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Nonadiabatic transition probabilities in the presence of strong dissipation
at an avoided-level crossing point
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Dissipative effects on the nonadiabatic transition for the two- and three-level systems are studied. When the
system is affected by a strong dissipation through the diabatic states, the exact transition probability is enu-
merated making use of the effective master equation. In the two-level system, we consider the case where the
external field is swept from not only a negative large value but also from the resonant field, and the exact
transition probabilities in these cases are derived. The transition probabilities are derived for the three-level
system where the three diabatic states form only one avoided-level crossing point. These probabilities are
compared with that in the pure quantum case obtained by Carroll and Hioe.
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I. INTRODUCTION

Nonadiabatic transition at an avoided-level crossing po
plays a crucial role in quantum dynamical changes of sta
and yields a variety of phenomena in physics and chemis
The well-known Landau and Zener~LZ! transition probabil-
ity clarifies the roles of the energy gap and the sweep
velocity of the external field in the nonadiabatic transition
the two-level system@1–4#. Although the LZ transition prob-
ability is given in the two-level system, it is approximate
applicable to multilevel systems where the avoided-le
crossings are effectively well described by only localiz
two levels. Hence it is adopted in the analyses of many
periments that treat time-dependent phenomena, such as
lision of particles@5,6#, optics@7,8#, and magnetic phenom
ena @9–13#. For general multilevel systems where ma
levels can simultaneously affect each other, different form
las of transition probabilities are derived for several mode
i.e., the one where only one level interacts with a band
levels@14–16#, the generalized model for this model@17,18#,
and the bow-tie model where many levels form only o
avoided-level crossing@19,20#. We should also note Brun
dobler and Elser’s hypothesis, which states that the surv
probability of the diabatic state with maximum or minimu
slope is described by the exponential form determined
only the velocity and the off-diagonal elements in the Ham
tonian @21#.

On the other hand, we must also consider the effec
dissipation, since real experiments are always expose
thermal environment. The thermal environment causes d
herence, and the inevitable deviation of transition probabi
from the one of pure quantum cases occurs. This modifi
tion becomes significant in real experiments such as the a
batic rapid passage with phonon couplings@22#, the nonadia-
batic transitions in localized centers in solids@23#, and the
nonadiabatic magnetization process in molecular mag
such as Mn12 and Fe8 @24–27#. Kayanuma studied suc
thermal-noise effect for the two-level Landau-Zener mo
and derived a formula for the effective transition probabil
1050-2947/2002/65~3!/033407~11!/$20.00 65 0334
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in the limiting case of strong damping dissipation by t
perturbative approach@28#. The effective transition probabil
ity becomes 1/2 in the adiabatic limit due to the dissipat
effect, whereas it converges to the asymptotic expressio
the LZ probability in the fast-sweeping limit. Ao and Ram
mer carried out first-principles calculations to investigate
temperature dependence of the transition probability of
two-level system with the phonon reservoir, which corr
sponds to Kayanuma’s situation in the high-temperature li
in case of the Ohmic spectral density. Especially, they fou
some compensation effect that the transition probability
zero temperature takes the same value as the Landau-Z
probability @29#.

In this paper, we study such thermal-noise effect in n
only the two-level system but also in the three-level syste
Thereby we try to investigate the effect of multilevels wi
thermal noise. We exploit the method to analyze strong d
sipation effect using an effective master equation instead
the perturbation approach adopted in previous stud
@23,28,29#. We show that the effective master-equation a
proach is very convenient for deriving the transition pro
ability in the strong-damping limit. Using this approach w
first reproduce Kayanuma’s formula in the two-level syste
when the external field is reversed from a large nega
value to a large positive value. We next consider the situa
where the field is swept from the resonant field~zero field! to
a large positive field, and derive exact transition probabil
As a result the exact relations between these cases are fo
The three-level model we consider is the same mode
Carroll and Hioe considered@19#. In this model, three diaba
tic states form only one avoided-level crossing point. The
fore the transition mechanism is quite different from the L
mechanism, which describes transitions between local
levels. Therefore we see the effect of the multilevel not o
in the pure quantum case but in the dissipative case.
adopt the effective master-equation approach and derive
transition probabilities in the strong damping limit. Th
probabilities are compared with those of the pure quant
case obtained by Carroll and Hioe. The expression of
©2002 The American Physical Society07-1
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probabilities are always the same regardless of level st
tures, although in the pure quantum case the expression
the transition probabilities show some variations.

This paper is organized in the following way. In Sec.
we derive the master equation when strong noise cou
with the system and compare it with the master equation
the system with the phonon reservoir. Section III is devo
to the problem for the two-level system, and we derive
transition probabilities for the three-level system in Sec.
A summary and brief discussion are given in Sec. V.

