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Axial and Landau gauge for a continuum electron in a homogeneous magnetic field
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In an attempt to obtain a suitable access to the quantum description of a continuum electron in a combined
Coulomb and homogeneous magnetic field, we first illustrate the complexity of the problem by selected
classical trajectories. Subsequently, we examine the properties and consequences of two particular gauges for
representing a homogeneous magnetic field, in particular, their usefulness in describing Coulombic bound and
continuum states. We show that in the absence of a Coulomb field, the Landau gauge but not the axial gauge
allows for a simple construction of asymptotic states that satisfy the requirement of tending to plane waves in
the limit of vanishing field strength.
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I. INTRODUCTION notion of how classical trajectories of continuum electrons
look in a Coulomb field alone or in a homogeneous magnetic

A hydrogenlike atom placed in a homogeneous magnetifield alone, we find it difficult to imagine trajectories in a
field represents one of the simplest possible atomic systemsombined Coulomb and magnetic field.

However, its gquantum-mechanical treatment constitutes an Clearly, we cannot expect that classical trajectories can
exceedingly difficult task. While solutions have been ob-give a quantitative account of the experimental findi6g

tained for a large number of special situations, it is fair to saythat radiative recombination in the presence of a magnetic
that the full problem still awaits a theoretical description. field is strongly enhanced compared to theoretical results ob-

The problem has been mostly treated for extremely stronggined for the field-free case. For a qualitative understanding,
magnetic fields occurring in neutron stars and white dwarfgt has been proposdd] that a low-energywith respect to
[1,2] or in the study of chaotic behavior prevalent in highly the ion electrons spiralling in the magnetic field may form a
excited Rydberg states, which are magnetically dominateduasibound state once they come under the influence of the
already for field strengths of a few Tesla@s4]. The renewed ion’s Coulomb field. This is illustrated in Fig. 1, where the
interest derives from the attempts to form antihydrogen in aauclear charge, the magnetic-field strenBtand the relative
Penning trap by radiative recombination of antiprotons withelectron energy have been chosen to correspond to the ex-
positrons and from experiments in an electron cooler ringperimental situation. One then would argue that the pro-
where a magnetically guided beam of bare heavy iondonged presence of the electron in the vicinity of the nucleus
merges an electron beam of almost the same velocity so thatill lead to an increased probability for radiative capture and
electrons are radiatively captured into a Coulomb boundhus explain the observed enhanceni@htHowever, in this
state. In contrast to most theoretical treatments, which haveespect, Fig. 1 is misleading, because the distance of the
dealt with bound or quasibound states, see ¢4, both
cases of interest require the consideration of continuum
electrons.

In Sec. Il, we briefly discuss experiments in a cooler ring 50
and attempts to explain the results in terms of classical tra- 10}
jectories, for which two examples are shown. In Sec. lll, a 05y
quantum description in terms of the axial and the Landauz _3;5_
gauge is reviewed, followed by an examination of the corre-z .10}
sponding asymptotic continuum states in Sec. IV. Conclud-~ 15}
ing remarks are contained in Sec. V.

Il. CLASSICAL TRAJECTORIES

The process of radiative recombination requires a quan-
tum description in order to correctly accommodate photon
emission. However, it should be instructive to visualize the

corresponding classical trajectories. While we have a good FG. 1. Classical trajectory of an electron in the combined field
of a bare nucleus with chargé=6 and a magnetic field in the
direction of B,=42 mT. The electron has an asymptotic kinetic
*Electronic address: eichler@hmi.de energy ofE;=1.5 meV in the direction of the field and &,
TElectronic address: toshima@bk.tsukuba.ac.jp =6.0 meV perpendicular to the field.
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15 5 same as before, only the initial condition is changed to a

; : starting velocity parallel to th8 field. The upper part of the
figure is a projection on a plane containing the vector of the
B field, the lower part is a projection on a plane perpendicu-
lar to the field. A criterion for the validity of classical trajec-
tories is discussed in E43.6).

