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Flogquet scattering and classical-quantum correspondence in strong time-periodic fields
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We study the scattering of an electron from a one-dimensional inverted Gaussian atomic potential in the
presence of strong time-periodic electric fields. Using Floquet theory, we construct the Floquet scattering
matrix in the Kramers-Henneberger frame. We compute the transmission coefficients as a function of electron
incident energy and find that they display asymmetric Fano resonances due to the electron interaction with the
driving field. We find that the Fano resonances are associated with zero-pole pairs of the Floquet scattering
matrix in the complex energy plane. Another way we “probe” the complex spectrum of the system is by
computing the Wigner-Smith delay times. Finally, we find that the eigenphases of the Floquet scattering matrix
undergo a number of “avoided crossings” as a function of electron Floquet energy, and this number increases
with increasing strength of the driving field. These “avoided crossings” appear to be quantum manifestations
of the destruction of the constants of motion and the onset of chaos in classical phase space.
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[. INTRODUCTION a short-range atomic potential in the presence of a strong
time-periodic electric field. The atomic potential we consider
The development of ultrahigh-intensity lasers has led tds the one-dimensional inverted Gaussian potential, a model
the study of atoms in external time-periodic electric fieldsthat has already offered interesting insights into different as-
that are comparable in strength to the electric fields produceBECts Of the laser-atom interactiofif0—13. Our goal is to

by the atomic nucleus. One of the most interesting phenomgonStrUCt the Floquet scattering matri& atrix) using the

ena observed in these time-periodic systems is the stabiliz:%—JII Floguet theory formulated in the KH frame for a strongly

tion with increasing laser intensity that was predicted theo- riven atomic system. A Floquet scattering matrix has been
: o . constructed by Li and ReicHl14] for periodically driven
retically [1._3] and hgs been V‘?”f'ed _experlment'at]ms]. . mesoscopic systems. The Floq&eatrix connects the out-
In previous studles,_ one-dimensional atomic potentlalsg ing propagating modes to the incoming propagating modes
have been used to predict several phenomena in the theory ﬁd is a unitary matrix that conserves probability. We con-

laser-atom interactions at high laser intensities. Many ok ct the Floques matrix in the KH frame, where we can
these studies were carried out in the context of Floque}efine asymptotic states.

theory formulated in the Kramers-HennebergéH) frame In Sec. II, we construct the Floqu& matrix in the KH

of referenCd6,7], which oscillates with a free electron in the frame. In Sec. Il A, we compute the transmission coeffi-
time-periodic field. Gavrila and Kaminskil] developed a cients and the poles of the Floqutmatrix and find the
nonperturbative method to study electron scattering in th%uasibound states of the atomic system. In Sec. IlIB, we
presence of strong time-periodic electric fields. Using threecompute the Wigner-Smith delay times of the scattered elec-
dimensional models, Dimou and Fai$8] as well as Collins  tron as a function of the electron incident energy and show
and CsanaK8] have studied resonances in laser-assisteghat the Wigner-Smith delay times of the scattered electron
scattering. Bhatt, Piraux, and Burn¢g, in their work on  due to the presence of the quasibound states are of the same
electron scattering from a polarization potential in the presprder of magnitude as the lifetimes obtained from the poles
ence of strong monochromatic light, argued the appearancst the FloquetS matrix. We finish, in Sec. Ill C, with a quite

of new light-induced quasibound stat@ssonancesas the interesting observation. When plotting the eigenphases of the
field strength is increased. The same phenomenon was latghitary FloquetS matrix as a function of the electron’s Flo-
also observed by Bardsley and Comdlll0] and Yao and  quet energy we find that at certain energies the eigenphases
Chu[11], who used the complex coordinate scaling transforyndergo “avoided crossings” that change the eigenphases
mation to compute the complex quasibound states in theigharacter completely. We find that the number of “avoided
study of photodetachment from a one-dimensional Gaussiagrossings” increases with increasing strength of the time-
potential. In addition, the same atomic potential was used byeriodic electric field. The “avoided crossings” observed as
Marinescu and Gavrilfl2] to compare the predictions of the the strength of the driving field is increased appear to be
full Floguet theory with those of the high-frequency Floquetquantum manifestations of the destruction of the

theory (HFFT), using resonancéSieger} boundary condi-  Kolmogorov-Arnold-MosefKAM) surfaces and the onset of
tions.(The HFFT theory is a version of the Floquet approachchaos in the classical phase space.

adapted to treat the high-frequency limiRecently, Timber-

lake and Reich[13], using the inverted Gaussian potential, Il. THE FLOQUET S MATRIX

studied the phase-space picture of resonance creation and

they showed that the light-induced quasibound states are

scarred on unstable periodic orbits of the classical motion.  We study the scattering of an electron in the presence of a
In this paper, we study the scattering of an electron fronstrong electric field and a short-range atomic potential. The

A. The model
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electric fieldE(t) =E, sin(wt)(T=2n/w is the period of the 0.1
field) is treated within the dipole approximation as a mono-
chromatic infinite plane wave linearly polarized along the l
direction of the incident electron. The ScHioger equation, i"
in one space dimension that describes the dynamics of the
system is in atomic unit&.u)

1 2

2T i L _aam | +veolwoxn, a 0t
I—— =5 Tl TaAl) (x) [T (x,1), (1)
whereV(x) is the inverted Gaussian potential,
-8 _
V(x)= = Voe~”, 2 ’ ’ e
a.u.

and q is the particle charge which for the electrondgs
—1 a.u. The electric field i (t) = — dA(t)/dt, whereA(t)
is the vector potential and is given by

FIG. 1. The Fourier component4,(aq;x)/i" (a.u.) of the in-
verted Gaussian potential as a function of the one space dimension
x(a.u.) in the KH frame, fory=2.25 a.u.

A(t)= Ecoi ot). ©) In Eq. (6), the potential is a periodic function of time, that
® is V(x+a(t))=V(x+a(t+T)). Thus, according to the Flo-

We use atomic unitsg=A=m=1) throughout this paper quet theoren15], Eq. (6) has solutions of the form

except when otherwise indicated. D (x,t)=e Epo(x,t), (8)
To construct the Floqued matrix of the system, we trans-

form to the KH framd6,7]. In the KH frame there are well- where€& is the Floquet energf e[0,w), and ¢¢(x,t) is a

defined asymptotic regions and the boundary conditions arperiodic function of timegg (x,t) = ¢¢(X,t+T). Taking the

expressed in terms of free electron waves. To obtain th&ourier expansion of(x,t), we obtain

wave function in the KH frame, we introduce the unitary

transformatiorn6,7] =

Ds(x,H)=e"" X py(x)e ", ©)
D (x,1)=U,U,¥(x,t), (4) T
wheren indicates the Floquet channel. Note thai(x) is
also £ dependent, but we omit th& subscript to simplify
ig? [t notation. The energ¥ of an incident electron in the KH
U1=exp( 7[ Az(t’)dt’) frame is related to the Floquet energy through the expression
* E=&+nw. Next, we Fourier analyze the potential

where

and +os
t 5 Vix+a(t)= 2 Vn(agx)e ', (10
U2=exp( —qf_wA(t’)adt’). (5)