II. MASTER EQUATION

We derive the master equation for the system with dis
pation. Throughout this paper, we study the transition pr
ability by solving the master equation. The master equa
we shall consider is derived for various types of dissipat
environments such as the stochastic-noise field and pho
reservoir. We here choose a stochastic-noise field as a so
of dissipation and rigorously derive the master equation.
shown in Appendix A, this master equation can be obtain
in the case of a phonon reservoir with the Ohmic-type sp
tral density at very high temperatures. The correlation of
stochastic noise is assumed to be very short. This situatio
described as

Htot5H~ t !1(
l

j l ~ t !Xl , ~1!

^j l ~ t !jm~ t8!&52g l d l ,md~ t2t8!, ~2!

where j l (t) is a noise that affects the system through
l th operatorXl . The matrixXl is diagonal in the diabatic
it
hr

n
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bases of the HamiltonianH(t) so that the computability
@Xl ,Xl 8#50 is satisfied for arbitraryl andl 8. The noise is
supposed to be the white Gaussian process. We start with
von Neumann equation for the density matrix in the inter
tion picture~\51 here and hereafter!,

]r~ I !~ t !

]t
5(

l
j l ~ t !Ll ~ t !r~ I !, ~3!

j l ~ t !Ll ~ t !r~ I !52 i j l ~ t !@r~ I !~ t !,Xl ~ t !#, ~4!

r~ I !~ t !5exp←S 2E
t0

t

duH~u! D r~ t !exp→S i E
t0

t

duH~u! D ,

~5!

Ẋl ~ t !5exp←S 2 i E
t0

t

duH~u! DXl exp→S i E
t0

t

duH~u! D .

~6!

Here exp← and exp→ express the time-ordered product
exponentials. In the case of white Gaussian process~2!, there
are several approaches to derive the master equation@30,31#.
Here we use Novikov’s relation, which holds for arbitra
function g(@j#,t) @31#,

^jg~@j#,t !&5E
t0

t

dt8^j~ t !j~ t8!&K dg~@j#,t !

dj~ t8! L , ~7!

where the symbol@j# means thatg(@j#,t) is a function of the
process of noisej and^¯& means the average over the noi
j(t). By use of this mathematical formula, the average o
noise for Eq.~3! is reduced to
]^r~ I !~ t !&
]t

5(
l

^j l ~ t !Ll ~ t !r~ I !~ t !&5(
l K j l ~ t !Ll ~ t !exp←S (

l 8
E

t0

t

duj l 8~u!Ll 8~u!D r I~ t !L
5(

l
Ll ~ t !E

t0

t

dt8^j l ~ t !j l ~ t8!&K exp←S (
l 8

E
t8

t

duj l 8~u!Ll 8~u!DLl ~ t8!r~ I !~ t8!L 5(
l

g l Ll
2 ~ t !^r~ I !~ t !&.

~8!
ate
the

o-
ob-

by

ef-
n-
Here we used Novikov’s relation and the properties of wh
noise. Thus we arrived at the master equation in the Sc¨-
dinger picture of the density matrix,

]r~ t !

]t
52 i @H~ t !,r~ t !#2(

l
g l †Xl ,@Xl ,r~ t !#‡, ~9!

in which we denotedr(t) for ^r(t)&, omitting the symbol of
average over noisê&. In the following sections, we focus o
the noise with short correlation~2! and large amplitude ofg,
namely, the strong-damping~SD! limit. This is equivalent to
e
o
the phonon reservoir with high temperature. We investig
the properties of the nonadiabatic transitions based on
master equation~9!.

III. DISSIPATIVE EFFECTS IN THE TWO-LEVEL
SYSTEM

A. Transition probability

In this section, we consider the noise effect in the tw
level system. For the two-level system, the transition pr
abilities in the strong-damping case have been studied
several authors using the perturbation approach@23,29#. Here
we alternatively adopt a different approach, deriving the
fective master equation, which simplifies derivations of tra
7-2
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NONADIABATIC TRANSITION PROBABILITIES IN . . . PHYSICAL REVIEW A 65 033407
sition probabilities for the case. Here two situations are st
ied. We first consider the familiar situation that the exter
field is reversed from2` to `. In this case, we demonstra
that Kayanuma’s transition probabilityPSD

21 is reproduced
easily using the effective master equation. We second c
sider the somewhat unfamiliar but realizable situation t
the external field is swept from 0 tò when initially a di-
abatic state is occupied. In the magnetic system, this si
tion corresponds to the case where a spin is saturated to
down ~or up! state under very strong field and then the fie
is switched off and the field is swept linearly in time fro
zero field.

The model we shall consider in this section is described

Htot~ t !5H~ t !1j~ t !sx, ~10!

