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Nonadiabatic transition probabilities in the presence of strong dissipation
at an avoided-level crossing point
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Dissipative effects on the nonadiabatic transition for the two- and three-level systems are studied. When the
system is affected by a strong dissipation through the diabatic states, the exact transition probability is enu-
merated making use of the effective master equation. In the two-level system, we consider the case where the
external field is swept from not only a negative large value but also from the resonant field, and the exact
transition probabilities in these cases are derived. The transition probabilities are derived for the three-level
system where the three diabatic states form only one avoided-level crossing point. These probabilities are
compared with that in the pure quantum case obtained by Carroll and Hioe.

DOI: 10.1103/PhysRevA.65.033407 PACS nuntder32.60:+i, 42.50.Lc

[. INTRODUCTION in the limiting case of strong damping dissipation by the
perturbative approadi28]. The effective transition probabil-

Nonadiabatic transition at an avoided-level crossing poinity becomes 1/2 in the adiabatic limit due to the dissipation
plays a crucial role in quantum dynamical changes of stategffect, whereas it converges to the asymptotic expression of
and yields a variety of phenomena in physics and chemistnthe LZ probability in the fast-sweeping limit. Ao and Ram-
The well-known Landau and Zen€érZ) transition probabil- mer carried out first-principles calculations to investigate the
ity clarifies the roles of the energy gap and the sweepingemperature dependence of the transition probability of the
velocity of the external field in the nonadiabatic transition oftwo-level system with the phonon reservoir, which corre-
the two-level systeril—4]. Although the LZ transition prob- sponds to Kayanuma’s situation in the high-temperature limit
ability is given in the two-level system, it is approximately in case of the Ohmic spectral density. Especially, they found
applicable to multilevel systems where the avoided-levesome compensation effect that the transition probability for
crossings are effectively well described by only localizedzero temperature takes the same value as the Landau-Zener
two levels. Hence it is adopted in the analyses of many exprobability [29].
periments that treat time-dependent phenomena, such as col- In this paper, we study such thermal-noise effect in not
lision of particles[5,6], optics[7,8], and magnetic phenom- only the two-level system but also in the three-level system.
ena [9-13. For general multilevel systems where many Thereby we try to investigate the effect of multilevels with
levels can simultaneously affect each other, different formuthermal noise. We exploit the method to analyze strong dis-
las of transition probabilities are derived for several modelssipation effect using an effective master equation instead of
i.e., the one where only one level interacts with a band othe perturbation approach adopted in previous studies
levels[14—16, the generalized model for this modél7,18, [23,28,29. We show that the effective master-equation ap-
and the bow-tie model where many levels form only oneproach is very convenient for deriving the transition prob-
avoided-level crossing19,2(0. We should also note Brun- ability in the strong-damping limit. Using this approach we
dobler and Elser’s hypothesis, which states that the survivdirst reproduce Kayanuma’s formula in the two-level system
probability of the diabatic state with maximum or minimum when the external field is reversed from a large negative
slope is described by the exponential form determined byalue to a large positive value. We next consider the situation
only the velocity and the off-diagonal elements in the Hamil-where the field is swept from the resonant figtdro field to
tonian[21]. a large positive field, and derive exact transition probability.

On the other hand, we must also consider the effect oAs a result the exact relations between these cases are found.
dissipation, since real experiments are always exposed fbhe three-level model we consider is the same model as
thermal environment. The thermal environment causes decd@arroll and Hioe considergd 9]. In this model, three diaba-
herence, and the inevitable deviation of transition probabilitytic states form only one avoided-level crossing point. There-
from the one of pure quantum cases occurs. This modificafore the transition mechanism is quite different from the LZ
tion becomes significant in real experiments such as the adianechanism, which describes transitions between local two
batic rapid passage with phonon couplif@g], the nonadia- levels. Therefore we see the effect of the multilevel not only
batic transitions in localized centers in solid3], and the in the pure quantum case but in the dissipative case. We
nonadiabatic magnetization process in molecular magnetdopt the effective master-equation approach and derive the
such as Mg, and Fg [24-27. Kayanuma studied such transition probabilities in the strong damping limit. The
thermal-noise effect for the two-level Landau-Zener modelprobabilities are compared with those of the pure quantum
and derived a formula for the effective transition probability case obtained by Carroll and Hioe. The expression of the
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probabilities are always the same regardless of level struases of the Hamiltoniart(t) so that the computability