U, is a phase transformation to remove #eterm from Eq.
(1) while U, is a space-translation transformation to the KH 1 (2 ‘
frame. In the KH frame, the wave function satisfies the fol- V,(ay;x)= 2—f V(x+a(t))e'd(wt)
lowing Schralinger equation: mJo

where the Fourier components for the inverted Gaussian po-
tential, Eq.(2), can be written as

infm 252
. =—\/,— cog nwt e—(X+aOCOS(wt)) /‘Sd t),
i =| — > —+V(x+a(t)) O?Tfo {not) (wt)
at 2 92

D (x,1) ( 1 &2
= d(x,1), (6)

(11
wherea(t) is the classical displacement of a free electron ) )
from its center of oscillation in the time-periodic fiek(t), ~ S€€ Fig. 1. To be able to construct the FlogBenatrix, the
and is given by Fourier component¥  (ay;x) must be smooth functions in
the one space dimensionin the KH frame. This is indeed

t ) the case for the inverted Gaussian potential, @d). Note
a(t)= —qf_wA(t’)dt’ =apsin(wt) that in the KH frame, the potential oscillates back and forth
along thex axis (laterally) with the period of the external
with field.
From Eq.(11), we see that the components(ag;x) of
ap=—qEy/w?. (7)  the atomic potential in the limix— * tend to zero faster
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FIG. 2. Not drawn to scale, are shown in the KH

PHYSICAL REVIEW A65 033405

wherel is the unitNx N matrix, ¢ (x) is theNx 1 matrix
with elementsd;L'(x): dn(x) andM(x) is anNX N matrix
with elements

Mn1(X)=2[Vqp_i(ag;X) — 6n(E+Nw)], (14)
where 6, is the Kronecker delta andn,l=
—Ng, ...,0,...n,. The general solution of the second-

orderN-coupled differential equations, E(L3), can be writ-
ten as a linear combination of\2linearly independent col-
umnsy;(x), with j=1, ... N, as follows,
@' (X)=C1x1(X) +Coxa(X) + - - - + Cyxn(X) + dixn+1(X)
+daoxn+2(X) + - - +Hdyxen(X)

=X D(x)C+X @(x)D, (15

where X M)(x) and X ?(x) are NXN matrices whose ele-

frame, the asymptotic regions ke[xo,+<)(a.u) and ments are functions of the one space dimensi@mdC, D

Xe (=2, ~Xp](a.u.), where the potential is asymptotically zero, oo ongtanhix 1 matrices. Each of the linearly independent
and the scattering region Il, where the inverted Gaussian pmemi%olumnsx-(x) satisfies Eq(13)
i

oscillates laterally. In regions | and Ill, we also show the Floquet
channels, denoted by dotted lines, and the incoming and outgoing

. 2 2
electron waves, denoted by solid arrows.

|&X1(X) =MX) x;(x)= §Xn,j(x)

than 1k and we can thus divide the one space dimengiion
three regions: the asymptotic regionsck [ Xq,%), and lll,
xe (—o,—Xq], where the potential is asymptotically zero;
and the scattering region ke[ —Xg,Xo], Where the poten-
tial V(x+a(t)) is not zero, see Fig. 2. In the rest of this wheren=—n,, ...,0,... n, andj=1,...,MN. The func-
paper, for brevity, we refer to the potential in asymptotiCtions y, :(x) can be found analytically if the matrix elements
regions | and Il as being zero instead of asymptotically zerogf v(x) are constant. From Eq15), it follows that every
The choice ofx, depends on the value of the parametgr  channel functiong!! (x) can be written as a linear combina-
The largeraq is, the further out we have to define the (o of oN functionsx,, ;(x) and thus, the wave function in
asymptotic regions | and Iil. the scattering region Il is given by

Mp
= 2 My (0,9, (16)

N

Np
q)lf,‘l(xat): E 21 [Xn,m(x)cm

n=-ng m=

B. Floquet solution in the scattering region Il

Substituting Eqs(9) and (10) into Eq. (6), we obtain an
infinite system of coupled differential equatioff§ for the

Floguet components, (x), + Xnnim(X)dple” e inet,

17

2

— = —— () +[Vo(ag:X) — (E+Nw) ] dn(X) C. Floquet solution in the asymptotic regions
2 dx2 ' . .
dx In the asymptotic regions | and Ill, the potentisl(x
+ «(t)) is zero. Thus, we can consider as our boundary con-
ditions a superposition of incoming and outgoing free-
electron waves in thé&l truncated Floquet channels that are

incident from both sides of the scattering region,

Next, we truncate to a finite number of Floquet channels and n
taken, andn;, to be the lower and upper limit of the Floquet DLx,1)= > bl (x)e Ietginut

2 Vai(@)¢i(x)=0.

I#n

(12

channels considered. That is=-ne,...,0,...n, and n=-—ne
the total number of Floquet channels is given Ny=ng N o
+n,+ 1. After truncating, Eq(12) can be cast in the follow- _ i bm“e " a-iflg-inot
ing matrix form: nn, " \/k—n
n —ikpx
d2 p e Kn » o
il — 1l + bln_e Igte Inwt, (18)
5" 00=M(0)¢'(x), (13 DI
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" Mp " efknXo e~ iknXo
1) X, t)= X e*igte*inwt ik bOUt —ik bin_
& ( ) n;ne d’n ( ) n¥n \/k—n n~n \/k_n
Mp —ikpx _ N
= 2 apli——=e e ! = 2 [Xhm(%0)Cat Xhnsm(Xo)dm],  (21)
n=-—ng \/k_n m=1
Np ik X ’ _ ,
el . where Xnm(X)=dxn m(x)/dx and X (x)
—i&t~—inwt n,m n,m n,N+m
+n2n an=e e " (19 gy i m(X)/dx, while atx=—x, they lead to
e n
in in out out BR R eiknxo i e—iknxo
whereb,', a, andb,, a; are the probability ampli- adut +a
tudes of the incoming and outgoing electron waves, respec- \/k_n \/k—n

tively, that are incident in theth Floquet channel with en-
ergy E=&+nw, see Fig. 2. Propagating modes are incident
on the Flogquet channets=0, . . . n, and have wave vectors
k,=+V2(E+nw), while evanescent modes occupy the Flo-
qguet channel®i=—n,, ...,—1 and have imaginary wave
vectorsk,=iy2|£+nw|. The current density of the evanes- eiknXo e iknXo
cent modes is zero. We note that the terms propagating/ —ik,ad" +ikpay ——
evanescent modes correspond to what some authors refer to \/—n \/k_n
as open/closed channels, respectively. For the Flogues-
trix to be unitary we need to normalize the current density of
the propagating modes. To do so, we have introduced the
constants 4k, in the wave function in Eqg(18) and (19). 23
To simplify notation in Eqs(18) and (19), we introduce the
constants ];/k—n for the evanescent modes as well, even Due to the connection conditions Eq0), (21), (22),
though they have zero current density. and(23) only 2N out of the 6N coefficients are arbitrary and

