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Deformed harmonic oscillators for metal clusters: Analytic properties and supershells
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The analytic properties of Nilsson’s modified oscillator, which was first introduced in nuclear structure, and
of the recently introduced, based on quantum algebraic techniques, three-dimensionalq-deformed harmonic
oscillator ~3D q-HO) with uq(3).soq(3) symmetry, which is known to reproduce correctly in terms of only
one parameter the magic numbers of alkali clusters up to 1500~the expected limit of validity for theories based
on the filling of electronic shells!, are considered. Exact expressions for the total energy of closed shells are
determined and compared among them. Furthermore, the systematics of the appearance of supershells in the
spectra of the two oscillators is considered, showing that the 3Dq-HO correctly predicts the first supershell
closure in alkali clusters without use of any extra parameter.
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I. INTRODUCTION

Supershells, which are seen as beats of the deviatio
the total energy of many-particle systems from the funct
describing its average behavior vs the number of particleN,
are known to be a general property of the spectrum of
tentials having sharp edges@1#. Supershells in metal cluster
were first studied by Nishioka, Hansen, and Mottelson@2# in
terms of phenomenological mean-field potentials.

On the other hand, using recently developed quantum
gebraic techniques@3#, it has been shown@4# that the magic
numbers appearing in alkali clusters can be successfully
produced up to 1500~which is the expected limit of validity
of theories based on the filling of electronic shells@5#! by the
three-dimensional q-deformed harmonic oscillator~3D
q-HO), which possesses the uq(3).soq(3) symmetry@6#.
Furthermore, the magic numbers appearing in several d
lent ~Zn, Cd! and trivalent~Al, In! metal clusters have bee
satisfactorily reproduced@4# by the same model in terms o
only one free parameter, the deformation parametert ~with
q5et, wheret is a real number!. It is therefore of interest to
examine if the 3Dq-HO can predict supershells and whic
these predictions are. It should be noticed that the calcula
of supershells in the framework of the 3Dq-HO will be
parameter-free, since the single parameter of the model
been fixed in reproducing the magic numbers for each k
of cluster@4#.

In addition to the 3Dq-HO, Nilsson’s modified oscillator
~MO! @7,8#, which has first been used in describing the str
ture of atomic nuclei, has also been employed earlier in
scribing atomic clusters@9# ~after dropping the spin-orbit in
teraction, which plays an essential role in nuclear struct
but is absent in the case of atomic clusters!. It is therefore of
interest to study the possible appearance of supershells i
framework of this model as well.

For the determination of supershells, the method of R
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@2# can be employed. Before doing so, one has howeve
examine the analytic properties of the spectra of the t
oscillators in order to be able to apply meaningful truncat
schemes. Furthermore, the average behavior of the tota
ergy of a system of many particles~an atomic cluster in the
present case! as a function of the particle numberN should
be determined, since it is needed in the procedure of
study of supershells. As a result, these tasks will be car
out for both models, before any attempt at the determina
of supershells is made.

Supershells have been predicted earlier by Balian
Bloch @10# in the study of electrons moving in a spheric
cavity, which by analogy can be used for the valence el
trons in a metal cluster. The comparison of the stringent p
dictions of the theory of Balian and Bloch for various cha
acteristics of the supershells@1# to the results of the presen
models turns out to be a fruitful testing procedure.

In Sec. II the analytic properties of Nilsson’s modifie
oscillator will be considered, while the corresponding pro
erties of the 3Dq-HO will be studied in Sec. III. In Sec. IV
supershells in Nilsson’s modified oscillator will be studie
while supershells in the framework of the 3Dq-HO will be
considered in Sec. V. Finally in Sec. VI a discussion of t
present results and plans for further work will be given.

II. NILSSON’S MODIFIED OSCILLATOR

The potential of the MO introduced in nuclear physics
Nilsson @7,8# ~with the spin-orbit term omitted! is

V5
1

2
\vr22\vm8~L22^L2&n!, r5rAMv

\
, ~1!

where

^L2&n5
n~n13!

2
. ~2!

The effect of theL2 term is to flatten the bottom of the
potential. In addition it causes an overall compression of
©2002 The American Physical Society03-1
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spectrum, which is avoided through the addition of the^L2&n
term, which will be further discussed later.

The energy eigenvalues of Nilsson’s modified harmo
oscillator are@7,8#

Enl5\v~n1 3
2 !2\vm8@ l ~ l 11!2 1

2 n~n13!#, ~3!

where n is the number of vibrational quanta andl is the
eigenvalue of the angular momentum, obtaining the val
l 5n,n22, . . . ,0 or 1~depending onn being even or odd,
respectively!.

The number of states having energy (n13/2)\v in the
case of evenn is

n15 (
l 50,l 5even

n

~2l 11!5
~n11!~n12!

2
, ~4!

where only the even values ofl are included in the summa
tion and the sum

(
x51

n

x5
n~n11!

2
~5!

has been used. The same result is obtained for oddn, in
which case only the odd values ofl are included in the sum
mation. Taking into account the spin of the particles,
number of states having energy (n13/2)\v is

n25~n11!~n12!. ~6!

The sum of the eigenvalues ofL2 within each shell in the
case of evenn is

L15 (
l 50,l 5even

n

l ~ l 11!~2l 11!5
n~n11!~n12!~n13!