tures, although in the pure quantum case the expressions pX, X ,,]=0 is satisfied for arbitrary’ and/". The noise is

the transition probabilities show some variations. supposed to be the white Gaussian process. We start with the
This paper is organized in the following way. In Sec. II, yon Neumann equation for the density matrix in the interac-

we derive the master equation when strong noise couplegon picture(%=1 here and hereafter

with the system and compare it with the master equation for

the system with the phonon reservoir. Section Il is devoted ap (1)

to the problem for the two-level system, and we derive the Jt :Z £OLADPY, )
transition probabilities for the three-level system in Sec. IV.
A summary and brief discussion are given in Sec. V. &ML M)pV=—=ie D[ pN(t),X(1)], (4)

Il. MASTER EQUATION

t t
p“)(t)=eXpH<—J duH(U))p(t)eXDﬂ(iJ duH(u)),
We derive the master equation for the system with dissi- to to

pation. Throughout this paper, we study the transition prob- 5
ability by solving the master equation. The master equation . .

we ;hall consider is derived for various preg of dissipative X, (t)=exp_ —iJ duH(u) | X, exp., if duH(u) |.
environments such as the stochastic-noise field and phonon to to

reservoir. We here choose a stochastic-noise field as a source (6)

of dissipation and rigorously derive the master equation. As

shown in Appendix A, this master equation can be obtainediere exp. and exp. express the time-ordered product of
in the case of a phonon reservoir with the Ohmic-type speceXPonentials. In the case of white Gaussian pro(@sshere

tral density at very high temperatures. The correlation of thé'® Several approaches to derive the master equ&m8a1.
stochastic noise is assumed to be very short. This situation f§ére we use Novikov's relation, which holds for arbitrary

described as functiong([£],t) [31],
t o/ 09([€],0)
Ht0t=H(t)+z/ (DX, (1) (fg([é],t»:jtodt (§(D)&(t )><W>, )
(E,()Em(t))=27,8, md(t—t"), ) where the symbdl¢] means thagy([ £],t) is a function of the

process of nois¢ and(: --) means the average over the noise
where £ (t) is a noise that affects the system through the&(t). By use of this mathematical formula, the average over
/th operatorX . The matrixX, is diagonal in the diabatic noise for Eq.(3) is reduced to

¥p"

)(t t
a—t(»=2 (ALY (D) =2 <§/<t>c/<t>epo(2 f dU§//(U)E/I(U))p'(t)>
/ 7 AT

/7

t t
=2 LAY ft dt'<§/<t>§/<t’>><exph(/2 ft,duaf(uw/f(u))ﬁ/(t'>p<'><t'>>=2 Y L20(pV(1).
0 /! /
8

Here we used Novikov’s relation and the properties of whitethe phonon reservoir with high temperature. We investigate
noise. Thus we arrived at the master equation in the 'Schrdhe properties of the nonadiabatic transitions based on the

dinger picture of the density matrix, master equatioi9).
ll. DISSIPATIVE EFFECTS IN THE TWO-LEVEL
ap(t) SYSTEM
o [H(®).p(0]- Z YAX X O1) - (9) A. Transition probability

In this section, we consider the noise effect in the two-
. . o level system. For the two-level system, the transition prob-
in which we denoteg(t) for (p(t)), omitting the symbol of  apilities in the strong-damping case have been studied by
average over noisg). In the following sections, we focus on several authors using the perturbation apprg@&R29. Here
the noise with short correlatiof2) and large amplitude of,  we alternatively adopt a different approach, deriving the ef-
namely, the strong-dampin@D) limit. This is equivalent to  fective master equation, which simplifies derivations of tran-
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sition probabilities for the case. Here two situations are stud-
ied. We first consider the familiar situation that the external

field is reversed from-c to «. In this case, we demonstrate
that Kayanuma’s transition probabilitfsy is reproduced

easily using the effective master equation. We second con-
sider the somewhat unfamiliar but realizable situation that

the external field is swept from O t® when initially a di-

abatic state is occupied. In the magnetic system, this situa-
tion corresponds to the case where a spin is saturated to the

down (or up) state under very strong field and then the field
is switched off and the field is swept linearly in time from
zero field.