It is important to note, once again, that the reason weve choose those to be the incoming probability amplitudes
choose to work in the KH frame is that in this frame we cana'” andb™. In Egs.(20), (21), (22), and(23), the probability
define asymptotic regions where the potential is zero andmplitudesa™ and b'" of the evanescent modes are zero
thus, the Floquet channels are not coupled, in contrast withecause of the unbounded character of the exponentials they
the scattering region, as we have already shown. The exignaultiply in the asymptotic regions | and Ill. That is,
tence of the asymptotic regions guarantees that probability i§'n"=a'n“:o, forn=—n,, ...,—1. We now introduce the
conserved in the truncated number of Floquet channels andx N matrices
thus the Floque® matrix is a unitary matrix.

N
:mzzl [Xn,m(_XO)Cm+Xn,N+m(_X0)dm]y

(22

N
= 2, [Xnml = X0) o X, ml = Xo0) ]

D. Flogquet S matrix (Ki)”":etiknxogn" o (Kon= iik”eiiknxoan" '

The FloguetS matrix connects the outgoing propagating nl=-ng,...,0,...np, (24)
modes with the incoming propagating modes, and in this
section we show how to construct it. As we show in what 0, if n#l and if n=l=-ng,...,—1,
follows, the FloquetS matrix connects channels with ener- nl = 1, if n=1=0,...n,,
gies that differ by an integer multiple ef, while in the usual (25)

time-independent scattering theory tlematrix connects

channels with the same energy. The reason is that the Floqu@'ﬂd

S matrix describes a time-dependent process and thus the

energy of the incident electron is not conserved. However, N :i

because the Hamiltonian is time periodic, according to Flo- n \/k_n

quet theony[15], the Floquet energy defined modulaw is a

conserved quantity. Also XP=XD(x£x,), XP=x@(xx,), XV =x@
The wave function and _|ts first spatial der|\./at|ve.must be(txo), XG),EX(Z)’(iXO), Wherex(l)'(x) and X(Z)'(x)

continuous at the boundaries of the asymptotic regibms. =

At X=X, these conditions lead to

Onts NI=—ng,....0,...n,. (26

are the derivatives of (Y)(x) andX ®)(x) with respect to the
one space dimension We also introduce thBl X 1 matrices

ko g ikn%o AQUt=gout BOUt=poUt A‘n”=§1in”, B‘n”_=bin”. Next, we write
bout i +b o Egs.(20), (21), (22) and(23) in matrix form as follows:
k K :
i " NK. B+ MK _JBN=XVc+x @D,  (27)
:mzl [Xn,m(XO)Cm+Xn,N+m(XO)dm]a (20 A/‘K; Bout+M</_JBin:X(_E.)’C+X(+2)’D’ (28)

033405-4



FLOQUET SCATTERING AND CLASSICAL-QUANTUM.. .. PHYSICAL REVIEW A65 033405

5
k=]

NK, AU MK _JAN =X P+ X @p, (29) , ,
[|Rn’,n| +|Tn’,n| 1=1, (33
n"=0

— NK, AU AK JAN=XD'c+X@'D. (30

for every incident propagating mode=0,...n,. The

pter gebra given n Appendix A we find he Floqust 21 1S3, (ST DORRETIS (O D O oy
going p y amp Also, the FloquetS matrix we construct in the KH frame is

the propagating modes to the incoming probability ampli-. ; . L
tudes of the propagating modes, to be isospectral with the corresponding matrix in the Lab frame

since a unitary transformation is used to transform from the
—1, L1 Lab to the KH frame, see Sec. Il A. Finally, the criterion we
_ Npp op/Vop Npptpp-'\/pp use to successfully truncate kbFloquet channels is that an
N,Zplt,’)p.'\/pp N‘;plrpp/\/pp electron wave incident on the last propagating Floquet chan-
R T
T R

out
Ap

out
BP

in
Ap
in
BP

_ ) neln=n, is not affected by the scattering potential. That is,
Ay s Ay a1 the transmission coefficier11Tnp,np|2 should be equal to one
Bip“ - Bip” ' (8D as a function of electron incident energ{E=£+n,w) as

we discuss in more detalil in Sec. 11l B.

where theny+1XxXny,+1 (n,+1 is the number of the
propagating modgsnatricesr,,, Iy, t,,, andt,, defined in
Egs. (A7) and (A8) of Appendix A connect propagating T i ] )
mode effect as is shown in Appendix A. Also thg+1x 1 the KH frame, Eq(6), is invariant under the transformation
matricesAip” Agut Bipn and Bgut have elements the ampli- X— ~X andt—t+T/2, which is known as generalized par-
tudes of the propagating modes and are defined in(&g). - Thus, H(x,t)=H(—x,t+T/2) and, therefored(—x,t

of Appendix A, and then,+1xn,+1 matrix N/, has ele- +T/_2) is also a solution of Eq(6). Applying the_tr_ansfor-
ments the normalization constants of the propagating modd@ationx— —x andt—t+T/2 to Eqs(18) and(19) it is easy
and is defined in EqA9) of Appendix A. The matrice&’, to show that the Floqued matrix has the following symme-
R, T’, andT have dimensions,+1xn,+1 and their ele- try:
ments are given in terms of the elements ofttp,ge, Mops t;;p
andt,, matrices as follows:

, k ’ , k ! W|th
Rn’,n: \Ik_r:](rpp)n’,n: Rn/,n: \ k_r;(rpp)n/,ny

, Knr | Ky
Tn/,n: k_n(tpp)n’,na Tn’,n: k_n(tpp)n’,nr (32
Thus, if we know the reflection/transmission amplitudes,

withn’.n=0. ... n.. Ry n/Ty n for electron waves incident from the right using
In Appendix B, we show how to obtain numerically the Eqgs.(34), we can find the reflection/transmission amplitudes,

matricesr,, andt,,. The FloguetS matrix has dimensions R\ o/ Thr o for electron waves incident from the left and vice
2(np+1)x2(n,+1), see Eq(31), and is determined by the Versa.
reflection and transmission amplitudé, , Ry o, T,
andT, ,, of the propagating modes. The elemejRs: ,|?
and|T, ,|? are the reflection and transmission coefficients, Il RESULTS
respectively, for an electron wave incident on the propagat- |n this section, the calculations are performed with the
ing channeh from the right that gets scattered to the propa-yaluesV,=0.27035 a.u. and=2 a.u. assigned to the pa-
gating channeh’, while the element$R/, ||* and|T/, [*  rameters of the inverted Gaussian potential. For these param-
are the reflection and transmission coefficients, respectivelgters the Gaussian potential supports only one bound state of
for an electron wave incident on the propagating chamnel energyE,=—0.1327 a.u. in the field-free case. The param-
from the left that gets scattered to the propagating channeadtersV, and § were chosen so as to describe the behavior of
n'. a one-dimensional model negative chlorine ion” @h the

In this section, we have shown how to construct the Flopresence of a laser field, and are the same as considered in
guetS matrix in the KH frame. The reason we work in the Refs.[11,12,18. The frequency of the time-periodic field is
KH frame is that we can define asymptotic regions where théaken constant and equal &=0.236 a.u. for all our calcu-
wave function is a superposition of free electron waves. Thalkations. For these values of the parameiéss 5, andw the
guarantees that the truncated Flog&ematrix is a unitary inverted Gaussian potential has been shown to exhibit stabi-
matrix, that is, the following condition is satisfied: lization [11,12.