4
,

~7!

where only the even values ofl have been included in th
summation and, in addition to Eq.~5!, the sums

(
x51

n

x25
n~n11!~2n11!

6
~8!

and

(
x51

n

x35
n2~n11!2

4
~9!

have been taken into account. The same result is obtaine
n being odd. Taking the spin of the particles into accou
one has

L252L15
n~n11!~n12!~n13!

2
. ~10!

Thus the average per particle of the square of the ang
momentum within each shell is

^L2&n5
L1

n1
5

L2

n2
5

n~n13!

2
, ~11!
03320
c

s

e

for
t,

lar

a result that has already been used in Eqs.~1! and ~3!, in
order to keep the ‘‘center of mass’’ of each shell consta
i.e., to counterbalance the overall compression of the sp
trum caused by theL2 term alone.

The total number of particles that can be accommoda
in the levels of the shells up to thenth shell included is

N5 (
x50

n

~x11!~x12!5
~n11!~n12!~n13!

3
, ~12!

where the spin of the particles has been taken into acco
and Eqs.~5!, ~6!, and ~8! have been used. It should be r
membered throughout the present work thatN stands for the
total number of particles, whilen stands for the number o
vibrational quanta.

The contribution of the first term of Eq.~3! to the total
energy of the particles up to thenth shell included~and
taking the spin of the particles into account! is

E~n!5\v(
x50

n S x1
3

2D ~x11!~x12!

5\v
~n11!~n12!2~n13!

4
, ~13!

where Eq.~6! is used for the degeneracy within each sh
and Eqs.~5!, ~8!, and~9! have been used for performing th
summations. For later use we notice that omitting t
ground-state energy contribution in a similar manner o
finds

E8~n!5\v(
x50

n

x~x11!~x12!

5\v
n~n11!~n12!~n13!

4
, ~14!

while ann2 perturbation in the energy would have given
additional term

E2~n!5\v(
x50

n

x2~x11!~x12!

5\v
n~n11!~n12!~n13!~4n11!

20
, ~15!

where the sum

(
x51

n

x45
n~n11!~2n11!~3n213n21!

30
~16!

has been used in addition to Eqs.~5!, ~6!, ~8!, and~9!.
The contribution of the second term of Eq.~3! to the total

energy of the particles up to thenth shell included is found
by using Eq.~10!,

E3~n!52\vm8(
x50

n
x~x11!~x12!~x13!

2
, ~17!
3-2
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while the contribution of the third term of Eq.~3! will be

E4~n!51
1

2
\vm8(

x50

n

x~x13!~x11!~x12!, ~18!

where use of Eq.~6! has been made. We remark thatE3(n)
and E4(n) cancel. Thus we conclude that in Nilsson’s M
only the first term of Eq.~3! contributes to the total energy o
the particles up to thenth shell included.

The average energy per particle~up the nth shell in-
cluded! is then found using Eqs.~12! and ~13! to be

^E&5
E~n!

N
5\vS 3

4
n1

3

2D , ~19!

i.e., the average energy per particle is increasing line
with the shell number, which is the number of vibration
quanta, as is expected for a harmonic oscillator, since
angular momentum terms make no contribution, as we h
already seen. The same result is obtained from Eq.~14!,

^E8&5
E8~n!

N
5\v

3

4
n, ~20!

where the 3/2 term has been omitted already in Eq.~14!,
while an2 perturbation in energy, as seen from Eqs.~12! and
~15!, would have given an extra term

^E2~n!&5
E2~N!

N
5\v

3

20
n~4n11!, ~21!

which naturally contains an2 term.
The lower part of the spectrum of Nilsson’s modified o

cillator, calculated from Eq.~3!, is shown in Fig. 1~a! as a
function of the parameterm8, together with the magic num
bers appearing at different parameter values. The follow
observations can be made.

~a! The magic numbers at the left end of the figure a
those of the three-dimensional isotropic harmonic oscilla

~b! The magic numbers appearing aroundm850.04 are in
agreement with the magic numbers appearing in alkali c
ters, up to 138~see Ref.@4# for more details!. The agreemen
is destroyed beyond this point.

~c! Around the parameter valuem850.02 the magic num-
bers up to 138 are a mixture of magic numbers of the thr
dimensional isotropic harmonic oscillator and magic nu
bers appearing aroundm50.04 ~magic numbers of alkal
clusters!.

~d! Equation~3! can be rewritten as

Enl5
3

2
\v1\vnS 11

3m8

2 D1\vn2
m8

2
2\vm8l ~ l 11!,

~22!

which clearly shows that in the case ofm8.0 the levels
within each oscillator shell~characterized by a given value o
n) are ordered according to the value ofl, with the levels
with higher values ofl lying lower in energy, because of th
last term in Eq.~22!. This is indeed the case in Fig. 1~a!,
03320
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although the levels have not been labeled by the quan
numbersn,l because of lack of space.

~e! The level withl 5n, in particular, lies lowest in energy
within each shell and, in general, its energy is decreas
with increasingm8, since in this case Eq.~3! takes the form

Enn5
3

2
\v1\vnS 11

m8

2 D2\vn2
m8

2
, ~23!

its derivative with respect tom8 being

dEnn

dm8
5\v

1

2
n~12n!, ~24!

which is indeed negative forn.1. Indeed the levels that lie
lowest within each oscillator shell in Fig. 1~a! are the levels
with l 5n, which also show negative slope with increasi
m8.

