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Relativistic electron-atom scattering in an extremely powerful laser field: Relevance of spin effects
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We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in
an extremely powerful electromagnetic plane wave of frequem@nd linear polarizatiors. Since to a first
order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon
solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin
effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the
first-order Born approximation can be employed to represent the corresponding scattering matrix element. We
compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from
both approximations, for various parameter values and angular configurations and we find that in most cases
the spin effects are marginal, even at very high laser power. On the other hand, we recover the various
asymmetries in the angular distributions of the scattered electrons and their respective energies due to the
laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming
the findings of our previous workPhys. Rev. A59, 2105(1999; Laser Physic40, 163(2000].
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I. INTRODUCTION order of magnitude mentioned above. For somewhat lower
field intensities, it was found in the above work that spin
Soon after the invention of the laser, two basic quanturreffects are negligible and instead of using the Volkov solu-
processes were thoroughly investigated with emphasis on then of the Dirac equatiorj28] for describing an electron
laser-induced nonlinearities. The first of them was laserembedded in the laser field, one may safely use the corre-
induced Compton scattering and the second was lasegponding Gordon solutiof29] of the Klein-Gordon equa-
modified electron-atom scattering. A nice discussion of theion. To simplify their calculations, Szymanowsd al. [12]
early work on the first of these processes can be found in theonsidered electron scattering in a powerful circularly polar-
review by Eberly{1]. The original work on free-free transi- ized laser field. The scattering process in this configuration
tions in a powerful laser field is clearly summarized in theis, however, not so effective and rich in details as in the case
overview by Bunkinet al. [2]. More elaborate introductions of linear polarization, as we were able to show in our earlier
into this field of research can be found in the books bysemirelativistic and relativistic work on this problem, ne-
Mittleman [3] and by Faisa[4] and summaries of more re- glecting in a first-order approximation the effects of the elec-
cent work are presented in several revigws9]. With the  tron spin[30-32. Apparently, for linearly polarized laser
advent of very powerful laser sources, yielding intensities oflight the oscillating electron will encounter more often the
10" Wem 2 and above, it has become important to con-target atom during the scattering process and therefore the
sider laser-modified and laser-induced processes relativistiaser-modified collision process will, in the relativistic case,
cally [10,11. Hence, Mott scattering in a powerful, circu- be much more effective and richer in its angular and polar-
larly polarized radiation field was reconsidered very recentlyization dependences than for circular laser polarization, as
by Szymanowsket al. [12] with reference to much earlier we discussed in our earlier wofR1]. It is the purpose of the
investigations of this processl3—-29. By evaluating the present work to reanalyze all these effects in more detail, in
nonlinear cross sections numerically, large relativistic correcparticular, for a very powerful, linearly polarized laser field,
tions were found by these authors, if their data are comparednd to compare the results of relativistic calculations for
with the results of the Bunkin-Fedor¢26] or Kroll-Watson  Bose and Dirac particles to find out the relevance of spin
[27] formulas. On the other hand, this work appears to haveffects at very high laser-field strength, and to investigate
shown that electron-spin effects become relevant only if thevhether effects can be encountered that are strong enough to
laser intensity is such that the critical parameter be accessible to observation in the relativistic regime.
=|e|Fo/mwc comes close to unity. In this parametss the During the investigation of laser-induced Compton scat-
electric chargel is the electric-field strengtim is the elec-  tering[1], a laser-induced electron drift motion and, conse-
tron mass,w is the laser frequency, antlis the speed of quently, an intensity-dependent frequency shift of the Comp-
light. For a Nd:YAG Yttrium aluminum garnet laser the ton light was predicted. This shift is proportional & and
value of u=1 corresponds to a laser-field intensity of the was very small for the available laser intensities in the early
days of laser research. One of the present authors was there-
fore looking for a process that would more easily permit to
*Email address: Fritz.Ehlotzky@uibk.ac.at observe the effect of the laser-induced drift motion of the
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] - derived for the observed electron kinetic energies in the di-
B ! 05 A rection (+) and (=), respectively, namely,
| g N 2
u kin .
ZZ 2E,. = ﬁsm 0, 2
0 FEea Ti 0.1 /
oA TR e o e e where AE,=E\,)—E\,) is evaluated fromE,=Ep,

