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Floquet scattering and classical-quantum correspondence in strong time-periodic fields
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We study the scattering of an electron from a one-dimensional inverted Gaussian atomic potential in the
presence of strong time-periodic electric fields. Using Floquet theory, we construct the Floquet scattering
matrix in the Kramers-Henneberger frame. We compute the transmission coefficients as a function of electron
incident energy and find that they display asymmetric Fano resonances due to the electron interaction with the
driving field. We find that the Fano resonances are associated with zero-pole pairs of the Floquet scattering
matrix in the complex energy plane. Another way we ‘‘probe’’ the complex spectrum of the system is by
computing the Wigner-Smith delay times. Finally, we find that the eigenphases of the Floquet scattering matrix
undergo a number of ‘‘avoided crossings’’ as a function of electron Floquet energy, and this number increases
with increasing strength of the driving field. These ‘‘avoided crossings’’ appear to be quantum manifestations
of the destruction of the constants of motion and the onset of chaos in classical phase space.
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I. INTRODUCTION

The development of ultrahigh-intensity lasers has led
the study of atoms in external time-periodic electric fie
that are comparable in strength to the electric fields produ
by the atomic nucleus. One of the most interesting phen
ena observed in these time-periodic systems is the stabi
tion with increasing laser intensity that was predicted th
retically @1–3# and has been verified experimentally@4,5#.

In previous studies, one-dimensional atomic potent
have been used to predict several phenomena in the theo
laser-atom interactions at high laser intensities. Many
these studies were carried out in the context of Floq
theory formulated in the Kramers-Henneberger~KH! frame
of reference@6,7#, which oscillates with a free electron in th
time-periodic field. Gavrila and Kaminski@1# developed a
nonperturbative method to study electron scattering in
presence of strong time-periodic electric fields. Using thr
dimensional models, Dimou and Faisal@8# as well as Collins
and Csanak@8# have studied resonances in laser-assis
scattering. Bhatt, Piraux, and Burnett@9#, in their work on
electron scattering from a polarization potential in the pr
ence of strong monochromatic light, argued the appeara
of new light-induced quasibound states~resonances! as the
field strength is increased. The same phenomenon was
also observed by Bardsley and Comella@10# and Yao and
Chu @11#, who used the complex coordinate scaling transf
mation to compute the complex quasibound states in t
study of photodetachment from a one-dimensional Gaus
potential. In addition, the same atomic potential was used
Marinescu and Gavrila@12# to compare the predictions of th
full Floquet theory with those of the high-frequency Floqu
theory ~HFFT!, using resonance~Siegert! boundary condi-
tions.~The HFFT theory is a version of the Floquet approa
adapted to treat the high-frequency limit.! Recently, Timber-
lake and Reichl@13#, using the inverted Gaussian potenti
studied the phase-space picture of resonance creation
they showed that the light-induced quasibound states
scarred on unstable periodic orbits of the classical motio

In this paper, we study the scattering of an electron fr
1050-2947/2002/65~3!/033405~15!/$20.00 65 0334
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a short-range atomic potential in the presence of a str
time-periodic electric field. The atomic potential we consid
is the one-dimensional inverted Gaussian potential, a mo
that has already offered interesting insights into different
pects of the laser-atom interactions@10–12#. Our goal is to
construct the Floquet scattering matrix (S matrix! using the
full Floquet theory formulated in the KH frame for a strong
driven atomic system. A Floquet scattering matrix has be
constructed by Li and Reichl@14# for periodically driven
mesoscopic systems. The FloquetS-matrix connects the out
going propagating modes to the incoming propagating mo
and is a unitary matrix that conserves probability. We co
struct the FloquetS matrix in the KH frame, where we can
define asymptotic states.

In Sec. II, we construct the FloquetS matrix in the KH
frame. In Sec. III A, we compute the transmission coe
cients and the poles of the FloquetS matrix and find the
quasibound states of the atomic system. In Sec. III B,
compute the Wigner-Smith delay times of the scattered e
tron as a function of the electron incident energy and sh
that the Wigner-Smith delay times of the scattered elect
due to the presence of the quasibound states are of the
order of magnitude as the lifetimes obtained from the po
of the FloquetS matrix. We finish, in Sec. III C, with a quite
interesting observation. When plotting the eigenphases of
unitary FloquetS matrix as a function of the electron’s Flo
quet energy we find that at certain energies the eigenph
undergo ‘‘avoided crossings’’ that change the eigenpha
character completely. We find that the number of ‘‘avoid
crossings’’ increases with increasing strength of the tim
periodic electric field. The ‘‘avoided crossings’’ observed
the strength of the driving field is increased appear to
quantum manifestations of the destruction of t
Kolmogorov-Arnold-Moser~KAM ! surfaces and the onset o
chaos in the classical phase space.

II. THE FLOQUET S MATRIX

A. The model

We study the scattering of an electron in the presence
strong electric field and a short-range atomic potential. T
©2002 The American Physical Society05-1
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AGAPI EMMANOUILIDOU AND L. E. REICHL PHYSICAL REVIEW A 65 033405
electric fieldE(t)5E0 sin(vt)(T52p/v is the period of the
field! is treated within the dipole approximation as a mon
chromatic infinite plane wave linearly polarized along t
direction of the incident electron. The Schro¨dinger equation,
in one space dimensionx, that describes the dynamics of th
system is in atomic units~a.u.!

i
]C~x,t !

]t
5F1

2 S 2 i
]

]x
2qA~ t ! D 2

1V~x!GC~x,t !, ~1!

whereV(x) is the inverted Gaussian potential,

V~x!52V0e2(x/d)2
, ~2!

and q is the particle charge which for the electron isq5
21 a.u. The electric field is,E(t)52]A(t)/]t, whereA(t)
is the vector potential and is given by

A~ t !5
E0

v
cos~vt !. ~3!

We use atomic units (e5\5m51) throughout this paper
except when otherwise indicated.

To construct the FloquetS matrix of the system, we trans
form to the KH frame@6,7#. In the KH frame there are well
defined asymptotic regions and the boundary conditions
expressed in terms of free electron waves. To obtain
wave function in the KH frame, we introduce the unita
transformation@6,7#

F~x,t !5U1U2C~x,t !, ~4!

where

U15expS iq2

2 E
2`

t

A2~ t8!dt8D
and

U25expS 2qE
2`

t

A~ t8!
]

]x
dt8D . ~5!

U1 is a phase transformation to remove theA2 term from Eq.
~1! while U2 is a space-translation transformation to the K
frame. In the KH frame, the wave function satisfies the f
lowing Schrödinger equation:

i
]F~x,t !