The model we shall consider in this section is described as

Hiol ) =H(t) + &(1) o, (10)

o+ T E(TX
2 2

H(t)=—vt (11

whereo® is thea (=X,Yy,z) component of the Pauli matrix.
The diabatic states correspond to the down stBteand up
state|2), which satisfyo?|1)= —|1) ando?|2)=|2), respec-

tively. T" is the transverse field that is responsible for the

tunneling between the diabatic states. Here we take afly
as the operator on which the noise acts in &). Thus the
master equatio9) is concretely written as

2 (0= 3 [oto,+ Tayp(0)]- 2 LoD~ ap()a).
(12
We define the following variables:
C1=p11— P22, 13
C2=p12, (14
C3=pa1- (15

The time evolutions of these variables are determined by the

differential equations

c1=—il'(cz—cy), (16)
] ] i
Co=(—ivt=7y)co+ > C1 17
. ir
03=(|vt—y)c3—?c1. (18

Here we consider the SD limig— . We first consider the
variablec,(t), which is formally solved from Eq(17). We
can approximate it by the following partial integral:

\r —ivt2/2—yt ! jvu2/2+ yu
0
ir o ' el Tt
= C2(t0) + 76_'”2/2*' Yt[ elvu2/2— yuilej%y
to
b tdueivu2/2+yu£ ca(u)
2v Jig dulivu+y
d [ cy(t)
i | cyt) dtlivtty
~et T\ ey T Tiutey
i cq(t)

Here we used the fact that the teen ("% is negligible
due to largey, and we have neglected the higher-order terms
of (ivt+vy) ! [32]. When the diabatic statd) is initially
occupied, namely,

Ci(tg) =1, cy(tg)=cs(to) =0, (20
C,(t) andcs(t) are approximated as
il cqt)
Calt T2 vttty D
=il cy(t)
(V=5 Totry 22

These relations lead us to the simplified equation for the
diabatic states. By substituting the relatiofZl) and (22)
into the Eq.(16), we arrive at the effective master equation

2 1

t+ivylv

2iv

cq(t). (23

t—iy/v}

Now let us consider the first problem, i.¢g= —<. In this
case, we can readily integrate the master equafidnto get

Cl(oc):ex%

We now consider the tunneling probability from the stdbe
att=—o to the statd2) att=co. This corresponds to the
value of pyy(°). By using the conservation of probability
Trp=1, this transition probabilitPsy [=p,(*)] is ob-

tained,
1
Pso =5|1- exp(

ci()=

2

(24)

T 2

2l

(29

This is nothing but Kayanuma'’s transition probabilig].
For the second case where the field is swept from the
resonant field, i.ety=0, c,() is readily calculated as

2
Cl(oo)zeXF{ - —> ,

% (26)
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0.9 L is written asP?; . As briefly shown in Appendix B, the
08 transition probabilityP?; is calculated as

1 wl?
PE;I— 1—6X[{ — E

2

0.7
(30)

0.6

05
Thus transition probability in each case is written as follows:

1 w2 . w2
1—-ex I P, =1-exp — 5|,

_+:_
Pso 2 2v
(31

B PO+—11 2

c 1 2 3 4 5 6 7 8 9 10 11 SD—EGXW

04

Probabilities

0.3 pré

0.2

0.1

0+_—
' I:)LZ_2

11 [( wl'?
ex T

FIG. 1. Transition probabilities as a function of sweeping veloc-These asymptotically exact probabilities satisfy the follow-
ity v. Parameters are taken &s=0.01 andy=10.0. Points are ing relations(see also the Fig.)1
numerical data and lines are the analytical values. Here the sub-
script “LZ” means that it is a pure quantum cage); is the prob- ngg P[z+ , (32
ability in the case where the external field is swept from zero field
in the pure quantum case. ng} PEZ . (33
which gives the transition probabilit&'gg, . . o
The inequality(32) means that the dissipation reduces tun-
or 1 T2 neling so that the state remains in the ground state. When
PSDZE 1—ex (27) v<I'2 in the pure quantum case, almost adiabatic tunneling
from |1) to |2) occurs, whereas in the presence of dissipation,
The validity of these probabilitie@5) and(27) is confirmed  thermal excitation from ground state to the excited state re-
by numerically integrating the master equatid®). In Fig. ~ presses such adiabatic evolution. Thus the inequésizy is
1, we present numerical data and the analytical results give@asily understood. On the other hand, the inequdB)
in Egs. (25 and (27) as a function of sweeping velocity. indicates the opposite property. This effect is intuitively ex-
Herel is 0.01 andy is 10.0. We show not only the dissipa- plained as follows. The initial stat(0) (= [1)) is the super-
tive case but also pure quantum C&SES; and PE;) We position between the ground stgt€(0)) and the excited
see that formulag25) and (27) agree with the numerical State|E(0)),
results almost perfectly.
The variablec,(t) is directly connected with the magne- 1
tization M (t) =Tr o?p(t). We obtain the magnetization pro- P0)= §[|G(O))+|E(O)>].
cess solving Eq(23) as