—(u?14)(p’ —p) -n+New with N being the number of emit-
ted or absorbed laser photons. The above asymmetry rela-
B o tion, Eq.(2), for the observed electron energies is more rea-
sonably well fulfilled in exact relativistic calculations.
08 08 In order to show that spin effects in the present process
should be rather marginal, we shall perform the following
quasiclassical consideration. We start from the Dirac equa-
04/ T EEEETTRT 04 ST —r— tion, in its quz_idratlc form, for a part|_cle in an electromag-

0 o netic field, which can be found in Schiff’s book on quantum

~mechanics[34] (using throughout this paper units=c
FIG. 1. The upper left panel shows a contour plot of the final _ 1)

kinetic electron energiegy;,, measured in units of the electron’s
rest-energym, as a function o and#’ and in the paneléA), (B),
and(C) these energies are presented for the cuts A, B, and C indi-
cated in the contour plot. The initial kinetic energy is;E
=0.5 m, the laser intensity =1.28<10® Wcm 2 (u=1), the In WhichA and ¢ are the electromagnetic potentials whide
laser frequencyn=1.17 eV, and the number of absorbed photonsand B are the electric- and magnetic-field strengths, respec-
N=10°. tively. o' and a are Dirac’s spin matrices. Considering an
electromagnetic, linearly polarized plane wave of frequency
electron. Considering in a semirelativistic approximation,®, unit vector of polarizatiore=e,, and direction of propa-
potential scattering of electrons in a laser field, he found irgationn=eg, in the Coulomb gauged = Aqe,cosw(t—x) and
the low-frequency limit the following asymmetry in the total ¢=0, we can infer from Eq(3) a semiclassical expression

EKin
Ekm

[(E—ed)’—m?]y=[(p—eA)>—eo'B+ieaE]y, (3)

laser-assisted differential scattering cross sectj88 for the final kinetic energyEy;,=E’—m of an electron
placed into this field with initial momenturp along they

do)—do(*)  p? axis. SinceE points along they axis, B will point into the z

siné. (1)  direction. Therefore the magnetic term in E§) can be re-

do)+do(t) 28 placed by —eAywo,sinw(t—X) and the electric term by

5. ) o ) ieAgwaysinw(t—x). For o, we can take in our quasiclassi-
w* is related to the electron drift velocity in the laser field by -5 calculation the two values 1. while a, couples in a

i — 2 — i i . ’ ) .
the relationv 4= w“c and B=v/c whereu is the velocity of  54rix element the two large components of a Dirac spinor

the scattered electrorl denotes the scattering angle. The it the two small components and therefore we have to take
scattering configuration considered, leading to the abOV%ip/(E+m) where the initial energy isE=E;,+m.

asymmetry relation, was depicted in Fig. 1[80] in which  Therefore we obtain from Ed3)
the scattering plane is determined by the veetaf linear
polarization of the laser beam and by the directioof its

: e . Exi E,i
propagation. The momentum of the ingoing electrons is g/ | 1+ ﬂ) =Ekm(1+ k'”)
oriented parallel tae and the momenturp’ of the outgoing 2m 2m

ing an anglerr/2+ 0 with the directionn, or in the direction

electrons can be either in the direction denoted by,(hav-
-2 \/ 2Eyin
(+) with an anglew/2— 6 with respect ton. Even though

1+% U,cosw(t—X)
2m) P

the laser-induced effect is here proportionalutt/ 8 and not +U_[14¢0s 20(t—X)]

like the Compton-drift effect proportional ta?, at the time P

of writing the above paper, laser powers and tiufswere _ Y, Exin .

still much too low and therefore the process remained of Vet \/EkinTm sinw(t—x).

