PHYSICAL REVIEW A, VOLUME 65, 033203
Deformed harmonic oscillators for metal clusters: Analytic properties and supershells
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The analytic properties of Nilsson’s modified oscillator, which was first introduced in nuclear structure, and
of the recently introduced, based on quantum algebraic techniques, three-dimengsieiamed harmonic
oscillator (3D g-HO) with u,(3)Dsq,(3) symmetry, which is known to reproduce correctly in terms of only
one parameter the magic numbers of alkali clusters up to tth@Gexpected limit of validity for theories based
on the filling of electronic shells are considered. Exact expressions for the total energy of closed shells are
determined and compared among them. Furthermore, the systematics of the appearance of supershells in the
spectra of the two oscillators is considered, showing that thej3BD correctly predicts the first supershell
closure in alkali clusters without use of any extra parameter.
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[. INTRODUCTION [2] can be employed. Before doing so, one has however to
examine the analytic properties of the spectra of the two
Supershells, which are seen as beats of the deviation @fscillators in order to be able to apply meaningful truncation
the total energy of many-particle systems from the functiorschemes. Furthermore, the average behavior of the total en-
describing its average behavior vs the number of partidles ergy of a system of many particléan atomic cluster in the
are known to be a general property of the spectrum of popresent caseas a function of the particle numbat should
tentials having sharp edggs]. Supershells in metal clusters be determined, since it is needed in the procedure of the
were first studied by Nishioka, Hansen, and Mottelg®hin study of supershells. As a result, these tasks will be carried

terms of phenomenological mean-field potentials. out for both models, before any attempt at the determination
On the other hand, using recently developed quantum alef supershells is made.
gebraic techniquef], it has been showp] that the magic Supershells have been predicted earlier by Balian and

numbers appearing in alkali clusters can be successfully réBloch [10] in the study of electrons moving in a spherical
produced up to 1500which is the expected limit of validity ~cavity, which by analogy can be used for the valence elec-
of theories based on the filling of electronic sh¢l$ by the  trons in a metal cluster. The comparison of the stringent pre-
three-dimensional g-deformed harmonic oscillator(3D  dictions of the theory of Balian and Bloch for various char-
g-HO), which possesses thg(8)Dsq,(3) symmetry[6].  acteristics of the supershell] to the results of the present
Furthermore, the magic numbers appearing in several divamodels turns out to be a fruitful testing procedure.
lent (Zn, Cd and trivalent(Al, In) metal clusters have been In Sec. Il the analytic properties of Nilsson’s modified
satisfactorily reproducef#] by the same model in terms of oscillator will be considered, while the corresponding prop-
only one free parameter, the deformation parametéwith erties of the 3Dg-HO will be studied in Sec. Ill. In Sec. IV
q=e’, wherer is a real number It is therefore of interest to  supershells in Nilsson’s modified oscillator will be studied,
examine if the 3Dg-HO can predict supershells and which while supershells in the framework of the 3PHO will be
these predictions are. It should be noticed that the calculatiogonsidered in Sec. V. Finally in Sec. VI a discussion of the
of supershells in the framework of the 3®HO will be present results and plans for further work will be given.
parameter-free, since the single parameter of the model has
been fixed in reproducing the magic numbers for each kind 1. NILSSON'S MODIFIED OSCILLATOR
of cluster[4].

In addition to the 3Dg-HO, Nilsson’s modified oscillator ~ The potential of the MO introduced in nuclear physics by
(MO) [7,8], which has first been used in describing the strucNilsson[7,8] (with the spin-orbit term omitteldis
ture of atomic nuclei, has also been employed earlier in de-
scribing atomic clusterg9] (after dropping the spin-orbit in- 1 ) o 5 Mo
teraction, which plays an essential role in nuclear structure V= 5fiwp —hou (L*=(L%n), p=r\/—— (@)
but is absent in the case of atomic clustelsis therefore of
interest to study the possible appearance of supershells in t%ere
framework of this model as well.

For the determination of supershells, the method of Ref.

n(n+3)
(L2>n=T. 2
*Email address: bonat@mail.demokritos.gr
"Email address: raychev@inrne.bas.bg The effect of theL? term is to flatten the bottom of the
*Email address: terziev@inrne.bas.bg potential. In addition it causes an overall compression of the
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spectrum, which is avoided through the addition ofthé),, & result that has already been used in Eds.and (3), in

term, which will be further discussed later. order to keep the “center of mass” of each shell constant,
The energy eigenvalues of Nilsson’s modified harmonid-€., to counterbalance the overall compression of the spec-
oscillator are[7,8] trum caused by th&? term alone.

. ) The total number of particles that can be accommodated
En=fio(n+3)—hou'[I(1+1)—3n(n+3)], (3 in the levels of the shells up to theh shell included is

where n is the number of vibrational quanta amhds the n
eigenvalue of the angular momentum, obtaining the values NzZ (Xx+1)(x+2)=
I=n,n—2,...,0 or 1(depending om being even or odd, x=0
respectively.