~f! The fact that then2 term in Eq.~23! appears with a
negative sign~for m8.0) can cause difficulties if one tries t
describe a system with a large number of particles in te
of this oscillator. The derivative ofEnn with respect ton,

dEnn

dn
5\vS 11

m8

2
2m8nD , ~25!

remains positive for

n,
1

m8
1

1

2
. ~26!

Beyond this value ofn the derivative is negative, meanin
that levels with higher values ofn will lie lower in energy,
making it difficult to define a cutoff for the number of shel
taken into account. For example, ifm850.04 ~a value that
has been found@9# relevant to the description of metal clus
ters!, the derivative remains positive ifn,25.5. It is then
clear that a reasonable truncation of the spectrum is poss
only if the number of shells to be taken into account is le
than 26~taking then50 shell into account!, otherwise no
truncation is possible. This drawback of Nilsson’s MO do
not have any consequences in the case of nuclear struc
where the model has been first introduced, because of
small number of particles involved there@for which includ-
ing the shells up ton58, shown in Fig. 1~a!, suffices#, but it
can cause difficulties if one tries to employ this model for t
determination of supershells in metal clusters, as we shall
later in Sec. IV.

~g! As an extension of~f!, one sees from Eq.~23! thatEnn
remains positive ifn,2/m811. Thus, in the case ofm8
50.04 one should haven,51, otherwise energies lowe
than the ground-state energy will occur.

III. THE THREE-DIMENSIONAL q-DEFORMED
HARMONIC OSCILLATOR

The space of the three-dimensionalq-deformed harmonic
oscillator consists of the completely symmetric irreducib
representations of the quantum algebra uq(3). In this space a
3-3
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FIG. 1. ~a! Energy spectrum of Nilsson’s modified oscillator@in units of \v, see Eq.~3!# as a function of the~dimensionless! model
parameterm8. Magic numbers are shown at the main gaps.~b! Energy spectrum of the 3Dq-deformed harmonic oscillator@in units of\v0,
see Eq.~29!# as a function of the~dimensionless! model parametert ~with q5et, wheret is real!. ~c! Same as~b!, but extended to higher
energy levels.
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deformed angular momentum algebra, soq(3), can bedefined
@6#. The Hamiltonian of the three-dimensionalq-deformed
harmonic oscillator is defined so that it satisfies the follow
requirements.

~a! It is an soq(3) scalar, i.e., the energy is simultaneous
measurable with theq-deformed angular momentum relate
03320
to the algebra soq(3) and itsz projection.
~b! It conserves the number of bosons, in terms of wh

the quantum algebras uq(3) and soq(3) are realized.
~c! In the limit q→1 it is in agreement with the Hamil

tonian of the usual three-dimensional harmonic oscillator
It has been proved@6# that the Hamiltonian of the three
3-4
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DEFORMED HARMONIC OSCILLATORS FOR METAL . . . PHYSICAL REVIEW A 65 033203
dimensionalq-deformed harmonic oscillator satisfying th
above requirements takes the form

Hq5\v0H @N#qqN112
q~q2q21!

@2#q
Cq

(2)J , ~27!

whereN is the number operator andCq
(2) is the second-orde

Casimir operator of the algebra soq(3), while

@x#q5
qx2q2x

q2q21
~28!

is the definition ofq numbers andq operators.
The energy eigenvalues of the three-dimensio

q-deformed harmonic oscillator are then@6#

Eq~n,l !5\v0H @n#qqn112
q~q2q21!

@2#q
@ l #q@ l 11#qJ ,

~29!

where n is the number of vibrational quanta andl is the
eigenvalue of the angular momentum, obtaining the val
l 5n,n22, . . . ,0 or 1.

In the limit of q→1 one obtains limq→1Eq(n,l )5\v0n,
which coincides with the classical result.

For small values of the deformation parametert ~where
q5et) one can expand Eq.~29! in powers oft obtaining@6#

Eq~n,l !5\v0n2\v0t@ l ~ l 11!2n~n11!#

2\v0t2@ l ~ l 11!2 1
3 n~n11!~2n11!#1O~t3!.

~30!

The number of states characterized by a given value on,
i.e., the number of states in thenth shell, is still given by Eq.
~4! if the spin is not taken into account, and by Eq.~6! with
spin taken into account.

The total number of particles that can be accommoda
in the levels of all shells up to thenth shell included is still
given by Eq.~12!, with spin taken into account.

The analog of the sum of the eigenvalues ofL2 within
each shell in the case of evenl is, in analogy with Eq.~7!,
given by

L1,q~n!5 (
l 50,l 5even

n

@ l #q@ l 11#q~2l 11!

5
1

~q2q21!2~q22q22!2

3S ~2n11!~q2n151q22n25!2~2n15!

3~q2n111q22n21!15~q1q21!2~q51q25!

2
n~n13!

