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Axial and Landau gauge for a continuum electron in a homogeneous magnetic field
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In an attempt to obtain a suitable access to the quantum description of a continuum electron in a combined
Coulomb and homogeneous magnetic field, we first illustrate the complexity of the problem by selected
classical trajectories. Subsequently, we examine the properties and consequences of two particular gauges for
representing a homogeneous magnetic field, in particular, their usefulness in describing Coulombic bound and
continuum states. We show that in the absence of a Coulomb field, the Landau gauge but not the axial gauge
allows for a simple construction of asymptotic states that satisfy the requirement of tending to plane waves in
the limit of vanishing field strength.
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I. INTRODUCTION

A hydrogenlike atom placed in a homogeneous magn
field represents one of the simplest possible atomic syste
However, its quantum-mechanical treatment constitutes
exceedingly difficult task. While solutions have been o
tained for a large number of special situations, it is fair to s
that the full problem still awaits a theoretical description.

The problem has been mostly treated for extremely str
magnetic fields occurring in neutron stars and white dwa
@1,2# or in the study of chaotic behavior prevalent in high
excited Rydberg states, which are magnetically domina
already for field strengths of a few Teslas@3,4#. The renewed
interest derives from the attempts to form antihydrogen i
Penning trap by radiative recombination of antiprotons w
positrons and from experiments in an electron cooler ri
where a magnetically guided beam of bare heavy i
merges an electron beam of almost the same velocity so
electrons are radiatively captured into a Coulomb bou
state. In contrast to most theoretical treatments, which h
dealt with bound or quasibound states, see e.g.,@5#, both
cases of interest require the consideration of continu
electrons.

In Sec. II, we briefly discuss experiments in a cooler ri
and attempts to explain the results in terms of classical
jectories, for which two examples are shown. In Sec. III
quantum description in terms of the axial and the Land
gauge is reviewed, followed by an examination of the cor
sponding asymptotic continuum states in Sec. IV. Concl
ing remarks are contained in Sec. V.

II. CLASSICAL TRAJECTORIES

The process of radiative recombination requires a qu
tum description in order to correctly accommodate pho
emission. However, it should be instructive to visualize
corresponding classical trajectories. While we have a g
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notion of how classical trajectories of continuum electro
look in a Coulomb field alone or in a homogeneous magn
field alone, we find it difficult to imagine trajectories in
combined Coulomb and magnetic field.

Clearly, we cannot expect that classical trajectories
give a quantitative account of the experimental finding@6#
that radiative recombination in the presence of a magn
field is strongly enhanced compared to theoretical results
tained for the field-free case. For a qualitative understand
it has been proposed@6# that a low-energy~with respect to
the ion! electrons spiralling in the magnetic field may form
quasibound state once they come under the influence o
ion’s Coulomb field. This is illustrated in Fig. 1, where th
nuclear charge, the magnetic-field strengthB and the relative
electron energy have been chosen to correspond to the
perimental situation. One then would argue that the p
longed presence of the electron in the vicinity of the nucle
will lead to an increased probability for radiative capture a
thus explain the observed enhancement@7#. However, in this
respect, Fig. 1 is misleading, because the distance of

FIG. 1. Classical trajectory of an electron in the combined fi
of a bare nucleus with chargeZ56 and a magnetic field in thez
direction of Bz542 mT. The electron has an asymptotic kine
energy of Ei51.5 meV in the direction of the field and ofE'

56.0 meV perpendicular to the field.
©2002 The American Physical Society04-1
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electron from the ion is by orders of magnitude too large
the electron to be radiatively captured and de-excited in
lower state within the time interval in which the electron a
the ion beams are merged. Although it is possible to fi
initial conditions such that electron and ion come close
each other, these are rare and do not have much weig
phase space. In fact, another explanation of the experime
effect has been put forward@8#, namely, the occurrence of a
induced motional electric field pulse at the beginning and
the end of the merging section of the storage ring. While
observed enhancement of radiative recombination in a co
ring has been part of the motivation, it is not our intention
explain the effect or to discuss it in detail. Rather, Fig.
merely serves as an illustration of a relatively regular traj
tory. A quite surprising trajectory is shown in Fig. 2, signa
ling chaotic behavior. Ion charge and field strengthB are the