The number of states having energy{3/2)% w in the
case of evem is

(n+1)(n+2)(n+3)
3 ;

(12

where the spin of the particles has been taken into account
and Egs.(5), (6), and(8) have been used. It should be re-
membered throughout the present work tNagtands for the
n (N+1)(n+2) tc_)tal r_1umber of particles, while stands for the number of
n= > (2+1)=— -, (4)  vibrational quanta.
I=0J=even 2 The contribution of the first term of Ed3) to the total
energy of the particles up to theth shell included(and

where only the even values bfare included in the summa- taking the spin of the particles into accopist

tion and the sum

n - 3
n(n+1) E(n)=% X+ = | (x+1)(x+2
S x= " 5 (M=ho 2 | x+7|(x+1)(x+2)
x=1
+1)(n+2)4(n+
has been used. The same result is obtained for mdith =ﬁw(n )(n 2 )"(n 3), (13)

which case only the odd values loére included in the sum-

nmuar::ct))g} Z?zltg?elsng;vailggc;oeu:ér;;?( g;)zn;hzf i;he particles, thewhere Eq.(6) is used for the degeneracy within each shell

and Egs(5), (8), and(9) have been used for performing the
n,=(n+1)(n+2). (6) ~ summations. For later use we notice that omitting the
ground-state energy contribution in a similar manner one
The sum of the eigenvalues &f within each shell in the finds

case of evem is .

n ! —
n(n+1)(n+2)(n+3 E'(n)=fiw >, X(x+1)(x+2)
Li= >  1(I+1)(2+1)= (n+1){n+2)( ), x=0
I=0J]=even 4
@) :hwn(n+1)(n+2)(n+3) (14
4 ’
where only the even values bfhave been included in the
summation and, in addition to E¢p), the sums while ann? perturbation in the energy would have given an
n (n+1)(2n+1) additional term
n(n n
> xzzf (8) n
x=1 . 2
Ex(N)=fiw D, X2(X+1)(x+2)
and x=0
nin+1)(n+2)(n+3)(4n+1
" ey _ponMTDME(EHENTY
D K= 9 20
x=1 4
) ] ] where the sum
have been taken into account. The same result is obtained for
n being odd. Taking the spin of the particles into account, n n(n+1)(2n+1)(3n%+3n—1)
one has > x4= (16)
x=1 30
n(n+1)(n+2)(n+3) ] -~
L,=2L,= . (10 has been used in addition to E@S), (6), (8), and(9).

2 The contribution of the second term of ) to the total
Thus the average per particle of the square of the angul&n€rdy of the particles up to threh shell included is found

momentum within each shell is by using Eq.(10),
n
L, L, n(n+3 , X(X+1)(x+2)(x+3)
(L7)y=te 2 0TS (12) Es(n)=—fou’ >, Y,
nl n2 2 x=0 2
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while the contribution of the third term of E¢3) will be although the levels have not been labeled by the quantum
numbersn,| because of lack of space.

(e) The level withl =n, in particular, lies lowest in energy
within each shell and, in general, its energy is decreasing
with increasingu’, since in this case E@3) takes the form

1 n
Eq(n)=+Shop’ 20 X(X+3)(x+1)(x+2), (18

where use of Eq(6) has been made. We remark tt&j(n)

and E4(n) cancel. Thus we conclude that in Nilsson’s MO Ennzgﬁw+hwn 1+ n —hwnz'u—’, (23)
only the first term of Eq(3) contributes to the total energy of 2 2 2
the particles up to thath shell included. ) o ) D
The average energy per particlap the nth shell in-  itS derivative with respect tp.” being

cluded is then found using Eq$12) and(13) to be dE 1

E(n) 3 3 - ”f:ﬁwzn(l—n), (24)

= —— —_— _— M
(E) N hw(4n+ 2), (19

which is indeed negative far>1. Indeed the levels that lie
i.e., the average energy per patrticle is increasing linearlyowest within each oscillator shell in Fig(d) are the levels
with the shell number, which is the number of vibrational with | =n, which also show negative slope with increasing
qguanta, as is expected for a harmonic oscillator, since thg’.
angular momentum terms make no contribution, as we have (f) The fact that then? term in Eq.(23) appears with a

already seen. The same result is obtained from(E4), negative sigrifor u’>0) can cause difficulties if one tries to
describe a system with a large number of particles in terms
E'(n 3 i i ivati i
(E")= |E| ) “hwon, 20 of this oscillator. The derivative dE,, with respect tan,
oo 145 (25)
where the 3/2 term has been omitted already in @), dn ¢ 2 MN
while an? perturbation in energy, as seen from EG<) and
(15), would have given an extra term remains positive for
Emy= 2 g2 ans 21 L2 26
(Ex(n))= N - wzon( n+1), (21 n<;+§. (26)
which naturally contains a® term. Beyond this value of the derivative is negative, meaning

The lower part of the spectrum of Nilsson’s modified os-that levels with higher values of will lie lower in energy,
cillator, calculated from Eq(3), is shown in Fig. 1a) as a  making it difficult to define a cutoff for the number of shells
function of the parametet’, together with the magic num- taken into account. For example, if' =0.04 (a value that
bers appearing at different parameter values. The followinghas been founf9] relevant to the description of metal clus-
observations can be made. terg, the derivative remains positive if<25.5. It is then