2v

(34)

(28) casep<l1, the state of the system almost follows such su-

In case of almost adiabatic evolution in the pure quantum
}’ perposition at,

FZ
M~ H(t)= —exp{—arctarﬁl
v vt

MO (t)=—ex 1ﬂ—zarcta i (29 1 s i o(t)
v 2] Pt~ L V|G) +e2VEMD)], (39

vt
where the functiory=arctarnx is defined in the region ot
e[ —o,] andy e[ — m,0]. This shows that the magnetiza-
tion process depends on the noise strengtivhereas final
magnetization does not. This is also numerically confirme

where €41 and e'%2(0 gre the dynamical phases. Since
|G(t))—]2), |E(t))—]|1) in the limit of t—c, the maxi-
¢ mum value of transition probability i5in the pure quantum
evolution. In the presence of the dissipation, the noise also
induces such uniform distribution, because the dissipation
we now consider can be regarded as a thermal effect with
The exact relation of the transition probabilities for the very high temperature. As a result, the tunneling probability
pure quantum case and in the strong damping case is di# larger in the presence of the dissipation. We may say that
cussed. When the field is reversed from a large negativéhe inequality(33) is a consequence of the special initial
value without dissipation; the transition probability is de- state, because if the initial state is not a diabatic state, e.g.,
noted byP ;" . Here the subscript “LZ” means that it is the (0)=|G(0)), the inequality(33) is not realized. We expect
pure quantum case. In the case of the field swept from théhat these characteristic relatio(@2) and(33) will be veri-
resonant point without dissipation, the transition probabilityfied in real experiments.

B. Relation betweenPgy and P,
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IV. THREE-LEVEL SYSTEM p3o() = =T por— p10), (42)

We here apply our approach to the multilevel systems,
and investigate the dissipative effect on many levels. For the Po1(t) = —i{I'1(p11=poo) + ' 2p21~ v1tpost — Yo1po1,
sake of definiteness, we focus our attention on the properties (43
of the three-level system, where all diabatic levels form only
one avoided-level crossing point. Because the avoided cross- Po2(t)=—I{'2(p22— poo) + '1p12~ v 2t post — Yo2po2,
ing structure is not formed by localized two states, the tran-
sition mechanism is very different from the LZ mechanism.
Therefore this three-level system will provide much informa-  p12(t) = —i{T'1pgo—['2p10+ (V1= V) P12} — Y12P12-
tion about the effects of strong correlation of many levels. (45
This model was first studied by Carroll and HipE9], and
the exact transition probabilities have been obtained. Th&lere we confine ourselves to the SD limjt ,—c and the
formulas for the probabilities show some varieties of expresinitial condition ppy(to) = poa(to) = p1to) =0. In the same
sions according to the relation between the slopes of diabati®anner as in the two-level cage,(t) is approximated, ex-
states. The generalized arbitraN-level system for this panding by partial integrals as follows:
model is called the bow-tie mod¢R0], and the transition
probabilities and characteristic mechanisms of transitions are (vi—v)t? t (v1—v)u?
discussed33]. Thus this model is quite convenient for com- p1At) =exp —I 5 7] | duexpi
parison of the transition probabilities in the pure quantum
case and the dissipative case. We should also note that there _ . .
exist some proposals for physical realization of this model by + 712”) [IT2p10(u) =iT1po)]

using optical systemfgl9,34]. T ppig(t)—iT B
2P1 — 11 1p02

A. Analysis of transition probabilities i(v1—v)t+ y12

(46)