Clearly, the classical trajectories depicted in Figs. 1 and 2,
are independent of the gauges discussed in Secs. Il and IV.
However, they suggest that a description in terms of quasi-
bound states may not be appropriate.

05 r

z (10% a.u.)
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Ill. CHOICE OF GAUGES IN A QUANTUM TREATMENT

We first discuss the problem of a point charge moving in
a homogeneous magnetic fiddd This field, derived from a

20 ; vector potentialA asB=V X A, defines the direction of our
coordinate system. Among the possible gauges leading to the

5 | : sameB field, the axial or symmetric gauge has been used
: ' almost universally in the context of atomic physics problems

[3,9-13, while the Landau gauge, originally introduced by
Landau in his seminal papgt4] has found much less atten-
tion. In order to set up the framework and the definitions, we

o8 ‘ ; ! discuss these two gauges in Secs. Ill A and Il B, respec-
3 : ; i tively, following the elegant formulation by Johnson and
,; 00 Lippmann[15].

It is customary to express the magnetic fi@e yB, in
terms of the reference field strength

-0.5

2a?mic®
Boze—h =4.7001x 10° T. (3.1

Note that the quantityB, is sometimes used for half the
20 ; | | value adopted heré.e., for 2.35<10° T) andy is changed

= - * - ' ‘ : ' accordingly[3]. Adopting atomic unitse=m,=#=1 from
now on, the magnetic-field strength can also be characterized
FIG. 2. Classical trajectory of an electron in the combined fieldby the cyclotron frequency =2y or by the cyclotron ra-

H ) 2__ —
of a bare nucleus with chargg=6 and a magnetic field in the ~ dius R defined asR®=1/w =1/2y. . . .
direction ofB,=42 mT. The upper part shows the projection in the The classical motion of an electron in a uniform magnetic

x-z plane, while the lower part shows the projection in tag  field follows a spiral trajectory with momentump, in the

plane. The electron has an asymptotic kinetic energyEpf direction of thez axis and radiuspy around a parallek

=0.1 meV in the direction of the field and &, =0.0 meV per- =Xg, Y=Y, to thez axis, where the coordinateg andyy

pendicular to the field. specify the guiding center with respect to the origin and with
the distancepg from it. These classical quantities play a role

electron from the ion is by orders of magnitude too large foralso in a quantum description.

the electron to be radiatively captured and de-excited into a

lower state within the time interval in which the electron and A. Axial gauge

the ion beams are merged. Although it is possible to find

initial conditions such that electron and ion come close to

each other, these are rare and do not have much weight in A@=_1rxB (3.2

phase space. In fact, another explanation of the experimental

effect has been put forwaf@], namely, the occurrence of an has been applied almost universally in the context of atomic

induced motional electric field pulse at the beginning and aphysics. The Hamiltonian describing the electron motion is
the end of the merging section of the storage ring. While the

observed enhancement of radiative recombination in a cooler Ho=3p2+ yL,+39%p?%, (3.3

ring has been part of the motivation, it is not our intention to

explain the effect or to discuss it in detail. Rather, Fig. 1wherel, denotes the electron orbital angular momentum op-
merely serves as an illustration of a relatively regular trajecerator in thez direction, p?=x?+y? andw, is the spacing of
tory. A quite surprising trajectory is shown in Fig. 2, signal- the Landau levels. We have omitted here the spin part of the
ling chaotic behavior. lon charge and field strenBthre the  Hamiltonian, which only gives rise to a constant energy.

x (10° a.u.)

The axial or symmetric gauge defined by
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R? ‘ho.
= 2

2
PN 1

<1, (3.6

Mev

wherepy=v, /w; andv, is the electron velocity in thg-y
plane. Hence a classical description is valid, if the spacing
w. of Landau levels in a magnetic field is small compared to
the transverse kinetic energy of the electrons. This is valid
for the trajectories shown in Figs. 1 and 2.