2
~q51q251q31q2322q22q21! D ,

~31!
03320
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where @ l #q@ l 11#q are the eigenvalues of the second-ord
Casimir operator of soq(3), and use of (2l 11) has been
made for the degeneracy within a shell without taking s
into account. In performing the relevant summations o
needs, in addition to Eq.~5!, the sums

(
x50

n

etx5
et(n11)21

et21
, ~32!

(
x50

n

xetx5
1

~et21!2 @net(n12)2~n11!et(n11)1et#,

~33!

of which the first is a simple geometric series, while t
second can be derived from the first through differentiat
with respect to the parametert. One can easily see that fo
odd l a result identical to the one given in Eq.~31! is
obtained.

Using the definition of theq numbers given in Eq.~28!
the above result can be rewritten in the form

L1,q~n!5
q2

~q221!2H ~2n11!Fn1
3

2G
q2

24Fn11

2 G
q2

Fn

2G
q2

2S n

2
11D ~n11!S F3

2G
q2

1F1

2G
q2
D 1F1

2G
q2
J ,

~34!

or equivalently,

L1,q~n!5
1

~q2q21!2 F ~2n11!
@2n13#q

@2#q
24

@n#q

@2#q

@n11#q

@2#q

2S n

2
11D ~n11!@2#q1

1

@2#q
G , ~35!

where, for example, use of the identity

@n#q25
q2n2q22n

q22q22
5

q2n2q22n

q2q21

q2q21

q22q22
5

@2n#q

@2#q

~36!

has been repeatedly made.
Equation ~31! can be rewritten in yet another form b

using the definition forQ numbers~see, for example, the
review article in@3# for relevant details!,

@n#Q5
Qn21

Q21
, ~37!

where

Q5q2. ~38!

Using this definition Eq.~31! takes the form
3-5
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L1,q~n!5
Q3

~Q21!~Q221!2$@n#QQ1/2@~Q225!12n

3~Q221!#1@2n#QQ21/2@~Q2225!

12n~Q2221!#%2
Q1/2

2~Q21!~Q221!

3@n2~Q11!22n~Q21!2#. ~39!

In the limit q→1, keeping terms of order up tot2 one can
see that Eq.~34! is reduced to Eq.~7!, i.e., it is in agreemen
with the nondeformed case. For this calculation one fin
helpful the Taylor expansion ofq numbers@3#,

@n#q5n6
t2

6
~n2n3!1

t4

360
~7n210n313n5!

6
t6

15120
~31n249n3121n523n7!1•••, ~40!

where the upper signs correspond toq being a phase facto
(q5ei t with t being real!, while the lower signs correspon
to q being real (q5et with t being real!, as in the presen
case.

One can now proceed to the calculation of the total ene
of the particles up to thenth shell included. Using the iden
tity @3#

@n#qqn115Q@n#Q , ~41!

whereq numbers of Eq.~28! @Q numbers of Eq.~37!# are
used in the left-~right-! hand side andQ5q2 @Eq. ~38!#, one
finds that the contribution of the first term of Eq.~29! to the
total energy is

E1,q~n!5\v0(
x50

n

@x#qqx11~x11!~x12!

5\v0(
x50

n

Q@x#Q~x11!~x12!

5\v0

Q

~Q21!4 @~n11!~n12!Qn1322~n11!

3~n13!Qn121~n12!~n13!Qn1122#

2\v0

Q

3~Q21!
~n11!~n12!~n13!, ~42!

where, in addition to Eqs.~5!, ~6!, ~8!, ~32!, and ~33! one
also needs to use the sum

(
x50

n

x2etx5
1

~et21!3@n2et(n13)2~2n212n21!et(n12)

1~n11!2et(n11)2e2t2et#, ~43!
03320
s

y

which is derived from Eq.~33! by differentiation with re-
spect to the parametert. Using Eq.~37! one can easily see
that Eq.~42! can be put in the more symmetric form

E1,q~n!5\v0

Q

~Q21!3$~n11!~n12!@n13#Q

22~n11!@n12#Q~n13!1@n11#Q~n12!

3~n13!%2\v0

Q

3~Q21!
~n11!~n12!~n13!.

~44!

In the limit of Q→1, keeping terms up toT3 ~where Q
5eT5q25e2t and thusT52t) one finds that Eq.~44!
agrees with Eq.~13! of the nondeformed case. In this calc
lation it is helpful to use the Taylor expansion ofQ numbers
@3#,

@n#Q5n1
T

2
~n22n!1

T2

12
~2n323n211!

1
T3

24
~n422n31n2!1•••. ~45!

The contribution of the second term of Eq.~29! to the total
energy is found in a similar manner. One has

E2,q~n!52\v02
q~q2q21!

@2#q
(
x50

n

L1,q~x!

52\v0

2Q

~Q221!3$Q
4@n#Q@2~Q221!n

1~Q222Q27!#2Q2@2n#Q@2~Q2221!N

1~Q2222Q2127!#2 1
6 n2~n16!~Q11!

3~Q221!21 1
6 n~Q11!~Q416Q3134Q2

16Q11!%, ~46!

where Eqs.~5!, ~8!, ~31!, ~32!, and~33! have been used an
the spin of the particles has been taken into account.