We here enumerate exact transition probabilities in the
three-level system in the presence of dissipation. The Hamil-
tonian we consider is written for the diabatic bases,

poz(t) and pgq(t) are written as

vat? ) [ vU®
poA)=€Xp i ——— oo | | duexp —i——+you
t

HO=Ho()+ 2 &(DX, (36) °
X{=iT(p2U) = poo(U)) —iT 1p15(U) }
o Iy Iy a® o 0 'Fz(Pzz Poo(t))_lrlplz(t) a7
Ho(t)=| [1 vt 0 |, X=| 0 ay¥ o0 |. —ivat+ e
k
I, 0 st 0 0 ay o2\ ot
(37) p01(t)=ex | T_ ’}’Olt . dueX —1 T + 701u
0
Here thekth white noise acts on thieth operatorX, . In this . )
case, the matrix element of the master equai@ns written X{=1T1(p11(u) = poo(U)) —il'2p2(U)}
in the following form: _ Til(paa() — Poo(t))_|F2P21(t) 48)
Ipsmt) it yer
o~ HHo()/ kkm() = k(OHo(Dim]
The termspq,(t) andp,4(t) in Egs.(47) and(48) are negli-
— % mPs m(t), (38)  gible because of Eq(46). Therefore we can approximate
S Egs.(47) and(48) as
wherey, , is written using the matrix elements of the op-
eratorX, and the amplitude of the noisg, as I 1
X Poz('[)—(_2 Sor [p22t) = poo(t) ], (49
o Y t+i—
Yem=2 5 (@ -ap)”. (39 v2
. . . . r, 1
Thus the differential equations for all matrix elements are pori(t)=[— [p12(t) — poo(t)]. (50)
given by U1 thI7’_01
U1

poo(t) = —{T'1(p10—poD) + Ta(p20—po2)},  (40)
Thus we arrive at the effective master equations defining

p11(t)=—iT1(po1— P10 (41 cy(t)=paa(t) = poo(t) andcy(t) = paxt) — pod(t),
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. 2ir2 1 1 )
C1= vy \t+iyolvr t—iyelvy ¢
iT3 1 51
v, t+i702/02 t_i702/U2 c2 ( )
o —ir? 1 1
Co= == ¢
2 U1 t+i’)/01/U1 t_|7’01/U1 '
2iT2 1 1 ) 57
vy \tFiyplvs t—ivealvs c2: 52

All matrix elementsp, ,(t) are obtained ifpgo(t), p1s(t),

andp,,(t) are calculated as solutions of these effective mas-

ter equations.

Now let us solve these differential equations. We start

with the parameters that satisfy the special relation

oz
|Uz|

;yOl

— = =a. (53
|Ul|

Here « is always positive sinceg;>0 andyy,>0. In this
special case, the equations are simplified in the form

Cl(t)) B

( 1 1 cy(t)
dticy(t))

't+ia_t—ia)M(cg(t))’ (54

where the matrixM is given by

(Za b) r2 ib 3
M= , a=r— an =—7.
a 2b o4 vy

(55

The right-hand side of Eq54) has the explicit time depen-
dence only in the prefacer. Therefore by diagonalizing the

PHYSICAL REVIEW A 65 033407

(_e72ﬂrr)\++e72ﬂ'}\_)

1
S P
S22 2 a2+b2—ab[( )
++\aZ+b?—ab(e 2™+ +e 2™ )],

Here o does not appear, because it only gives the singular
point in the Cauchy’s integral to yield Eq&8)—(61), which

is the same situation as in the two-level system. Therefore
the scattering matrix does not depend on the concrete values
of dissipation strengthyy; andy,,, as far as these are large
and the relation53) is satisfied. We now obtain the prob-
abilities for various initial states:

(61)

matrix M, we can obtain the scattering matrix that connects

c(—o0) with c(e). The matrixM has these eigenvaluas. ,

Ai=a+b=x JaZ+DbZ-ab.

Using a, b, and these eigenvalues. , the final state and
initial state are connected using the scattering m&drix

_ Cl(_m))
_S(Cz(_w) '

z[(a_b)(efkr)\_,,_ewa)\_)

(56)

C1(*)
Ca()

(57)

1
Spm
Yo a2+ b?—ab

+ /a2+ bZ_ab(C—Zw)\++e—2v)\,)], (58)

S 2:—b (e72m+—g M) (59
“ 2yJa?+b?-ab '

82 12#(e—27ﬂ\+_e—2w)\,) (60)
"~ 2Ja?+b?-ab '