]t
5S 2

1

2

]2

]x2
1V„x1a~ t !…D F~x,t !, ~6!

where a(t) is the classical displacement of a free electr
from its center of oscillation in the time-periodic fieldE(t),
and is given by

a~ t !52qE
2`

t

A~ t8!dt85a0 sin~vt !

with

a052qE0 /v2. ~7!
03340
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In Eq. ~6!, the potential is a periodic function of time, tha
is V„x1a(t)…5V„x1a(t1T)…. Thus, according to the Flo
quet theorem@15#, Eq. ~6! has solutions of the form

FE ~x,t !5e2 iEtfE ~x,t !, ~8!

whereE is the Floquet energy,EP@0,v), andfE (x,t) is a
periodic function of time,fE (x,t)5fE (x,t1T). Taking the
Fourier expansion offE(x,t), we obtain

FE ~x,t !5e2 iEt (
n52`

1`

fn~x!e2 invt, ~9!

where n indicates the Floquet channel. Note thatfn(x) is
also E dependent, but we omit theE subscript to simplify
notation. The energyE of an incident electron in the KH
frame is related to the Floquet energy through the expres
E5E1nv. Next, we Fourier analyze the potential

V„x1a~ t !…5 (
n52`

1`

Vn~a0 ;x!e2 ivt, ~10!

where the Fourier components for the inverted Gaussian
tential, Eq.~2!, can be written as

Vn~a0 ;x!5
1

2pE0

2p

V„x1a~ t !…einvtd~vt !

52V0

i n

pE0

p

cos~nvt !e2(x1a0 cos(vt))2/d2
d~vt !,

~11!

see Fig. 1. To be able to construct the FloquetS matrix, the
Fourier componentsVn(a0 ;x) must be smooth functions in
the one space dimensionx in the KH frame. This is indeed
the case for the inverted Gaussian potential, Eq.~11!. Note
that in the KH frame, the potential oscillates back and fo
along thex axis ~laterally! with the period of the externa
field.

From Eq.~11!, we see that the componentsVn(a0 ;x) of
the atomic potential in the limitx→6` tend to zero faster

FIG. 1. The Fourier componentsVn(a0 ;x)/ i n (a.u.) of the in-
verted Gaussian potential as a function of the one space dimen
x(a.u.) in the KH frame, fora052.25 a.u.
5-2
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FLOQUET SCATTERING AND CLASSICAL-QUANTUM . . . PHYSICAL REVIEW A65 033405
than 1/x and we can thus divide the one space dimensionx in
three regions: the asymptotic regions I,xP@x0 ,`), and III,
xP(2`,2x0#, where the potential is asymptotically zer
and the scattering region II,xP@2x0 ,x0#, where the poten-
tial V„x1a(t)… is not zero, see Fig. 2. In the rest of th
paper, for brevity, we refer to the potential in asympto
regions I and III as being zero instead of asymptotically ze
The choice ofx0 depends on the value of the parametera0.
The larger a0 is, the further out we have to define th
asymptotic regions I and III.

B. Floquet solution in the scattering region II

Substituting Eqs.~9! and ~10! into Eq. ~6!, we obtain an
infinite system of coupled differential equations@1# for the
Floquet componentsfn(x),

2
1

2

d2

dx2
fn~x!1@V0~a0 ;x!2~E1nv!#fn~x!

1 (
l 52`
l 5” n

1`

Vn2 l~a0 ;x!f l~x!50. ~12!

Next, we truncate to a finite number of Floquet channels
takene andnp to be the lower and upper limit of the Floqu
channels considered. That is,n52ne , . . . ,0, . . . ,np and
the total number of Floquet channels is given byN5ne
1np11. After truncating, Eq.~12! can be cast in the follow-
ing matrix form:

I
d2

dx2
fII ~x!5M~x!fII ~x!, ~13!

FIG. 2. Not drawn to scale, are shown in the K
frame, the asymptotic regions IxP@x0 ,1`)(a.u.) and III
xP(2`,2x0#(a.u.), where the potential is asymptotically zer
and the scattering region II, where the inverted Gaussian pote
oscillates laterally. In regions I and III, we also show the Floq
channels, denoted by dotted lines, and the incoming and outg
electron waves, denoted by solid arrows.
03340
.
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whereI is the unitN3N matrix, fII (x) is theN31 matrix
with elementsfn

II (x)5fn(x) andM(x) is anN3N matrix
with elements

Mn,l~x!52@Vn2 l~a0 ;x!2dn,l~E1nv!#, ~14!

where dn,l is the Kronecker delta and n,l 5
2ne , . . . ,0, . . . ,np . The general solution of the second
orderN-coupled differential equations, Eq.~13!, can be writ-
ten as a linear combination of 2N linearly independent col-
umnsxj (x), with j 51, . . . ,2N, as follows,

fII ~x!5c1x1~x!1c2x2~x!1•••1cNxN~x!1d1xN11~x!

1d2xN12~x!1•••1dNx2N~x!

[X (1)~x!C1X (2)~x!D, ~15!

whereX (1)(x) and X (2)(x) are N3N matrices whose ele
ments are functions of the one space dimensionx andC, D
are constantN31 matrices. Each of the linearly independe
columnsxj (x) satisfies Eq.~13!

I
d2

dx2
xj~x!5M~x!xj~x!⇒ d2

dx2
xn, j~x!

5 (
l 52ne

np

Mn,l~x!x l , j~x!, ~16!

wheren52ne , . . . ,0, . . . ,np and j 51, . . . ,2N. The func-
tionsxn, j (x) can be found analytically if the matrix elemen
of M(x) are constant. From Eq.~15!, it follows that every
channel functionfn

II (x) can be written as a linear combina
tion of 2N functionsxn, j (x) and thus, the wave function in
the scattering region II is given by

FE
II ~x,t !5 (

n52ne

np

(
m51

N

@xn,m~x!cm

1xn,N1m~x!dm#e2 iEte2 invt. ~17!

C. Floquet solution in the asymptotic regions

In the asymptotic regions I and III, the potentialV„x
1a(t)… is zero. Thus, we can consider as our boundary c
ditions a superposition of incoming and outgoing fre
electron waves in theN truncated Floquet channels that a
incident from both sides of the scattering region,

FE
I ~x,t !5 (

n52ne

np

fn
I ~x!e2 iEte2 invt

5 (
n52ne

np

bn
out e

iknx

Akn

e2 iEte2 invt

1 (
n52ne

np

bn
in e2 iknx

Akn

e2 iEte2 invt, ~18!
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t
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FE
III ~x,t !5 (

n52ne

np

fn
III ~x!e2 iEte2 invt

5 (
n52ne

np

an
out e

2 iknx

Akn

e2 iEte2 invt

1 (
n52ne

np

an
in eiknx

Akn

e2 iEte2 invt, ~19!

wherebn
in , an

in andbn
out , an

out are the probability ampli-
tudes of the incoming and outgoing electron waves, resp
tively, that are incident in thenth Floquet channel with en
ergy E5E1nv, see Fig. 2. Propagating modes are incid
on the Floquet channelsn50, . . . ,np and have wave vector
kn5A2(E1nv), while evanescent modes occupy the F
quet channelsn52ne , . . . ,21 and have imaginary wav
vectorskn5 iA2uE1nvu. The current density of the evane
cent modes is zero. We note that the terms propagat
evanescent modes correspond to what some authors re
as open/closed channels, respectively. For the FloquetS ma-
trix to be unitary we need to normalize the current density
the propagating modes. To do so, we have introduced
constants 1/Akn in the wave function in Eqs.~18! and ~19!.
To simplify notation in Eqs.~18! and~19!, we introduce the
constants 1/Akn for the evanescent modes as well, ev
though they have zero current density.