E. Symmetries of the FloquetS matrix

Ry p=Ran(=D" " T}, =Toa(—=1" ",

n’,n_

n,n=0,...0Nn,. (34
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1t 1
Tn Ttot,n
a) b)
05 1 0.5
0 . : : 0 ' . : :
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
E (a.u.) E (a.u)

FIG. 3. The transmission coefficierity and Ty, ,, respectively, as a function of electron incident enefgyvith E<[0,2w) a.u., for
ao=0.5 a.u. There is only one Fano transmission resonanEe=&.106 a.u., associated with the first quasibound state.

A. Transmission resonances merical results presented in Secs. Il A and Sec. Il B iare
In this section, we compute the transmission coefficient= 6, ---,0,...,6 for ¢p=0.5, n=-12,...,0,...,12
T, and the total transmission coefficieft, , as a function ~for @=2.25 andn=-19,....0, ...,19 fora=5.25, for
of the electron incident energy, where reasons we discuss in detail at the end of Sec. I B.

The transmission coefficients, and Ty, , display sharp
asymmetric resonances, as a function of electron incident
energyE, that involve a dip or a transmission peak/dip as is
shown in Figs. 3, 4, and 5. These asymmetric resonances are

Ee[no,(n+1)), (35) due to the interaction of the incident electron wave with the
laterally oscillating potential in the KH frame and are the
with n=0,1. Thus, we consider an electron wave incidentS0-called Fan¢17,18 type transmission resonances that are
from the right with energy e [0,2w) and compute the trans- Known to occur when a bound state is coupled to a con-
mission coefficients. Keeping the frequency of the time pe.tinuum of states. This is indeed the case for the Scattering
riodic field constantw=0.236 a.u., and varying the strength model we consider, where the bound state of the inverted
of the driving field,a,, we plot the transmission coefficients Gaussian potential is coupled to a continuum of states
T, andTyo. in Figs. 3, 4, and 5 fory, equal to 0.5, 2.25, through the time periodic electric field. Note in Figs. 3, 4,
and 5.25, respectively. The frequency of the driving field and 5 that the difference between the transmission coefficient
=0.236 a.u. is chosen so that it is larger than the bindindg, and Ty, becomes more prominent with increasiag.
energy of the ground stat&,|=|—0.1327 a.u. in the field- The reason is that as, is increased more Floquet channels
free case. The Floguet channels we retain to obtain the nunterfere with the incident electron wave and significantly

"p

Toa(E)=ITonl?  Tiotn(E)= 2 [Toral?
n’=0

1 ; - ; ; 1
Tn 7;0f,n
a) b)
0.5} 1 0.5
0 , . : : 0 , . . :
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
E(a.u.) E(a.u.)

FIG. 4. The transmission coefficieritg and T, ,, respectively, as a function of electron incident enefgyvith E<[0,2w) a.u., for
ap=2.25 a.u. There are two Fano transmission resonanc&-=dt142 a.u. ance=0.225 a.u., associated with the first and second
quasibound states, respectively. The second-order Fano transmission resonakcee fare more prominent than those feg=0.5 a.u.
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T T T T 1 . .
0.6t .
T T W
n a) fot,n b)
0.4}
0.5¢
0.2}
0 1 1 1 1 0 1 1 1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
E(a.u.) E(a.u.)

FIG. 5. The transmission coefficients, and T,,;, as a function of electron incident enerdy with E<[0,2w) a.u., for ag
=5.25 a.u. There are two Fano transmission resonanceés-8t185 a.u. an€€=0.219 a.u., associated with the first and second quasi-
bound states, respectively. The second-order Fano transmission resonarieesdsf@re more prominent than those fep=2.25 a.u.

contribute to the total transmission coefficient. A comparison The lifetime 7, of the quasibound states is determined
of Fig. 3 with Figs. 4 and 5 reveals that as the driving field isfrom the imaginary part of the complex energy, E)(
increased, the higher-order resonances, Hofrw, become  where the pole is found. Then
stronger.
We now focus on the transmission coeffici@ijtand dis-
cuss how it “probes” the quasibound states of the system. 1
For ag=0.5, see Fig. @), the system has only one Fano LT (36)
transmission resonance, which for small amplitude of the
driving field is associated with the= —1 localized Floquet
evanescent mode that has its origin in the bound state of thghere T =2 Im(E) is the ionization rate. For the inverted
undriven system. When the strength of the driving field isgayssian potential it has been found that with increasing
increasedT, has a second Fano transmission resonance atgrength of the driving field the ionization rate decreases in
higher incident energy, see Figga#and Fa). This second  an oscillatory manneil1,17. In Figs. 7 and 8 we show how
resonance appears fag>1, as was shown in Ref11,12,  the real and imaginary part of the quasibound state energies
and it is thus a field-induced resonance. _ change as a function afy, for « ranging from 0 to 6 a.u.
The Fano resonances, which are indicated by a dip or &ne incident particle can emit a photon and drop to a local-

transmission peak/dip in the coefficiemf,, correspond 10 jzed Floquet evanescent state. It is in this sense that in Fig. 7
quasibound states of the system that show up as poles of the