The eigenvalues of the Hamiltoniaih, in the form(3.3)
can be labeled by the quantum numketenoting the longi-
tudinal momentumk, and two quantum numbers for the
transverse motion. For the latter, we may use the{Nes}
corresponding to the operatgs§ and p? with the eigenval-
ues R?(2N+1) and R?(2s+1), respectively, withN,s
=0,1,2..., or,alternatively, the s€n,m}, where the quan-
tum numbersm=N-s are the eigenvalues of the operator
L, in Eq. (3.5 [15]. Form=0, Ry=Rs, the electron orbit

FIG. 3. Gauges and guiding centers. Top: axial gauge. The smal#asses through the origin.

circles indicate classical electron orbits with the guiding center lo-

catedsomewher@n a circle with radiug. Bottom: Landau gauge.
The guiding center is locatesbmewher®n a parallely =y, to the
X axis.

It is verified that the operators,, Xq, Yo, p2, p3, andL,
commute withH, and hence represent constants of motion
However, because the coordinaigsandy, do not commute
[9,15], the location of the guiding center is not well defined.
The uncertaintied x, and Ay, with Ax,Ay,=R?/2 prevent

The eigenenergy of an electron in a magnetic fidid] is
composed of the kinetic energy of free motion in thdirec-
tion and the Landau energy of a harmonic oscillator in the
x-y plane with principal quantum numbé,

Enk= 3K+ wc(N+3),

any accurate experimental determination of the guiding cen-

ter, from which the orbit may be predicted. While in classical
mechanics, for any fixed energy, the coordinatgandy, of

the guiding center can be independently chosen, and hend@e cylindrical coordinatesd, ¢,z) is

constitute a two-dimensional infinite manifold, in quantum
mechanics only, or y, or some function ok, andy, can

=3k +todn+ 3 (Im+m+D)]=En. (3.7
The solution of the eigenvalue equation

HoW . 0.2) =Enmd Ship.0.2) (39

Ve e.2)=2m) D (p,0). (39

be fixed, corresponding to a one-dimensional infinite mani-

fold.
Specifically, in the axial gauge.2), the operators
Ho, P, ek, andpl (3.4
form a set of mutually commuting operators. While the ra-
dius py is well defined, the guiding center is only known to

be located on a circle with radiys; around the origin, see

Fig. 3. Hence, the uncertainty in locating points on the orbit

is solely due to locating the center of the orbit.
Instead of using;,z\‘ andp§ for specifying a quantum state,

it is also possible to refer to the orbital angular momentum

about thez axis,

(3.9

2_ 2
L,=3wc(pi—p3)

for classifying the eigenstat¢9,15,14.
The uncertainty relation for the location of the guiding

Here,k, is the momentum in the direction (this is the only
possible free motion n counts the number of radial nodes,
andm is the magnetic quantum number, i.e,®®(p,¢)
=md{(p, ).

The normalized Landau states for a charged particle in a
magnetic field are given by

O@(p. )= \ﬁ o 1/2()/ 2)(12)ml g~ (V2)p?
2N (e myr ) 7P
XLIM(yp?)eme, (3.10

WhereLg(x)is a Laguerre polynomidl17].

The axial gauge outlined here is particularly adequate for
localized states. This is so because for atomic bound states,

the angular momentum projectiomis a good quantum num-

ber, a property that is retained in the axial gauge. Therefore,

center may be used to derive a necessary criterion for ththe space of solutions for a combined Coulomb and magnetic
validity of a classical description of electron trajectories in afield separates into subspaces, each characterized by a spe-
magnetic field. Classical trajectories constitute a good apeific value of m. The resulting simplification has led to the

proximation, if the uncertainty in the position of the guiding
center is small compared to the radius of the orbit, i.e.,

universal use of this gauge in atomic and molecular prob-
lems.
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B. Landau gauge see EQgs(3.9) and (3.14), respectively. Therefore, we need
matrix elements connecting states defined in different gauges
and hence an expansion of states given in one gauge in terms
of states given in the other gauge.