The lower part of the spectrum of the three-dimensio
q-deformed harmonic oscillator, calculated from Eq.~29!, is
shown in Fig. 1~b! as a function of the parametert, together
with the magic numbers appearing at different parameter
ues, while in Fig. 1~c! the full spectrum up to about 150
particles is exhibited. The following comments and compa
sons to Nilsson’s MO are now in place.

~a! The magic numbers at the left end of both figures
those of the three-dimensional isotropic harmonic oscilla
as in Fig. 1~a!.

~b! The magic numbers appearing aroundt50.04 are in
agreement with the magic numbers appearing in alkali c
ters, up to 1500~see Ref.@4# for more details!, which is the
expected limit of validity for theories based on the filling
electronic shells@5#, while in the case of Nilsson’s MO the
agreement is limited to the magic numbers up to 138@Fig.
1~a!#.
3-6
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DEFORMED HARMONIC OSCILLATORS FOR METAL . . . PHYSICAL REVIEW A 65 033203
~c! Around the parameter valuet50.02 the magic num-
bers up to 138 in Fig. 1~b! are a mixture of magic numbers o
the three-dimensional isotropic harmonic oscillator a
magic numbers appearing aroundt50.04~magic numbers of
alkali clusters!. Beyond 138 other magic numbers appear

~d! Numerical calculations show that in the case oft.0
the levels within each oscillator shell~characterized by a
given value ofn) are ordered according to the value ofl,
with the levels with higher values ofl lying lower in energy,
because of the last term in Eq.~29!. This is indeed the case i
Figs. 1~b! and 1~c!, although the levels have not been label
by the quantum numbersn,l because of lack of space. Th
ordering of the levels within each shell is the same as the
appearing in the case of Nilsson’s MO@Fig. 1~a!#.

~e! As in Nilsson’s MO, the level withl 5n lies lowest in
energy within each shell. However, in the present case
energy of this level is not decreasing with increasingt. This
is true for all levels of the 3Dq-HO: Their energies increas
with increasingt @except in the cases of the levels wi
(n,l )5(0,0) and~1,1!, the energies of which remain con
stant with increasingt#.

~f! As a consequence of~e!, no difficulties related to trun-
cation appear in the present case. Stopping the level sch
at thel 5n level of a given shell and taking into account a
levels with lowern ~i.e., all levels of the shells lying below
the given one!, one makes sure that all levels up to the giv
level have been included. Therefore in the 3Dq-HO reliable
truncations can be made, allowing for the description of s
tems with many particles. This point is one of the main a
vantages of the 3Dq-HO in comparison to Nilsson’s MO.

A few more comments on the comparison between the
q-HO and Nilsson’s MO are also in order.

~a! The ^L2&n term in Nilsson’s Hamiltonian@Eq. ~1!# has
been put in ‘‘by hand’’ in order to guarantee that the ‘‘cen
of mass’’ of each shell will remain constant, so that she
will not be compressed because of the presence of theL2

term. In the case of the 3Dq-HO it is clear that the opposite
effect is present: The shells are expanded because o
extra terms added by theq deformation. One way to see th
is by comparing the first-order corrections appearing in
~30! to the last two terms in Eq.~3!. In both cases thel ( l
11) term causes compression of the shells, while expan
of the shells is caused by then(n11) term in the case of the
3D q-HO and by then(n13)/2 term in the case of Nilsson’
MO. Since the difference of these terms is

n~n11!2 1
2 n~n13!5 1

2 n~n21!, ~47!

which is positive forn.1, it is clear that the expansion i
the case of the 3Dq-HO will be stronger than the expansio
in the case of Nilsson’s MO, which is exactly balanced
the compression caused by thel ( l 11) term. As a result, in
the case of the 3Dq-HO, net expansion of the shells wi
occur, which will be of first order in the parametert. Com-
parison of Figs. 1~a! and 1~b! clearly shows this effect.

~b! In Nilsson’s MO the last two terms in the energy e
pression of Eq.~3! give no net contribution to the total en
ergy up to thenth shell included, and therefore to the ave
age energy per particle as well, which turns out to
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proportional ton @see Eq.~19!#. In the 3Dq-HO this depen-
dence of the average energy per particle onn is given by the
lowest order contribution from Eq.~44!, while the next-order
contribution from Eq.~44!, as well as the lowest order con
tribution from Eq.~46!, give terms with higher powers ofn.
This property will have to be taken into account when sup
shells will be considered.

~c! In both models we have derived exact expressions
the total energy up to thenth shell included, i.e., for system
of particles filling complete shells. In order to consider sy
tems of particles for which the last shell is not full, one h
to consider numerical methods, such as the Strutin
method@11,12#, which are beyond the scope of the prese
study.

IV. SUPERSHELLS IN NILSSON’S MODIFIED
OSCILLATOR

For studying the existence and properties of supershel
Nilsson’s MO we are going to use the procedure employ
by Nishiokaet al. @2#. For a given number of particlesN the
single-particle energiesEj (n,l ) of the N occupied states are
summed up,

E~N!5(
j 51

N

Ej~n,l !. ~48!

This sum is then divided into two parts: a smooth avera
part Eav and a shell partEshell , which will exhibit the
supeshell structure

E~N!5Eav~N!1Eshell~N!. ~49!

For the average part of the total energy a liquid-drop mo
expansion is used@1#

Eav~N!5a1N1/31a2N2/31a3N. ~50!