little interest. Nowadays the experimental situation has dras-

tically changed and the electron’s drift motion in a powerful 4
laser field has been verified experimentdll] and thus the

above effect appeared to be accessible to experimental vefffom this expression we obtain the maximum electron ki-
fication. But we were able to show in our preceding investi-netic energyEie* in the laser field with maximum spin con-
gations[30-37 that actually such asymmetries are muchtribution, if we choose the radiation phase to &€t—x)
more complicated and that in the same semirelativistic ap=/4 or 3w/4 in which case sim(t—x)==*1/y2 and
proximation a similar asymmetry relation, as Ef), can be  cos Zo(t—x)=0. With this choice we find
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suming adiabatic decoupling of the particle from the field at
P t— —o, the Gordon solution, normalized to the volurde
has then the forni35]
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masf 1 Exin e Exin
kin 2m kin 2m
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whereE,;, is the initial kinetic energy of the electron enter-
ing the radiation fieldU ,= mu?/4 is the ponderomotive en-
ergy of the electron in the laser field with being the inten-
sity parameter defined above. The form{#a immediately _ _ m2u2/4
tells us that for laser-field intensities in the relativistic re- E=E+d,p=p+dn,d=
gime, i.e., foru=1 and thusU,=m/4, the ratio between

laser-induced spin effects and laser-induced dynamical ef- ) 2 2
fects will be 20/m=10° for a Nd:YAG laser with w a= m(x/op E,b: m /8w,M2:(eAO/m)2, €))
=1.17 eV. Consequently, on the basis of these quasiclassi- E=p-n E=p-n

cal considerations, the spin effects in the potential scatterinq . — —

of electrons in a very powerful laser field should be mar- he renormallzed_ene_rgi @d momentunp fulfill the con-
ginal. Itis also interesting to remark that according to @y. ~ Servation relatiorE*=m?+ p®, which corresponds to an on-
the contributions of the laser-induced spin effects and of thehell particle of effective massi=m(1+ x2/2)*?[36]. The
laser-induced dynamical effects are out of phaserf®¥ in  characteristic intensity parameter, introduced in the Introduc-
their influence on the total final energy of the electron in thetion, is given byu?=1/1., wherel is the average intensity of
field. Moreover, we recognize that for relativistic initial elec- the laser radiation antl,= aw?/87r3 (a=e€?ry,=€?/m) is

tron kinetic energiesk,;,=m, the electric spin term in Eq. the critical laser intensity at which?=1 in which case the

(3) will contribute in the square brackets of the last term ofproblem has to be treated relativistically. Similarly, we can
Eq. (5) a factor 1/3, showing that also in the relativistic find the wave functiony?, , which describes the scattered
case the magnetic-spin term yields the dominant contribugectron of energyE’ and momentunp’ with the corre-
tion. On the other hand, for lower laser intensities we usuallysnonding coefficienta’,b’, andd’ like in Eq. (8). Then we
have U,<Ei, and u<1 so that in this case the relevant gptain from the first-order Born approximation, using for the
ratio is w u/2E,j,<1 and therefore also in the nonrelativistic scattering potentiaU(r) a screened Coulomb potential of
regime spin effects are negligible. Our numerical results, prechargee Z and screening length, in a straightforward man-
sented below, will confirm the findings of these heuristicner the differential cross sections of the laser-induced non-

1+ +U

, (5 iﬂp:(ZEV)_l/zeXr{—i(Et—E rlexdiasinor
—bsin2w7], (7)

where in this expression the following abbreviations have
been introduced:

E-p-n’

considerations. linear bremsstrahlung processes,
Il. RELATIVISTIC CROSS-SECTION FORMULAS (e?2)%(E{+E)2dQ" py ©
ONT T — — — N+
A. Scattering of a Klein-Gordon particle [(p"—p— Nk)z"‘/ 2]2 PPy

In our earlier word 3032 the laser-dressed electron was where scattering takes place into the solid antfl¢ and the
described by the Gordon soluti¢@9] of the Klein-Gordon  energy conservation relation reads for these processes
equation and the scattering process was described in the first-

order Born approximation using as target a screened Cou- E{=E+No py=(EZ-m)2 (10)
lomb potential. Since in the following investigation we shall

consider electron scattering in the relativistic region of theThe factorFy that appears in the denominator of the cross-
laser-field intensity and of the electron kinetic energy, thesection formula9) has the form

first-order Born approximation should be sufficiently accu-

rate and we can take over the main results from our work dy ENpy-N
quoted before. We derived the exact solution of the Klein- Fn=1- E'—pl.onl— ’2 (11)
Gordon equation for a particle of massand charge placed N Pn PN

into an electromagnetic plane-wave field, described by thg;qreover. the matrix elementd , are found to be
vector potentialA(7) in the Coulomb gauge, where=t ’