FloguetS matrix in the complex energy plane. In what fol-
lows, we compute the poles df, in the complex energy

plane. Other elements of the Flog&matrix have poles as

well. As was noted in Ref[19] the asymmetric Fano line

shape inT,, is associated with zero-pole pairs when plotting Im(E) (a.u.)
T, in the complex energy plane. By a zero-pole pair we

mean that every transmission zeroof along the real en-

ergy axis is associated with a pole ©f on the lower half 0
complex energy plane due to the unitarity of the FlogBet

matrix [19]. For ay=0.5 there is only one zero-pole pair

associated with the single transmission resonance seen i

T, wWhile for ag=2.25 there is a zero-pole pair for each of

0.08

the two resonances, see Figéa)dand 6. For small strengths -0.08

of the driving field,«y=0.5, the location of the pole on the

lower half complex energy plane and of the zero on the real 0 0.1 Re(E) 02
energy axis is the same, while there is a small difference for (au,)

stronger fieldsqo=2.25. That is why, we can only approxi-  FiG. 6. Contour plot of the transmission coefficiéRy in the

mately determine the real part of the quasibound states frorfomplex energy plane for,=2.25 a.u. The dark- light areas

the transmission zeros. From the poIeS in the complex energy)rrespond to increasing values ®f. There are two zero-pole
plane, we find the real part of the quasibound states to bgairs, each associated with the Fano resonances in Fig. 4. From the
Re(E;)=0.106, foray=0.5, and RefE;)=0.145, ReE,) poles we determine the real part and the lifetime, of the first and
=0.226, foray=2.25. second quasibound states.
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0 AR : : . In what follows, we compute the diagonal elements of the
e e Wigner-Smith delay matrix for the system currently under
Re(EXa.u. . consideration. We first obtain the eigenvalues and eigenvec-
tors of the FloqueS matrix, see Eq(31), which is a 2,
+1)X2(n,+1) matrix when the system is truncatedrtp
+1 propagating modes. The 2{+1) eigenvalues of the
unitary FloquetS matrix have unit magnitude and can thus
be cast in the forme'%®, wherei=1,...,2(,+1) and
6;(&) is the ith eigenphase as a function of the Floquet en-
- ergy £. The eigenvector corresponding to the ith eigenvalue
e'% is denoted by 6;). We note that the transmission coeffi-
-0.12¢ 1 cientsT, and T, (see Sec. lll A as well as the Wigner-
======== Smith delay timesr,s, defined in what follows, are a func-
' 3 4 5 P tion of incident electron enerdgg €[ 0,(n,+ 1) w). However,
op(a.u.) the eigenphaseg and the eigenvectol®;) of the FloquetS
] . matrix are a function of the Floquet ener§y[0,0) in the
FIG. 7. Real part of the firssquaresand seconddots quasi-  sense that if the Floquet energy is defined as the incident
bound states minus a photon energy as a functiagof{a.u.). The  glactron energy at a higher propagating channel one finds the

real part of the quasibound states is found from the poles of the,, -t came eigenvalues and eigenvectors. The Fl@jmet-
transmission coefficien, in the complex energy plane. trix can be written as '

-0.04r

-0.08r

we plot the real part of the quasibound state minus a photon 2(ny+1)
energy and obtain results in agreement with those obtained in 3= 2 16,)€ (0. (38)
Refs.[11,17. i=1

B. Wigner-Smith delay times Each of the eigenvectoll®,) can be expanded in terms of

the propagating free electron wavég) that we have used to

Wigner’s[20] one-dimensional analysis on time delay in - onstruct the Floques matrix, where(x|k,) = eknX That is,

guantum-mechanical scattering problem was generalized to n.+1
multichannel scattering by Smitf21] who introduced the t!0i>:2n:p0 p“;i|k”> wher.e.pn,i:<kn|0i> _and Pni=Pn,il?
Hermitian matrix is the occupation probability of thg;) eigenvector on the
|k,) propagating channel and=0, ... np for the right-
. dgf propagating modes and=ny,+1,...,2,+1 for the left-
Q=iS4g" (387)  propagating modes. The occupation probability of thg

eigenvector on a mode incident from the right is the same

and interpreted its diagonal elemeRs, as the average de- with that of the corresponding mode incident from the left,

lay experienced by a particle incident on thln channel § that 1S, Pn,i = P”*“p*lv‘ for n=0, T Mp- Fma_lllly, Tor each
is the unitary scattering matpix eigenvector| 6;) the total occupation probability is normal-
ized to l,Eil"oﬂPnyi:l, where modes incident from the
0.04 ' - - - - right and the left are taken into account. For modes only
r .. incident from the right the normalization for the occupation
(a.u.) BT, probability takes the formSEF;OPn‘FO.S. From Eqs.(37)
0.03f ° ° 1 and(38) and the fact that the eigenvectdss) form a com-
. plete set(the FloquetS matrix is unitary one can show that
0.02 N . 2(np+1) ]
. : ) o ’ <kn|Q|kn>ET\?vs: ;1 d_é<kn|6i><6i|kn>:>7'\r/]vs
. . . : 2 4
0.01} ] . . = it
: . ,, _ 2 Poigs (39
0 LA . . AL The Wigner-Smith delay times), are the average times an
0 1 2 3 4 5 6 electron incident on the nth channel with enerdy

Qo(a.u.) e[nw,(n+1)w) is delayed due to its interaction with the

FIG. 8. lonization rate of the firstsquaresand seconddots laterally oscillating time-periodic potential in the KH frame.

quasibound states as a functionaf (a.u.). The imaginary part of 1he Wigner-Smith delay times for propagating modes inci-

the quasibound states is found from the poles of the transmissiofient from the righ}]frll’eflhe same with those incident from the
coefficientT,, in the complex energy plane. left, that is, 7=, » forn=0,...n,.
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400
400r
"(a.u.
T T.(a.u.
2001 200f
o—(/—J
o_
0 02 04 ~20% 0.2 0.4 0.6 0.8
E(a.u.) E(a.u.)
FIG. 9. The Wigner-Smith delay times) as a function of FIG. 11. The Wigner-Smith delay timeg,s as a function of

electron incident energl €[0,2w) for ap=0.5 a.u. There is one electron incident energ¥ €[0,4w) for ag=5.25 a.u. There are
peak atE=0.106 a.u. and smaller peaks at higher-order resoiwo peaks aE=0.185 a.u. an&=0.219 a.u.and smaller peaks at
nances, associated with the Fano resonance in Fig. 3. For smdligher-order resonances, associated with the two Fano resonances
incident energyE, the Wigner-Smith delay time is positive. in Fig. 5. For small incident enerdy, the Wigner-Smith delay time
is negative.

In Figs. 9, 10, and 11 we plot the Wigner-Smith delay
times for ay equal to 0.5, 2.25, and 5.25, respectively, forcreases, evidence of stabilization. Another interesting obser-
modes incident from the right. In Table |, we compare thevation is that for small incident enerdy the electron has
Wigner-Smith delay times |, obtained from the Floque®  positive Wigner-Smith delay times, far,= 0.5, but the elec-
matrix with the lifetimer, obtained from the poles of thg,  tron has negative Wigner-Smith delay times for strong driv-
transmission coefficient in the complex energy plane and findng fields «q=2.25 and 5.25. These latter ones can arise
them to be of the same order of magnitya@a]. At the trans-  physically either from reflection of the incident electron be-
mission resonances, the incident electron wave gets trappddre it enters the scattering region or from its acceleration
by the oscillating potential, populating the quasibound stateand swift passage through the negative potef#id]. In ad-
of the system. The delay of the incident electron wave at thelition, from Figs. 9, 10, and 11 we see, as expected, that
transmission resonances shows up as peaks when plotting timien the electron is incident on higher Floquet channels it
Wigner-Smith delay times as a function of the electron inci-delays less and less until for very high energies it is not
dent energy. Note that ag, increases from 2.25 to 5.25 the affected by the potential and the delay time is zero.
Wigner-Smith delay time of the 1st quasibound state in- Now, let us briefly comment on the truncation error of our
numerical calculations. The number of Floquet chaniels
was chosen for each value af; so that the error due to
truncation remains small. The truncation error for the ele-