This expansion should be adequate in the case of Nilss
MO, for which the average energy per particle increases
early with N @see Eq.~19!#, but it should not suffice in the
case of the 3Dq-HO, for which the average energy per pa
ticle contains higher order terms, as we have seen in
preceding section. For the latter case an expansion goin
to anN2 term,

Eav~N!5a1N1/31a2N2/31a3N1a4N4/31a5N5/31a6N2,
~51!

should be more appropriate. In order to keep the calculati
uniform and thus facilitate the comparisons between the
oscillators, we opted for using the expansion of Eq.~51! in
all cases, although for Nilsson’s MO the first three term
would have been adequate. Therefore in the case of Nilss
MO very small values will be expected fora6, the coefficient
of the N2 term.

The results forEshell obtained with Nilsson’s MO for
eight different values of the parameterm8 ~assuming\v
51) are shown in Fig. 2, while the relevant parameter val
3-7
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FIG. 2. Shell part (Eshell) of the total energy@in units of\v, see Eq.~3!# for Nilsson’s modified oscillator vs the number of particlesN.
The values of the~dimensionless! parameterm8 are the same as those listed in Table I, together with the details of the calculation. Se
IV for further discussion.
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and rms deviations are exhibited in Table I. As far as the w
of calculation is concerned, the following comments app

~a! In all cases the maximum shell used wasnmax530,
implying that the last level included in the calculation w
the one with (n,l )5(30,30), in order to ensure that the com
plete spectrum up to this point has been taken into acco
as discussed in Secs. II and III.

~b! From Eq.~26! one sees that form850.02 one should
03320
y

nt,

keep n,50.5, while for lower values ofm8 the limiting
value of n lies even higher. This means that including t
shells up ton530 is a reasonable truncation.

~c! The procedure of the calculation was as follows: Fi
the summations described by Eq.~48!, resulting in the total
energy E(N) for each particle numberN, have been per-
formed. Subsequently, in order to reduce the size of the
culation approximately by a factor of 10, the averageE(N)
3-8
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TABLE I. Parameters used for fitting the average part of the total energy@see Eq.~51!# in the case of
Nilsson’s modified oscillator, for various values of the model parameterm8 @see Eq.~3!#, corresponding to
the cases exhibited in Fig. 2. The parameters are dimensionless, since we have assumed\v51 @see Eq.~3!#
throughout. The highest shellnmax and the number of particlesNmax included in each calculation, as well a
the relevant rms deviations, are also shown. See Sec. IV for further discussion.

m8 a1 a2 a3 a4 103a5 105a6 nmax NMax s

0.0001 13.349 -6.556 20.218 0.972 4.451 6.853 30 10027 22.06
0.001 20.025 0.281 21.482 1.080 0.080 20.132 30 10027 7.12
0.002 20.022 0.181 21.439 1.073 0.489 1.053 30 9609 4.19
0.003 21.281 1.080 21.651 1.094 20.445 0.282 30 9246 3.40
0.005 21.073 1.013 21.659 1.096 20.623 0.043 30 8641 2.76
0.007 20.830 0.910 21.654 1.097 20.724 20.626 30 7937 4.16
0.01 25.448 3.432 22.155 1.143 22.645 0.383 30 7189 4.88
0.02 5.692 23.891 20.376 0.938 9.135 238.541 30 4890 3.50
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was calculated every 11 points~i.e., for N56,17,28, . . . ) up
to the point immediately below the cutoff of (n,l )
5(30,30), which is reported in Table I asNmax. These av-
eraged values ofE(N) were subsequently fitted by the e
pansion of Eq.~51!, resulting in the determination ofEav(N)
at these points. FinallyEshell(N) has been obtained at thes
points as the differenceE(N)2Eav(N) and plotted in Fig. 2.

On the contents of Table I the following comments can
made.

~a! The behavior of the parameters as a function ofm8 is
rather smooth, with the exception ofa6, the coefficient of
N2, which assumes very small values, as expected from
comments following Eq.~51!.

~b! The maximum numberNmax of particles below the
cutoff is decreasing with increasingm8, as expected from the
fact that the level (n,l )5(30,30) is getting lower with in-
creasingm8 @see Eq.~24!#.

~c! The rms deviations are very small, given the fact th
the relevant average energies range up to 106.

On the contents of Fig. 2 the following comments app
~a! The gradual development of supershells with incre

ing m8 is clearly seen in Figs. 2~a!–2~d!. While in Fig. 2~a!
(m850.0001) no supershell structure is seen up toN
510 000, in Fig. 2~b! (m850.001) the first supershell is see
to be completed aroundN510 000, in Fig. 2~c! (m8
50.002) two supershells are completed up toN510 000,
and in Fig. 2~d! (m850.003) most of the third supershell
also completed byN510 000.

~b! In Figs. 2~a!–2~g! (m850.0001–0.01) it is clear tha
Ns1, the value ofN at which the first supershell is complete
is decreasing as a function ofm8. The same is true forNs2,
the value ofN at which the second supershell is complete
These trends are not followed by Fig. 2~h! (m850.02). An
explanation of this effect can be obtained from Fig. 1~a!, in
which it is clear that for relatively smallm8 (m8,0.01, for
example! the order of the levels remains the same and o
their individual energies change, while atm850.02 and be-
yond, the order of the levels changes drastically, especial
higher energies. This drastic mixing of the levels atm8
50.02 and beyond can also explain the increasing difficu
in determining the closing of supershells for largem8 espe-
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cially at high energies, Fig. 2~h! (m850.02) being the clear-
est example for this case.