(@ The magic numbers at the left end of the figure areclear that a reasonable truncation of the spectrum is possible
those of the three-dimensional isotropic harmonic oscillatoronly if the number of shells to be taken into account is less

(b) The magic numbers appearing aroynt=0.04 are in  than 26(taking then=0 shell into account otherwise no
agreement with the magic numbers appearing in alkali clustruncation is possible. This drawback of Nilsson’s MO does
ters, up to 138see Ref[4] for more details The agreement not have any consequences in the case of nuclear structure,
is destroyed beyond this point. where the model has been first introduced, because of the

(c) Around the parameter valye’ =0.02 the magic num- small number of particles involved thefor which includ-
bers up to 138 are a mixture of magic numbers of the threeing the shells up tm=8, shown in Fig. 1a), sufficed, but it
dimensional isotropic harmonic oscillator and magic num-can cause difficulties if one tries to employ this model for the
bers appearing arounl=0.04 (magic numbers of alkali determination of supershells in metal clusters, as we shall see
clusters. later in Sec. IV.

(d) Equation(3) can be rewritten as (g) As an extension off), one sees from Eq23) thatE,,,

3 3, ) remains positive ifn<2/u’+1. Thus, in the case of.'
_° Nl oM ' =0.04 one should have<51, otherwise energies lower
E”'_Zﬁw+ﬁwn( 1+ 2 )+hwn 2 hop'l(I+1), than the ground-state energy will occur.
(22
Ill. THE THREE-DIMENSIONAL g-DEFORMED

which clearly shows that in the case pf >0 the levels HARMONIC OSCILLATOR

within each oscillator shelcharacterized by a given value of

n) are ordered according to the value lpfwith the levels The space of the three-dimensiomgdleformed harmonic
with higher values of lying lower in energy, because of the oscillator consists of the completely symmetric irreducible
last term in Eq.(22). This is indeed the case in Fig(al, representations of the quantum algeby€3). In this space a
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FIG. 1. (a) Energy spectrum of Nilsson’s modified oscillafam units of 2w, see Eq.3)] as a function of thédimensionlessmodel
parametep’. Magic numbers are shown at the main gapsEnergy spectrum of the 3B-deformed harmonic oscillatgin units of# wg,
see Eq(29)] as a function of thédimensionlessmodel parameter (with q=e", wherer is rea). (c) Same agb), but extended to higher
energy levels.

deformed angular momentum algebra,(8), can bedefined  to the algebra g§3) and itsz projection.

[6]. The Hamiltonian of the three-dimensiongddeformed (b) It conserves the number of bosons, in terms of which
harmonic oscillator is defined so that it satisfies the followingthe quantum algebras,(8) and sq(3) are realized.
requirements. (c) In the limit g—1 it is in agreement with the Hamil-

(a) Itis an sq(3) scalar, i.e., the energy is simultaneouslytonian of the usual three-dimensional harmonic oscillator.
measurable with thg-deformed angular momentum related It has been prove{6] that the Hamiltonian of the three-
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dimensionalg-deformed harmonic oscillator satisfying the where[l],[1+1], are the eigenvalues of the second-order
above requirements takes the form Casimir operator of g§3), and use of (P+1) has been

made for the degeneracy within a shell without taking spin
into account. In performing the relevant summations one

= 27 T @

Ha=fwo| [Mqd [2]4 Ca'[s @7 needs, in addition to Ed5), the sums
where N is the number operator ar@ff) is the second-order n e™(+1)_1
Casimir operator of the algebra$8), while > s ————, (32

x=0 e—1
qX_q*X N
[X]q= (28) 1
Y g-qt > xeP=———s[ne - (n+1)e "Dt e7],
x=0 (e - 1)

is the definition ofg numbers andy operators. (33

The energy eigenvalues of the three-dimensional . o . . . .
q-deformed harmonic oscillator are thEsi of which the first is a simple geometric series, while the

second can be derived from the first through differentiation

a(g—q-b with respect to the parameter One can easily see that for
Eq(n.)=%w, [n]qq”“—T[l]q[lJrl]q , odd | a result identical to the one given in E1) is
q (29 obtained.

Using the definition of they numbers given in Eq(28)

where n is the number of vibrational quanta ands the (he above result can be rewritten in the form

eigenvalue of the angular momentum, obtaining the values

2
l=n,n—2,...,0 or 1. q 3 n+1lpIn
N=e ..oy L = 2n+1)n+ 5| —4—| |5
In the limit of g—1 one obtains lig_1Eq(n,1) =7 won, 19(N) (q2—1)2{( n+iints e L2 42
which coincides with the classical result.
For small values of the deformation parametefwhere B E+1 (n+1) E I et R 1
g=e") one can expand E@29) in powers ofr obtaining[6] 2 2 @2 2 @2 2 @2 '
Eq(n.D)=fwon—fiworl(1+1)—n(n+1)] (34)
~fwe[l(1+ 1)~ in(n+1)(2n+1)]+0(73).  OF equivalently,