100} 1 mentsR, /Ty ,, wheren’,n=0, ... n,, is smaller for
. n=0 and it increases as approaches,, wheren, is the
T.{au last propagating mode and thus the mode with the larger
electron incident energy. Thus, the truncation error for the
° TABLE I. The Wigner-Smith delay times |, compared to the
lifetime 7 for the 1st and 2nd quasibound states dgr equal to
0.5, 2.25, and 5.25.
-100 1 Resonance Ths (a:U.) . (a.u.)
) ) ) a0=0.5
0.2 0.4 E 0.6 1st resonance 390 208
(a.u.) o=2.25
FIG. 10. The Wigner-Smith delay times as a function of 1St resonance 43 28.2
electron incident energf e[0,3w) for ay=2.25 a.u. There are 2nd resonance 137 104
two peaks aE=0.142 a.u. an€E=0.225 a.u. and smaller peaks at a(=5.25
higher-order resonances, associated with the two Fano resonanckst resonance 24410 704
in Fig. 4. For small incident enerdy, the Wigner-Smith delay time 2nd resonance 329 81
is negative.
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transmission coefficients, and Ty , computed in Sec. Il A

is smaller than the error for the Wigner-Smith delay times
computed in this section. An estimate of the truncation error

is given by 1—|Tnp,np|2 as a function of incident electron @,
energy. In all our calculations the truncation error is kept in
the order of 10* for a;=0.5, 2.25, and 10° for ag=5.25

so that our results are reliable. As we increagewe need to
consider a larger number of Floquet chani¢l® maintain a

small truncation error in our numerical calculations making of avoided crossi
it computationally challenging to compute the Wigner-Smith
delay times for large values afy. 0,
2 g
C. Classical-quantum correspondence %
When we plot the eigenphases of the FlogBebatrix as 0 0.1 8(&\ u) 0.2

a function of the electron Floquet ener§yve notice that the

eigenphases undergo an increasing number of “avoided £ 15 The eigenphases (rad) as a function of Floguet en-
crossi_ngs” with increasing strengtf of t_he driving field, ergy€ (a.u.) forag=0.5 a.u. Fom,<0.5 a.u. the eigenphasés

see Figs. 12, 14, and 15. As we show in what follows, Wegzngg, intersect each other as a function of Floquet enérgia.u.).
believe that these “avoided crossings” are a quantum mani js only ase, is increased that the eigenphases repel as a function

festation of chaos in the classical phase space. of £ (a.u.) and form an “avoided crossing,” indicated by an arrow.
Let us explain what we mean by the term “avoided cross-

ing” in terms of the occupation probabilitie®,,;, (defined  tion probabilitiesP ;, P, 1, andP, ; of the|6,) eigenvector

in Sec. 11 B) of the|¢,) eigenvector on thék,) propagating on the propagating channels=0,1,2 and in Fig. 1®) we
channel. In what follows, we consider the occupation prob{lot the occupation probabilitieB, ,, P; ,, andP,, of the
abilities only for modes incident from the right, that is, |6,) eigenvector on the propagating channeisOrL,2 as a
=0,...n,. InFig. 12, the eigenphases and 6, undergo  function of Floquet energy. Before the “avoided crossing,”

a repulsion when the Floquet energy is equal to the transmis£<0.106, |6,) has support mainly on the second propagat-
sion resonances=0.106, foray=0.5. For very small values ing channel,P;~0.5, and|6,) on the first propagating
of ay the eigenphases cross each other without repelling. It ishannel, P, ;~0.5, while after the “avoided crossing,”
only as we increase the strength of the driving field that the€>0.106, |6,) has support mainly on the first propagating
eigenphases undergo a repulsion, which we refer to as athannelP,,~0.5, and 6,) on the second propagating chan-
“avoided crossing.” We describe quantitatively the “avoided nel, P, ,~0.5. This total exchange of character is what we
crossing” between the eigenphaseés and 6, in terms of refer to as asharp “avoided crossing.” Note that fora,

occupation probabilities. In Fig. 18, we plot the occupa- =0.5 the propagating channels involved in the “avoided
0.5: T T I 0.5[7 T
1P,1 !] 8,1 I I
R R
a) , 1,2 b)
0.25- 1 0.25f
~ B,

) l % )

0 . 0 .

0 0.1 0.2 0 0.1 0.2

E@u) E(au)

FIG. 13. Foray=0.5, we retaim=—6, ... ,0, ... 6channels and obtain 14 eigenphases from the 114 FloquetS matrix. Only two
eigenphase®, and 6, participate in the “avoided crossing.” The eigenphaggsand 6, exchange character completely at the sharp
“avoided crossing” shown in Fig. 12. To show, quantitatively, how the character exchange takes place we (pJothim occupation
probabilitiesP, ;, P11, andP,; of the|6,) eigenvector on the propagating channets0,1,2 and in(b) the occupation probabilitieB, ,,
P.,, andP,, of the|d,) eigenvector on the propagating channeis0,1,2 as a function of Floquet energy(a.u.). Before the avoided
crossing the eigenvectpd;) has support on channek= 1 and the eigenvectds,) mainly on channeh=0, while after the avoided crossing
the eigenvectofd,) has support mainly on channet0 and the eigenvectdp,) on channeh=1, thus exchanging character completely.
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0;
ei
0_
6,
0 0 0
o5 4 ol s 0,
=
0 0.1 0.2 0 0.1 0.2
E@u) E@u)
FIG. 14. The eigenphasés (rad) as a function of Floquet en- FIG. 15. The eigenphase (rad) as a function of Floguet
ergy £ (a.u.) foray=1.25 a.u. The eigenphasés, ... ,05 par- energy€ (a.u.) forap=2.25 a.u. The eigenphaseés, . . . ,0; par-
ticipate in the “avoided crossings” shown in Table II. ticipate in the “avoided crossings” shown in Table IlI.

crossing” are mainlyn=0,1. As the strength of the driving probabilities. This is only an approximate picture but helps
field aq is increased an increasing number of propagatingis visualize how the eigenphases change character at the
channels undergo “avoided crossings,” as shown in Tables Il'avoided crossings.” For example, from Table 1ll, we obtain
and II. an approximate picture how the eigenphages 6,, and 6