~c! According to the study by Balian and Bloch of ele
trons moving in a spherical cavity@10#, which by analogy
can be applied to the valence electrons in a metal cluster@1#,
the minima of the shell energy,Eshell , which correspond to
shell closures, should appear at equidistant positions~i.e.,
they should exhibit a periodicity! as a function ofN1/3 within
each supershell. From the data used for plotting Fig. 2
can see that this condition is approximately fulfilled.

V. SUPERSHELLS IN THE THREE-DIMENSIONAL
q-DEFORMED HARMONIC OSCILLATOR

The procedure described in the preceding section has b
used in exactly the same way for the determination of sup
shells in the case of the 3Dq-HO.

The results forEshell obtained with the 3Dq-HO for ten
different values of the parametert ~assuming\v51) are
shown in Fig. 3, while the relevant parameter values and
deviations are exhibited in Table II. In order to facilita
comparisons between the two models, the first eight val
of t used here are the same as the values ofm8 used in the
preceding section.

As far as the way of calculation is concerned, the ma
mum shell used in the first eight cases wasnmax530, as in
the preceding section, in order to facilitate comparisons
tween the two models. Lowernmax has been used only in th
last two cases, as shown in Table II, in order to keep the
deviation small.

On the contents of Table II the following comments c
be made.

~a! The behavior of the parameters as functions oft is
smooth, even in the case ofa6, the coefficient ofN2, which
in the case of Nilsson’s MO was not showing smoo
behavior.

~b! The maximum numberNmax of particles below the
cutoff is decreasing with increasingt. This can be explained
by looking at Fig. 1~c!. The level used as the cutoff is th
level with (n,l )5(nmax,nmax), which, as explained in Sec
III, is the lowest level within thenmaxth shell and, as seen in
3-9
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FIG. 3. Shell part (Eshell) of
the total energy@in units of \v0,
see Eq. ~29!# for the three-
dimensionalq-deformed harmonic
oscillator vs the number of par
ticlesN. The values of the~dimen-
sionless! parametert are the same
as those listed in Table II, togethe
with the details of the calculation
See Sec. V for further discussion
e

re
gies

ly.
as-
Fig. 1~c!, increases very slowly with increasingt. It is then
clear that the higher the value oft, the more will be the
levels coming from below and crossing over the cutoff lev
resulting in the decrease ofNmax with increasingt seen in
Table II.
03320
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~c! As in the case of Nilsson’s MO, the rms deviations a
very small, given the fact that the relevant average ener
range up to 106.

On the contents of Fig. 3 the following comments app
~a! The gradual development of supershells with incre
3-10
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TABLE II. Parameters used for fitting the average part of the total energy@see Eq.~51!# in the case of the
three-dimensionalq-deformed harmonic oscillator for various values of the model parametert @see Eq.~29!,
with q5et#, corresponding to the cases exhibited in Fig. 3. The parameters are dimensionless, since w
assumed\v051 @see Eq.~29!# throughout. The highest shellnmax and the number of particlesNmax included
in each calculation, as well as the relevant rms deviations, are also shown. See Sec. V for further discussi

t a1 a2 a3 a4 103a5 105a6 nmax NMax s

0.0001 13.585 26.554 20.228 0.972 4.464 26.776 30 10027 22.12
0.001 0.753 20.061 21.424 1.073 0.867 20.272 30 10027 7.58
0.002 1.458 20.496 21.318 1.059 2.075 21.136 30 9686 4.68
0.003 23.358 2.186 21.855 1.106 0.615 2.501 30 9389 3.52
0.005 0.667 0.166 21.500 1.074 2.791 2.422 30 8795 3.49
0.007 22.631 1.965 21.867 1.106 2.204 7.580 30 8421 3.88
0.01 23.657 2.568 22.013 1.120 2.523 15.399 30 7893 6.75
0.02 217.409 11.661 24.267 1.379 210.052 88.547 30 7189 9.03
0.038 255.417 41.650 213.067 2.615 296.648 482.365 26 4648 17.98
0.05 264.123 55.364 219.160 3.777 2202.994 999.866 22 3020 16.63
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ing t is clearly seen in Figs. 3~a!–3~d! (t50.0001–0.003),
which look very similar to Figs. 2~a!–2~d! (m850.0001–
0.003) of the preceding section.

~b! In Figs. 2~a!–2~g! (t50.0001–0.01) it is clear tha
Ns1,q , the value ofN at which the first supershell is com
pleted, is decreasing as a function oft, almost in the same
way asNs1 is decreasing as a function ofm8 in the case of
Nilsson’s MO, the only difference being that for numerica
equal values oft andm8 the corresponding value ofNs1,q is
slightly higher that the relevant value ofN1s , a fact that can
be explained by the general property of the spectrum of
3D q-HO to expand more rapidly than the spectrum of Ni
son’s MO, as seen in Sec. III. The same is true
Ns2,q , Ns3,q , Ns4,q , i.e., the values ofN at which the
second, third, and fourth supershells are completed. Th
trends are not followed by Figs. 3~h! (t50.02), 3~i! (t
50.038), 3~j! (t50.05), which correspond to higher value
of t, where the mixing of the levels is very strong in com
parison to the picture existing at low values oft @i.e., for t
,0.01, as seen in Fig. 1~c!#.