H~ t !52vt
1

2
sz1G

1

2
sx, ~11!

wheresa is thea (5x,y,z) component of the Pauli matrix
The diabatic states correspond to the down stateu1& and up
stateu2&, which satisfyszu1&52u1& andszu2&5u2&, respec-
tively. G is the transverse field that is responsible for t
tunneling between the diabatic states. Here we take onlysz

as the operator on which the noise acts in Eq.~2!. Thus the
master equation~9! is concretely written as

]

]t
r~ t !52 i

1

2
@vtsz1Gsx ,r~ t !#2

g

2
@r~ t !2szr~ t !sz# .

~12!

We define the following variables:

c15r112r22, ~13!

c25r12, ~14!

c35r21. ~15!

The time evolutions of these variables are determined by
differential equations

ċ152 iG~c32c2!, ~16!

ċ25~2 ivt2g!c21
iG

2
c1 , ~17!

ċ35~ ivt2g!c32
iG

2
c1 . ~18!

Here we consider the SD limitg→`. We first consider the
variablec2(t), which is formally solved from Eq.~17!. We
can approximate it by the following partial integral:
03340
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c2~ t !5c2~ t0!1
iG

2
e2 ivt2/22gtE

t0

t

dueivu2/21guc1~u!

5c2~ t0!1
iG

2
e2 ivt2/21gtH Feivu2/22gu

c1~u!

ivu1gG
t0

t

2
G

2v Et0

t

dueivu2/21gu
d

du S c1~u!

ivu1g D J
;c2~ t0!1

iG

2
S c1~ t !

ivt1g
2

d

dt S c1~ t !

ivt1g D
ivt1g

1¯
D

;c2~ t0!1
iG

2

c1~ t !

ivt1g
. ~19!

Here we used the fact that the terme2g(t2t0) is negligible
due to largeg, and we have neglected the higher-order ter
of ( ivt1g)21 @32#. When the diabatic stateu1& is initially
occupied, namely,

c1~ t0!51, c2~ t0!5c3~ t0!50, ~20!

c2(t) andc3(t) are approximated as

c2~ t !5
iG

2

c1~ t !

ivt1g
, ~21!

c3~ t !5
2 iG

2

c1~ t !

2 ivt1g
. ~22!

These relations lead us to the simplified equation for
diabatic states. By substituting the relations~21! and ~22!
into the Eq.~16!, we arrive at the effective master equatio

ċ1~ t !5
G2

2iv H 1

t1 ig/v
2

1

t2 ig/vJ c1~ t !. ~23!

Now let us consider the first problem, i.e.,t052`. In this
case, we can readily integrate the master equation~23! to get

c1~`!5expS 2
pG2

v D . ~24!

We now consider the tunneling probability from the stateu1&
at t52` to the stateu2& at t5`. This corresponds to the
value of r22(`). By using the conservation of probabilit
Tr r51, this transition probabilityPSD

21 @[r22(`)# is ob-
tained,

PSD
215

1

2 F12expS 2
pG2

v D G . ~25!

This is nothing but Kayanuma’s transition probability@28#.
For the second case where the field is swept from

resonant field, i.e.,t050, c1(`) is readily calculated as

c1~`!5expS 2
pG2

2v D , ~26!
7-3
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KEIJI SAITO AND YOSUKE KAYANUMA PHYSICAL REVIEW A 65 033407
which gives the transition probabilityPSD
01 ,

PSD
015

1

2 F12expS 2
pG2

2v D G . ~27!

The validity of these probabilities~25! and~27! is confirmed
by numerically integrating the master equation~12!. In Fig.
1, we present numerical data and the analytical results g
in Eqs. ~25! and ~27! as a function of sweeping velocity
HereG is 0.01 andg is 10.0. We show not only the dissipa
tive case but also pure quantum cases~PLZ

21 and PLZ
01!. We

see that formulas~25! and ~27! agree with the numerica
results almost perfectly.

The variablec1(t) is directly connected with the magne
tization M (t)5Tr szr(t). We obtain the magnetization pro
cess solving Eq.~23! as

M 21~ t !52expFG2

v
arctanS g

vt D G , ~28!

M01~ t !52expFG2

v
arctanS g

vt D2
p

2 G , ~29!

where the functiony5arctanx is defined in the region ofx
P@2`,`# andyP@2p,0#. This shows that the magnetiza
tion process depends on the noise strengthg, whereas final
magnetization does not. This is also numerically confirm

B. Relation betweenPSD and PLZ

The exact relation of the transition probabilities for t
pure quantum case and in the strong damping case is
cussed. When the field is reversed from a large nega
value without dissipation; the transition probability is d
noted byPLZ

21 . Here the subscript ‘‘LZ’’ means that it is th
pure quantum case. In the case of the field swept from
resonant point without dissipation, the transition probabi

FIG. 1. Transition probabilities as a function of sweeping velo
ity v. Parameters are taken asG50.01 andg510.0. Points are
numerical data and lines are the analytical values. Here the
script ‘‘LZ’’ means that it is a pure quantum case.PLZ

01 is the prob-
ability in the case where the external field is swept from zero fi
in the pure quantum case.
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is written asPLZ
01 . As briefly shown in Appendix B, the

transition probabilityPLZ
01 is calculated as

PLZ
015

1

2 F12expS 2
pG2

4v D G . ~30!