(30)
[2n+3]; [n]q[n+1],
The number of states characterized by a given valug of Lig(N)=———7|(2n+1) 2] —4[2] 2]
i.e., the number of states in tin¢h shell, is still given by Eq. (@=a"") q a a

(4) if the spin is not taken into account, and by K@) with n 1
spin taken into account. |31/ (n+1)[2]q+ ﬁ} (35
The total number of particles that can be accommodated q
in the levels of all shells up to theth shell included is still h ; | f the identit
given by Eq.(12), with spin taken into account. where, Tor exampie, use ot Ine identity
The analog of the sum of the eigenvaluesLgf within onon oo .
each shell in the case of evéns, in analogy with Eq(7), [n]2= a9~ _9 9 a-a = _ [2n]q
given by q 92—q 2 q-q ' g?—q 2 [2],
n (36)
Ll,q(n)=|:OJE:even[l]q[l T1lq(21+1) has been repeatedly made.
Equation (31) can be rewritten in yet another form by
1 using the definition forQ numbers(see, for example, the
= _ _ review article in[3] for relevant detai
(9—a H%(a*—q~?)? 3] &
Q-1
x| (2n+1)(g®""5+q 2""5%) —(2n+5) [n]Q=W, (37)
X(q2n+1+q—2n—1)+5(q+q—1)_(q5+q—s) where
n(n+3
. 5 )(q5+q’5+q3+q*3—2q—2q*1) , Q=0 (38)

(31 Using this definition Eq(31) takes the form

033203-5



BONATSOS, LENIS, RAYCHEV, AND TERZIEV

3
Ll,q(n) = (Q_ l)((?QZ_ 1)2{[n]QQ1/2[(Q2_5)+2n
X(Q*~1)]+[—nloQ "1(Q7?-5)

Q1/2
2(Q-1)(Q*-1)
X[n*(Q+1)*~n(Q-1)].

+2n(Q ?-1)]}~
(39

In the limit g— 1, keeping terms of order up t& one can

see that Eq(34) is reduced to Eq(7), i.e., it is in agreement
with the nondeformed case. For this calculation one find

helpful the Taylor expansion af numberg 3],

2 4
= -+__ _ 3
[n]g=n*x—=(n—n )+360(7n 10n%+3n°)
6
T (3In—49n3+21n°-3n")+-- -, (40
~15120 ’

where the upper signs correspondgtdeing a phase factor
(g=¢€'" with 7 being rea), while the lower signs correspond
to g being real =e" with 7 being rea), as in the present

case.

PHYSICAL REVIEW A65 033203
which is derived from Eq(33) by differentiation with re-

spect to the parametet Using Eq.(37) one can easily see
that Eq.(42) can be put in the more symmetric form

Elyq(n)zhwoﬁ{(mr 1)(n+2)[n+3]q
—2(n+1)[n+2]o(n+3)+[n+1]o(n+2)

x(n+3)}—hw0%(n+ 1)(n+2)(n+3).

(44)

In the limit of Q—1, keeping terms up t@3 (where Q

=e'=qg?=e?" and thusT=27) one finds that Eq.(44)
agrees with Eq(13) of the nondeformed case. In this calcu-

lation it is helpful to use the Taylor expansion @fnumbers

[3],
— T 2 T2 2 3_ -3 2 1
[n]Q—n+§(n n)+1—2( n n°+1)
3
—(n*=2n3+nd)+...

+24(n 2n°+n°)+ (45)

The contribution of the second term of EQ9) to the total

One can now proceed to the calculation of the total energn€rgy is found in a similar manner. One has

of the particles up to thath shell included. Using the iden-

tity [3]

[n],a""*=Qlnlq, (41)

whereq numbers of Eq(28) [Q numbers of Eq(37)] are
used in the left{right-) hand side an@=g? [Eq. (38)], one
finds that the contribution of the first term of E@9) to the
total energy is

n

El,q<n>=ﬁwogo [X]q@* "X+ 1) (x+2)

=hwox§=‘,o QIx]o(x+1)(x+2)
=fhw Q [(N+1)(n+2)Q"*3—2(n+1)
O(Q 1 4

X(n+3)Q""?+(n+2)(n+3)Q"*1-2]

(n+1)(n+2)(n+3), (42

Q
BECETORY

where, in addition to Egs(5), (6), (8), (32), and (33) one
also needs to use the sum

n
2ATX
XZoxe

1
(er_ 1)3[nZeT(n+3)_ (2n2+ 2n— 1)e'r(n+2)
+ (n+ 1)2er(n+l)_ e2

T—eT], (43

n

q(g—q™ 1)

Baq(M)=—hwe2— 51 2 Lig)
—f 2Q 2(Q?-
wo(Qz 3{Q [n]ol2(Q°—

+(Q*-2Q-7)]-Q—nlol2(Q 2~ 1N
+(Q7?=2Q 7t =7)]-5n*(n+6)(Q+1)

X (Q*=1)%+§n(Q+1)(Q*+6Q°+34Q%
+6Q+1)}, (46)

where Eqs(5), (8), (31), (32), and(33) have been used and
the spin of the particles has been taken into account.

