In this latt
case the cross sections for a Dirac particle are almost id
tical with those for a Klein-Gordon particle over the who
z.

-

ys

.
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range of scattering angles. Of particular interest, as in
previous investigations of this scattering problem at low
laser-field intensities, is a scattering configuration in wh
the electrons impinge on the target in the direction of
laser polarizatione and the scattering plane is determined
the direction of propagationn of the laser field and its polar
ization e. We expect on the basis of the results of our inve
tigation for laser powers~measured by the ponderomotiv
energy! and for electron energies in the MeV range, bei
equivalent to energies of the electron’s rest mass, that sim
conclusions can also be drawn for other fundamental sca
ing processes, namely, that spin effects are, in general, m
ginal for laser-induced or laser-assisted processes eve
very high laser powers. Such investigations we intend to p
form in our forthcoming work.
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