Thus transition probability in each case is written as follow

PSD
215

1

2 F12expS 2
pG2

v D G , PLZ
21512expS 2

pG2

2v D ,

~31!

PSD
015

1

2 F12expS 2
pG2

2v D G , PLZ
015

1

2 F12expS 2
pG2

4v D G .
These asymptotically exact probabilities satisfy the follo
ing relations~see also the Fig. 1!:

PSD
21<PLZ

21 , ~32!

PSD
01>PLZ

01 . ~33!

The inequality~32! means that the dissipation reduces tu
neling so that the state remains in the ground state. W
v!G2 in the pure quantum case, almost adiabatic tunne
from u1& to u2& occurs, whereas in the presence of dissipati
thermal excitation from ground state to the excited state
presses such adiabatic evolution. Thus the inequality~32! is
easily understood. On the other hand, the inequality~33!
indicates the opposite property. This effect is intuitively e
plained as follows. The initial statec~0! ~5 u1&! is the super-
position between the ground stateuG(0)& and the excited
stateuE(0)&,

c~0!5
1

2
@ uG~0!&1uE~0!&]. ~34!

In case of almost adiabatic evolution in the pure quant
case,v!1, the state of the system almost follows such s
perposition att,

c~ t !;
1

2
@eif1~ t !uG~ t !&1eif2~ t !uE~ t !&], ~35!

where eif1(t) and eif2(t) are the dynamical phases. Sinc
uG(t)&→u2&, uE(t)&→u1& in the limit of t→`, the maxi-
mum value of transition probability is12 in the pure quantum
evolution. In the presence of the dissipation, the noise a
induces such uniform distribution, because the dissipa
we now consider can be regarded as a thermal effect w
very high temperature. As a result, the tunneling probabi
is larger in the presence of the dissipation. We may say
the inequality~33! is a consequence of the special initi
state, because if the initial state is not a diabatic state, e
c(0)5uG(0)&, the inequality~33! is not realized. We expec
that these characteristic relations~32! and ~33! will be veri-
fied in real experiments.

-

b-

d

7-4
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IV. THREE-LEVEL SYSTEM

We here apply our approach to the multilevel system
and investigate the dissipative effect on many levels. For
sake of definiteness, we focus our attention on the prope
of the three-level system, where all diabatic levels form o
one avoided-level crossing point. Because the avoided cr
ing structure is not formed by localized two states, the tr
sition mechanism is very different from the LZ mechanis
Therefore this three-level system will provide much inform
tion about the effects of strong correlation of many leve
This model was first studied by Carroll and Hioe@19#, and
the exact transition probabilities have been obtained.
formulas for the probabilities show some varieties of expr
sions according to the relation between the slopes of diab
states. The generalized arbitraryN-level system for this
model is called the bow-tie model@20#, and the transition
probabilities and characteristic mechanisms of transitions
discussed@33#. Thus this model is quite convenient for com
parison of the transition probabilities in the pure quant
case and the dissipative case. We should also note that
exist some proposals for physical realization of this model
using optical systems@19,34#.

A. Analysis of transition probabilities

We here enumerate exact transition probabilities in
three-level system in the presence of dissipation. The Ha
tonian we consider is written for the diabatic bases,

H~ t !5H0~ t !1(
k

jk~ t !Xk , ~36!

H0~ t !5S 0 G1 G2

G1 v1t 0

G2 0 v2t
D , Xk5S a1

~k! 0 0

0 a2
~k! 0

0 0 a3
~k!
D .

~37!

Here thekth white noise acts on thekth operatorXk . In this
case, the matrix element of the master equation~9! is written
in the following form:

]r l ,m~ t !

]t
52 i @H0~ t ! l ,krk,m~ t !2r l ,k~ t !H0~ t !k,m#

2ḡ l ,mr l ,m~ t !, ~38!

where ḡ l ,m is written using the matrix elements of the o
eratorXk and the amplitude of the noisegk as

ḡ l ,m5(
k

gk

2
~al

~k!2am
~k!!2. ~39!

Thus the differential equations for all matrix elements a
given by

r 0̇0~ t !52 i $G1~r102r01!1G2~r202r02!% , ~40!

r 1̇1~ t !52 iG1~r012r10!, ~41!
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r 2̇2~ t !52 iG2~r022r10!, ~42!

r 0̇1~ t !52 i $G1~r112r00!1G2r212v1tr01%2ḡ01r01,
~43!

r 0̇2~ t !52 i $G2~r222r00!1G1r122v2tr02%2ḡ02r02,
~44!

r 1̇2~ t !52 i $G1r022G2r101~v12v2!tr12%2ḡ12r12.
~45!