The lower part of the spectrum of the three-dimensional
g-deformed harmonic oscillator, calculated from E2p), is
shown in Fig. 1b) as a function of the parametey together
with the magic numbers appearing at different parameter val-
ues, while in Fig. {c) the full spectrum up to about 1500
particles is exhibited. The following comments and compari-
sons to Nilsson’s MO are now in place.

(a8) The magic numbers at the left end of both figures are
those of the three-dimensional isotropic harmonic oscillator,
as in Fig. 1a).

(b) The magic numbers appearing around0.04 are in
agreement with the magic numbers appearing in alkali clus-
ters, up to 150@see Ref[4] for more detaily which is the
expected limit of validity for theories based on the filling of
electronic shellg5], while in the case of Nilsson’s MO the
agreement is limited to the magic numbers up to 1B@§).

1(a)].
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(c) Around the parameter value=0.02 the magic num- proportional ton [see Eq(19)]. In the 3Dqg-HO this depen-
bers up to 138 in Fig.(b) are a mixture of magic numbers of dence of the average energy per particlenas given by the
the three-dimensional isotropic harmonic oscillator andowest order contribution from Ed@44), while the next-order
magic numbers appearing around 0.04(magic numbers of contribution from Eq(44), as well as the lowest order con-
alkali cluster$. Beyond 138 other magic numbers appear. tribution from Eq.(46), give terms with higher powers of.

(d) Numerical calculations show that in the caserof0  This property will have to be taken into account when super-
the levels within each oscillator sheltharacterized by a shells will be considered.
given value ofn) are ordered according to the value lof (c) In both models we have derived exact expressions for
with the levels with higher values dflying lower in energy, the total energy up to theth shell included, i.e., for systems
because of the last term in EQ9). This is indeed the case in of particles filling complete shells. In order to consider sys-
Figs. 1b) and Xc), although the levels have not been labeledtems of particles for which the last shell is not full, one has
by the quantum numbers,| because of lack of space. The to consider numerical methods, such as the Strutinsky
ordering of the levels within each shell is the same as the onmethod[11,12], which are beyond the scope of the present
appearing in the case of Nilsson’s M®ig. 1(a)]. study.

(e) As in Nilsson’s MO, the level with=n lies lowest in
energy within each shell. However, in the present case the IV. SUPERSHELLS IN NILSSON'’S MODIFIED
energy of this level is not decreasing with increasing his OSCILLATOR
is true for all levels of the 3@-HO: Their energies increase
with increasingr [except in the cases of the levels with ~ For studying the existence and properties of supershells in
(n,1)=(0,0) and(1,2), the energies of which remain con- Nilsson’s MO we are going to use the procedure employed
stant with increasing]. by Nishiokaet al.[2]. For a given number of particlé$ the

(f) As a consequence ¢6), no difficulties related to trun- ~ Single-particle energieg;(n,l) of the N occupied states are
cation appear in the present case. Stopping the level scherggdmmed up,
at thel=n level of a given shell and taking into account all N
levels with lowern (i.e., all levels of the shells lying below
the given ong one makes sure that all levels up to the given E(N):jzl Ej(n,D).
level have been included. Therefore in the O reliable
truncations can be made, allowing for the description of sysThjs sum is then divided into two parts: a smooth average

tems with many particles. This point is one of the main ad'part E,, and a shell parEqne;, which will exhibit the
vantages of the 3[@-HO in comparison to Nilsson’s MO. supeshell structure

A few more comments on the comparison between the 3D
g-HO and Nilsson’s MO are also in order. E(N)=E,(N)+Egnei(N). (49

(@) The(L?), term in Nilsson’s HamiltoniafiEq. (1)] has
been put in “by hand” in order to guarantee that the “center For the average part of the total energy a liquid-drop model
of mass” of each shell will remain constant, so that shellsexpansion is usefl]
will not be compressed because of the presence ol the
term. In the case of the 3B-HO it is clear that the opposite Ea(N)= a1N1’3+ aZN2/3+ asN. (50)
effect is present: The shells are expanded because of the
extra terms added by tleedeformation. One way to see this This expansion should be adequate in the case of Nilsson's
is by comparing the first-order corrections appearing in EQMO, for which the average energy per particle increases lin-
(30) to the last two terms in Eq(3). In both cases thé(l  early with N [see Eq.(19)], but it should not suffice in the
+ 1) term causes compression of the shells, while expansiogase of the 30y-HO, for which the average energy per par-
of the shells is caused by tmgn+ 1) term in the case of the ticle contains higher order terms, as we have seen in the
3D g-HO and by then(n+ 3)/2 term in the case of Nilsson’s preceding section. For the latter case an expansion going up
MO. Since the difference of these terms is to anN? term,