It is important to note, once again, that the reason
choose to work in the KH frame is that in this frame we c
define asymptotic regions where the potential is zero
thus, the Floquet channels are not coupled, in contrast
the scattering region, as we have already shown. The e
tence of the asymptotic regions guarantees that probabili
conserved in the truncated number of Floquet channels
thus the FloquetS matrix is a unitary matrix.

D. Floquet S matrix

The FloquetS matrix connects the outgoing propagatin
modes with the incoming propagating modes, and in t
section we show how to construct it. As we show in wh
follows, the FloquetS matrix connects channels with ene
gies that differ by an integer multiple ofv, while in the usual
time-independent scattering theory theS matrix connects
channels with the same energy. The reason is that the Flo
S matrix describes a time-dependent process and thus
energy of the incident electron is not conserved. Howe
because the Hamiltonian is time periodic, according to F
quet theory@15#, the Floquet energyE defined modulov is a
conserved quantity.

The wave function and its first spatial derivative must
continuous at the boundaries of the asymptotic regions6x0.
At x5x0 these conditions lead to

bn
out e

iknx0

Akn

1bn
in e2 iknx0

Akn

5 (
m51

N

@xn,m~x0!cm1xn,N1m~x0!dm#, ~20!
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iknbn
out e

iknx0

Akn

2 iknbn
in e2 iknx0

Akn

5 (
m51

N

@xn,m8 ~x0!cm1xn,N1m8 ~x0!dm#, ~21!

where xn,m8 (x)5dxn,m(x)/dx and xn,N1m8 (x)
5dxn,N1m(x)/dx, while atx52x0 they lead to

an
out e

iknx0

Akn

1an
in e2 iknx0

Akn

5 (
m51

N

@xn,m~2x0!cm1xn,N1m~2x0!dm#,

~22!

2 iknan
out e

iknx0

Akn

1 iknan
in e2 iknx0

Akn

5 (
m51

N

@xn,m8 ~2x0!cm1xn,N1m8 ~2x0!dm#.

~23!

Due to the connection conditions Eqs.~20!, ~21!, ~22!,
and~23! only 2N out of the 6N coefficients are arbitrary and
we choose those to be the incoming probability amplitud
ain andbin. In Eqs.~20!, ~21!, ~22!, and~23!, the probability
amplitudesain and bin of the evanescent modes are ze
because of the unbounded character of the exponentials
multiply in the asymptotic regions I and III. That is
bn

in5an
in50, for n52ne , . . . ,21. We now introduce the

N3N matrices

~K6!n,l5e6 iknx0dn,l , ~K68 !n,l56 ikne6 iknx0dn,l ,

n,l 52ne , . . . ,0, . . . ,np , ~24!

Jn,l5H 0, if n5” l and if n5 l 52ne , . . . ,21,

1, if n5 l 50, . . . ,np ,
~25!

and

Nn,l5
1

Akn

dn,l , n,l 52ne , . . . ,0, . . . ,np . ~26!

Also X 6
(1)[X (1)(6x0), X 6

(2)[X (2)(6x0), X 6
(1)8[X (1)8

(6x0), X 6
(2)8[X (2)8(6x0), where X (1)8(x) and X (2)8(x)

are the derivatives ofX (1)(x) andX (2)(x) with respect to the
one space dimensionx. We also introduce theN31 matrices
An

out5an
out , Bn

out5bn
out , An

in5an
in , Bn

in5bn
in . Next, we write

Eqs.~20!, ~21!, ~22! and ~23! in matrix form as follows:

NK1Bout1NK2JBin5X 1
(1)C1X 1

(2)D, ~27!

NK18 Bout1NK28 JBin5X 1
(1)8C1X 1

(2)8D, ~28!
5-4
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FLOQUET SCATTERING AND CLASSICAL-QUANTUM . . . PHYSICAL REVIEW A65 033405
NK1Aout1NK2JAin5X 2
(1)C1X 2

(2)D, ~29!

2NK18 Aout2NK28 JAin5X 2
(1)8C1X 2

(2)8D. ~30!

After algebra given in Appendix A we find the FloquetS
matrix that connects the outgoing probability amplitudes
the propagating modes to the incoming probability amp
tudes of the propagating modes, to be

S Ap
out

Bp
outD 5SN pp

21rpp8 Npp N pp
21tppNpp

N pp
21tpp8 Npp N pp

21rppNpp
D S Ap

in

Bp
inD

[S R8 T

T8 RD S Ap
in

Bp
inD[SS Ap

in

Bp
inD , ~31!

where the np113np11 (np11 is the number of the
propagating modes! matricesrpp8 , rpp , tpp8 , andtpp defined in
Eqs. ~A7! and ~A8! of Appendix A connect propagatin
modes to propagating modes and contain the evanes
mode effect as is shown in Appendix A. Also thenp1131
matricesAp

in Ap
out , Bp

in , andBp
out have elements the ampl

tudes of the propagating modes and are defined in Eq.~A9!
of Appendix A, and thenp113np11 matrixNpp has ele-
ments the normalization constants of the propagating mo
and is defined in Eq.~A9! of Appendix A. The matricesR8,
R, T8, andT have dimensionsnp113np11 and their ele-
ments are given in terms of the elements of therpp8 , rpp , tpp8
and tpp matrices as follows:

Rn8,n
8 5Akn8

kn
~rpp8 !n8,n , Rn8,n5Akn8

kn
~rpp!n8,n ,

Tn8,n
8 5Akn8

kn
~ tpp8 !n8,n , Tn8,n5Akn8

kn
~ tpp!n8,n , ~32!

with n8,n50, . . . ,np .
In Appendix B, we show how to obtain numerically th

matricesrpp and tpp . The FloquetS matrix has dimensions
2(np11)32(np11), see Eq.~31!, and is determined by the
reflection and transmission amplitudes,Rn8,n

8 , Rn8,n , Tn8,n
8 ,

andTn8,n , of the propagating modes. The elementsuRn8,nu2

and uTn8,nu2 are the reflection and transmission coefficien
respectively, for an electron wave incident on the propag
ing channeln from the right that gets scattered to the prop
gating channeln8, while the elementsuRn8,n

8 u2 and uTn8,n
8 u2

are the reflection and transmission coefficients, respectiv
for an electron wave incident on the propagating channen
from the left that gets scattered to the propagating chan
n8.

In this section, we have shown how to construct the F
quetS matrix in the KH frame. The reason we work in th
KH frame is that we can define asymptotic regions where
wave function is a superposition of free electron waves. T
guarantees that the truncated FloquetS matrix is a unitary
matrix, that is, the following condition is satisfied:
03340
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n850

np

@ uRn8,nu21uTn8,nu2#51, ~33!

for every incident propagating moden50, . . . ,np . The
above condition is a statement of conservation of probabi
Also, the FloquetS matrix we construct in the KH frame is
isospectral with the corresponding matrix in the Lab fram
since a unitary transformation is used to transform from
Lab to the KH frame, see Sec. II A. Finally, the criterion w
use to successfully truncate toN Floquet channels is that a
electron wave incident on the last propagating Floquet ch
nel n5np is not affected by the scattering potential. That
the transmission coefficientuTnp ,np

u2 should be equal to one

as a function of electron incident energyE(E5E1npv) as
we discuss in more detail in Sec. III B.