PSD (O_)O) a+b (e7271'}\+_e*27r)\,)
3" 6Jalrb’_ab
e*Z'rr)\_,__’_e*Zﬂ'}\_
+f’ (62
1 —2a+b o 2m
l:)SD (0_>1) IDSD (1_)0) 3 G\W( +
=2\ =27\
g~ 2+ 4 gm2mh-
et — (63
1 a—2b o
Psp (0—2)=Pgp (2—0)= 3 GJm(e -
—2m\ =27\
e 2™ 4 g 2
—et ) (64)
1 —2a+b o-2m
Psp (1-0)=Psg (0—1)=7 e
—2m\ =27\ _
e t+e
—e - (65)
1 _a-2b 2b
= 1_)1 e*277)\+_e*27T)\_
e—277)\++e—27r)\,
+f, (66)
at+b Lo
P (1-2)=Pg5 (2—1)=3 em(e R
e—27T)\++e—277)\,
R B N

-+ 1 —2a+tb —2m —2m\
Pso(2—>2)—§+m(e +—g 2™
e—277)\++e—277)\,
e (68)
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FIG. 2. Comparison of the numerical calculation with theories for various setg;¢f Data are plotted as a function of Points are
numerical data, and the lines ng andP[;" (see Table)l are theoretical valuesa) (a;,a,)=(1,—0.5), (b) (1,0.5, (c) (0.5,1.

In the adiabatic limiv;— +0 andv,— +0, all probabili- (c) a,>a;>0. In Fig. 2, the transition probabilities
ties converge to 1/3 due to the strong effect of dissipation. A® . (0—j) (j=0,1,2) are shown for these cases. The prob-
shown numerically in the following section, these formulasapilities are plotted as a function of the parameteor the
are always valid even when relatigh) is not satisfied. That parameters I',=0.1, I',=0.2, and various sets of
is, the probabilities are little affected by the variation of the(%l,%zﬁlz)_ Here the sets of d;,a,) are taken agl,

strength of dissipationyoy, Y12, andyiz. —0.5) for Fig. 2a), (1,0.5 for Fig. 2(b), and(0.5,1) for Fig.
2(c), respectively. The lines are theoretical values for the SD
B. Numerical investigation limit Pg5 (0—j) given by Eqs(62)—(68) and the probabili-
We numerically integrate Eq38) and compare with the ties for pure quantum case," (0—j), which are already
asymptotically exact transition probabilities obtained aboveobtained by Carroll and Hiofl9]. The analytical solutions
for various parameter values. We write the slopes of the diof probabilities in the pure quantum case are listed in Table .

abatic states; andv, using parametes, As can be seen in these figures, we can see good agreement
between the numerical data and theories, E8®~(68). We
v1=aq, (69  find little dependence on the variety of{;,voz, v12), that
is, the formulag62)—(68) are valid even if the relatiof63)
Vo= anU. (70) is not satisfied, as long as the dissipation is very strong. This
was also confirmed foPsy (1—j) andPgy (2—j).
Dimensionless parametess and a, give the ratio ofv; to As seen in Table I, the analytical expressions in the pure

v, and determine the level structure. We consider three typeguantum casé,, (0—j) show some variations according
of level structures, namel{@) @,a,<0, (b) ;> a,>0, and to the relations ob»; andv,. On the other hand, the prob-

TABLE I. The transition probabilities for quantum case. H&e exp(— 7P2/v,) and Q= exp(— mP3/v,).

Pc"(0—0) Pc"(0—1) Pc"(0—2) Pc"(1—1) P (1—2) Pc"(2—2)
v10,<0 (1-P-Q)? (1-P)(P+Q) (1-Q)(P+Q) P2 (1-P)(1-Q) Q?
lv4|>]va],v10,>0 P2Q? (1-P)(1+PQ) P(1-Q)(1+PQ) P2 P(1-P)(1-Q) (1-P+PQ)?
lvo|>[v4],v10,>0 P2Q? Q(1-P)(1+PQ) (1-Q)(1+PQ) (1-Q+PQ)? Q(1-P)(1-Q) Q?
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abilities in the dissipative cag62)—(68) do not depend on o7 T2

such level structures. For instance, in cases of Figs.ahd \/— - —<1

2(b), where the sweeping velocities arev;(v,)=(v, t,— v v (74)
—-0.%) and @1,v,)=(v,0.5v), respectively, each probabil- r r?