(48)

n(n+1)—3n(n+3)=3n(n—1), (47) Ea(N)=a;NY¥3+a,N?3+ agN+ a,N*3+ agN>3+ agN?,

51
which is positive forn>1, it is clear that the expansion in 5D
the case of the 3[G-HO will be stronger than the expansion should be more appropriate. In order to keep the calculations
in the case of Nilsson’s MO, which is exactly balanced byuniform and thus facilitate the comparisons between the two
the compression caused by thg+1) term. As a result, in  oscillators, we opted for using the expansion of Exf) in
the case of the 3[-HO, net expansion of the shells will all cases, although for Nilsson’s MO the first three terms
occur, which will be of first order in the parameterCom-  would have been adequate. Therefore in the case of Nilsson’s
parison of Figs. (a) and Xb) clearly shows this effect. MO very small values will be expected fag, the coefficient

(b) In Nilsson’s MO the last two terms in the energy ex- of the N2 term.

pression of Eq(3) give no net contribution to the total en-  The results forEgy obtained with Nilsson’'s MO for
ergy up to thenth shell included, and therefore to the aver- eight different values of the parametgr (assumingfw
age energy per particle as well, which turns out to be=1) are shown in Fig. 2, while the relevant parameter values
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FIG. 2. Shell part Egp,e)) Of the total energyin units offw, see Eq(3)] for Nilsson’s modified oscillator vs the number of particks
The values of thédimensionlessparametep’ are the same as those listed in Table |, together with the details of the calculation. See Sec.
IV for further discussion.

and rms deviations are exhibited in Table I. As far as the wakeep n<50.5, while for lower values ofu’ the limiting

of calculation is concerned, the following comments apply: value of n lies even higher. This means that including the
(@ In all cases the maximum shell used wagg,,=30, shells up ton=30 is a reasonable truncation.

implying that the last level included in the calculation was (c) The procedure of the calculation was as follows: First

the one with ,1)=(30,30), in order to ensure that the com- the summations described by Eg8), resulting in the total

plete spectrum up to this point has been taken into accoungnergy E(N) for each particle numbeN, have been per-

as discussed in Secs. Il and 111 formed. Subsequently, in order to reduce the size of the cal-
(b) From Eqg.(26) one sees that for’ =0.02 one should culation approximately by a factor of 10, the averdgéN)
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TABLE |. Parameters used for fitting the average part of the total eney Eq.(51)] in the case of
Nilsson’s modified oscillator, for various values of the model parametefsee Eq.(3)], corresponding to
the cases exhibited in Fig. 2. The parameters are dimensionless, since we have dssemddee Eq(3)]
throughout. The highest shei}, ., and the number of particléd,, ., included in each calculation, as well as
the relevant rms deviationr, are also shown. See Sec. IV for further discussion.

m a; a az ay 10%as 10°ag Nmax  Nwmax o
0.0001 13.349 -6.556 —0.218 0.972 4.451 6.853 30 10027 22.06
0.001 —0.025 0.281 —1.482 1.080 0.080 —0.132 30 10027 7.12
0.002 —0.022 0.181 —1.439 1.073 0.489 1.053 30 9609 4.19
0.003 —1.281 1.080 —1.651 1.094 —0.445 0.282 30 9246 3.40
0.005 -1.073 1.013 -1.659 1.096 -—0.623 0.043 30 8641 2.76
0.007 —0.830 0.910 -1.654 1.097 -0.724 —0.626 30 7937 4.16
0.01 —5.448 3.432 —2.155 1.143 —2.645 0.383 30 7189 4.88
0.02 5.692 —-3.891 -0.376 0.938 9.135 —38.541 30 4890 3.50

was calculated every 11 pointise., forN=6,17,28...) up  cially at high energies, Fig.(B) (' =0.02) being the clear-
to the point immediately below the cutoff ofn{l) est example for this case.
=(30,30), which is reported in Table | &,,,. These av- (c) According to the study by Balian and Bloch of elec-
eraged values oE(N) were subsequently fitted by the ex- trons moving in a spherical caviyl0], which by analogy
pansion of Eq(51), resulting in the determination &,,(N)  can be applied to the valence electrons in a metal cliister
at these points. Finall.,.(N) has been obtained at these the minima of the shell energ§g,e;, which correspond to
points as the differencé(N) — E,,(N) and plotted in Fig. 2.  shell closures, should appear at equidistant positi®es,
On the contents of Table | the following comments can bethey should exhibit a periodiciiyas a function ofN2 within
made. each supershell. From the data used for plotting Fig. 2 one
(a) The behavior of the parameters as a functionubfis ~ can see that this condition is approximately fulfilled.
rather smooth, with the exception af, the coefficient of
N2, which assumes very small values, as expected from the
comments following Eq(51).
(b) The maximum numbeN,,,, Of particles below the
cutoff is decreasing with increasing', as expected fromthe  The procedure described in the preceding section has been
fact that the level 1f,1)=(30,30) is getting lower with in- used in exactly the same way for the determination of super-

V. SUPERSHELLS IN THE THREE-DIMENSIONAL
¢-DEFORMED HARMONIC OSCILLATOR

creasingu’ [see Eq.(24)]. _ shells in the case of the 3§-HO.
(c) The rms deviations are very small, given the fact that  The results foiE obtained with the 30y-HO for ten
the relevant average energies range up t 10 different values of the parameter (assuminghw=1) are

