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Quantum reflection by Casimir—van der Waals potential tails
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We study the reflectivity of Casimir—van der Waals potentials, which behaveGgr* at large distances
and as— C,/r® at small distances. The overall behavior of the reflection ampliRidepends crucially on the
parametep = 2M C, /(% +/C,) which determines the relative importance of thé/r3 and the— 1/r* parts of
the potential. Near threshold,=7%2k?/(2M)— 0, the reflectivity is given byR|~exp(—2bk), with b depend-
ing on p and the shape of the potential at intermediate distances. In the limit of large energi@sisin
proportional to— k¥ with a known constant of proportionality depending only®@g For small values op,
the reflectivity behaves as for a homogeneeutr® potential in the whole range of energies and does not
depend orC, or the shape of the potential beyond thé/r® region. For moderate and large valuespothe
reflectivity depends o€, and on the potential shape. For sufficiently large values, afhich are ubiquitous
in realistic systems, there is a range of energies beyond the near-threshold region, where the reflectivity shows
the high-energy behavior appropriate for a homogeneelis* potential, i.e., IfiR| is proportional to— JVk
with a proportionality constant depending only 6. This conspicuous and model-independent signature of
the Casimir effect is illustrated for the reflectivities of neon atoms scattered off a silicon surface, which were
recently measured by Shimiz@hys. Rev. Lett86, 987 (2001)].
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I. INTRODUCTION the atom-surface interaction contains not only the Casimir—
van der Waals contribution, but it can also contain a short-
A particle moving through a classically allowed region ranged repulsive part coming from the evanescent electric
can be reflected by a potential without reaching a classicdield outside the prism. The short-ranged repulsive term and
turning point. Such “quantum reflection” can, e.g., be causedhe attractive Casimir—van der Waals term can combine to
by the long-range part of an atom-surface interaction, and iproduce a potential barrier. In such cases, the energy depen-
is an important effect, because it reduces the probability foelence of the reflection probability is close to the classically
the incident atom to come close enough to interact with th@redicted sharp step at the barrier energy, and the quantum
shorter-ranged forces and to be inelastically scattered or agffects mainly smooth this sharp-step behavior.
sorbed. For potential tails vanishing faster than?1the The aim of this paper is to study quantum reflection by
quantum reflection probability approaches unity as the velocCasimir—van der Waals potentials in detail and to investigate
ity of the projectile approaches zero, so it is always non-how the behavior of the reflectivity as a function of energy
negligible at sufficiently low energigd—3]. depends on the strength parameters and the shape of the po-
The current intense activity on cold atoms has made quariential. We focus on purely attractive potential tails, where
tum reflection by attractive potential tails a topic of consid-reflection is forbidden classically and is a quantum-
erable interesf4]. The electrostatic interaction of a polariz- mechanical effect at all energies.
able atom and a surface is a van der Waals potential In Sec. Il we briefly review a few general aspects of quan-
proportional to— 1/r3 [5]. At very large distances, however, tum reflection, and we show how the reflectivity depends on
retardation becomes important and the potential becomegnergy in the case of homogeneous potential tails. In Sec. I,
proportional to— 1/r* as described by Casimir and Polder in We generalize this theory to Casimir—van der Waals poten-
1948[6]. The retarded van der Waals potential is just onelials, and we discuss the energy dependence of the reflectiv-
manifestation of the “Casimir effect” which describes forces ity expected for various values of the parameters determining
induced by the zero-point energy of the quantized electrothe strength of the potential in the short-distance and the
magnetic field. A detailed review of the state of the art in thelong-distance regimes. The influence of the shape of the po-
theoretical understanding and experimental investigations dential in between the two limits is illustrated with the help of
the Casimir effect has just been published by Bordagl.  three realistic models. In Sec. IV, we show how recent data
[7]. The Casimir effect is experimentally observable in quan-0f Shimizu on quantum reflection of neon atoms by a silicon
tum reflection by a retarded van der Waals potential tail asurface[8] fit in to the expectations presented in Sec. Ill.
recently demonstrated by Shimif8], who showed that the
inclusion of the retardation effects is necessary in order to
explain the observed reflectivities.
In some applications, e.g., atomic mirrors constructed via
laser beams totally reflected on the inside of a priSmQ], The unambiguous definition of amplitudes and probabili-
ties for transmission through a localized region of coordinate
space implies that there are unidirectional solutions of the
*Email address: harald.friedrich@ph.tum.de equations of motion on either side of this region. Unidirec-

Il. GENERAL ASPECTS OF QUANTUM REFLECTION,
HOMOGENEOUS TAILS
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tional solutions of the Schdinger equation are provided by potential tails falling off faster than d7, there are, forE
the appropriate WKB wave functio41], =0, two linearly independent solutions of the Satirger
equation behaving asymptotically -G«) as yo~1, ¢
1 i(r ~r. Following these solutions to smallervalues allows
Ywia(r)= [p(r—)]mex% iﬁj p(r’)dr’), @) them to be written as