—n-x andn is the direction of propagation of the field. In

case the powerful laser field is approximately described by a My=By(X,y) - ———=
monochromatic plane wave of amplitudg=Fq/w, linear 2(E'+E)
polarizatione, frequencyw, and wave vectok=kn, the (b’ +b)

vector potential reads + ?[BNH(X:)’) +Bn_2(X,¥)]. (12
'+

w(a'+a)
———=[Bn+1(X,Y) +Bn-1(XY)]

A(7)=ApeCcoSwT (6)
In this expression we have introduced the following general-
and for a particle of initial energf and momentunp, as- ized Bessel functions:
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+oo where A(¢) is the four-vector of the vector potential Eq.
Bn(X,y) = E Inean(X) I (Y) (13 (17). Then, after normalization to the volunw the required

Volkov solution for an electron of initial four-momentum
reads

in which Jy_»\(x) and J,(y) represent ordinary Bessel

functions of the first kind. The coefficienisandy in these m [ ey“A,(k-x) vk, _

functions are defined by Yo =\yE [1— oK. ex;{—lp-x

p p

— Al _ , :b_b,, 14 X . 272
x=a'—a, vy (14) —ifk (eA(d)) p eA(d) 20

p-k - 2p-k >d¢ Up

wherea andb and similarlya’” andb’ are given by Eqs(8). °

From the energy-conservation relation, E40), it becomes For considering Mott scattering in a powerful laser field

clear that all primed quantities depend on the order of NoNiy, the first-order Born approximation we have to evaluate the
linearity N. In the case of low laser intensities, i.2?<1,  T.matrix element

and small kinetic energies, i.e.E(-m)/m<1, the expres-

sion in Eq. (9) reduces to the nonrelativistic formula of i —
Bunkin and Fedoroy26] Tfi:_'f dXifp (X) YU L(X) (21)
(2r92)’m*dQ’ py _, where scattering takes place for an electron of initial four-
doN =—F——5 —J(uQu-€/w), (15  momentump to a final momentunp’. In Eq. (21) we de-
(Q +/79° P scribe the ingoing and outgoing electron by Volkov waves of

the form(20) and we decompose this matrix element into its
in which Qu=p—py. The corresponding nonrelativistic Fourier components in space and time, using the definition of
energy-conservation relation reads;,=E,;,+*Nw. To the generalized Bessel functiof¢3). Then we find by
these formulas we shall refer later on in our discussion of thetraightforward calculation
numerical data obtained from the relativistic theories.

B. Scattering of a Dirac particle Thi=-1 VVE'E % f dtexdi(E'—E-Nw)t]
The evaluation of the nonlinear cross sections for the po- o
tential scattering of a Dirac electron of spin 1/2, embedded in X f dru(r)exd —i(p’—p—Nwn)-r]My, (22

a powerful electromagnetic plane-wave field, can proceed in
a very similar manner as was done for a Klein-Gordon pary,,
ticle in the foregoing section. We start from the Dirac equa-
tion in an arbitrary plane-wave field,

whereU(r) is a screened Coulomb potential of chakrgg
and screening lengti” and the nonlinear matrix elements
My are given by
(iy*d,—ey*A,—m)y(x)=0, (16)

— ehA _
M =By, Y°u,+ ———(By+1+ By 1)Uy y*e ky,vu
where the vector potenti#l,, has the general form NTENTpr Y T 4k-p’( veat Byt kv

= . . = . = e%
Au=Aulkex), A-k=k-k=0 (17 " kp T (Bns1tBy- 1)Up YO y* e, Ky, Up
and we use the Einstein summation convention and notation, 9 n2
namely,v*w,=v -w, whereu=0,1,2,3. The solution of the _ e°Ag B+ E(B +By_,)
above Dirac equatiofil6) in a plane-wave field was derived 8(k-p')(k-p)l " 2 NrEI N2
by Volkov [28] and its explicit form can be found in the o
paper by Denisov and Fedor¥3], XUy y* e, K"y, Y0y €Ky, Uy, (23
Y(x)=[1+ ky*k,¥"A,(k-X)] in which we assumed the plane-wave field to be monochro-

matic and linearly polarized so that in the Coulomb gauge,

(18) A, has the explicit form

k-x
xex;{—ip‘x—i S(¢)de|u
0
A*(k-x)=Ape*cogk-x), €*=(0,e),
whereu, is a free-particle solution ofy“p,—m)u,=0 with 2