Here we confine ourselves to the SD limitḡk,l →` and the
initial condition r01(t0)5r02(t0)5r12(t0)50. In the same
manner as in the two-level case,r12(t) is approximated, ex-
panding by partial integrals as follows:

r12~ t !5expS 2 i
~v12v2!t2

2
2ḡ12t D E

t0

t

du expS i
~v12v2!u2

2

1ḡ12uD @ iG2r10~u!2 iG1r02~u!#

;
iG2r10~ t !2 iG1r02~ t !

i ~v12v2!t1ḡ12
. ~46!

r02(t) andr01(t) are written as

r02~ t !5expS i
v2t2

2
2ḡ02t D E

t0

t

du expS 2 i
v2u2

2
1ḡ02uD

3$2 iG2„r22~u!2r00~u!…2 iG1r12~u!%

;
iG2„r22~ t !2r00~ t !…2 iG1r12~ t !

2 iv2t1ḡ02
, ~47!

r01~ t !5expS i
v1t2

2
2ḡ01t D E

t0

t

du expS 2 i
v1u2

2
1ḡ01uD

3$2 iG1„r11~u!2r00~u!…2 iG2r21~u!%

;
2 iG1„r11~ t !2r00~ t !…2 iG2r21~ t !

2 iv1t1ḡ01
. ~48!

The termsr12(t) andr21(t) in Eqs.~47! and ~48! are negli-
gible because of Eq.~46!. Therefore we can approximat
Eqs.~47! and ~48! as

r02~ t !5S G2

v2
D S 1

t1 i
ḡ02

v2

D @r22~ t !2r00~ t !#, ~49!

r01~ t !5S G1

v1
D S 1

t1 i
ḡ01

v1

D @r11~ t !2r00~ t !#. ~50!

Thus we arrive at the effective master equations defin
c1(t)5r11(t)2r00(t) andc2(t)5r22(t)2r00(t),
7-5
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ċ15
2iG1

2

v1
S 1

t1 i ḡ01/v1
2

1

t2 i ḡ01/v1
D c1

2
iG2

2

v2
S 1

t1 i ḡ02/v2
2

1

t2 i ḡ02/v2
D c2 , ~51!

ċ25
2 iG1

2

v1
S 1

t1 i ḡ01/v1

2
1

t2 i ḡ01/v1
D c1

2
2iG2

2

v2
S 1

t1 i ḡ02/v2
2

1

t2 i ḡ02/v2
D c2 . ~52!

All matrix elementsrk,l (t) are obtained ifr00(t), r11(t),
andr22(t) are calculated as solutions of these effective m
ter equations.

Now let us solve these differential equations. We st
with the parameters that satisfy the special relation

ġ01

uv1u
5

ḡ02

uv2u
5a. ~53!

Here a is always positive sinceḡ01.0 and ḡ02.0. In this
special case, the equations are simplified in the form

d

dt S c1~ t !
c2~ t ! D52 i S 1

t1 ia
2

1

t2 ia D M S c1~ t !
c2~ t ! D , ~54!

where the matrixM is given by

M5S 2a b

a 2bD , a5
G1

2

uv1u
and b5

G2
2

uv2u
. ~55!

The right-hand side of Eq.~54! has the explicit time depen
dence only in the prefacer. Therefore by diagonalizing
matrix M, we can obtain the scattering matrix that conne
c(2`) with c(`). The matrixM has these eigenvaluesl6 ,

l65a1b6Aa21b22ab. ~56!

Using a, b, and these eigenvaluesl6 , the final state and
initial state are connected using the scattering matrixS

S c1~`!

c2~`! D5SS c1~2`!

c2~2`! D , ~57!

S1,15
1

2Aa21b22ab
5@~a2b!~e22pl12e22pl2!

1Aa21b22ab~c22pl11e22pl2!#, ~58!

S1,25
b

2Aa21b22ab
~e22pl12e22pl2!, ~59!

S2,15
a

2Aa21b22ab
~e22pl12e22pl2!, ~60!
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S2,25
1

2Aa21b22ab
@~a2b!~2e22pl11e22pl2!

1Aa21b22ab~e22pl11e22pl2!#. ~61!

Here a does not appear, because it only gives the singu
point in the Cauchy’s integral to yield Eqs.~58!–~61!, which
is the same situation as in the two-level system. Theref
the scattering matrix does not depend on the concrete va
of dissipation strength,ḡ01 andḡ02, as far as these are larg
and the relation~53! is satisfied. We now obtain the prob
abilities for various initial states:

PSD
21~0→0!5

1

3
1

a1b

6Aa21b22ab
~e22pl12e22pl2!