On the contents of Fig. 2 the following comments apply. shown in Fig. 3, while the relevant parameter values and rms
(@) The gradual development of supershells with increasdeviations are exhibited in Table II. In order to facilitate
ing ' is clearly seen in Figs.(3)-2(d). While in Fig. 2a8)  comparisons between the two models, the first eight values

(u'=0.0001) no supershell structure is seen up No of 7 used here are the same as the valueg 'ofised in the
=10000, in Fig. 2b) (»" =0.001) the first supershell is seen preceding section.
to be completed aroundN=10000, in Fig. 2c) (u' As far as the way of calculation is concerned, the maxi-
=0.002) two supershells are completed upNe=10000, mum shell used in the first eight cases was,= 30, as in
and in Fig. 2d) (u'=0.003) most of the third supershell is the preceding section, in order to facilitate comparisons be-
also completed byN=10 000. tween the two models. Lower,, ., has been used only in the
(b) In Figs. 2a)—-2(g) (n'=0.0001-0.01) it is clear that last two cases, as shown in Table Il, in order to keep the rms
Ns1, the value olN at which the first supershell is completed, deviation small.

is decreasing as a function @f . The same is true foN,, On the contents of Table Il the following comments can
the value ofN at which the second supershell is completed.be made.
These trends are not followed by Figth2 (1’ =0.02). An (a8) The behavior of the parameters as functionsras

explanation of this effect can be obtained from Figa)lin  smooth, even in the case af, the coefficient oiN?, which
which it is clear that for relatively smajk’ (x’'<0.01, for in the case of Nilsson’'s MO was not showing smooth
example the order of the levels remains the same and onlybehavior.

their individual energies change, while at=0.02 and be- (b) The maximum numbeN,,, of particles below the
yond, the order of the levels changes drastically, especially atutoff is decreasing with increasing This can be explained
higher energies. This drastic mixing of the levels @&t by looking at Fig. 1c). The level used as the cutoff is the
=0.02 and beyond can also explain the increasing difficultyevel with (n,1) = (Nyax,Nmax)» Which, as explained in Sec.
in determining the closing of supershells for largé espe- I, is the lowest level within then,,,th shell and, as seen in
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resulting in the decrease of,,,x with increasingr seen in

Table I1.
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FIG. 3. Shell part Egpe) Of
the total energyin units of  wg,
see Eq. (29)] for the three-
dimensionab-deformed harmonic
oscillator vs the number of par-
ticlesN. The values of thédimen-
sionlesg parameter are the same
as those listed in Table I, together
with the details of the calculation.
See Sec. V for further discussion.

(c) As in the case of Nilsson’s MO, the rms deviations are
very small, given the fact that the relevant average energies

On the contents of Fig. 3 the following comments apply.
(a) The gradual development of supershells with increas-
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TABLE II. Parameters used for fitting the average part of the total ereeg Eq(51)] in the case of the
three-dimensionai-deformed harmonic oscillator for various values of the model paramdtge Eq(29),
with g=e7], corresponding to the cases exhibited in Fig. 3. The parameters are dimensionless, since we have
assumed wy=1 [see Eq(29)] throughout. The highest sheil}, ., and the number of particlés,,,,included
in each calculation, as well as the relevant rms deviadipare also shown. See Sec. V for further discussion.

T a, a, as a, 10%as 1085 Nmax  Nuax o
0.0001 13.585 -6.554 —0.228 0.972 4.464 —6.776 30 10027 22.12
0.001 0.753 —-0.061 —1.424 1.073 0.867 —0.272 30 10027 7.58
0.002 1.458 —-0.496 —1.318 1.059 2.075 -—-1.136 30 9686 4.68
0.003 —3.358 2186 —1.855 1.106 0.615 2.501 30 9389 3.52
0.005 0.667 0.166 —1.500 1.074 2.791 2.422 30 8795 3.49
0.007 —-2.631 1965 —1.867 1.106 2.204 7.580 30 8421 3.88
0.01 —3.657 2568 —2.013 1.120 2.523 15.399 30 7893 6.75
0.02 —17.409 11.661 —4.267 1.379 —10.052 88.547 30 7189 9.03
0.038 —55.417 41.650 —13.067 2.615 —96.648 482.365 26 4648 17.98
0.05 —64.123 55.364 —19.160 3.777 —202.994 999.866 22 3020 16.63

ing 7 is clearly seen in Figs.(d—-3(d) (7=0.0001-0.003), lation of supershells. The fact that the present calculation
which look very similar to Figs. @-2(d) (x'=0.0001- leads to a reasonable prediction of the position of the first
0.003) of the preceding section. supershell closure is quite a stringent test of the present

(b) In Figs. 4a)-2(g) (7=0.0001-0.01) it is clear that theory.

Ng14. the value ofN at which the first supershell is com- () As we have already mentioned, the theory by Balian
pleted, is decreasing as a function ofalmost in the same and Bloch[10] for electrons moving in a spherical cavity,
way asNg; is decreasing as a function pf in the case of which by analogy can be applied to the valence electrons of
Nilsson's MO, the only difference being that for numerically metal clusterg1], predicts that the minima of the shell en-
equal values of andu’ the corresponding value dfg 4 is ~ €rgy Esnen, Which correspond to shell closures, should ap-
slightly higher that the relevant value b, a fact that can pear within each supershell at equidistant positigses, they

be explained by the general property of the spectrum of thehould exhibit a periodicitywhen plotted versusl*®. From

3D g-HO to expand more rapidly than the spectrum of Nils-the data used for plotting Fig. 3 one can see that this condi-
son’s MO, as seen in Sec. lll. The same is true fortion is approximately fulfilled.