FIG. 2. Classical trajectory of an electron in the combined fi
of a bare nucleus with chargeZ56 and a magnetic field in thez
direction ofBz542 mT. The upper part shows the projection in t
x-z plane, while the lower part shows the projection in thex-y
plane. The electron has an asymptotic kinetic energy ofEi
50.1 meV in the direction of the field and ofE'50.0 meV per-
pendicular to the field.
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same as before, only the initial condition is changed to
starting velocity parallel to theB field. The upper part of the
figure is a projection on a plane containing the vector of
B field, the lower part is a projection on a plane perpendi
lar to the field. A criterion for the validity of classical trajec
tories is discussed in Eq.~3.6!.

Clearly, the classical trajectories depicted in Figs. 1 and
are independent of the gauges discussed in Secs. III and
However, they suggest that a description in terms of qu
bound states may not be appropriate.

III. CHOICE OF GAUGES IN A QUANTUM TREATMENT

We first discuss the problem of a point charge moving
a homogeneous magnetic fieldB. This field, derived from a
vector potentialA asB5“3A, defines thez direction of our
coordinate system. Among the possible gauges leading to
sameB field, the axial or symmetric gauge has been us
almost universally in the context of atomic physics proble
@3,9–13#, while the Landau gauge, originally introduced b
Landau in his seminal paper@14# has found much less atten
tion. In order to set up the framework and the definitions,
discuss these two gauges in Secs. III A and III B, resp
tively, following the elegant formulation by Johnson an
Lippmann@15#.

It is customary to express the magnetic fieldB5gB0 in
terms of the reference field strength

B05
2a2me

2c3

e\
54.70013105 T. ~3.1!

Note that the quantityB0 is sometimes used for half th
value adopted here~i.e., for 2.353105 T) andg is changed
accordingly@3#. Adopting atomic unitse5me5\51 from
now on, the magnetic-field strength can also be character
by the cyclotron frequencyvc52g or by the cyclotron ra-
dius R defined asR251/vc51/2g.

The classical motion of an electron in a uniform magne
field follows a spiral trajectory with momentumpz in the
direction of thez axis and radiusrN around a parallelx
5x0 , y5y0 to the z axis, where the coordinatesx0 and y0
specify the guiding center with respect to the origin and w
the distancers from it. These classical quantities play a ro
also in a quantum description.

A. Axial gauge

The axial or symmetric gauge defined by

A(a)52 1
2 r3B ~3.2!

has been applied almost universally in the context of ato
physics. The Hamiltonian describing the electron motion

H05 1
2 p21gLz1

1
2 g2r2, ~3.3!

whereLz denotes the electron orbital angular momentum
erator in thez direction,r25x21y2 andvc is the spacing of
the Landau levels. We have omitted here the spin part of
Hamiltonian, which only gives rise to a constant energy.
4-2
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It is verified that the operatorspz , x0 , y0 , rs
2 , rN

2 , andLz

commute withH0 and hence represent constants of moti
However, because the coordinatesx0 andy0 do not commute
@9,15#, the location of the guiding center is not well define
The uncertaintiesDx0 andDy0 with Dx0Dy0>R2/2 prevent
any accurate experimental determination of the guiding c
ter, from which the orbit may be predicted. While in classic
mechanics, for any fixed energy, the coordinatesx0 andy0 of
the guiding center can be independently chosen, and h
constitute a two-dimensional infinite manifold, in quantu
mechanics onlyx0 or y0 or some function ofx0 andy0 can
be fixed, corresponding to a one-dimensional infinite ma
fold.

Specifically, in the axial gauge~3.2!, the operators

H0 , pz , rN
2 , and rs

2 ~3.4!

form a set of mutually commuting operators. While the
dius rN is well defined, the guiding center is only known
be located on a circle with radiusrs around the origin, see
Fig. 3. Hence, the uncertainty in locating points on the or
is solely due to locating the center of the orbit.