E. Symmetries of the FloquetS matrix

The Hamiltonian of the scattering model we consider
the KH frame, Eq.~6!, is invariant under the transformatio
x→2x and t→t1T/2, which is known as generalized pa
ity. Thus, H(x,t)5H(2x,t1T/2) and, therefore,F(2x,t
1T/2) is also a solution of Eq.~6!. Applying the transfor-
mationx→2x andt→t1T/2 to Eqs.~18! and~19! it is easy
to show that the FloquetS matrix has the following symme
try:

Rn8,n
8 5Rn8,n~21!n82n, Tn8,n

8 5Tn8,n~21!n82n,

with

n8,n50, . . . ,np . ~34!

Thus, if we know the reflection/transmission amplitude
Rn8,n /Tn8,n for electron waves incident from the right usin
Eqs.~34!, we can find the reflection/transmission amplitud
Rn8,n

8 /Tn8,n
8 for electron waves incident from the left and vic

versa.

III. RESULTS

In this section, the calculations are performed with t
valuesV050.27035 a.u. andd52 a.u. assigned to the pa
rameters of the inverted Gaussian potential. For these pa
eters the Gaussian potential supports only one bound sta
energyEb520.1327 a.u. in the field-free case. The para
etersV0 andd were chosen so as to describe the behavio
a one-dimensional model negative chlorine ion Cl2 in the
presence of a laser field, and are the same as consider
Refs.@11,12,16#. The frequency of the time-periodic field i
taken constant and equal tov50.236 a.u. for all our calcu-
lations. For these values of the parametersV0 , d, andv the
inverted Gaussian potential has been shown to exhibit st
lization @11,12#.
5-5
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FIG. 3. The transmission coefficientsTn andTtot,n , respectively, as a function of electron incident energyE, with EP@0,2v) a.u., for
a050.5 a.u. There is only one Fano transmission resonance atE50.106 a.u., associated with the first quasibound state.
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A. Transmission resonances

In this section, we compute the transmission coeffici
Tn and the total transmission coefficientTtot,n as a function
of the electron incident energyE, where

Tn~E!5uTn,nu2, Ttot,n~E!5 (
n850

np

uTn8,nu2,

EP@nv,~n11!v!, ~35!

with n50,1. Thus, we consider an electron wave incide
from the right with energyEP@0,2v) and compute the trans
mission coefficients. Keeping the frequency of the time
riodic field constant,v50.236 a.u., and varying the streng
of the driving field,a0, we plot the transmission coefficien
Tn andTtot,n in Figs. 3, 4, and 5 fora0 equal to 0.5, 2.25,
and 5.25, respectively. The frequency of the driving fieldv
50.236 a.u. is chosen so that it is larger than the bind
energy of the ground stateuEbu5u20.1327u a.u. in the field-
free case. The Floquet channels we retain to obtain the
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merical results presented in Secs. III A and Sec. III B aren
526, . . . ,0, . . . ,6 for a050.5, n5212, . . . ,0, . . . ,12
for a052.25 andn5219, . . . ,0, . . . ,19 fora055.25, for
reasons we discuss in detail at the end of Sec. III B.

The transmission coefficientsTn andTtot,n display sharp
asymmetric resonances, as a function of electron incid
energyE, that involve a dip or a transmission peak/dip as
shown in Figs. 3, 4, and 5. These asymmetric resonance
due to the interaction of the incident electron wave with t
laterally oscillating potential in the KH frame and are th
so-called Fano@17,18# type transmission resonances that a
known to occur when a bound state is coupled to a c
tinuum of states. This is indeed the case for the scatte
model we consider, where the bound state of the inver
Gaussian potential is coupled to a continuum of sta
through the time periodic electric field. Note in Figs. 3,
and 5 that the difference between the transmission coeffic
Tn and Ttot,n becomes more prominent with increasinga0.
The reason is that asa0 is increased more Floquet channe
interfere with the incident electron wave and significan
nd

FIG. 4. The transmission coefficientsTn andTtot,n , respectively, as a function of electron incident energyE, with EP@0,2v) a.u., for

a052.25 a.u. There are two Fano transmission resonances atE50.142 a.u. andE50.225 a.u., associated with the first and seco
quasibound states, respectively. The second-order Fano transmission resonances forE.v are more prominent than those fora050.5 a.u.
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FIG. 5. The transmission coefficientsTn and Ttot,n as a function of electron incident energyE, with EP@0,2v) a.u., for a0

55.25 a.u. There are two Fano transmission resonances atE50.185 a.u. andE50.219 a.u., associated with the first and second qu
bound states, respectively. The second-order Fano transmission resonances forE.v are more prominent than those fora052.25 a.u.
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contribute to the total transmission coefficient. A comparis
of Fig. 3 with Figs. 4 and 5 reveals that as the driving field
increased, the higher-order resonances, forE.v, become
stronger.

We now focus on the transmission coefficientTn and dis-
cuss how it ‘‘probes’’ the quasibound states of the syste
For a050.5, see Fig. 3~a!, the system has only one Fan
transmission resonance, which for small amplitude of
driving field is associated with then521 localized Floquet
evanescent mode that has its origin in the bound state o
undriven system. When the strength of the driving field
increased,Tn has a second Fano transmission resonance
higher incident energy, see Figs. 4~a! and 5~a!. This second
resonance appears fora0.1, as was shown in Refs.@11,12#,
and it is thus a field-induced resonance.

The Fano resonances, which are indicated by a dip o
transmission peak/dip in the coefficientTn , correspond to
quasibound states of the system that show up as poles o
FloquetS matrix in the complex energy plane. In what fo
lows, we compute the poles ofTn in the complex energy
plane. Other elements of the FloquetS matrix have poles as
well. As was noted in Ref.@19# the asymmetric Fano line
shape inTn is associated with zero-pole pairs when plotti
Tn in the complex energy plane. By a zero-pole pair
mean that every transmission zero ofTn along the real en-
ergy axis is associated with a pole ofTn on the lower half
complex energy plane due to the unitarity of the FloqueS
matrix @19#. For a050.5 there is only one zero-pole pa
associated with the single transmission resonance see
Tn , while for a052.25 there is a zero-pole pair for each
the two resonances, see Figs. 4~a! and 6. For small strength
of the driving field,a050.5, the location of the pole on th
lower half complex energy plane and of the zero on the r
energy axis is the same, while there is a small difference
stronger fields,a052.25. That is why, we can only approx
mately determine the real part of the quasibound states f
the transmission zeros. From the poles in the complex en
plane, we find the real part of the quasibound states to
Re(E1)50.106, fora050.5, and Re(E1)50.145, Re(E2)
50.226, fora052.25.
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The lifetime tL of the quasibound states is determin
from the imaginary part of the complex energy, Im(E),
where the pole is found. Then

tL5
1

G
, ~36!

where G52 Im(E) is the ionization rate. For the inverte
Gaussian potential it has been found that with increas
strength of the driving field the ionization rate decreases
an oscillatory manner@11,12#. In Figs. 7 and 8 we show how
the real and imaginary part of the quasibound state ener
change as a function ofa0, for a0 ranging from 0 to 6 a.u.
The incident particle can emit a photon and drop to a loc
ized Floquet evanescent state. It is in this sense that in F

FIG. 6. Contour plot of the transmission coefficientTn in the
complex energy plane fora052.25 a.u. The dark→ light areas
correspond to increasing values ofTn . There are two zero-pole
pairs, each associated with the Fano resonances in Fig. 4. From
poles we determine the real part and the lifetime,tL , of the first and
second quasibound states.
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we plot the real part of the quasibound state minus a pho
energy and obtain results in agreement with those obtaine
Refs.@11,12#.