_ 2_
p, being a four-vector. The constamt and the function e=-1 =1
S(¢) can be evaluated and we find

(24)

Under these conditions, in the matrix element of &) the

i argumentsx andy, defined in Eq.(14) of the generalized

S(¢)= eA($)-p L C A(¢) — = (199  Besselfunctions, are the same as those in&dor a Klein-
p-k 2p-k ’ 2p-k’ Gordon particle. Since the Fourier transfotd{q) of the
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screened Coulomb potential in E@2) can be easily calcu- the screening lengtir” of the scattering potential tg'=1
lated, we are able to evaluate from H@2) the transition  a.u. and take for the nuclear charge=1. As frequency of

probability per unit time to read the radiation field we shall choose=1.17 eV of a
) ) Nd:YAG laser. We investigate the angular and intensity de-
Wo = lim T+l :2 2mm pendence of the energy-conservation relatit® and of the
fi Tow T N V2E'E differential cross sectiondoy /d(}’, given by Eqs(9), (26),
and (27) for selected values of the laser-field intensity
X|U(p’ —p—Nwn)My|28(E' —E—Now), initial kinetic electron energ¥,;,, and order of nonlinearity
25 N. As it turns out, it is of particular interest to consider high-

energy electrons in the MeV range and, similarly, to choose
where for the laser-dressed electron momenta and energidiation powers for which the ponderomotive enetgy
the same notation is used as in H&) of the preceding =mu-/4 is of the order of magnitude of the electron rest

section. From the transition probabilities, E5), we can  €nergym. . . .
finally evaluate the differential cross sections of the nonlin- Ve start with analyzing the energy-conservation relation

ear scattering processes of the orbleMe find (10) for the large valueN=10° of absorbed photons at a
laser power of the magnitude=1.28x10'® Wcm™? for
do®S)  pl a(mzZa)? M |2 which the parameter, defined in Eq(8), has the valug.
oNT’ _PnAMZa)T My ———. (26) =1 and we take for the initial kinetic electron energy, before
do’ P Fn  [(p'—p—Nk)*+/7?] entering the laser beamE,,,=0.5m. The energy-

conservation relation Eq.10), written down for quantities

In this equation, the indicesands’ label the spin polariza-  onsidered outside the laser beam, can be presented in the
tions of the incoming and outgoing electrons and have they

possible values- or —. These indicest, have the meaning

that the spin polarization of an electron in its rest frame has 1 1
the values*1/2 with respect to the axis. For an unpolar- E'=E— —m?u?
ized beam of electrons, we should average over the initial 4

and sum over the final spin polarizations, viz.,

- +Now, (28
E’—p’-n E—p.n ® ( )

whereE’ =m+ Ey;,, andE=m+E,;, are the relativistic en-

doy 1 dg&s,s’) ergies_ of the scattered and ingoing eleqtron,_ respecti_vely. By
=3 - (27 choosing the laser beam to propagate inttdérection, i.e.,
dQ ss'== dQ nle,, we define the angleg and ¢’ by the relationsp-n

=cosf andp’-n=cos#', respectively. In Fig. 1 we present
the corresponding dependence of the final kinetic energy
E'L‘” on the scattering geometry. In the upper left frame we
Show for the above parameter data a contour plot of the
energy distributiorEy;,, in the (¢’, 6) plane and, for getting a
better idea, we present in the frames, denoteg@apand (b),

the energy values along two cuts through this plot for fixed
#’, namely, in(a) for #” =20° and in(b) for " =150°, while