1
e22pl11e22pl2

3
, ~62!

PSD
21~0→1!5PSD

21~1→0!5
1

3
1

22a1b

6Aa21b22ab
~e22pl1

2e22pl2!2
e22pl11e22pl2

6
, ~63!

PSD
21~0→2!5PSD

21~2→0!5
1

3
1

a22b

6Aa21b22ab
~e22pl1

2e22pl2!2
e22pl11e22pl2

6
, ~64!

PSD
21~1→0!5PSD

21~0→1!5
1

3
1

22a1b

6Aa21b22ab
~e22pl1

2e22pl2!2
e22pl11e22pl2

6
, ~65!

PSD
21~1→1!5

1

3
1

a22b

6Aa21b22ab
~e22pl12e22pl2!

1
e22pl11e22pl2

3
, ~66!

PSD
21~1→2!5PSD

21~2→1!5
1

3
1

a1b

6Aa21b22ab
~e22pl1

2e22pl2!2
e22pl11e22pl2

6
, ~67!

PSD
21~2→2!5

1

3
1

22a1b

6Aa21b22ab
~e22pl12e22pl2!

2
e22pl11e22pl2

3
. ~68!
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FIG. 2. Comparison of the numerical calculation with theories for various sets of$ḡ i j %. Data are plotted as a function ofv. Points are
numerical data, and the lines ofPSD

21 andPLZ
21 ~see Table I! are theoretical values.~a! (a1 ,a2)5(1,20.5), ~b! ~1,0.5!, ~c! ~0.5,1!.
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In the adiabatic limitv1→10 andv2→10, all probabili-
ties converge to 1/3 due to the strong effect of dissipation
shown numerically in the following section, these formul
are always valid even when relation~53! is not satisfied. That
is, the probabilities are little affected by the variation of t
strength of dissipationḡ01, ḡ012, andḡ12.

B. Numerical investigation

We numerically integrate Eq.~38! and compare with the
asymptotically exact transition probabilities obtained abo
for various parameter values. We write the slopes of the
abatic statesv1 andv2 using parameterv,

v15a1v, ~69!

v25a2v. ~70!

Dimensionless parametersa1 anda2 give the ratio ofv1 to
v2 and determine the level structure. We consider three ty
of level structures, namely,~a! a1a2,0, ~b! a1.a2.0, and
03340
s
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~c! a2.a1.0. In Fig. 2, the transition probabilities
PSD

21(0→ j ) ( j 50,1,2) are shown for these cases. The pro
abilities are plotted as a function of the parameterv for the
parameters G150.1, G250.2, and various sets o
(ḡ01,ḡ02,g12). Here the sets of (a1 ,a2) are taken as~1,
20.5! for Fig. 2~a!, ~1,0.5! for Fig. 2~b!, and~0.5,1! for Fig.
2~c!, respectively. The lines are theoretical values for the
limit PSD

21(0→ j ) given by Eqs.~62!–~68! and the probabili-
ties for pure quantum casePLZ

21(0→ j ), which are already
obtained by Carroll and Hioe@19#. The analytical solutions
of probabilities in the pure quantum case are listed in Tabl
As can be seen in these figures, we can see good agree
between the numerical data and theories, Eqs.~62!–~68!. We
find little dependence on the variety of (ḡ01,ḡ02,ḡ12), that
is, the formulas~62!–~68! are valid even if the relation~53!
is not satisfied, as long as the dissipation is very strong. T
was also confirmed forPSD

21(1→ j ) andPSD
21(2→ j ).

As seen in Table I, the analytical expressions in the p
quantum casePLZ

21(0→ j ) show some variations accordin
to the relations ofv1 and v2 . On the other hand, the prob
TABLE I. The transition probabilities for quantum case. HereP5exp(2pP1
2/v1) andQ5exp(2pP2

2/v2).

PC
21(0→0) PC

21(0→1) PC
21(0→2) PC

21(1→1) PC
21(1→2) PC

21(2→2)

v1v2,0 (12P2Q)2 (12P)(P1Q) (12Q)(P1Q) P2 (12P)(12Q) Q2

uv1u.uv2u,v1v2.0 P2Q2 (12P)(11PQ) P(12Q)(11PQ) P2 P(12P)(12Q) (12P1PQ)2

uv2u.uv1u,v1v2.0 P2Q2 Q(12P)(11PQ) (12Q)(11PQ) (12Q1PQ)2 Q(12P)(12Q) Q2
7-7
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abilities in the dissipative case~62!–~68! do not depend on
such level structures. For instance, in cases of Figs. 2~a! and
2~b!, where the sweeping velocities are (v1 ,v2)5(v,
20.5v) and (v1 ,v2)5(v,0.5v), respectively, each probabi
ity PSD

21( i→ j ) for both the cases completely agrees with t
other because formulas~62!–~68! have the same values fo
different (v1 ,v2) with the same absolute values. However
the pure quantum case, the probabilitiesPLZ

21( i→ j ) are dif-
ferent between these cases as found in Table I. This
remarkable contrast between the dissipative case and
pure quantum case.