B. Wigner-Smith delay times

Wigner’s@20# one-dimensional analysis on time delay in
quantum-mechanical scattering problem was generalize
multichannel scattering by Smith@21# who introduced the
Hermitian matrix

Q̂5 iŜ
dŜ†

dE
, ~37!

and interpreted its diagonal elementsQnn as the average de
lay experienced by a particle incident on thenth channel (S
is the unitary scattering matrix!.

FIG. 7. Real part of the first~squares! and second~dots! quasi-
bound states minus a photon energy as a function ofa0 (a.u.). The
real part of the quasibound states is found from the poles of
transmission coefficientTn in the complex energy plane.

FIG. 8. Ionization rate of the first~squares! and second~dots!
quasibound states as a function ofa0 (a.u.). The imaginary part o
the quasibound states is found from the poles of the transmis
coefficientTn in the complex energy plane.
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In what follows, we compute the diagonal elements of t
Wigner-Smith delay matrixQ for the system currently unde
consideration. We first obtain the eigenvalues and eigenv
tors of the FloquetS matrix, see Eq.~31!, which is a 2(np
11)32(np11) matrix when the system is truncated tonp
11 propagating modes. The 2(np11) eigenvalues of the
unitary FloquetS matrix have unit magnitude and can thu
be cast in the formeiu i (E), where i 51, . . . ,2(np11) and
u i(E) is the ith eigenphase as a function of the Floquet
ergy E. The eigenvector corresponding to the ith eigenva
eiu i is denoted byuu i&. We note that the transmission coeffi
cientsTn and Ttot,n ~see Sec. III A! as well as the Wigner-
Smith delay timestws

n , defined in what follows, are a func
tion of incident electron energyEP@0,(np11)v). However,
the eigenphasesu i and the eigenvectorsuu i& of the FloquetS
matrix are a function of the Floquet energyEP@0,v) in the
sense that if the Floquet energy is defined as the incid
electron energy at a higher propagating channel one finds
exact same eigenvalues and eigenvectors. The FloquetS ma-
trix can be written as

Ŝ5 (
i 51

2(np11)

uu i&e
iu i^u i u. ~38!

Each of the eigenvectorsuu i& can be expanded in terms o
the propagating free electron wavesukn& that we have used to
construct the FloquetS matrix, wherê xukn&5eiknx. That is,
uu i&5(n50

2np11pn,i ukn& where pn,i5^knuu i& and Pn,i5upn,i u2

is the occupation probability of theuu i& eigenvector on the
ukn& propagating channel andn50, . . . ,np for the right-
propagating modes andn5np11, . . . ,2np11 for the left-
propagating modes. The occupation probability of theuu i&
eigenvector on a mode incident from the right is the sa
with that of the corresponding mode incident from the le
that is, Pn,i5Pn1np11,i for n50, . . . ,np . Finally, for each

eigenvectoruu i& the total occupation probability is norma
ized to 1, (n50

2np11Pn,i51, where modes incident from th
right and the left are taken into account. For modes o
incident from the right the normalization for the occupati
probability takes the form(n50

np Pn,i50.5. From Eqs.~37!
and~38! and the fact that the eigenvectorsuu i& form a com-
plete set~the FloquetS matrix is unitary! one can show tha

^knuQ̂ukn&[tws
n 5 (

i 51

2(np11)
du i

dE ^knuu i&^u i ukn&⇒t ws
n

5 (
i 51

2(np11)

Pn,i

du i

dE . ~39!

The Wigner-Smith delay timestws
n are the average times a

electron incident on the nth channel with energyE
P@nv,(n11)v) is delayed due to its interaction with th
laterally oscillating time-periodic potential in the KH frame
The Wigner-Smith delay times for propagating modes in
dent from the right are the same with those incident from
left, that is,tws

n 5tws
n1np11 for n50, . . . ,np .

e

on
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In Figs. 9, 10, and 11 we plot the Wigner-Smith del
times for a0 equal to 0.5, 2.25, and 5.25, respectively, f
modes incident from the right. In Table I, we compare t
Wigner-Smith delay timest ws

n obtained from the FloquetS
matrix with the lifetimetL obtained from the poles of theTn
transmission coefficient in the complex energy plane and
them to be of the same order of magnitude@22#. At the trans-
mission resonances, the incident electron wave gets trap
by the oscillating potential, populating the quasibound sta
of the system. The delay of the incident electron wave at
transmission resonances shows up as peaks when plottin
Wigner-Smith delay times as a function of the electron in
dent energy. Note that asa0 increases from 2.25 to 5.25 th
Wigner-Smith delay time of the 1st quasibound state

FIG. 9. The Wigner-Smith delay timestws
n as a function of

electron incident energyEP@0,2v) for a050.5 a.u. There is one
peak at E50.106 a.u. and smaller peaks at higher-order re
nances, associated with the Fano resonance in Fig. 3. For s
incident energyE, the Wigner-Smith delay time is positive.

FIG. 10. The Wigner-Smith delay timestws
n as a function of

electron incident energyEP@0,3v) for a052.25 a.u. There are
two peaks atE50.142 a.u. andE50.225 a.u. and smaller peaks
higher-order resonances, associated with the two Fano resona
in Fig. 4. For small incident energyE, the Wigner-Smith delay time
is negative.
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creases, evidence of stabilization. Another interesting ob
vation is that for small incident energyE the electron has
positive Wigner-Smith delay times, fora050.5, but the elec-
tron has negative Wigner-Smith delay times for strong dr
ing fields a052.25 and 5.25. These latter ones can ar
physically either from reflection of the incident electron b
fore it enters the scattering region or from its accelerat
and swift passage through the negative potential@21#. In ad-
dition, from Figs. 9, 10, and 11 we see, as expected,
when the electron is incident on higher Floquet channel
delays less and less until for very high energies it is
affected by the potential and the delay time is zero.

Now, let us briefly comment on the truncation error of o
numerical calculations. The number of Floquet channelsN
was chosen for each value ofa0 so that the error due to
truncation remains small. The truncation error for the e
mentsRn8,n /Tn8,n , where n8,n50, . . . ,np , is smaller for
n50 and it increases asn approachesnp , wherenp is the
last propagating mode and thus the mode with the lar
electron incident energy. Thus, the truncation error for

-
all

ces

FIG. 11. The Wigner-Smith delay timestws
n as a function of

electron incident energyEP@0,4v) for a055.25 a.u. There are
two peaks atE50.185 a.u. andE50.219 a.u. and smaller peaks
higher-order resonances, associated with the two Fano resona
in Fig. 5. For small incident energyE, the Wigner-Smith delay time
is negative.