The axial and the Landau gauge are related by

In the Landau gaugil4], the vector potential yielding the
same magnetic field is taken &§"=—By and A~ = AL
=0. Here, thex andy coordinates are treated unsymmetri-
cally and can be interchanged. The Hamiltonian replacing

Eq. (3.3 is AR =AML+ vy, (3.16
_ 2 2
Ho=3wi(y—Yo)?+ Ipyt3p7, where the gauge function is
p X= 3 0XY= YXY. (3.17
yozw_x, (31]) 2re
C

As a result, wave functions are related by

wherey, is the coordinate of the guiding center, which is
located on a parallel to theaxis, but its position on this line
is unknown. This is illustrated in Fig. 3.

While in the axial gauge the operatd&4) form a set of
mutually commuting operators, in the Landau gauge this s

is replaced by Drminyk= (W imde DIV ). (319

2
Ho. Pz piv. andyo. .12 In order to evaluate matrix elements of this kind, it is
Here, the angular momentuin, about thez axis is not a useful to expand transformed eigenstates of the axial gauge

Y@=y Lemiwcy?, (3.18

Taking the dipole operatdbzﬁ-r as an example, one has
et{ansition matrix elements of the form

good quantum number. in terms of the Land_au gauge. Specificglly, fae=0 it can
The energy eigenvalue is given by be shown that an eigenstate in the axial gauge can be ex-
pressed19] by eigenstates in the Landau gauge with expan-
Enk=3K2+ 0(N+3) (3.13  sion coefficients given by a finite multiple sum over elemen-
tary functions and coefficients. In this way, it is possible to
and is degenerate with respectyig calculate matrix elements needed for describing radiative re-
The corresponding eigenfunction is combination in a magnetic field.

(L) — —1/2,4ik,zq5 (L)
Wigok(X.y,2) = (2m) "V (x,y), IV. ASYMPTOTIC PLANE-WAVE STATES

D) (x,y) =€ “YoXy . () (3.14 In order to define a differential cross section for a reaction
Ny, ’ Nyq ' . . . . L. . .
in a magnetic field, it is necessary to consider asymptotic
with plane-wave states in the limit of vanishing field strenBth
That is, we seek an asymptotic solution in the form
_y)2 _ 4
XNyO(Y):NN eXF{_ (y2|:§/20) HN(y Ryo), x(r)=(2m) Sglker 4.9
with the decompositiok= (k, ,k,) andk, =(k, ,¢,). If the
1 total energyE=E, + E| is given, we identify the transverse
M=E=————, (3.195 energyE, with a corresponding Landau state characterized
7HRYZ 28N by the principal quantum numbe\, i.e.,
whereH\, is a Hermite polynomig]17,18. Because, in con- E, =32 =0 (N+3)=w[n+3(|m+m+1)],
trast to the axial gaugen is not a good quantum number, the
Landau gauge is less suitable for localized bound states, EHZE_EL:%kg:E_wC(NjL%), 4.2

which can be classified by the angular momentum projection
m, but it may be appropriate for nonlocalized scatteringin the following, we discuss asymptotic plane waves in the
states corresponding to the classical trajectories shown iaxial and the Landau gauge.
Figs. 1 and 2.
A. Axial gauge

C. Transformation between the axial and the Landau gauge So far, all attempts to construct asymptotic plane waves,

If one wishes to calculate matrix elements between bounthave been performed in the axial gaud@®,21. Zarcone
and continuum states as is the case for the cross section fet al. [21] argue that the adiabatic limib.—0 needed to
radiative recombination in a combined Coulomb and magobtain plane-wave statéd.1) can be performed only if the
netic field, one will need an expansion in terms of zero-ordemagnetic field is restricted to a finite area in thg plane
states¥ (@ in the axial gauge for the bound states, while forwith zero field outside. For finite values ph|<|M| < and
the continuum states an expansion in terms of zero-ordet given by Eq.(4.2) for a fixed transverse energyk? , the
states\[f(,\,"y)Ok in the Landau gauge will be more appropriate, expansion with the required limit is
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Choosing
(a)l&r) L 3/2 E |m\e|m<pe|kzz(p(a )m(p (P) )n .
- 1" 7 RY2n!
(43) an:( y C2n+1 IC2na (48)
V27 (2n)!
whereL is a normalization length. The goal is to achieve the . o
plane-wave limit in the field-free region, that is we find that a linear combination of two Landau wave func-
tionsN=2n,
r) =L~ 32ikzz iimaim(e—ew 3 (k . (4.4 _ —1n 14R12ony
X m;” mi(kup). (49 ‘I’f\ﬂzny k(X,yyZ):( 1 e"‘zze"”cyox—w R72n
Yor 2 J(2n)!
where J(X) is a Bessel function. Fow.—0, Eq. (4.2) .
states thah—oc and m remains bounded. Furthermore, for X[x2nyo(Y) Fixan+1y, ()], (4.9