ity Psp (i—j) for both the cases completely agrees with the 2yt

other because formula$2)—(68) have the same values for

different (vs,v,) with the same absolute values. HOWeVer inryig 45y mptotic behavior agrees with that in the earlier stud-

-y — 4/ . .
the pure quantum case, the probabilitigs (i —j) are dif- o528 36. On the other hand, the transition time of dissipa-
ferent between these cases as found in Table I. This is @ casetl is readily written for the definitior71)

remarkable contrast between the dissipative case and the

pure quantum case. ) )
In the slow-sweeping region<1, the deviation ong o L F{ wl ) (75)

from P_," is large. In the fast-sweeping regio 1, Py '

asymptotically converges to the behavior Bf;," . This

means that the system is little affected from dissipation forThis means that the transition time decrease®@dy) with

fast sweeping because the time that the system stays aroutie increase ofy. In the three-level system, the analytical

the avoided-level crossing point is very short. This is theexpressiong62)—(68) are the solutions under the condition

same behavior as found in the two-level systenh28]. (53). However these solutions are valid beyond the condition
(53) as shown in the numerical calculation. According to
V. SUMMARY Carroll and Hioe's analytical solutioiTable |, the pure

guantum transition probabilities show some variations de-

In two- and three-level systems, we derived the effectivepending on the level structures. However, the probabilities in
master equations, which well describe time evolution of thethe dissipative case do not show such dependences. It is in-
system in the SD limit. Thereby we obtained analytical tran-teresting to confirm experimentally this thermal effect, be-
sition probabilities. The effective master-equation approacltause the three-level system we consider can be realized ex-
is quite useful because the differential equation of the sysperimentally[19,34].
tem’s variable becomes very simple. This approach will be Equation (9) is derived under the condition where the
applicable in the other systems whose exact transition proloise affects the system only through the diabatic states. In
abilities can be analytically enumerated in the pure quanturgase of the off-diagonal coupling, i.eX, = ¢*, we also de-
case. rived a similar master equation. In this case, we can easily

In the two-level system, we consider the two cases wherghow that in the strong-damping limit, all the transition prob-
the external field is swept from a large negative field andabilities become uniform regardless of the initial condition
from zero field. Both situations are easily realized in real[25,3§. Thus the transition probability is affected by the
experiments. We hope that the exact relati®® and(33)  coupling form with the thermal environment. Therefore it is
are confirmed in real experiments using the classical opticadlso interesting to consider the transition probabilities for
system[7] and the Cooper pa[35], and so on. various coupling forms with finitey.

The transition time in the two-level systems has been dis-
cussed in the literaturg28,36,43 when the external field is

reversed from large negative field. According to Vitanov's ACKNOWLEDGMENT
definition[43], the transition times" is written as The present work is partially supported by the Grant-in-
Aid for Scientific Research from the Ministry of Education,
iy P2oA®)  Cq() 71) Science, Sports and Culture of Japan.
p2A0)  ¢1(0)
APPENDIX A

under the initial condition opq,(—«)=1. Vitanov derived
the exact expression of transition tirt{g in the pure quan-
tum case as follows:

The same type of master equation as &®) is derived
in the case where the system of interest couples with the
phonon bath through the diabatic states as follp8&:

/1_ e 77F§/v

[ t t
2= T7v)cosx) (72 Hio=HO+A 2 X, 2 va(by 46+ 2 @b b7,
(A1)
T argr| 2 rl1 irz) (73)
X~ 2 arg 2 4 arg qv )’ whereH(t) denotes the system Hamiltonian of interest and

X, is the/th operator that interacts with the phonon system.
whereT (x) is the gamma function. Equatiai3) converges ~We assume the computability between the coupling operators
to X,, i.e.,[X,,X,]=0. The operatord!”) andb!”) are the
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phonon creation and annihilation operators which interact APPENDIX B

with the system through th&th coupling operatoKX, . . . - i
We useythe projectigon-operator I;)ecrgllniqpue to tr;lce out the In this appen(ﬁx, the transition probabiliti€31) are de-

reservoir's degree of freedofd0] and assume that the cor- rived. We start with the Hamiltonian

relation between the reservoir’s variables is short lived. Then h

we obtain the master equation for the system in the second H(t)= E(Fox—vta'z). (B1)

order of coupling strength [41,47,

P 1 We consider the Schdinger equation
PO=F[Hp(OI-N2X Top(h,  (A2) 5 5
' iﬁﬁ‘l’(t)=§(rax—vtaz)‘lf(t). (B2)

wherel" ,p(t) is given by
Equation(B2) is concretely written defining the component