TABLE I. The Wigner-Smith delay timest ws
n compared to the

lifetime tL for the 1st and 2nd quasibound states fora0 equal to
0.5, 2.25, and 5.25.

Resonance t ws
n (a.u.) tL (a.u.)

a050.5
1st resonance 390 208
a052.25
1st resonance 43 28.2
2nd resonance 137 104
a055.25
1st resonance 244310 704
2nd resonance 329 81
5-9
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AGAPI EMMANOUILIDOU AND L. E. REICHL PHYSICAL REVIEW A 65 033405
transmission coefficientsTn andTtot,n computed in Sec. III A
is smaller than the error for the Wigner-Smith delay tim
computed in this section. An estimate of the truncation er
is given by 12uTnp ,np

u2 as a function of incident electro
energy. In all our calculations the truncation error is kept
the order of 1024 for a050.5, 2.25, and 1023 for a055.25
so that our results are reliable. As we increasea0, we need to
consider a larger number of Floquet channelsN to maintain a
small truncation error in our numerical calculations maki
it computationally challenging to compute the Wigner-Sm
delay times for large values ofa0.

C. Classical-quantum correspondence

When we plot the eigenphases of the FloquetS matrix as
a function of the electron Floquet energyE we notice that the
eigenphases undergo an increasing number of ‘‘avoi
crossings’’ with increasing strengtha0 of the driving field,
see Figs. 12, 14, and 15. As we show in what follows,
believe that these ‘‘avoided crossings’’ are a quantum ma
festation of chaos in the classical phase space.

Let us explain what we mean by the term ‘‘avoided cro
ing’’ in terms of the occupation probabilities,Pn,i , ~defined
in Sec. III B! of the uu i& eigenvector on theukn& propagating
channel. In what follows, we consider the occupation pr
abilities only for modes incident from the right, that is,n
50, . . . ,np . In Fig. 12, the eigenphasesu1 andu2 undergo
a repulsion when the Floquet energy is equal to the trans
sion resonance,E50.106, fora050.5. For very small values
of a0 the eigenphases cross each other without repelling.
only as we increase the strength of the driving field that
eigenphases undergo a repulsion, which we refer to as
‘‘avoided crossing.’’ We describe quantitatively the ‘‘avoide
crossing’’ between the eigenphasesu1 and u2 in terms of
occupation probabilities. In Fig. 13~a!, we plot the occupa-
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tion probabilitiesP0,1, P1,1, andP2,1 of the uu1& eigenvector
on the propagating channels n50,1,2 and in Fig. 13~b! we
plot the occupation probabilitiesP0,2, P1,2, andP2,2 of the
uu2& eigenvector on the propagating channels n50,1,2 as a
function of Floquet energyE. Before the ‘‘avoided crossing,’
E,0.106, uu1& has support mainly on the second propag
ing channel,P1,1'0.5, and uu2& on the first propagating
channel, P0,2'0.5, while after the ‘‘avoided crossing,
E.0.106, uu1& has support mainly on the first propagatin
channel,P0,1'0.5, anduu2& on the second propagating cha
nel, P1,2'0.5. This total exchange of character is what w
refer to as asharp ‘‘avoided crossing.’’ Note that fora0
50.5 the propagating channels involved in the ‘‘avoid

FIG. 12. The eigenphasesu i ~rad! as a function of Floquet en
ergyE (a.u.) fora050.5 a.u. Fora0!0.5 a.u. the eigenphasesu1

andu2 intersect each other as a function of Floquet energyE (a.u.).
It is only asa0 is increased that the eigenphases repel as a func
of E (a.u.) and form an ‘‘avoided crossing,’’ indicated by an arro
rp

g
ly.
FIG. 13. Fora050.5, we retainn526, . . . ,0, . . . 6channels and obtain 14 eigenphases from the 14314 FloquetS matrix. Only two
eigenphasesu1 and u2 participate in the ‘‘avoided crossing.’’ The eigenphasesu1 and u2 exchange character completely at the sha
‘‘avoided crossing’’ shown in Fig. 12. To show, quantitatively, how the character exchange takes place we plot in~a! the occupation
probabilitiesP0,1, P1,1, andP2,1 of the uu1& eigenvector on the propagating channelsn50,1,2 and in~b! the occupation probabilitiesP0,2,
P1,2, andP2,2 of the uu2& eigenvector on the propagating channelsn50,1,2 as a function of Floquet energyE (a.u.). Before the avoided
crossing the eigenvectoruu1& has support on channeln51 and the eigenvectoruu2& mainly on channeln50, while after the avoided crossin
the eigenvectoruu1& has support mainly on channeln50 and the eigenvectoruu2& on channeln51, thus exchanging character complete
5-10
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FLOQUET SCATTERING AND CLASSICAL-QUANTUM . . . PHYSICAL REVIEW A65 033405
crossing’’ are mainlyn50,1. As the strength of the driving
field a0 is increased an increasing number of propagat
channels undergo ‘‘avoided crossings,’’ as shown in Table
and III.

For increased strength of the driving field, the number
avoided crossings increases, see Figs. 14, 15 and it ca
that more than two eigenphases participate in an ‘‘avoi
crossing’’ for a certain Floquet energy. For example, this
the case for the ‘‘avoided crossing’’ atE'0.14, for a0
52.25, where there are three eigenphasesu1 , u2, and u6
interfering, see Fig. 15. In Figs. 14 and 15, we plot the eig
phases of the FloquetS matrix as a function ofE for a0
51.25 anda052.25, respectively, to show the increase
the number of ‘‘avoided crossings’’ with increasing streng
of the driving field. In Tables II and III we present fora0
51.25 anda052.25, respectively, the eigephases which u
dergo ‘‘avoided crossings’’ for different Floquet energiesE
and the propagating channelsn50,1, . . . forwhich the oc-
cupation probabilityPn,i is substantial. In Tables II and III
the channels with small occupation probabilities are in
cated as subscripts to the channels with large occupa

FIG. 14. The eigenphasesu i ~rad! as a function of Floquet en
ergy E (a.u.) for a051.25 a.u. The eigenphasesu1 , . . . ,u5 par-
ticipate in the ‘‘avoided crossings’’ shown in Table II.

TABLE II. For a051.25 we retainn526, . . . ,0, . . . ,6chan-
nels and obtain 14 eigenphases from the 14314 FloquetS matrix.
Here we only show the five eigenphases participating in
‘‘avoided crossings’’ at different Floquet energiesE, see Fig. 14. For
each of the five participating eigenphasesu1 , . . . ,u5 we display the
propagating channelsn50,1, . . . withsubstantial occupation prob
ability Pn,i . The propagating channels involved in the ‘‘avoide
crossings’’ aren50,1,2.