In the slow-sweeping regionv!1, the deviation ofPSD
21

from PLZ
21 is large. In the fast-sweeping regionv@1, PSD

21

asymptotically converges to the behavior ofPLZ
21 . This

means that the system is little affected from dissipation
fast sweeping because the time that the system stays ar
the avoided-level crossing point is very short. This is t
same behavior as found in the two-level system in@28#.

V. SUMMARY

In two- and three-level systems, we derived the effect
master equations, which well describe time evolution of
system in the SD limit. Thereby we obtained analytical tra
sition probabilities. The effective master-equation appro
is quite useful because the differential equation of the s
tem’s variable becomes very simple. This approach will
applicable in the other systems whose exact transition p
abilities can be analytically enumerated in the pure quan
case.

In the two-level system, we consider the two cases wh
the external field is swept from a large negative field a
from zero field. Both situations are easily realized in re
experiments. We hope that the exact relations~32! and ~33!
are confirmed in real experiments using the classical opt
system@7# and the Cooper pair@35#, and so on.

The transition time in the two-level systems has been
cussed in the literature@28,36,43# when the external field is
reversed from large negative field. According to Vitanov
definition @43#, the transition timest tr is written as

t tr[
r22~`!

r228 ~0!
5

c1~`!

c18~0!
~71!

under the initial condition ofr11(2`)51. Vitanov derived
the exact expression of transition timetLZ

tr in the pure quan-
tum case as follows:

tLZ
tr 5

A12e2pG2/v

~G/v !cos~x!
, ~72!

x5
p

4
1argGS 1

2
2

iG2

4v D2argGS 12
iG2

4v D , ~73!

whereG(x) is the gamma function. Equation~73! converges
to
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tLZ
tr →HA2p

v
¯

G2

v
!1

2
G

v
¯

G2

v
@1.

~74!

This asymptotic behavior agrees with that in the earlier st
ies @28,36#. On the other hand, the transition time of dissip
tive casetSD

tr is readily written for the definition~71!,

tSD
tr 5

G2

g
expS 2

pG2

2v D . ~75!

This means that the transition time decreases asO(1/g) with
the increase ofg. In the three-level system, the analytic
expressions~62!–~68! are the solutions under the conditio
~53!. However these solutions are valid beyond the condit
~53! as shown in the numerical calculation. According
Carroll and Hioe’s analytical solution~Table I!, the pure
quantum transition probabilities show some variations
pending on the level structures. However, the probabilities
the dissipative case do not show such dependences. It i
teresting to confirm experimentally this thermal effect, b
cause the three-level system we consider can be realized
perimentally@19,34#.

Equation ~9! is derived under the condition where th
noise affects the system only through the diabatic states
case of the off-diagonal coupling, i.e.,Xl 5sx, we also de-
rived a similar master equation. In this case, we can ea
show that in the strong-damping limit, all the transition pro
abilities become uniform regardless of the initial conditi
@25,38#. Thus the transition probability is affected by th
coupling form with the thermal environment. Therefore it
also interesting to consider the transition probabilities
various coupling forms with finiteg.
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APPENDIX A

The same type of master equation as Eq.~A9! is derived
in the case where the system of interest couples with
phonon bath through the diabatic states as follows@39#:

Htot5H~ t !1l(
l

Xl (
v

ga~bv
~ l !†

1bv
~ l !!1(

l ,v
vbv

~ l !†
bv

~ l ! ,

~A1!

whereH(t) denotes the system Hamiltonian of interest a
Xl is thel th operator that interacts with the phonon syste
We assume the computability between the coupling opera

Xl , i.e., @Xl ,Xl #50. The operatorsbv
(l )†

andbv
(l ) are the
7-8
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phonon creation and annihilation operators which inter
with the system through thel th coupling operatorXl .

We use the projection-operator technique to trace out
reservoir’s degree of freedom@40# and assume that the co
relation between the reservoir’s variables is short lived. Th
we obtain the master equation for the system in the sec
order of coupling strengthl @41,42#,

]

]t
r~ t !5

1

i\
@H,r~ t !#2l2(

l
G l r~ t !, ~A2!

whereG l r(t) is given by

G l r~ t !5
1

\2 E
0

`

dt8E
2`

`

dveivt8F l ~v!$Xl Xl ~2t8!r~ t !

2eb\vXl r~ t !Xl ~2t8!1eb\vr~ t !Xl ~2t8!Xl

2Xl ~2t8!r~ t !Xl %. ~A3!