Instead of usingrN
2 andrs

2 for specifying a quantum state
it is also possible to refer to the orbital angular moment
about thez axis,

Lz5
1
2 vc~rN

2 2rs
2! ~3.5!

for classifying the eigenstates@9,15,16#.
The uncertainty relation for the location of the guidin

center may be used to derive a necessary criterion for
validity of a classical description of electron trajectories in
magnetic field. Classical trajectories constitute a good
proximation, if the uncertainty in the position of the guidin
center is small compared to the radius of the orbit, i.e.,

FIG. 3. Gauges and guiding centers. Top: axial gauge. The s
circles indicate classical electron orbits with the guiding center
catedsomewhereon a circle with radiusrs . Bottom: Landau gauge
The guiding center is locatedsomewhereon a parallely5y0 to the
x axis.
03340
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rN
2

5
\vc

mev'
2

!1, ~3.6!

whererN5v' /vc andv' is the electron velocity in thex-y
plane. Hence a classical description is valid, if the spac
vc of Landau levels in a magnetic field is small compared
the transverse kinetic energy of the electrons. This is va
for the trajectories shown in Figs. 1 and 2.

The eigenvalues of the HamiltonianH0 in the form ~3.3!
can be labeled by the quantum numberk denoting the longi-
tudinal momentumkz and two quantum numbers for th
transverse motion. For the latter, we may use the set$N,s%
corresponding to the operatorsrN

2 andrs
2 with the eigenval-

ues R2(2N11) and R2(2s11), respectively, withN,s
50,1,2, . . . , or,alternatively, the set$n,m%, where the quan-
tum numbersm5N2s are the eigenvalues of the operat
Lz in Eq. ~3.5! @15#. For m50, RN5Rs , the electron orbit
passes through the origin.

The eigenenergy of an electron in a magnetic field@10# is
composed of the kinetic energy of free motion in thez direc-
tion and the Landau energy of a harmonic oscillator in
x-y plane with principal quantum numberN,

ENk5
1
2 kz

21vc~N1 1
2 !,

5 1
2 kz

21vc@n1 1
2 ~ umu1m11!#5Enmk. ~3.7!

The solution of the eigenvalue equation

H0Cnmk
(a) ~r,w,z!5EnmkCnmk

(a) ~r,w,z! ~3.8!

in cylindrical coordinates (r,w,z) is

Cnmk
(a) ~r,w,z!5~2p!21/2eikzzFnm

(a)~r,w!. ~3.9!

Here,kz is the momentum in thez direction~this is the only
possible free motion!, n counts the number of radial node
and m is the magnetic quantum number, i.e.,LzFnm

(a)(r,w)
5mFnm

(a)(r,w).
The normalized Landau states for a charged particle

magnetic field are given by

Fnm
(a)~r,w!5Ag

pS n!

~n1umu!! D
1/2

~gr2!(1/2)umue2(1/2)gr2

3Ln
umu~gr2!eimw, ~3.10!

whereLp
q(x)is a Laguerre polynomial@17#.

The axial gauge outlined here is particularly adequate
localized states. This is so because for atomic bound sta
the angular momentum projectionm is a good quantum num
ber, a property that is retained in the axial gauge. Theref
the space of solutions for a combined Coulomb and magn
field separates into subspaces, each characterized by a
cific value of m. The resulting simplification has led to th
universal use of this gauge in atomic and molecular pr
lems.

all
-

4-3



ri-
in

is

s

e
te
tio
ng
n

un
n
ag
de
o
rd
te

d
ges

erms

s

is
uge

ex-
an-
n-
to
re-

ion
tic

e
ed

he

es,
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B. Landau gauge

In the Landau gauge@14#, the vector potential yielding the
same magnetic field is taken asAx

(L)52By andAy
(L)5Az

(L)

50. Here, thex and y coordinates are treated unsymmet
cally and can be interchanged. The Hamiltonian replac
Eq. ~3.3! is

H05 1
2 vc

2~y2y0!21 1
2 py

21 1
2 pz

2 ,

y05
px

vc
, ~3.11!

where y0 is the coordinate of the guiding center, which
located on a parallel to thex axis, but its position on this line
is unknown. This is illustrated in Fig. 3.