; ; 1 (= 1
as long as these WKB wave functions are accurate approxi- =D N1~ Y2co _J rdr — =
mations of the exact solutions. In E(.), p(r) is the local Y01 =Dopo(r)] il Po(r") 2 oa

classical momentum of a particle of ma§k moving in a (5)

potentialV(r), ) ] ] ) )
in the inner WKB regionpy is the local classical momentum

p(r)=2M[E—V(r)], (2) (2) atE=0. The length parametds is given[13] by the
difference¢y— ¢, of the phases and the rativ, /D of the
and the condition for applicability of the WKB approxima- amplitudes appearing in E),
tion is essentially that the local de Broglie wavelength

27hIp(r) should vary slowly with the coordinate More b Dy . [do— o1 5
precisely(see[11], p. 48 of[12)), B D_oSln 2 ) ©)
|B(r)[<1, Consider a homogeneous potential tail,
ﬁ2 d2 3 (p/)Z 1 pr/ Ca ﬁZ (Ba)a72
T S B AL V() =— 2= , a>2. 7
B(r) [p(r)]md—rz[p(r) 1=t (4 20 D= 1T ="y« a @)

Here we have introduced the length paramétgr which is
The WKB wave functiongl) are poor approximations when related to the potential streng®), via Planck’s constant and
B(r), the “badlands function,” is significantly nonzero. They sets the scale on which to expect quantum effects. The
accurately approximate solutions to the Sclinger equation  Schralinger equation with the potentié?) can be rescaled
when the conditior{3) is fulfilled. This is clearly the case if so that it only contains one parameter, namieB,, so all
the dependence of on r is negligible, but Eq(3) is also  properties of its solutions can only depend k@8, . Since
increasingly well fulfilled towards smali values ifV(r) is  o>2, kB,— corresponds to the semiclassical limit and
more singular than i at the originy =0. For potential tails  k3,—0 corresponds to the anticlassical or extreme quantum
proportional to 7%,  B(r) becomes independent of energy limit, see Refs[14,15 and p. 322 of Ref[12]. The zero
and proportional ta*~2 for smallr values[see the Appen- energy solutions of the Schtimger equation with the poten-
dix, Eq. (A6)]. For a>2, the WKB approximation thus be- tial (7) are Bessel functions of ordet 1/(a—2), and the
comes increasingly accurate ras:0, and, for nonzero ener- lengthb as given by Eq(6) is [13,15-117,
giesE+#0, also forr —oo; i.e., the badlands where E@®) is

not fulfilled lie between two WKB regions, one for small

and one for large, where the Schiinger equation has uni- sia/(a—2)] F( 1- m) def

directional solutions. It is hence meaningful to speak of b=p8, Ha—2) 17 b,. (8
transmission through or reflection by the badlands in the tail (@=2) rl1+ _)

of the potential, even when there is no potential barrier and a—2

there are no classical turning points. ]
A remarkable feature of quantum reflection by a potential particular,
tail falling off faster than 12 is that the reflection probabil-

ity |R|2 always goes to unity at threshol=0. Regardless by=mBs for a=3, b,=p, for a=4,
of whether or not there is a potential barrier, the absolute
value of the reflection amplitudévhich we shall call the and b,~(wla)B, for a—x . (©)

“reflectivity” ) has the universal behavior ) ] ]
A further useful example is the exponential potential,

k—0

IR| ~ 1—2bk, 4) 2

h
Vexp(r):_W(Ko)zexli_r/ﬁexp)i (10)
wherek is the wave number defining the asymptotic kinetic
energy,E=72k?/(2M). The lengthb in (4) is a “tail param-  where the “inner” WKB region is actually — —, and we
eter” which depends only on the potential beyond the innemhaveb= 7 Bexp- The Schrdinger equation with the potential
WKB region; it also determines the near-threshold quantiza¢10) can be solved analytically at all energigss], and the
tion rule and level density just below threshold and can beeflectivity is[11,16]
derived from the zero energy solutions of the Sclimger
equation in the tail region as described in detai[18]. For |Rexd = €Xp( — 27K Bexp) - (11

032902-2



QUANTUM REFLECTION BY CASIMIR-van der WAAIS . . . PHYSICAL REVIEW A 65 032902

Near threshold, the leading behavior of the exponential in TABLE I. The coefficients8,, which are given by Eq(19) and
Eqg. (11) is indistinguishable from the linear behavi@h, but ~ appear befora, = (kB,)'~?* in the exponents describing the high-
the exponential behavidf.l) is valid for all (positive) ener-  energy behavio(17) of the reflectivities of homogeneous potential
gies. For other potentials, the behavior |& significantly  tails.