For increased strength of the driving field, the number ofparticipate in the “avoided crossing” af~0.14. For &
avoided crossings increases, see Figs. 14, 15 and it can be0.07, the eigenvectofé,) has support mainly on the
that more than two eigenphases participate in an “avoideghropagating channai=1 and less om=0,2,3, the eigen-
crossing” for a certain Floquet energy. For example, this isvector |6,) has support mainly on the propagating channel
the case for the “avoided crossing” af~0.14, for « n=0 and less om=1, the eigenvectotfs) has support
=2.25, where there are three eigenphades 6,, and 6q mainly on the propagating channel=3 and less onn
interfering, see Fig. 15. In Figs. 14 and 15, we plot the eigen=5,1. Foré=0.145, the eigenvectdp,) has support mainly
phases of the Floque® matrix as a function of for g on the propagating channel=0 and less om=1, the ei-
=1.25 andag=2.25, respectively, to show the increase ingenvector 6,) has support mainly on the propagating chan-
the number of “avoided crossings” with increasing strengthnelsn=1,3 and less om=5, the eigenvectoffs) has sup-
of the driving field. In Tables Il and Il we present far, port mainly on the propagating channels 1,3. Thus, there
=1.25 andag=2.25, respectively, the eigephases which un-s an exchange of character among the eigenphagse®,
dergo “avoided crossings” for different Floquet energi€s and 6 expressed in terms of the mainly interfering channels
and the propagating channeis=0,1, ... forwhich the oc- n=0,1,3,5 but it is not a complete exchange as in the case of
cupation probabilityP,, ; is substantial. In Tables Il and Ill, the sharp “avoided crossing” atey=0.5, see Fig. 12. The
the channels with small occupation probabilities are indi-“avoided crossings” we have just described for the open
cated as subscripts to the channels with large occupation

TABLE Ill. For «y=2.25 we retainn=-12,...,0,...,12

TABLE Il. For ap=1.25 we retaim=—6,...,0,...,6chan- channels and obtain 25 eigenphases from th& 2% FloguetS
nels and obtain 14 eigenphases from thex14 FloquetS matrix. matrix. Here we only show the seven eigenphases participating in
Here we only show the five eigenphases participating in thehe “avoided crossings” at different Floquet energigsee Fig. 15.
“avoided crossings” at different Floquet energi€ssee Fig. 14. For  For each of the seven participating eigenphages . . ,6; we dis-
each of the five participating eigenphaggs . . . .65 we display the  play the propagating channeis=0,1, . . . withsubstantial occupa-
propagating channels=0,1, . . . withsubstantial occupation prob- tion probability P, ;. The propagating channels involved in the
ability P,,;. The propagating channels involved in the “avoided “avoided crossings” are=0,1, . .. ,5.
crossings” aren=0,1,2.

£ (au) 0, 0, 6, 0, 05 0 0,

£ (@u) e b2 e o s 0.01 02 log 01 24 ooz 315 315
0.01 o 1, 0 2 1 0.07 b,, 0. O, 25 loys 35 3is
0.07 1 0, 0 2 1 0.145 0 13 0, 2, lops 13 3
0.12 0 1 0 2 1 0.18 %4 315 O 0 lops 1y 3y
0.15 2 1 0 0 1 0.22 %4 315 1o 0 0 1y 3
0.23 2 1 q 0 1, 0.23 %4 315 315 0, 0, 1, 1,
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guantum system under consideration, the inverted Gaussidhe “avoided crossings” are quantum manifestations of the
in the presence of a driving field, are analogous to what wasestruction of the KAM surfaces and the onset of chaos in
seen in a bounded chaotic systE28] where the authors also the classical phase space.
discuss two different types of “avoided crossings.”

We now turn to the classical dynamics of the inverted ACKNOWLEDGMENTS
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=0,1,2...) equal to the period of the driving field. We

indicate the location of the period-1 periodic orbits with APPENDIX A

filled squares. The strobe plots are drawn in the Lab frame,

see Eqs(1), (2), and(3), and are exactly the same with those  In what follows, starting from Eqs27), (28), (29), and

in the KH frame except that in the Lab frame thexis is  (30), we obtain the outgoing probability amplitudes of the
shifted byag [24]. If no driving field is present, the motion is Propagating modes in terms of the incoming probability am-
regular and bounded for negative energies, while it is unplitudes of the propagating modes.

bounded for positive energies. When the driving field is UsingKi'=K_ andK’' 'K’ = —K? , we eliminateB°""
turned on, the KAM tori in the regular island around from Egs.(27) and(28) and obtain

=0, p=0 start breaking up agg is increased and chaotic . _ B

motion sets in. Foray=0.5, see Fig. 1@&), the classical 2K2JB"=N"HCHN LD, (A1)
phase space is mixed. There are two islands around the two _ (1) s —1y(1)' _ @)
stable periodic orbits but there are also chaotic trajectoriedVhere Li=K X =K XS and  Ly=K_XZ
As aq is further increased the remaining islands are very— K'7IX®" . Using K;'=K_ and K'7!K' =—-K?, we
small, see Fig. 1®), until they totally disappear, see Fig. eliminateA°"! from Egs.(29) and(30) and obtain

16(c), and the phase space in the scattering region becomes : B B

dominated by chaos. In addition, in Figs.(&7and 17b) 2K2IAN=N"1LC+NILD, (A2)
where the initial values of the classical momenta are chosen (1) s -1y (1) @
to correspond to the middle of the Floquet propagating chan¥here  La=K_XZ/+K’" "X T and  L,=K_X=
nels, we find that asy, is increased more trajectories get +K' X @' From Eqgs.(Al) and(A2) we expres<, D in
pulled into the chaotic region of the classical phase spaceerms of A" andB™ as follows:

Correspondingly, in the quantum treatment of the scattering

problem we have seen that as the strength of the driving field C=2G[L, '*KZINB" L, 'KZINA"],  (A3)
is increased the eigenphases of the Flo@uetatrix undergo B . B .
an increasing number of “avoided crossings” where more D=2H[L, 'KZINB"—L; KZINAT],  (A4)

Floguet channels contribute to the scattering process. We I 1 a1 I Z1, -1
thus believe that the “avoided crossings” are a quantum\'\/here(';_[I‘2 Li=L,"Ls] "andH=[L; L,—L3 La]

manifestation of the breaking of the constants of motion anOSUbStiIUting E_qs(A3) and(Ad) in Egs.(27) and(29) yields
L - A°Ut andBOU in terms of A and B'"
chaos setting in in the classical phase space. '

AOut:N’*lrlNAin_'_N’*lWBin’

) ) ) BoUt— =147 Ain+ -1 in A
In this paper, we have studied the scattering of electron NN NTIABT, (A5)
waves from an inverted Gaussian potential, used to modejr equivalently

the atomic potential, in the presence of strong time-periodic

IV. CONCLUSIONS

electric fields. Using Floguet theory, we have constructed the NACU =" N/AN+tA/B™,

FloquetS matrix in the KH frame, where asymptotic states . .