While in the axial gauge the operators~3.4! form a set of
mutually commuting operators, in the Landau gauge this
is replaced by

H0 , pz , rN
2 , and y0 . ~3.12!

Here, the angular momentumLz about thez axis is not a
good quantum number.

The energy eigenvalue is given by

ENk5
1
2 kz

21vc~N1 1
2 ! ~3.13!

and is degenerate with respect toy0.
The corresponding eigenfunction is

CNy0k
(L) ~x,y,z!5~2p!21/2eikzzFNy0

(L) ~x,y!,

FNy0

(L) ~x,y!5eivcy0xxNy0
~y! , ~3.14!

with

xNy0
~y!5NN expF2

~y2y0!2

2R2 GHNS y2y0

R D ,

NN5
1

p1/4R1/2A2NN!
, ~3.15!

whereHN is a Hermite polynomial@17,18#. Because, in con-
trast to the axial gauge,m is not a good quantum number, th
Landau gauge is less suitable for localized bound sta
which can be classified by the angular momentum projec
m, but it may be appropriate for nonlocalized scatteri
states corresponding to the classical trajectories show
Figs. 1 and 2.

C. Transformation between the axial and the Landau gauge

If one wishes to calculate matrix elements between bo
and continuum states as is the case for the cross sectio
radiative recombination in a combined Coulomb and m
netic field, one will need an expansion in terms of zero-or
statesCnmk

(a) in the axial gauge for the bound states, while f
the continuum states an expansion in terms of zero-o
statesCNy0k

(L) in the Landau gauge will be more appropria
03340
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see Eqs.~3.9! and ~3.14!, respectively. Therefore, we nee
matrix elements connecting states defined in different gau
and hence an expansion of states given in one gauge in t
of states given in the other gauge.

The axial and the Landau gauge are related by

A(a)5A(L)1“x, ~3.16!

where the gauge function is

x5 1
2 vcxy5gxy. ~3.17!

As a result, wave functions are related by

C (a)5C (L)e2 ivcxy/2. ~3.18!

Taking the dipole operatorD5û•r as an example, one ha
transition matrix elements of the form

Dnmk,Ny0k5^Cnmk
(a) ue2 ivcxy/2DuCNy0k

(L) &. ~3.19!

In order to evaluate matrix elements of this kind, it
useful to expand transformed eigenstates of the axial ga
in terms of the Landau gauge. Specifically, form50 it can
be shown that an eigenstate in the axial gauge can be
pressed@19# by eigenstates in the Landau gauge with exp
sion coefficients given by a finite multiple sum over eleme
tary functions and coefficients. In this way, it is possible
calculate matrix elements needed for describing radiative
combination in a magnetic field.

IV. ASYMPTOTIC PLANE-WAVE STATES

In order to define a differential cross section for a react
in a magnetic field, it is necessary to consider asympto
plane-wave states in the limit of vanishing field strengthB.
That is, we seek an asymptotic solution in the form

x~r!5~2p!23/2eik•r ~4.1!

with the decompositionk5(k' ,kz) andk'5(k' ,wk). If the
total energyE5E'1Ei is given, we identify the transvers
energyE' with a corresponding Landau state characteriz
by the principal quantum numberN, i.e.,

E'5 1
2 k'

2 5vc~N1 1
2 !5vc@n1 1

2 ~ umu1m11!#,

Ei5E2E'5 1
2 kz

25E2vc~N1 1
2 ! , ~4.2!

In the following, we discuss asymptotic plane waves in t
axial and the Landau gauge.

A. Axial gauge

So far, all attempts to construct asymptotic plane wav
have been performed in the axial gauge@20,21#. Zarcone
et al. @21# argue that the adiabatic limitvc→0 needed to
obtain plane-wave states~4.1! can be performed only if the
magnetic field is restricted to a finite area in thex-y plane
with zero field outside. For finite values ofumu<uM u,` and
n given by Eq.~4.2! for a fixed transverse energy12 k'

2 , the
expansion with the required limit is
4-4
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cNmk
(a) ~r!5L23/2 (

m52`

N

i umueimweikzzFn(N),m
(a) ~r,w!,

~4.3!