above threshold is not so simple, but numerical calculations

have showr[19] that replacing(4) with the corresponding ¢ 3 4 5 6 7 8
exponential B, 2.24050 1.69443 1.35149 1.12025 0.95450 0.83146
k—0
|R| ~ exp(—2bk) (12 The complex turning point with the smallest positive imagi-
nary part is

reproduces the next-to-leading behaviotRff quite well in a

number of cases, including homogeneous potential (@)ls m\
For potential tails vanishing faster thanr?/the high- Ma= COS(; Tl S'”(;)

energy limit is the semiclassical lim{it5], and the reflection

amplitudes vanish in this limit. The energy dependence ofy, the integral in the exponent in E4L3), a path along the
the reflection amplitudes at large energies depends on detajlga| axis gives real contributions and only affects the phase
of the potential, and there is no universally valid formula ¢ the reflection amplitude. Integrating along a path
such as(4) or (12) for the low-energy limit. If there is a =Re(r,,)+iéIm(r,,), é=0-1, yields the following

discontinuity in one of the derivatives of the potential, thengynression for the absolute value of the reflection amplitude
the lowest orden for which this occurs dominates the re- (at high energies

flectivity, which vanishes a%" in the semiclassical limit.
When all derivatives of the potential are continuous, the re- IR,|~exp( — B kro) =exp(—B,a,). (17)
flectivity usually vanishes exponentially.

For large energies, the badlands functi® becomes Here we have introduced the abbreviation
smaller and smaller and more and more localized in the re-
gion where the absolute value of the potential energy is a,=kro=(kB,)1 2. (18)
roughly equal to the total energgee the Appendijx Prok-

tion amplitude based on a perturbative treatment of the bady i the exponent in Eq(17) are
lands functionB(r) (see also Maitra and Hellg¢22]), and
T vigsi 77) _“d
co P i€sin P &t
(19)

they derived the asymptotic formula - 1
Ba=25ir<—)Re{J \/1+
a 0
The numerical values of the coefficienBs, are listed in

2i (1t
R~—iexr{zJ p(r)dr), (13
wherer, is the complex turning point with the smallépbsi-
tive) imaginary part. _
For the exponential potentidll0), the complex turning Table : _for @=3,...,8. For Ia_rgea, the real part of the
ints are aiven b integral in Eq._(19) becomes unity and,~27/a. _
poin 9 y An alternative and very simple approach to derive an ap-
) ’ prcl)ximitiondfor tr;]e rdeﬂectfivity of homogeneou;s potential
texp_ . —O 41+ tails is based on the idea of comparison potentials. At energy
Bexp In((KO)Z +@ntim, n=0x1x2,..., E=7%2k?/(2M), the region in coordinate space important for
(14 reflection is around the value, defined by Eq.(15). At r
=r,, the depth of the potential ¥ ,(r,) and the derivative
andn=0 corresponds to the one with the smallest positiveis (—a/ry)V,(ry). The exponential potentigll0) has the
imaginary part. Taking the integral in the exponent on thedepth VexdFo) and the derivative is € 1/Bexp) Vexd o)
right-hand side of(13) over the patH:_ln[kzl(Ko)z]b’exp Depth and derivative of the exponential potential can be

k—ZIa(IBa)l—Zla. (16)

+&imBexps §=0—1, yields R~—iexp(—27kB.,), made to agree with depth and derivative of the homogeneous
which agrees with the exact resultl) for [Re, — at all  potential atrq if the width parameteBey, of the exponential
energied19]. is chosen as

For a homogeneous potential t&f) with integer power
«a, there are altogether complex turning points located at Bexp="ol @. (20)

(—1)Yer,, wherer, is the point at which the absolute value
of the potential energy\V,(ro)|, is equal to the asymptotic An approximation to the reflectivity of the homogeneous po-

kinetic energy, i.e., the total enerd=1%%k?/(2M), tential is obtained by taking theexac) expression(11) for
the reflectivity of the exponential potential for this value of
ro=k 2%(Ba)* "% (15 Bew:
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IR, |~exp —2mkrg/a) =ex;{ _%(kﬁa)l—zm> _
(21)

Here we have inserted the right-hand side of @&) for kry,.
The approximatior(21) contains the same power kf3,, in
the exponent as does E(L7), and the coefficient in the
exponent corresponds to the largdimit of the coefficients

B

a

k—0
IR,| ~ exp(—2kb,)

In the limit of large powers@g—, the expression£l?)
and(21) agree with the near-threshold behavi@p)

10g|Ra |

(22

when the largex limit for the length parametds,, is inserted
according to Eq(9). For finite powersa, the expressions
(17) and(21) are clearly wrong near threshold, because their
exponents depend on a powerkg@, which is smaller than
unity. This dependence seems correct at high energies, how-
ever, and numerical results below strongly support @&a)

as the correct expression for the high-energy behavior of the

reflectivity of homogeneous potential tails.