. e qu s v
F/p(t)=%fo dt’fﬁmdwei“’t’@/(w){x/X/(—t’)P(t) similar to ¥ (1) = (a(t) xg(1))",

. vt
—ePhOX p(H)X (—t') + ()X, (—t')X, X1(D)=Z XU+ 5x(), B3)
=X A(—t")p(t)X,}. (A3)

B r vt
, _ iXo(t)= Exl(t)_ Exz(t)- (B4)
Here X (—t') means the Heisenberg operator at tim¥,

Now we transform the variables to the following ones:

i (o
X (—t ):eXp(_<—Hft/dUH(U) X T:=t2, (B5)
i (O t
Xexpﬂ(ﬁfﬂduH(u))- (Ad) yi(7) ::Xlt( ), (B6)
In case of the phonon reservoir described in &), ®(w) Yo(7) :=X,(1), (B7)
is given by
then we obtain the equation
| (w0)=1(~w)
pA0)=h —pgpo—7 (AS5) . d T r
e’te—1 — — Ly, — —y, =
2|Td7'y1+ | 2 yl 2y2 01 (88)

where B is an inverse temperatureTl/l () is called the g r
spectral density. 9 vt L
We restrict ourselves to the case of the Ohmic spectrum 2l d7y2+ 2¥27 oM 0. (B9)

| (w)=1,0 (AB) Here we used the relatiod/dt=2td/dr. By using the
Laplace transformatiof44] defined as
and high temperature

T>1. (A7) yi(7)= fcédgy(k(g)egry (B10)
In this case, by using the fact that we obtain the integral representation fq(t) andx,(t) after
straightforward calculation,
d, (w)—Hhl,T, (A8)
v —1/2+iT?/ 6v v —iT%8p i
the master equatiofA2) is reduced to the simple form xl(t)zAtfc dé| é+i 2 (g—i Z) e,
¢
d 1 5 (B11)
37PO= 7 [Hp(O]-NTZ 1D [Xp(0]] .
/ r v —1/2+iT'“/8v
(A9) x2(t)=A( —i —)f dg( E+i —)
4] Je, 4
Although Eq. (A3) derived by the projection-operator ap- -
proach is an approximation because higher-order terms of AT e
are neglected and the fast relaxation of the reservoir is as- x| &l 4 e (B12)

sumed to make the equation Markovian, it can well describe
the features of evolution of the system, especially in case ofiere the integral counter must satisfy the following condi-
high temperature. tion:
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This means nothing but the relation of the Landau-Zener

=0. (B13 transition.
£ Next we consider the case where the external field is
swept from zero valu¢l19,37, that is, /=0 and +0—|t|
—o0, In order to derive the survival probability in this case,
we first note the time symmetry that the probability is of the

¢+20=3m (B14)  same value as that obtained when the initial time is taken as

) t=—o (the external value= —«) and the final time is

for large[¢ noting the relatiorgt=|¢|[t|e'(?*2?). Whenthe =0 (the external value=—0). We consider the latter
initial time istlz(oo)e"T and the final time is_z(oo)e'o, the  case —t——0) because we can use the same contour
phase of¢ varies from to 3w from the relation(B14). We 5 the previous cag&q. (B17)], which satisfies the initial
now consider the initial condition as condition (B15). We can readily write the integral represen-

Xy (—o0)=1. (B15) tFiEif)n of thex;(—0) and obtain the transition probability
This condition is realized in the contour that encircles the
singular pointé= —iv/4 and by choosing the constadtas

v
{(Zif— E)maeff

C

For the variableg=|£|e'?, t=|t|e'’, we choose the counter
with the condition

—ir2/8y
A:ewrzllﬁv/ f(oﬂdu(_u)—1/2+ir2/8ve—u_ (B16) Xl(—O):A|t|j(o+)(—X)_1/2+iF2/8U( —x—i %)
Thus the wave function dt=c< is calculated by using ana- X e x|
lytical continuation following the conditioB14), i.e., 7 o
— ¢— 37 [44]. Thus revival probability is calculated as =A(1+e"F2’4”)f duu Y%u
0
) ) wl?
) =xa(tlem)e| - 5| (). Ir e
(B17) 2
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