HereXl (2t8) means the Heisenberg operator at time2t8,

Xl ~2t8!5exp←S 2
i

h E2t8

0

duH~u! DX

3exp→S i

h E2t8

0

duH~u! D . ~A4!

In case of the phonon reservoir described in Eq.~A1!, F~v!
is given by

f l ~v!5\
I l ~v!2I l ~2v!

eb\v21
, ~A5!

whereb is an inverse temperature 1/T. I l (v) is called the
spectral density.

We restrict ourselves to the case of the Ohmic spectru

I l ~v!5I l v ~A6!

and high temperature

T@1. ~A7!

In this case, by using the fact that

F l ~v!→\I l T, ~A8!

the master equation~A2! is reduced to the simple form

]

]t
r~ t !5

1

i\
@H,r~ t !#2l2T(

l
I l †Xl ,@Xl ,r~ t !#‡.

~A9!

Although Eq. ~A3! derived by the projection-operator ap
proach is an approximation because higher-order termsl
are neglected and the fast relaxation of the reservoir is
sumed to make the equation Markovian, it can well descr
the features of evolution of the system, especially in cas
high temperature.
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APPENDIX B

In this appendix, the transition probabilities~31! are de-
rived. We start with the Hamiltonian

H~ t !5
h

2
~Gsx2vtsz!. ~B1!

We consider the Schro¨dinger equation

i\
]

]t
C~ t !5

\

2
~Gsx2vtsz!C~ t !. ~B2!

Equation~B2! is concretely written defining the compone
similar to C(t)5„x1(t),x2(t)…†,

i ẋ1~ t !5
vt

2
x1~ t !1

G

2
x2~ t !, ~B3!

i ẋ2~ t !5
G

2
x1~ t !2

vt

2
x2~ t !. ~B4!

Now we transform the variables to the following ones:

tªt2, ~B5!

y1~t!ª
x1~ t !

t
, ~B6!

y2~t!ªx2~ t !, ~B7!

then we obtain the equation

2i t
d

dt
y11S i 2

vt

2 D y12
G

2
y250, ~B8!

2i
d

dt
y21

v
2

y22
G

2
y150. ~B9!

Here we used the relationd/dt52td/dt. By using the
Laplace transformation@44# defined as

yk~t!5E
Cj

dj x̃k~j!ejt, ~B10!

we obtain the integral representation forx1(t) andx2(t) after
straightforward calculation,

x1~ t !5AtE
Cj

djS j1 i
v
4D 21/21 iG2/dvS j2 i

v
4D 2 iG2/8v

ejt2,

~B11!

x2~ t !5AS 2 i
G

4 D E
Cj

djS j1 i
v
4D 21/21 iG2/8v

3S j2 i
v
4D 212 iG2/8v

ejt2. ~B12!

Here the integral counter must satisfy the following con
tion:
7-9



r

th

-

ner

is

e,
he

as

our

n-
y

KEIJI SAITO AND YOSUKE KAYANUMA PHYSICAL REVIEW A 65 033407
F S 2i j2
v
2D x̃1~j!ejtG

Cj

50. ~B13!

For the variablesj5ujueif, t5utueiu, we choose the counte
with the condition

f12u53p ~B14!

for large uju noting the relationjt5ujuutuei (f12u). When the
initial time is t5(`)eip and the final time ist5(`)ei0, the
phase off varies fromp to 3p from the relation~B14!. We
now consider the initial condition as

x1~2`!51. ~B15!

This condition is realized in the contour that encircles
singular pointj52 iv/4 and by choosing the constantA as

A5epG2/16vY È ~01 !

du~2u!21/21 iG2/8ve2u. ~B16!

Thus the wave function att5` is calculated by using ana
lytical continuation following the condition~B14!, i.e., p
→f→3p @44#. Thus revival probability is calculated as

x1~ utuei0!5x1~ utueip!expS 2
pG2

4v D ~ utu→`!.

~B17!
r,

A

nd

p

03340
e

This means nothing but the relation of the Landau-Ze
transition.

Next we consider the case where the external field
swept from zero value@19,37#, that is, u50 and 10→utu
→`. In order to derive the survival probability in this cas
we first note the time symmetry that the probability is of t
same value as that obtained when the initial time is taken
t52` ~the external value52`! and the final time is
t520 ~the external value520!. We consider the latter
case (2`→t→20) because we can use the same cont
as the previous case@Eq. ~B17!#, which satisfies the initial
condition ~B15!. We can readily write the integral represe
tation of thex1(20) and obtain the transition probabilit
PC

01 ,

x1~20!5Autu È ~01 !

~2x!21/21 iG2/8vS 2x2 i
v
2D 2 iG2/8v

3e2x2 iv/4utu2

5A~11epG2/4v!E
0

`

duu21/2e2u

5A11epG2/4v

2
.
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