In Fig. 1, we show thénumerically calulatedreflectivi-
ties |R,| of homogeneous potential tails for powets
=3,...,6. Inpart (a) of the figure, we plot InNR,|) as
functions ofkB,. The near-threshold behavi¢22) mani-
fests itself in a linear decrease of Ry,| for small values of
kB,, and the gradient is-2b,/8,, with theb,’s as given

by Eq. (8). This linear decline slows down towards higher

energies, however, where we expedn(|R,|) to be propor- &
tional to a,=(kB,)* %* according to Eq(17). This is in o
fact borne out by the numerical calculations, as illustrated in S
part (b) of Fig. 1, where we have plotted [ig,|) as func-

tions of a,. The straight solid lines show the asymptotic
behavior predicted by Eq17); their slope is determined by

the coefficientB, given in Eq.(19) and Table I. The con-
vergence of the numerically calulated reflectivities to the
straight lines predicted by E@l7) seems obvious. The be-
havior predicted by Eq(21) would also corresponds to
straight lines in part(b) of Fig. 1, but the gradients

— 27/« differ from those of Eq(17) by up to 8% (for «

=4) and clearly do not correctly describe the high-energy

behavior of the reflectivities.

The reflectivitiegR,| are monotonously decreasing func-
tions of kB,. This means that, for a given energfjxed
value of k) the reflectivity increases with decreasi, .

Making the potential weaker increases the quantum reflectiv-
ity at a given energy. At the same time, the region where
reflection is essentially generated, i.e., where the absolute
value of the potential is equal 8 moves to smaller values

according to Eq(15).

The behavior of In(R,|) changes from proportionality to
kB, at small energies to proportionality tkg,)' %« at

large energies. Writing

IR| =exd — BK“]

and taking(natura) logarithms leads to

(23

-2
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FIG. 1. ReflectivitiegR,| of homogeneous potential tailg) for
powersa ranging from 3 to 6. The natural logarithmgRy| of the
reflectivities are plotted as functions loB,, in part(a) of the figure
and as functions,,= (k83,

)1~2/ in part (b).

In(—=In|R])=InB+ uInk, (24

so the poweru of k appearing in the exponent is best ex-

posed by plotting In¢-In|R|) as a function of Irk, or more
appropriately for the homogeneous poten(igl as function

of In(kB,). This has been done in Fig. 2 for the numerically
calculated reflectivitiegR,| already shown in Fig. 1. For

large negative values of IkB,), the graphs approach

straight lines of unit gradient, whose intercept with the ordi-
nate is In(d,/8,), see Eq(8). For large positive values of
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3 .
-1 o F3
. VEIWM) = —f a ( e 28(2&2+2¢+1)d¢,
e Cuanf Aragrt)o N ager
2 A (25)
1 __,/,,;/(f"//" where aqs=e€?/(#c) is the fine-structure constant. A similar
. ;;"f'/f/ formula for a dielectric surface is given ifl0]. The
- s asymptotic behavior for small and large distances is
E 0 i, . e ] 7/
o =0 C,4 h? Bs
o Vowl1) = =53 = " 5y 3
o ,// /
’9' /// //’ ...... o=3 [ o C4 hZ (ﬂ4)2 (26)
2y - o=4 Vovalr) ~ =17 == 597 7~
/// /'/ - =0
-3 // e The strength parameters governing the short-distance and the
/,/" long-distance behavior of the potential 423]
- 1 (= 3 ay0)
-3 -2 -1 0 1 2 3 - i - -
Log (08.) Cs 47J0 agio)do, Cp=g— e 16.364(0).
(27)

FIG. 2. ReflectivitiegR,| of homogeneous potential tailg) for
the powerse=3, 4, and 6. Here we plot InfIn|R,|) as functions The exact Casimir—van der Waals potential between a hy-
of In(kB,). For large negative values of kg,), the curves ap- drogen atom and a conducting surface has been calculated
proach straight lines of unit gradient whose intercepts with the ornymerically and tabulated by Marinesetal.[23], and these
dinate give the logarithms oft%, /3, , see Eq(8). For large posi-  authors also give approximate results, based on a one-
tive values of InkB,), the curves approach straight lines of glectron model potential, for alkali-metal atoms as projec-
gradient 2/ wh_o_se inter_cepts with the ordinate yield the loga- tjles The strength paramete@; and C, applying for the
rithms of the coefficients,, in Eq. (19), see Table I. various potentials in Ref23] are listed in Table II.

In Eq. (26) we now have two quantum-mechanical length

In(kB,), the graphs approach straight lines of gradientparametersp, and 3,, defining the potential strength; they
1-2/a, whose intercept with the ordinate gives the coeffi-are usually quite large, typically of the order of many thou-
cient InB,), see Eq(19), Table I. sands of Bohr radii, see Table II. In the upper of the equa-
tions (26), r—0 means values small compared t8; and
Ba, but of course the interaction between the atom and the
surface necessarily becomes more complicated at separations

The Casimir—van der Waals potential between a spherief a few Bohr radii. Whether or not the projectile atom can
cally symmetric ground-state atom and a perfectly conducteome close enough to the surface to interact via these short-
ing surface at a distaneecan be derivei6] from the knowl-  ranged forces, resulting in inelasic scattering or adsorption
edge of the (complex frequency-dependent dipole (“sticking” ), depends on whether the atom is transmitted or
polarizability ay(i ) of the atom, and it is given b}23] reflected by the potential ta(R6).