E (a.u.) u1 u2 u3 u4 u5

0.01 01 10 0 2 1
0.07 10 01 0 2 1
0.12 0 1 0 2 1
0.15 2 1 0 0 1
0.23 2 1 01 0 10
03340
g
II

f
be
d
s

-

-

-
on

probabilities. This is only an approximate picture but he
us visualize how the eigenphases change character a
‘‘avoided crossings.’’ For example, from Table III, we obta
an approximate picture how the eigenphasesu1 , u2, andu6
participate in the ‘‘avoided crossing’’ atE'0.14. For E
50.07, the eigenvectoruu1& has support mainly on the
propagating channeln51 and less onn50,2,3, the eigen-
vector uu2& has support mainly on the propagating chan
n50 and less onn51, the eigenvectoruu6& has support
mainly on the propagating channeln53 and less onn
55,1. ForE50.145, the eigenvectoruu1& has support mainly
on the propagating channeln50 and less onn51, the ei-
genvectoruu2& has support mainly on the propagating cha
nelsn51,3 and less onn55, the eigenvectoruu6& has sup-
port mainly on the propagating channelsn51,3. Thus, there
is an exchange of character among the eigenphasesu1 , u2
andu6 expressed in terms of the mainly interfering chann
n50,1,3,5 but it is not a complete exchange as in the cas
the sharp ‘‘avoided crossing’’ ata050.5, see Fig. 12. The
‘‘avoided crossings’’ we have just described for the op

FIG. 15. The eigenphasesu i (rad) as a function of Floque
energyE (a.u.) fora052.25 a.u. The eigenphasesu1 , . . . ,u7 par-
ticipate in the ‘‘avoided crossings’’ shown in Table III.

e

TABLE III. For a052.25 we retainn5212, . . . ,0, . . . ,12
channels and obtain 25 eigenphases from the 25325 FloquetS
matrix. Here we only show the seven eigenphases participatin
the ‘‘avoided crossings’’ at different Floquet energiesE, see Fig. 15.
For each of the seven participating eigenphasesu1 , . . . ,u7 we dis-
play the propagating channelsn50,1, . . . withsubstantial occupa-
tion probability Pn,i . The propagating channels involved in th
‘‘avoided crossings’’ aren50,1, . . . ,5.

E (a.u.) u1 u2 u3 u4 u5 u6 u7

0.01 01,2 10,3 01 24 10,2,3 31,5 31,5

0.07 102,3
01 012

24 10,2,3 351
31,5

0.145 01 1,35 012
24 10,2,3 1,3 31,5

0.18 20,4 31,5 012
02 10,2,3 13 31,5

0.22 20,4 31,5 10 021
01 13 31,5

0.23 20,4 31,5 31,5 021
02 13 13
5-11
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quantum system under consideration, the inverted Gaus
in the presence of a driving field, are analogous to what w
seen in a bounded chaotic system@23# where the authors als
discuss two different types of ‘‘avoided crossings.’’

We now turn to the classical dynamics of the invert
Gaussian potential in the presence of the driving field. F
ures 16 are strobe plots of the phase-space dynamics
constant frequencyv50.236 and increasing strength of th
driving field, a0 is equal to 0.5, 1.25, and 2.25. The stro
plots are drawn by evolving a set of trajectories, w
different initial conditions, and plotting the location of eac
trajectory at time intervals (tn52p(m11/2)/v, m
50,1,2. . . ) equal to the period of the driving field. W
indicate the location of the period-1 periodic orbits wi
filled squares. The strobe plots are drawn in the Lab fra
see Eqs.~1!, ~2!, and~3!, and are exactly the same with tho
in the KH frame except that in the Lab frame thex axis is
shifted bya0 @24#. If no driving field is present, the motion i
regular and bounded for negative energies, while it is
bounded for positive energies. When the driving field
turned on, the KAM tori in the regular island aroundx
50, p50 start breaking up asa0 is increased and chaoti
motion sets in. Fora050.5, see Fig. 16~a!, the classical
phase space is mixed. There are two islands around the
stable periodic orbits but there are also chaotic trajector
As a0 is further increased the remaining islands are v
small, see Fig. 16~b!, until they totally disappear, see Fig
16~c!, and the phase space in the scattering region beco
dominated by chaos. In addition, in Figs. 17~a! and 17~b!
where the initial values of the classical momenta are cho
to correspond to the middle of the Floquet propagating ch
nels, we find that asa0 is increased more trajectories g
pulled into the chaotic region of the classical phase spa
Correspondingly, in the quantum treatment of the scatte
problem we have seen that as the strength of the driving fi
is increased the eigenphases of the FloquetS matrix undergo
an increasing number of ‘‘avoided crossings’’ where mo
Floquet channels contribute to the scattering process.
thus believe that the ‘‘avoided crossings’’ are a quant
manifestation of the breaking of the constants of motion a
chaos setting in in the classical phase space.

IV. CONCLUSIONS

In this paper, we have studied the scattering of elect
waves from an inverted Gaussian potential, used to mo
the atomic potential, in the presence of strong time-perio
electric fields. Using Floquet theory, we have constructed
FloquetS matrix in the KH frame, where asymptotic stat
can be defined. We have computed the transmission r
nances for different strengths of the driving field and sho
that they are associated with zero-pole pairs of the FloquS
matrix in the complex energy plane. We have also compu
the Wigner-Smith delay times, which is a different way
‘‘probe’’ the complex spectrum of the open quantum syste
Finally, we have shown that the eigenphases of the o
quantum system undergo a number of ‘‘avoided crossin
as a function of the electron Floquet energy, that increa
with increasing strength of the driving field. We believe th
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the ‘‘avoided crossings’’ are quantum manifestations of
destruction of the KAM surfaces and the onset of chaos
the classical phase space.
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APPENDIX A

In what follows, starting from Eqs.~27!, ~28!, ~29!, and
~30!, we obtain the outgoing probability amplitudes of th
propagating modes in terms of the incoming probability a
plitudes of the propagating modes.

Using K1
215K2 andK81

21K28 52K2
2 , we eliminateBout

from Eqs.~27! and ~28! and obtain

2K2
2 JBin5N 21L1C1N 21L2D, ~A1!

where L15K2X1
(1)2K81

21X1
(1)8 and L25K2X1

(2)

2K81
21X1

(2)8 . Using K1
215K2 and K81

21K28 52K2
2 , we

eliminateAout from Eqs.~29! and ~30! and obtain

2K2
2 JAin5N 21L3C1N 21L4D, ~A2!

where L35K2X 2
(1)1K81

21X 2
(1)8 and L45K 2X 2

(2)

1K81
21X 2

(2)8 . From Eqs.~A1! and~A2! we expressC, D in
terms ofAin andBin as follows:

C52G@L2
21K2

2 JNBin2L4
21K2

2 JNAin#, ~A3!

D52H@L1
21K2

2 JNBin2L3
21K2

2 JNAin#, ~A4!

whereG5@L2
21L12L4

21L3#21 andH5@L1
21L22L3

21L4#21.
Substituting Eqs.~A3! and~A4! in Eqs.~27! and~29! yields
Aout andBout in terms ofAin andBin,

Aout5N 21r8NAin1N 21tNBin,

Bout5N 21t8NAin1N 21rNBin, ~A5!

or equivalently

NAout5r8NAin1tNBin,

NBout5t8NAin1rNBin, ~A6!