in (c) the cut is made at the fixed val#e=20°. These plots

The energy-conservation relation, which follows from Eg.
(25), is the same as in Eq10) for scattering of a Klein-
Gordon particle and the same is true for the generalize
Bessel functrion8y and their arguments, defined in Egs.
(13) and (14). Similarly, we obtain in evaluating the phase
space the same functidfy defined in Eq(11). The evalua-
tion of the matrix elements, appearing in the E23) and
containing Dirac spinors angt matrices, is performed nu-
merically and therefore their explicit result will not be writ- : L
ten down here. In the following section we shall present aShOW ve[y clearly the strong depende_nc_e of the final kinetic
comparison of the cross sections calculated for scattering G"€r9YExin 0N the angles of electron incidence and of scat-
a spin-0 or a spin-(1/2) particle in a very powerful laser fielgt€ring. The ?nerg|es in these plots are presented in units of
and we shall see that spin effects are maginal even at vef§® €lectron’s rest energy. As can be clearly seen in plot
high laser powers and/or electron energies, as anticipated §) the final energyEy;, has its smallest values where the
our heuristic analysis in Sec. I. On the other hand there ar@utgoing electron moves in the direction of propagatioof
some interesting phenomena observable at very powerful Idhe laser beam. On the other hand, the largest kinetic energy

ser fields that we shall discuss in more detail below. gain is observed when the incoming electron moves parallel
to the propagation direction.

In Figs. 2 and 3 we analyze the dependence of the differ-
ential cross sections, either evaluated from ER). for a

The following numerical analysis of the differential cross Klein-Gordon particle or from Eq426) and(27) for a Dirac
sections(9), (26), and(27) for a linearly polarized electro- particle. For presenting our data, we chose in both Figures,
magnetic plane wave, leading to the generalized Bessel funthe laser beam to propagate along thexis and its unit
tions (13), was made possible by the work of Leubhd7]  vector of linear polarizationg, to define thez direction,
who has shown in his investigations how to efficiently evalu-which also determines our polar axis whereas the azimuthal
ate these functions by using generalized saddle-point metlangle ¢ is measured with respect to theaxis in the &,y)
ods. His program developed for that purpose was moderrplane. Our results are shown for fixed polar angles of elec-
ized and adapted by us for our present problem. We shall fitron incidence ¢, ¢) and of scatteringq’,¢’) as a function

IIl. NUMERICAL EXAMPLES AND DISCUSSION
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FIG. 4. Presents for the same scattering configuration and pa-
FIG. 2. Panela) presents the differential cross sections for the rameter values as in Fig. 2 and for elastic scattering, With0, in

parameter$ =10 Wcm 2 and Ey;,=2m as a function oNs0 the left panel the differential cross sections of Mott scatte(suiid

for ' =1°,0'=0° and electron incidence aloregg The cross sec- line) and Klein-Gordon scatterin@lashed lingas a function of’.

tions are large foN>0 and the cutoff is neaN,=22 352. Panel In the right panel is shown the normalized differente of these

(b) demonstrates the deviation of the relativistic energy-Cross sections. Apparently, spin effects are visible only at large scat-

conservation law from the nonrelativistic one. tering angles.

) trum shown in panefa) of Fig. 2. In the left panela) we see
of the numberN of absorbed or emitted laser photoss 5 |arger scale, a section of the rising part of the spectrum

Both relativistic cross-section formulas yield, in general, thefor N>0 presented in pané) of Fig. 2, and we recognize
same results. We shall discuss deviations between the d t this spectrum is actually not s-m(’)oth but shows rapid

for a particle of spin 0 and spin 1/2 further below. As it tumsquasiperiodic oscillations. Similarly, we see in paftl the

out, the cross sections are particularly large for small scatterr—apid oscillations of the data near the cutoff of the spectrum