Ill. CASIMIR —VAN DER WAALS POTENTIAL TAILS

TABLE Il. Potential parameters determining the short-distance and the long-distance behavior of the
Casimir—van der Waals potentials given by Marinest@l. [23] for the interaction of hydrogen or various
alkali-metal atoms with a perfectly conducting surface, see(E6). The calculations for the alkali-metal
atom projectiles are based on a one-electron model potential. The first two rows list the strength parameters
C; andC, in atomic units. The next two rows show the corresponding lengtrend 3, in units of the Bohr
radius. The last two rows give the lendtfEq. (28)] (in Bohr radii), which sets a scale separating the short-
and long-distance regimes, and the crucial paramefé&ig. (44)], which determines the relative importance
of the —1/r3 and the—1/r4 parts of the potential.

H Li Na K Rb Cs
Cs 0.250 1.447 1.576 2.153 2.291 2.589
o 73.62 2683 2662 4789 5221 6579
Ba 919 3.66x 10* 1.321x 10° 3.069< 10° 7.139< 10° 1.255< 10°
Ba 520 8.23% 1C° 1.494x 10* 2.613x 10* 4.033x 10* 5.646x 10*
[ 294 1854 1690 2225 2278 2540
p 1.77 4.44 8.84 11.75 17.70 22.23
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A. Scaling 1 \

In contrast to the homogeneous potentidls the poten-
tial tail (26) contains an energy-independent intrinsic length, b

Cs  (Ba)? RN
== , 28 N v
Cs  Bs 28 e\ '

which naturally defines a scale separating the largegion,
r>|, from the smallr region,r<l. It seems useful to ex-
press the distance coordinaté units of this length, i.e., in
terms of the dimensionless variabte=r/l. We also intro-
duce the strength parametgg,

-x3v (x
7/
i
Ml
e
4

h?(Kg)?%'Cy  Cy

20 =3 4 0.2}
2M [ 14 (29

so the full Casimir—van der Waals potential can be written as

h2(Ko)? (1
VCvdvv(r)zz—MOU( )

(30) %
FIG. 3. Shape functions,(x) [Eq. (34)] (dotted ling, v,(X)

and the asymptotic behavi€®6) of Ve,gu(r) translates into  [Ed.(36)] (dashed ling andv (x) [Eq. (37)] (dot-dashed ling The

the following behavior of the dimensionless “shape func-Plotted quantity is-x*v(x) in all cases. The shape functiop(x)
reproduces the values corresponding to the exact hydrogen-surface

tion” v(x), : ) X X
interaction tabulated by Marinescet al. [23] (solid boxe$ to
—1x3 for Xx—0, within a maximum relative error of 0.7%.
VO apd for xses @Gy : : :
' tion from small to largex values is described with the help of

an arcus tangent as used by Holstdd] in a review of the
Casimir—van der Waals potentials between two atoms.
Adapted for our present purposes, this corresponds to the
shape function

([P (B | | _Bs_ [Bs \2M Cs 12 (=
NI (BT Y B VI Ao, vz(x)z—F;arctarﬁg). (36)

(32

The limiting behavior(26) is fixed by any two of the four
parametersBs, B4, |, Ko and the other two can be ex-
pressed in terms of those. For example,

Figure 3 shows the functionsx%l,z(x) which start at unity
for x=0 and behave asxfor largex.

The shape of the exact hydrogen-surface potential tabu-
lated in[23] lies between the two shapé34) and (36). We
0. (33)  have constructed a rational approximatiog(x), which re-
produces the exact potential to within a maximum relative

With the definitions(28) and (29), the Schrdinger equation
with the Casimir—van der Waals potenti&0) is

0

Except for the case of hydrogen atom projectiles, we ddor of 0.7%,
not know exactly the shape of the potential between the two
limits of large and short distances. Shimizy8] recent (X) = — 1 1+0.2%
analysis of neon atoms specularly reflected by a silicon or a H x| 1+0.95+0.22¢)
glass surface was based on the simple shape function

d2
W+k2+(Ko)ZU

(r)

(37

TABLE Ill. Parameters for the shape functiai®8) for the
Casimir—van der Waals potentials between alkali-metal atoms and a
v1(X)=— NS (34 conducting surface. The potentials defined via Eg§) and (38)
with these shapes and the strength parameters of Table Il reproduce
the potentials obtained by Marineset al. [23] on the basis of a

The corresponding full potenti&B0) is ] =>C | .
one-electron model potential to within a maximum relative error of

C, less than 0.6% in all cases.
V(N == —7-3 (35
(r+Dr Li Na K Rb Cs
showing that the lengthcan be identified witt\/27, where ¢ 0.3 0.35 0.4 0.4 0.41
\ is the effective atomic transition wavelength that contrib-, 0.98 0.98 1 1 1

utes to the polarizability of the atof8]. A smoother transi-
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TABLE IV. Results of more sophisticated determinations
[25—27] of the van der Waals paramet€y of the alkali-surface
interaction.