~c! Despite the fact that the systematics of supershell
sures are modified beyondt50.02 because of the stron
mixing of levels, supershells are still seen beyond this po
while this was not possible in the case of Nilsson’s M
because of truncation-related problems, as we have see
Sec. III. It should be noticed that this is exactly the region
t values, which has been found relevant for the descrip
of metal clusters@4#.

~d! In the case of alkali clusters, Na, in particular, the fi
supershell is known to occur aroundN51000 @2,13–15#,
which is quite in agreement with what is seen in Fig. 3~i!,
which corresponds tot50.038, the parameter value fo
which the magic numbers of alkali clusters are correctly
produced@4# up to 1500 particles, which is the expected lim
of validity of theories based on the filling of electronic she
@5#. It should be noticed that only one free parameter ex
in the theory, namely,t, which has been fixed in Ref.@4# in
order to reproduce the magic numbers of alkali cluste
Therefore no free parameter has been left over in the ca
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lation of supershells. The fact that the present calculat
leads to a reasonable prediction of the position of the fi
supershell closure is quite a stringent test of the pres
theory.

~e! As we have already mentioned, the theory by Bali
and Bloch@10# for electrons moving in a spherical cavity
which by analogy can be applied to the valence electron
metal clusters@1#, predicts that the minima of the shell en
ergy Eshell , which correspond to shell closures, should a
pear within each supershell at equidistant positions~i.e., they
should exhibit a periodicity! when plotted versusN1/3. From
the data used for plotting Fig. 3 one can see that this co
tion is approximately fulfilled.

~f! A further prediction of the theory by Balian and Bloc
@10# is that the plot of the cubic rootNi

1/3 of the magic num-
bersNi , corresponding to shell closures versus the indei
counting the shells, should be a straight line@1#. In the case
of alkali clusters, in particular, in which the triangular an
squared closed orbits are supposed to dominate@1,13#, the
slope of the line should be 0.603. In order to make a preli
nary estimate of the degree to which this prediction is f
filled, one can employ the data used in plotting Fig. 3~i!,
which corresponds tot50.038, i.e., to the parameter valu
found appropriate@4# for reproducing the magic numbers o
several alkali clusters. One can then see that this requirem
is roughly fulfilled, although the slope appears to be gra
ally decreasing at largei, an effect that might be due to
missing corrections mentioned in comment~h!.

~g! In the case of Al clusters, magic numbers have be
determined experimentally in detail up to 1200 electro
@16#, while additional experimental results up to 2700 ele
trons exist@17#. The slope ofNi

1/3 vs i in this case is consid-
erably lower~around 0.32! @1#, indicating that closed orbits
other than the triangular and squared ones should be pre
in the Balian and Bloch approach@17#. It will be interesting
to examine if the 3Dq-HO can provide any prediction fo
supershells in Al clusters, after choosing the value of tht
parameter in order to reproduce the right slope ofNi

1/3 vs i.
~h! In order to guarantee the reliability of such predi
3-11
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tions, it is of interest to study in advance the influence of a
modifications imposed by the Strutinsky method@11,12#,
which can be applied in cases in which the last shell is op
which are beyond the realm of the present analytic study
Sec. III. The influence of the well-known quantum
mechanical effect that\v0 should be decreasing with in
creasing number of particles in the cluster@8,18,19# should
also be taken into account.

VI. DISCUSSION

The main results of the present study are summarize
follows.

~a! The 3D q-deformed harmonic oscillator, which i
known@4# to describe very well the magic numbers of alka
metal clusters up to 1500 particles~the expected limit of
validity for theories based on the filling of electronic shell!,
is found in the present study to be able to produce supers
structures, succesfully predicting the first supershell in alk
clusters without involving any free parameter in addition
the deformation parametert, which has been fixed for repro
ducing the magic numbers.

~b! It should be noticed that these successes of the
q-HO are largely due to terms in the Hamiltonian induced
the symmetry, which make the spectrum of the 3Dq-HO
.
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r
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expand with increasing shell numbern more rapidly than the
corresponding spectrum of Nilsson’s modified oscillator,
lowing, among other things, for reliable truncations to
performed.

~c! The successful prediction of the magic numbers can
considered as evidence that the 3Dq-deformed harmonic os
cillator owns a symmetry@the uq(3).soq(3) symmetry,
which is a nonlinear deformation of the u~3! symmetry of the
spherical~3D isotropic! harmonic oscillator# appropriate for
the description of the physical systems under study. The
of this symmetry for predicting supershells in other kinds
metal clusters~Al clusters, for example! is an interesting
open problem. The influence of using open shells~taken into
account by the Strutinsky method@11,12#!, as well as of the
well-known quantum-mechanical fact that\v0 should be de-
creasing with increasing number of particles in the clus
@8,18,19#, should be taken into account before any final p
dictions can be made.
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