the wave function(4.3) to tend to the limit(4.4), certain
constraints have to be satisfied, notably the limitation of th
magnetic field to an axial extension p&L andk, /w.<L.
It should be pointed out that in R¢21], the transition from el ©cyoX
the spatial field-free region to a given valBe: 0 satisfying lim qu 209 WXy,2)=
V-B=0, is not considered, although it may influence the N-—o
form of the wave function.

We may conclude, that the axial gauge, which is suitabldropagating in the-z plane, foro.—0, orB—0, y—0. In
for bound states with a specified magnetic quantum numbéhis limit, and fory, andx finite, the phase factor exjpfyox)
m, meets with difficulties when trying to define scattering tends to unity.

states, which require a partial-wave expansion. ~We see in this section, that the Landau gauge offers a
simple possibility to construct asymptotic states for an elec-

tron in a homogeneous magnetic field that satisfy the require-
ment of tending to plane waves for a vanishing magnetic
We next consider the problem in the Landau gaugefield B. In this way, one avoids the problems one has to cope
adopting the wave funCtlonl’(NLy) «(X,y,2) given by Eg. with in the axial gauge used so f§20,21]. For a pure Cou-
(3.14 and relating the transverse energy to the principalomb field, a continuum state is described as a plane wave
quantum number b, = wC(N+2) Without loss of gener- multiplied by a co_nfluent hypergeometric function. If we
ality, we can takek, = yey in the y direction, so that k2 su_bst|tute our sollut|0|(14.9).for the plarle-wavg part, we ob-
— wo(N+1). For a given value ok, we have tain a wave function that is exact f_dr— 0, B finite and for
B=0, Z finite [19]. However, it remains to be seen how good
kK2 1 kK2 1 k2 the wave function is between these limits.
N= -~ ——:>int( )~int( )
2w, 2

y —_——
2w, 2 2w,

with x(y) defined by Eq.(3.14, has the property of
smoothly merging into a plane wave

elkwelkz  (4.10

B. Landau gauge

V. SUMMARY
for w,.—0, N—w., (4.5 ) ) )
We have shown by classical trajectory calculations that
In taking the asymptotic limiN—c of the Hermite polyno- the description of low-energy continuum electrons in a com-
mials contained in the wave functiogy, (y) defined in Eq. bined Coulomb and magnetic field constitutes an extremely
(3.15, we have to treat even and odd orders separately. De gomplex problem. A quantum description of scatteringt
fining N as evenN=2n, and combining an even with an odd quaS|b0un)1I states in a homogeneous infinitely extended

function, we can write a Landau wave function in the g]sa?rr]]ettcl)(;igeilr?cgfnﬁrfo Z?gtee;"”t'zﬁtgf gi;%ti:gg'n‘)f 3}‘2'”&22\}::?_
asymptotic form ymp 9 : g

tional axial and the Landau gauge we have demonstrated that
(—1)"(2m! the latter, in contrast to the former, allows for a simple con-
lim UL (r)=(27) Yeikagioyox——— "~ struction of asymptotic states that tend to plane waves in the
Nyok UAR/2on R L .
N R<2"n! limit of vanishing field strength.

X[ Cop cos{ Van+ 1y_Ryo
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