Ns2q: Nssg: Nsg, i€, the values oN at which the (f) A further prediction of the theory by Balian and Bloch
second, third, and fourth supershells are completed. Thedd0] is that the plot of the cubic rodt*® of the magic num-
trends are not followed by Figs.(® (7=0.02), i) (r  bersN;, corresponding to shell closures versus the index
=0.038), 3j) (7=0.05), which correspond to higher values counting the shells, should be a straight Ijdg. In the case

of 7, where the mixing of the levels is very strong in com- of alkali clusters, in particular, in which the triangular and
parison to the picture existing at low valuesofi.e., forr  squared closed orbits are supposed to domifiat3], the
<0.01, as seen in Fig.(d)]. slope of the line should be 0.603. In order to make a prelimi-

(c) Despite the fact that the systematics of supershell clonary estimate of the degree to which this prediction is ful-
sures are modified beyone=0.02 because of the strong filled, one can employ the data used in plotting Figi),3
mixing of levels, supershells are still seen beyond this pointWhich corresponds te=0.038, i.e., to the parameter value
while this was not possible in the case of Nilsson’s MO,found appropriat¢4] for reproducing the magic numbers of
because of truncation-related problems, as we have seen $gveral alkali clusters. One can then see that this requirement
Sec. III. It should be noticed that this is exactly the region ofis roughly fulfilled, although the slope appears to be gradu-
7 values, which has been found relevant for the descriptiolly decreasing at large an effect that might be due to
of metal clusterg4]. missing corrections mentioned in comméhy.

(d) In the case of alkali clusters, Na, in particular, the first  (g) In the case of Al clusters, magic numbers have been
supershell is known to occur arouridi=1000 [2,13-15, determined experimentally in detail up to 1200 electrons
which is quite in agreement with what is seen in Fi¢),3 [16], while additional experimental results up to 2700 elec-
which corresponds tor=0.038, the parameter value for trons exis{17]. The slope o[ vsi in this case is consid-
which the magic numbers of alkali clusters are correctly re-erably lower(around 0.32[1], indicating that closed orbits
produced4] up to 1500 particles, which is the expected limit other than the triangular and squared ones should be present
of validity of theories based on the filling of electronic shellsin the Balian and Bloch approa¢ti7]. It will be interesting
[5]. It should be noticed that only one free parameter exist§o examine if the 3Dg-HO can provide any prediction for
in the theory, namelyr, which has been fixed in Reff4] in supershells in Al clusters, after choosing the value of the
order to reproduce the magic numbers of alkali clustersparameter in order to reproduce the right slopexlﬂﬁ‘ VSi.
Therefore no free parameter has been left over in the calcu- (h) In order to guarantee the reliability of such predic-
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tions, it is of interest to study in advance the influence of anyexpand with increasing shell numbhemore rapidly than the
modifications imposed by the Strutinsky methfiti, 17, corresponding spectrum of Nilsson’s modified oscillator, al-
which can be applied in cases in which the last shell is operlpwing, among other things, for reliable truncations to be
which are beyond the realm of the present analytic study operformed.

Sec. lll. The influence of the well-known quantum- (c) The successful prediction of the magic numbers can be
mechanical effect that wy should be decreasing with in- considered as evidence that the ldeformed harmonic os-
creasing number of particles in the clusf8r18,19 should cillator owns a symmetry{the y(3)Dsq,(3) symmetry,

also be taken into account. which is a nonlinear deformation of thé3) symmetry of the
spherical(3D isotropig harmonic oscillatof appropriate for
VI. DISCUSSION the description of the physical systems under study. The use

_ ) of this symmetry for predicting supershells in other kinds of
The main results of the present study are summarized ggetal clusters(Al clusters, for exampleis an interesting
follows. . _ ~_ open problem. The influence of using open shgtigen into
(@ The 3D g-deformed harmonic oscillator, which is account by the Strutinsky methdi1,12), as well as of the
known[4] to describe very well the magic numbers _of_alkall— well-known guantum-mechanical fact tHab, should be de-
metal clusters up to 1500 particléthe expected limit of  creasing with increasing number of particles in the cluster

validity for theories based on the filling of electronic shells [g 18 19, should be taken into account before any final pre-
is found in the present study to be able to produce supershelictions can be made.

structures, succesfully predicting the first supershell in alkali
clusters without involving any free parameter in addition to
the deformation parameter which has been fixed for repro-
ducing the magic numbers.

(b) 1t should be noticed that these successes of the 3D Support from the Bulgarian Ministry of Science and Edu-
g-HO are largely due to terms in the Hamiltonian induced bycation under Contract Nosb-415 and®-547 is gratefully
the symmetry, which make the spectrum of the HO  acknowledged.
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