ing angles. Ther_efore the angles of electron incidence Wiﬂ%hown in panel@) of Fig. 2. Summarizing, our results in
respect to the axis are chosen a=0° ande=0° and we  Fig5 5 and 3 show that the cross-section data perform rapid
consider scattering at a very small angle with=1° and  ,gijjations as a function of the nonlinear orderSuch rapid
¢'=0°. The laser frequency will ge the same as before changes with an almost periodic sequence of maxima and
but for the intensity we choske= 10* Wem 2 and forthe  minima can be qualitatively well explained by analyzing the
initial kinetic electron energy we took,j,=2 m. In Fig. 2 yroperties of the generalized Bessel functi@sdefined in
we present the evaluated differential cross sections as afungqs_(lg)) and (14). This analysis, however, cannot be done
tion of N in _panel(a), wh!ch shows that these cross SeCt'O”SanaIyticaIIy due to the complicated dependence of both argu-
(presented in atomic units, denoted by pare considerably ents in Eq(14), via Eq.(8), on the numbeN of emitted or
larger for photon absorption than for photon emission. A reazpsorhed photons, but requires a numerical evaluation. This
sonable estimate for the cutoff valdti of the electron spec-  regylt is very much different than the findings in nonrelativ-
trum can be found from the approximate formuMy=  jstic potential scattering in a laser field, since in the low-
+[x|=2[y|, wherex andy are the two arguments of the frequency limit the argument of the Bessel functiahgin
generalized Bessel functions, Ed@.3). In our present case, Eq. (15) becomes independent bE
the numerical calculations for the data shown in pa(@g! As we have indicated before, in the relativistic regime of
yield the cutoff atNy=22 352. For this case, the argumexts gjectron kinetic energiek,;,, being of the same order of
andy are found to bex=—23238 andy=126 so thaix|  magnitude as the electron rest energythe scattering for-
—2|y|=22986, which is in reasonable agreement with themylas for a Klein-Gordon particle and a Dirac particle yield
value ofN given before. In pangb) we show the deviation  gjmost the same cross-section values, in particular, for close
of the relativistic energy-conservation law, E88), from the  to forward scattering where the cross-section data are largest.
nonrelativistic energy relatiof;, = Eyi,+ Nw. This devia-  On the other hand, the expressi@ and Eqgs(26) and(27)
tion represents an intensity-dependent energy excess. In Figield significantly different values for the cross sections in
3 we present on an enlarged scale certain parts of the spegre backward direction where, however, the cross-section
values are particularly small. In order to show this, we

" x107 L x10° present in panela) of Fig. 4 a comparison of the Klein-
—~q @ sl () Gordon and Mott scattering data for the same scattering ge-
= s ometry as before, i.e., with electrons impinging on the target
a4 8 2 along thez axis (f=¢=0°) and scattered by an ang
&3 g' >0° for ¢’ =0° or scattered by an angle’<0° for ¢’

52 5 ! =180°. The ingoing kinetic energy of the electronfg;,
A =05 =1 MeV=2m and we consider the elastic case witk-0.
0

2800 3000 3200 3400 216 2.18 2.2 2.02 2.24 As we recognize, the cross-section datlashed line for
x10* Klein-Gordon particles and solid line for Dirac particlese
almost identical except for backward scattering. This can be
FIG. 3. On an enlarged scale, the behavior of the cross-sectiogeen even more clearly in pan@) of Fig. 4 where we
data of Fig. 2 in(a) in the vicinity of their maximum values and in present the normalized differender of these cross-section
(b) near the cutoff alN,. data defined by

N N
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FIG. 5. Shows on a larger scale fr=0 in panel(a) the spin- FIG. 6. In panelga) and(c) are shown the cross-section data of

averaged cross sections of Mott scattering and in pamehe cor- ot scattering for no spin flip and for spin flip, respectively, for
responding data for scattering of a spin-0 particle. In pébee  glectron incidence a8=0°,¢=0° and, correspondingly, the analo-
see the normalized differencésr of the data in(a) and(c). These gous data are found ifip) and(d) for #=50°,¢=0°. The data with
differences are appreciable for large scattering angles but negligiblgyin flip are appreciably smaller than those without flip. Otherwise,
for 9’=0°. In(d) we see thaE,;, can change significantly for large the data in(a) and (c) and correspondingly irfb) and (d) show
6. certain similarities as regards cross-sectional angular windows and
peak structures.

mﬂ_ % Klein-Gordon particle will be significant only at large scat-
AUEM tering angles where we shall simultaneously find a dip in the

dop dogkg final electron energ¥y;,, -

a0 " do Finally, we investigate in some detail the dependence of

the nonlinear cross sections for a Dirac particle on the spin
orientation and spin flip. For the data presented in Fig. 6, we

which can have the valuessQAo<1. As this panel shows, chose the same scattering geometry and parameter values as
for [¢’|=0° the deviations between the cross-section datdefore and consider the absorption of a very large number of
for Dirac and Klein-Gordon particles are very small and onlyphotons from the laser beam during the scattering, namely,
gradually increase fof#’| approaching backscattering at N=10°. The differential cross sections, evaluated from Eq.
180°. (26) for the spin orientationss= +,s'=+) and for (5=