Li[25] Na[26] K[27] Rb[27]  Cs[27]

1.518 1.889 2.86 3.36 4.14

The shape function is also shown in Fig. 3, and the filled

PHYSICAL REVIEW A 65 032902

Do.1= VAl V(Ao >+ (B0’ (41)
and the phases
3 Bo1
¢o1== 7— 4Kl + 2 arctan—-, (42
! 2 AO,l

so the lengttb determining the near-threshold reflectivity is,
according to Eq(6),

boxes show the values corresponding to the exact potential

tabulated in23].
The expression

(0= — 1 1+x 39)
U= T8 T x+ X2

can also be used to approximate the shapes of the alka
surface potentials given by Marinesat al. in [23]. The
functions defined with the parametejsand{ listed in Table
[l reproduce the respective alkali-surface potential$2H]
within a maximum relative error of less than 0.6% in all
cases. The similarity of the parametérand » obtained for
the various atoms in Table Il shows that the shape function

for the alkali-surface potentials based on one-electron modé]

potentials are all actually quite similar.

Further effort has since gone into more sophisticated de-
terminations of the parameters of alkali-surface interactions,

in particular of the van der Waals coefficie@t [25-27. A
list of these more recer; values is given in Table IV.

B. Near-threshold reflectivities

Since the Casimir—van der Waals potential falls off faster

than 1f2 for larger, the near-threshold reflectivity is given
by Eq. (4) or, as it turns out, more accurately by HG2).
The parameteb depends on the potential tail, i.e., on the
length parameterg; and 8, and on the shape functiar(x).
For the shape functio34), the Schrdinger equation33)
possesses analytical solutions at threshéle @) [28]. The
solutions behaving asymptotically -Go0) as ¢o(r)~1 and

Y1(r)~r are

o= NF(r+D[Ag1d1(2) +Bo1Y1(2)], z=21/ Ps + %

r
(39

whereJ; andY, are the ordinary Bessel functions of order
unity [18], and the coefficients\, ;,B, ; are

ks

AOZ_ I

T
Y1(2Koql), BOZT\]l(ZKo'),

Casting the smalt-behavior of the wave function89) into
the WKB form (5) yields the amplitudes

B |/
U1 J(2Ko) 2+ Y1(2K )2

b (43

The properties of the reflectivity depend crucially on the
parameter
li-
def
p=Kol=

V2M C4
ho\c,
This is clear from Eq(43) for the near-threshold behavior
gvith the shape functior{34), but it is also true for other
otential shapes and beyond the near-threshold region, as
will be shown below.

For large values ofp, we have J;(2p)?+Y,(2p)?
1/(mp) and b, —pl=p,. For small values ofp,
J1(2p)%+Y,(2p)%2— 1(mp)? and bvl—> mp?l=mwB;. These
limits are consistent with the result9) for homogeneous
potentials, because the Casimir—van der Waals potential is
dominated by the- 1/r® behavior whenB;<pA, and by the
— 1/r* behavior whenB,< 5. This perhaps counterintuitive
observation is readily understandable when we write the po-
tential (35) in the form

e, }1

Bs (Ba)?]

The dependence of the length paramé#& on p is shown
in Fig. 4. The dotted lines show both the ratipll,b’g [part

(@], which approaches the value (appropriate for a homo-
geneous— 1/r® potentia) in the limit p—0, and the ratio
b, /B4 [part(b)], which approaches unitfappropriate for a

homogeneous- 1/r* potentia) in the limit p—oe.

For the shape function&6) and (37), the zero-energy
solutions of the Schuinger equation(33) are not known
analytically, so we derived the near-threshold behavior of the
reflectivity by numerically solving Eq(33). The length pa-
rameterb was obtained by fitting the reflectivity to the ex-
ponential form(12) in the limit k—0, and the results are
shown in Fig. 4 as dashddhape function,, Eq. (34)] and
dot-dashed linegshape function, Eq. (37)], respectively.