where

r852@K2
2 12K2X 2

(1)GL4
21K2

2

12K2X 2
(2)HL3

21K2
2 #J,

r5@2K2
2 12K2X 1

(1)GL2
21K2

2 12K2X 1
(2)HL1

21K2
2 #J,

t8522@K2X 1
(1)GL4

21K2
2 1K2X 1

(2)HL3
21K2

2 #J,
5-12



e

-

l-

te
m

i-

r

th
d
ina

ted
me
-
pond
itial

re
ase

FLOQUET SCATTERING AND CLASSICAL-QUANTUM . . . PHYSICAL REVIEW A65 033405
FIG. 16. Strobe plots of the classical dynamics, for the inver
Gaussian in the presence of the driving field, in the laboratory fra
for ~a! a050.5, ~b! a051.25, and~c! a052.25. The initial condi-
tions used to generate the plots lie on the linep50 as well as on the
lines with 21,p,1. The location of the period-1 orbits are ind
cated by filled squares. The period-1 orbits are located at~a!
21.87,20.36, and 2.46;~b! 2.84; and~c! 1.88, 3.38, and 4.54. Fo
very small values of the driving fielda0 ~not shown! there is a large
regular island around the region atx50, p50. Asa0 is increased
to 0.5, there are two regular islands reduced in size indicating
destruction of the KAM tori. Asa0 is further increased to 1.25 an
2.25 the regular islands disappear and the phase space is dom
by chaos.
03340
t52@K2X 2
(1)GL2

21K2
2 1K2X 2

(2)HL1
21K2

2 #J. ~A7!

From Eqs.~A7!, due to the multiplication on the right by th
N3N matrix J, we find that theN3N matricesr8, r, t8, and
t are of the following form:

r85S 0ee rep8

0pe rpp8
D , r5S 0ee rep

0pe rpp
D , t85S 0ee tep8

0pe tpp8
D ,

t5S 0ee tep

0pe tpp
D , ~A8!

where the matricesrep8 , rep , tep8 , and tep have dimensions
ne3np11 and the matricesrpp8 , rpp , tpp8 , and tpp have di-
mensionsnp113np11, respectively (ne is the number of
the evanescent modes andnp11 is the number of the propa
gating modes!. The matrices0ee and 0pe have dimensions
ne3ne andnp113ne , respectively, and they have zero e

d
e

e

ted

FIG. 17. Strobe plots of the classical dynamics, for the inver
Gaussian in the presence of the driving field, in the laboratory fra
for ~a! a050.5 and~b! a052.25. The initial conditions of the clas
sical momenta used to generate the plots are chosen to corres
to the middle of the Floquet propagating channels, that is, the in
conditions lie on the lines p56A2(0.131nv) with n
50,1, . . . ,8. As thestrength of the driving field is increased mo
trajectories get pulled in the chaotic region in the classical ph
space.
5-13
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ements because the amplitudesbin andain of the evanescen
modes are zero,bn

in5an
in50, for n52ne , . . . ,21.

In addition, the matricesN, Ain, Aout, Bin, andBout can
be written as

N5SNee 0ep

0pe Npp
D , Ain5S Ae

in

Ap
inD , Aout5S Ae

out

Ap
outD ,

Bin5S Be
in

Bp
inD , Bout5S Be

out

Bp
outD , ~A9!

where the matricesNee, Npp have dimensionsne3ne and
np113np11, respectively. The elements of thene31 ma-
trices Ae

in , Ae
out , Be

in , and Be
out are the amplitudes of the

evanescent modes. The elements of thenp1131 matrices
Ap

in , Ap
out , Bp

in , andBp
out are the amplitudes of the propaga

ing modes. Using Eqs.~A8! and~A9! we write Eqs.~A6! as
follows:

NeeAe
out5rep8 Npp Ap

in1tepNppBp
in ,

Npp Ap
out5rpp8 Npp Ap

in1tppNppBp
in ,

NeeBe
out5tep8 Npp Ap

in1repNppBp
in ,

NppBp
out5tpp8 Npp Ap

in1rppNppBp
in . ~A10!

From Eqs.~A10! we obtain the FloquetS matrix given in Eq.
~31!.

APPENDIX B

In Secs. II B, Sec. II C, and Sec. II D we have forma
constructed the FloquetS matrix in terms of the functions
xn, j (x), with n52ne , . . . ,0, . . . ,np and j 51, . . . ,2N,
which are linearly independent functions in the scatter
region II. For the inverted Gaussian potential the functio
xn, j (x) can only be obtained numerically. In Appendix A, w
formally expressed the matricesr andt in terms of the func-
tionsxn, j (x). Numerically, though, it is not efficient to com
pute the functionsxn, j (x). In what follows, we outline the
numerical method@9# we use to obtain theN3N matricesr
and t for electron waves incident from the right.

The wave function in the asymptotic regions I and III
given by Eqs.~18! and~19! with an

in50, since we only con-
sider electron waves incident from the right. We can th
write

fn~x0!5bn
out e

iknx0

Akn

1bn
ine2 iknx0

Akn

,

fn~2x0!5an
out e

iknx0

Akn

, ~B1!

with bn
in50 for n52ne , . . . ,21. Next, we write Eqs.~B1!

in matrix form using Eqs.~24!, ~25!, and~26! as follows:

f~x0!5K1NBout1K2JNBin, ~B2!
03340
g
s

n

f~2x0!5K~2x0!NAout, ~B3!

where

K~x!5S e2 ik2ne
x

A 0

e2 ik0x

A

0 e2 iknp
x

D . ~B4!

Using Eqs.~A6! with Ain50, we write Eqs.~B2!, ~B3! as
follows:

f~x0!5K1rNBin1K2JNBin, ~B5!

f~2x0!5K~2x0!tNBin. ~B6!

Next, we use Eq.~13! to numerically propagatef(x) from
x52x0 up to x5x0 according to the Numerov algorithm
@25#. From Eq.~B6!, we see that in practice we numerical
integrate theK(x) matrix fromx52x0 up tox5x0, sincet,
N and Bin are constant matrices. Let us indicate byK̃(x0)
the numerically integrated matrixK(x) at x5x0. Then,
matching the wave function and its first derivative atx5x0
and using Eqs.~24!, we obtain

K̃~x0!tNBin5K1rNBin1K2JNBin,

K̃8~x0!tNBin5K18 rNBin1K28 JNBin, ~B7!

or equivalently

K̃~x0!t5K1r1K2J,

K̃8~x0!t5K18 r1K28 J. ~B8!

From Eqs.~B8!, we find

r5@K̃~x0!21K12K̃8~x0!21K18 #21@K̃~x0!21K2

2K̃8~x0!21K28 #J,

t5@K2K̃~x0!2K81
21K̃8~x0!#21@K2

2 2K81
21K28 #J,

~B9!

where we have used the relationK1
215K2 . The matricesr

and t given by Eqs.~B9! are of the form shown in Eq.~A8!
and thus we can extract the matricesrpp and tpp . Following
Sec. II D, we then obtain the matricesR andT. Finally, using
the symmetry property of the FloquetS matrix given in Eq.
~34! we find the matricesR8 andT8 for electron waves inci-
dent from the left.
5-14
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