In Fig. 5 we show a somewnhat different presentation of— s’=—) are identical and the same holds for the cross
the data evaluated for the previous figure. The scattering gesections with spin flip§=+,s'=—) and (= —,s'=+). In
ometry and the parameter values are the same as in Fig. 4. Banel(a) we present the data folo{**) or, equivalently, for
panel(a) and panelc) we show, respectively, the differeren- q(~=) for electron incidence in the forward direction @t
tial cross sections evaluated for Mott scattering from Eq.zoo,(p:oo and, similarly, the same is shown in parel
(27), summed and averaged over the spin orientations, an@, do(* =) ordo(— ). If we compare the data in these two
for scattering of a Klein-Gordon particle calculated from Eq.panels, we recognize that spin flip leads to cross sections that
(9). Almost no difference can be recognized between thesgre by about one order of magnitude smaller than the data for
two spectra. In panéb) we show once mordo and we can  ng flip and we also see differences in the angular behavior,
only recognize a discrepancy between the data for a spinexcept that the wide angular windows in which the cross
(1/2) and spin-0 particle at large scattering angles At sections vanish and some other structures of the spectra are
these large angleg’ we also find that the final electron simijlar. An analogous comparison is made between the
kinetic energyE,;, has a considerable intensity and angular-cross-section data for electron incidenc&at50°,0=0° in
dependent dip with a minimum value neéf=90°. This the panelgb) for no spin flip and(d) for flip. Here too the
originates in the relativistic energy-conservation relationcross sections for spin flip are smaller than those for no flip
(28), as it implicitly shows this dependence érandl since  and the angular windows are at the same positiorib)iand
the ponderomotive energy,~1. (d) but the detailed structure of the spectra is different. We

The properties of the differential cross sections, presenteghay therefore conclude that the probabilities of changing the
in the Figs. 4 and 5, can be found, in general, for values ogpin orientation during scattering are, in general, very much
N+#0 and for relativistic electron energies and laser intensismaller than for no change of the spin orientation, at least for
ties whereE,;, and U, are in the MeV energy range. The the highly relativistic electron energies and laser intensities
differences between the cross sections for a Dirac and eonsidered.

: (29
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V. SUMMARY AND CONCLUSIONS range of scattering angles. Of particular interest, as in our
revious investigations of this scattering problem at lower
aser-field intensities, is a scattering configuration in which

the electrons impinge on the target in the direction of the

scattering of relativistic electrons in a very powerful, linearly
polarized laser field. The scattering process was described ?aser polarizatiors and the scattering plane is determined by

these energies by the first-order Born approximation and, fo he direction of propagation of the laser field and its polar-
comparison, we represented the electron, embedded in the bropag P

electromagnetic plane-wave field, either as a particle of spi@fa;;?gne}gyelaes);eecé\?vgr?geb:;ﬁe%f tt?e tﬁ:”'?ﬂg‘;ﬁg&g}/fj
0, using the Gordon solutidr29], or as a particle of spin 1/2, 9 P y P

employing the Volkov solutiori28]. In both cases the rela- energy and for electron energies in the MeV range, being

tivistic energy-conservation relation in the laser field is theequalent to energies of the electron's rest mass, that similar

. o . conclusions can also be drawn for other fundamental scatter-
same but it now depends on the initial and final electron . X
Ing processes, namely, that spin effects are, in general, mar-

momenta and on the laser power. As our numerical analysis. ; .
nal for laser-induced or laser-assisted processes even at

has shown, the spin effects on the differerential cross Se%:er high laser powers. Such investigations we intend to per-
tions doy /dQ)’ with the emission or absorption & laser yhg P ' 9 P

. o form in our forthcoming work.
photons are, in general, marginal in the present process, in

particular, for scattering in the close to forward direction.
Small spin effects by spin flip can be observed at large scat-
tering angles where, however, the cross sections are very This work was supported by the Scientific-Technical Col-
small. Even in this case, the data with spin flip are by ordergaboration Agreement between Austria and Poland for
of magnitude smaller than those with no flip. In this latter2000-01 under Project No. 2/2000. One of the auttiBrB)
case the cross sections for a Dirac particle are almost ideracknowledges the partial support by the Polish Committee
tical with those for a Klein-Gordon particle over the whole for Scientific ResearchGrant No. KBN 2 P03B 039 19

In the present work we have investigated the potentia
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