Figure 4 illustrates the transition of the near-threshold re-
flectivity from the expectations for a 1/r® potential for
small values ofp= 35/, to those of a—1/r* potential for
large values ofp. It also illustrates how this transition de-
pends on the shape functiar(x). For the shape function
(34), b, /B, depends monotonically op and approaches

B3

Ba (49

—

3 4

hZ

Vl(r):_m

(45
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C. Beyond the near-threshold region

For high energies, the badlands functi¢®) becomes
smaller and smaller and more and more concentrated around
smallr values(see the Appendix The maximum of the bad-
lands function is close to the poimt where the absolute
value of the potential equals the total energy. If this point lies
well in the smallr domain of the Casimir—van der Waals
potential, i.e., ifry<<I, then the potential behaves like a ho-
mogeneous potentiéf) with =3 aroundr,, and we expect
the reflectivity to be given by Eq17),

K—s o0

|Revawl ~ exfl —Ba(kB3) 7],

Inserting(15) with a= 3 for r into the conditiorr y<I leads
to k~23(B3)Y3<l, so the energy range where we expect Eq.
(46) to hold is given by

B,=2.2405. (46)

32
kﬁs?(%) =p°. (47)

For small values op, the conditionkB3;>1 is also needed,
because Eq(46) refers to the high-energy behavior in a
—1/r® potential and is, of course, not valid in the near-
threshold region.

The behavior(46) will always be reached for sufficiently
high energies, but ip is large, the reflectivity may be domi-
nated by the—1/r* nature of the potential, not only in the
near-threshold region but also for larger energies, where the

asymptotic behavio(17) already applies — fon=4,
|Rovawl =exd —B4(kBs) 2], B,=1.69443. (48

For Eq.(48) to hold, the point , where the absolute value of
the potential equals the total energy should lie in the large-
domain,ry>1. Inserting Eq.(15) with a=4 into this condi-
tion yields k< B,/ = B3/(B4)*? We can thus expect the
reflectivity to be given by Eq(48) in the energy range de-
fined by

2 4 6 8 10
o) ’3 2
B 1<k,84<(—3) =p?, (49)
FIG. 4. Length parametetsdetermining the near-threshold re- Ba
flectivities of Casimir—van der Waals potential tails according to
Eq. (12). Part(a) shows the ratid/ B3, which would bew accord-

ing to Eq.(9) for a homogeneous- 1/r3 potential; part(b) shows ! -gion.
the ratiob/B,, which would be unity for a homogeneousl/r* The overall behavior of the reflectivity is thus character-

potential. The dotted lines give the analytical res(#t8) for the  ized by a linear dependence ofin|Rc,qw onk near thresh-
shape functior{34) and the dashed lines give the numerical resultsold, Eq.(12), which changes to proportionality td”* at high
obtained for the shape functidB6). The dot-dashed lines give the energieg46). How this transition occurs depends essentially
numerical results obtained for the shape functi@) describing on the parametes= 33/8,4. For very small values o, the
the hydrogen-surface potential tabulated 28]. reflectivity corresponds to that of-a1/r3 potential(see Sec.
Il, Figs. 1 and 2 in the whole range from threshold to the
high-energy limit. For sufficiently large values pf there is
a range of energies defined by E49), where we expect the
reflectivity to be given by Eq(48). For sufficiently high
energy, the reflectivity will eventually be given by E@6).
Figure 5 shows InfIn|R¢cygwl) as a function of InkB5)
for a small value ofp, namelyp= 7. The three curves cor-
respond to the three shape functigBd) (dotted ling, (36)
(dashed ling and(37) (dot-dashed ling The respective val-

where the first inequality ensures that the range lies far
enough beyond the near-threshold region.

the largep limit from below. For the other shapd86) and
(37), b approaches3, from above, and the ratib/B, re-
mains greater than unity all the way down po=1. The
largest differences i due to the different potential shapes
are seen aroung~1. The ratiob, /b, has a maximum

value of 1.19 forp=0.63. The value oby differs from bv2
or b, by less than 10%.
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e=1/10

= "
~ ~ A
8 -1 i
...... v T
— 1 Q?
I
= =2 ——- V2 — /
g ’ z
~ -3 / —= VH K -2 ) I — Vi
yd g / 2
-4 -2 0 2 4 —— Vg

log (kB3) “4y

FIG. 5. Reflectivitie§Rcygwl 0f Casimir—van der Waals poten-
tials for p= ﬁ, The results for the three shape functig@g), (36),
and (37) are shown asghardly distinguishabledotted, dashed, and
dot-dashed lines, respectively. The straight solid line shows the
high-energy behavior expected for a homogeneeus ® potential
according to Eq(46). FIG. 7. ReflectivitiedReyqn of Casimir—van der Waals poten-
tials for p=10. The results for the three shape functi¢d4), (36),
ues of the lengtly determining the near-threshold reflectivity and(37) are shown ashardly distinguishabledotted, dashed, and
according to Eq(12) are given byb/(783)=0.916, 0.954, d_ot-dashed lines, _respectively. The straight solid line shoyvs the
and 0.933, showing that the near-threshold behavior dependigh-energy behavior expected for a homogeneeds * potential
only weakly on the shape of the potential and is already quit@ccording to Eq.(48); the straight dashed line shows the high-
close to the expectation for-al/r3 potential. The reflectiv- €"€r9y behavior expected for a homogeneeust™ potential ac-
ity in fact behaves much like that of-a1/r® potential in the cording to £q.(46).
whole range of energies and merges into the straight line of ) i
gradient} corresponding to the high-energy behavior Eq_dotted, dashe_d_, and dot-dashed lines, respgc_nvely. brhe
(46). value determining the near-threshold reflectivity shows a
Figure 6 shows In¢In|Reygwl) as a function of Ink3s) larger dependence on the potential shape and is given by
for p=1, which implies8s= 3,. The results obtained for the ©/B4(=b/B5)=0.925, 1.081, and 1.009 for the three cases.