whereL is a normalization length. The goal is to achieve t
plane-wave limit in the field-free region, that is

x~r!5L23/2eikzz (
m52`

`

i umueim(w2wk)Jumu~k'r!, ~4.4!

where Jumu(x) is a Bessel function. Forvc→0, Eq. ~4.2!
states thatn→` and m remains bounded. Furthermore, f
the wave function~4.3! to tend to the limit~4.4!, certain
constraints have to be satisfied, notably the limitation of
magnetic field to an axial extension ofr,L andk' /vc,L.
It should be pointed out that in Ref.@21#, the transition from
the spatial field-free region to a given valueBÞ0 satisfying
“•B50, is not considered, although it may influence t
form of the wave function.

We may conclude, that the axial gauge, which is suita
for bound states with a specified magnetic quantum num
m, meets with difficulties when trying to define scatterin
states, which require a partial-wave expansion.

B. Landau gauge

We next consider the problem in the Landau gau
adopting the wave functionCNy0k

(L) (x,y,z) given by Eq.

~3.14! and relating the transverse energy to the princi
quantum number byE'5vc(N1 1

2 ). Without loss of gener-
ality, we can takek'5kyêy in the y direction, so that12 ky

2

5vc(N1 1
2 ). For a given value ofky we have

N5
ky

2

2vc
2

1

2
⇒ intS ky

2

2vc
2

1

2D' intS ky
2

2vc
D

for vc→0, N→`. ~4.5!

In taking the asymptotic limitN→` of the Hermite polyno-
mials contained in the wave functionxNy0

(y) defined in Eq.
~3.15!, we have to treat even and odd orders separately.
fining N as even,N52n, and combining an even with an od
function, we can write a Landau wave function in th
asymptotic form

lim
N→`

CNy0k
(L) ~r!5~2p!21/2eikzzeivcy0x

~21!nA~2n!!

p1/4R1/22nn!

3FC2n cosSA4n11
y2y0

R D
1C2n11 sinSA4n13

y2y0

R D G . ~4.6!

For large values ofn, the arguments of the angular function
can be taken as equal, and according to Eq.~4.5!,

A4n/R5A2Nvc5ky . ~4.7!
03340
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C2n5
~21!n

A2p

p1/4R1/22nn!

A~2n!!
, C2n115 iC2n , ~4.8!

we find that a linear combination of two Landau wave fun
tions N52n ,

C̃N52n,y0 ,k
(L) ~x,y,z!5

~21!n

2p
eikzzeivcy0x

p1/4R1/22nn!

A~2n!!

3@x2n,y0
~y!1 ix2n11,y0

~y!# , ~4.9!

with x(y) defined by Eq. ~3.14!, has the property of
smoothly merging into a plane wave

lim
N→`

C̃N52n,y0 ,k
(L) ~x,y,z!5

eivcy0x

2p
eikyyeikzz, ~4.10!

propagating in they-z plane, forvc→0, or B→0, g→0. In
this limit, and fory0 andx finite, the phase factor exp(ivcy0x)
tends to unity.

We see in this section, that the Landau gauge offer
simple possibility to construct asymptotic states for an el
tron in a homogeneous magnetic field that satisfy the requ
ment of tending to plane waves for a vanishing magne
field B. In this way, one avoids the problems one has to co
with in the axial gauge used so far@20,21#. For a pure Cou-
lomb field, a continuum state is described as a plane w
multiplied by a confluent hypergeometric function. If w
substitute our solution~4.9! for the plane-wave part, we ob
tain a wave function that is exact forZ50, B finite and for
B50, Z finite @19#. However, it remains to be seen how goo
the wave function is between these limits.

V. SUMMARY

We have shown by classical trajectory calculations t
the description of low-energy continuum electrons in a co
bined Coulomb and magnetic field constitutes an extrem
complex problem. A quantum description of scattering~not
quasibound! states in a homogeneous infinitely extend
magnetic field has to cope with the problem of defining t
asymptotic incoming states. After discussing the conv
tional axial and the Landau gauge we have demonstrated
the latter, in contrast to the former, allows for a simple co
struction of asymptotic states that tend to plane waves in
limit of vanishing field strength.
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