can be defined. We have computed the transmission reso- NBU=t' NA"+rNB'™, (A6)
nances for different strengths of the driving field and shownWhere

that they are associated with zero-pole pairs of the Flo§uet

matrix in the complex energy plane. We have also computed r'=—[K2+2K_X YL, K2

the Wigner-Smith delay times, which is a different way to

“probe” the complex spectrum of the open quantum system. +2K_X (,Z)HLsTle,]J,

Finally, we have shown that the eigenphases of the open

quantum system undergo a number of “avoided crossings” r=[—K2+2K_XMGL, K2 +2K_X @HLK? 13,
as a function of the electron Floquet energy, that increases

with increasing strength of the driving field. We believe that t'=—2[K_XPGL, 'K +K_X PHL3 K21,
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100

x (a.u)

FIG. 17. Strobe plots of the classical dynamics, for the inverted
Gaussian in the presence of the driving field, in the laboratory frame
for (@) ap=0.5 and(b) ay=2.25. The initial conditions of the clas-
sical momenta used to generate the plots are chosen to correspond
to the middle of the Floquet propagating channels, that is, the initial
conditions lie on the linesp==*=+y2(0.13+tnw) with n

=0,1,...,8. As thestrength of the driving field is increased more
trajectories get pulled in the chaotic region in the classical phase
space.

t=2[K_XMGL, K2 +K_X PHL K213, (A7)

From Eqgs.(A7), due to the multiplication on the right by the

20 ~10 0 10x(a.u.)20 N XN matrix J, we find that theN X N matricesr’, r, t’, and

t are of the following form:

! !

FIG. 16. Strobe plots of the classical dynamics, for the inverted ., _ ( Oce rep) _ ( Oce rep) = ( Oce tep)
Gaussian in the presence of the driving field, in the laboratory frame Ope rr’)p ' Ope Tpp ' Ope tr’)p '
for (&) ap=0.5, (b) @y=1.25, and(c) ay=2.25. The initial condi-
tions used to generate the plots lie on the |ire0 as well as on the ( Oce tep
lines with —1<p<1. The location of the period-1 orbits are indi- t= . (A8)
cated by filled squares. The period-1 orbits are locatedapt Ope top

—1.87,—0.36, and 2.46(b) 2.84; and(c) 1.88, 3.38, and 4.54. For , . .
T . lep, tep, andte, have dimensions
very small values of the driving field, (not shown there is a large cpr jep =P
neXnp+1 and the matrices,,, Iy, t

regular island around the regionat 0, p=0.Asq isincreased F ) pp’.andtpp have di-
to 0.5, there are two regular islands reduced in size indicating th@€nsionsn,+1xn,+1, respectively e is the number of

destruction of the KAM tori. As, is further increased to 1.25 and the evanescent modes amgt-1 is the number of the propa-
2.25 the regular islands disappear and the phase space is domina@ating modes The matrices0, and O, have dimensions
by chaos. neXng andny+1Xng, respectively, and they have zero el-

where the matrices,,,,
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ements because the amplituddsanda™ of the evanescent B(—Xg) =K(—Xxo) NAYY, (B3)
modes are zerdy,'=a, =0, forn=—ng, ..., —1.

In addition, the matrices\/; A", A B", andB°“'can  \yhere
be written as

in out e K-nX
N:(Nee Oep> Ain— Afe Aot e : 0
Ope  Npp A A .
- out K(x)= e o . (B4
B““z( ) B°“‘=( ; ) (A9) b
Blpn Bgut 0 e*'knpx

where the matricedV,., Npp have dimensions X n, and

n,+1xn,+1, respectively. The elements of thex 1 ma- Using Egs.(A6) with A™=0, we write Egs.(B2), (B3) as

trices A", AU, BN and B are the amplitudes of the ONOWS:
evanescent modes. The elements of nhe- 1X 1 matrices i 0
AL ASY, By, andBp“' are the amplitudes of the propagat- B(%o) =K INBT+K_INB', (BS)
ing modes. Using Eq$A8) and (A9) we write Eqs.(A6) as _
follows: D —Xp) =K(—Xo)tNB™. (B6)
out__ .7 in in
Neehs _reP'MppAp HGF’M’F’BP ' Next, we use Eq(13) to numerically propagatep(x) from
out_ . in in X=—Xp Up to x=Xq according to the Numerov algorithm
NppAP rF’F"MppAP HWNP’JBF’ ' [25]. From Eq.(B6), we see that in practice we numerically
o i i integrate theK(x) matrix fromx= —x, up tox= Xy, sincet,
NoBLU'= L Nop AN+ 1o N BIT " . 0 0 57
eere ePN’pp P oMo P N andB™ are constant matrices. Let us indicate K{x,)
t__ 4 i i i i i =
NppBgu—tpp.’\/ppA'p”prJ\fppB'p“. (A10) the numerically integrated matriX(x) at Xx=x,. Then,

matching the wave function and its first derivativexat X
From Eqgs(A10) we obtain the Floque$ matrix given in Eq.  and using Eqs(24), we obtain
(3D).

K(X)tINB"=K, rAB"+K_JNB™,
APPENDIX B

In Secs. IIB, Sec. IIC, and Sec. IID we have formally R’(XO)U\/'B‘“=K;rNBi”+K’_JNBi”, (B7)
constructed the Floqued matrix in terms of the functions
Xnj(X), with n=—-ng,...,0,...n, and j=1,... N, .
which are linearly independent functions in the scatteringOr equivalently
region Il. For the inverted Gaussian potential the functions

Xn j(X) can only be obtained numerically. In Appendix A, we K(x)t=K,r+K_J,
formally expressed the matricesandt in terms of the func-
tions x,, j(x). Numerically, though, it is not efficient to com- R’ (xg)t= K r+K'J. (B8)

pute the functionsy, j(x). In what follows, we outline the
numerical method9] we use to obtain th&l X N matricesr
andt for electron waves incident from the right.

The wave function in the asymptotic regions | and Ill is

From Egs.(B8), we find

given by Eqs(18) and(19) with a!"=0, since we only con- r=[K(xq) K, —K’(xg) "*K’ ] K(xq) “*K_
sider electron waves incident from the right. We can then _
write —K'(x) "K"7]J,
out o ineiiknxo t [K R( ) Kr*lkr( )]71[K2 K/*lKr ]J
dn(Xo)=b +b , =LR-K(Xp) =K', Xo - TKLTROY,
n\A0 n \/k_n n \/k—n (89)
v ot KXo (B1) where we have used the relatiéil '=K_ . The matrices
$n(—Xo) =2y \/k—n ' andt given by Egs(B9) are of the form shown in EqA8)
and thus we can extract the matriggg andt,,. Following
with bl'=0 forn=—n,, ...,—1. Next, we write Eqs(B1)  Sec. I D, we then obtain the matricBsandT. Finally, using
in matrix form using Eqs(24), (25), and(26) as follows: the symmetry property of the Floqu8tmatrix given in Eqg.
. (34) we find the matriceR’ and T’ for electron waves inci-
P(xp) =K NBU+K_INB™, (B2)  dent from the left.
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