three shape function®4), (36), and(37) are again shown as '€ curves in Fig. 6 show a more gradual transition from a
straight line of unit gradient describing the near-threshold

behavior(12) to the straight line of gradierit corresponding
to the high-energy behavior in-a1/r3 potential, Eq.(46).
2t ] Figure 7 shows Inf In|R¢cygwl) for p=10, which implies
ol B3=10B,. Again the dotted, dashed, and dot-dashed lines
— correspond to the three shape functigd4), (36), and(37),
/,/ﬂ but the dependence on shape is now very small.ihhalue
A determining the near-threshold reflectivity is given \3,
ya =0.999, 1.002, and 1.010, respectively. For values of
& In(kB,4) near and above 2, the curves are close to the straight
-2 2 I— A1 1 (solid) line of gradient; corresponding to the high-energy
s behavior in a—1/r* potential[Eq. (48)]. The high-energy
g behavior in a— 1/r® potential is shown as a straight dashed
—al A == Vm ] line, and it lies somewhat above the curves and the straight
solid line in Fig. 7.
7 The transition from thghigh-energy behavior(48) ap-
propriate for a homogeneous 1/r* potential to that of a
—4 -2 0 2 4 homogeneous- 1/r* potential(46) may be expected near the
1og (kf3) point where the two lines defined by Eq48) and (46) in-
tersect, i.e., wheréB,(kB,)Y?=B3(kB3)Y>. This point is
FIG. 6. ReflectivitiegRc g of Casimir—van der Waals poten- given by
tials for p=1. The three curves correspond to the shape functions
(34) (dotted ling, (36) (dashed ling and (37) (dot-dashed ling
The straight solid line shows the high-energy behavior expected for — =
a homogeneous- 1/r2 potential according to Eq46).

-4 -2 0 2
log (kB4)

log(-1og|Revaw | )
X

6
—) =5.345, (50
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and it lies in between the range of energies fulfilling &) 1.5
and the range fulfilling Eq(47). At the point of intersection /__/.':
(50), the reflectivity(46) of the homogeneous 1/r3 poten- 1 /,;'f/
tial and the reflectivity(48) of the homogeneous 1/r# po- el
tential (both in the high-energy limitare equal and given by o5
|Rinterseck: EX[X— B4( k,84)1/2): eXIO(— B3( k,BS)1/3) %
S 0
=exp(—3.92). (51 L ) o=l
S , =10
The reflectivities are, of course, not necessarily given accu- -¢-5 , Z=1
rately by the expression@6) and/or(48) for energies in the L pe10
transition region, but the valug1l) can be used as a guide 1
for the order of magnitude of the reflectivity near the energy
defined by Eq(50).
For the case shown in Fig. =10, the transition is L1005 10 -95 -9 -85 -8 TS
expected fork3,~530, InkB,)~6.3, which is well out-
side the range of the figure. The value|Bfyersed [EQ. (51)] FIG. 8. Reflectivities|R| as observed by Shimiz[8] for the

is near 1017 at this value ofk, so the transition from the scattering of neon atoms by a silicon surféfiked dots. The figure
—1/r* behavior to the— 1/r® behavior can be expected at shows In¢-In|R]) as a function of Irk. The straight solid line in the
very small reflectivities indeed. For the range covered in Figtop right-hand part of the flgure shows the high-energy behavior

7, the reflectivities are essentially those of a homogeneougxpected for a homogeneousl/r* potential according to Eq48)
—1/r* potential, see Fig. 2. for B,=11400. The straight solid line in the bottom left-hand part

of the figure shows the near-threshold behavib2) for b=,
=11400. The curves were calculated by solving the Stinger
equation with the shape functiong (34) or vy (37) for the above
Shimizu[8] recently presented experimental data for thevalue of B4, andp=10 (B3=1084) or p=1 (B3=p4).
reflectivity of neon atoms scattered from a silicon or a glass
surface. He fitted the observed data to the reflectivities obreach energies high enough for thel/r® part of the poten-
tained by solving the Schdinger equation with the potential tial to become important. This indicates that we are in the
(35 and concluded that the data revealed manifestations degime of largep, 84<fs, which is confirmed by compar-
the Casimir effect, because-al/r* contribution in the po- ing with the reflectivities calculated by solving the Schro
tential was needed to reproduce the energy dependence @inger equation with the above value 8§ (1140G) and
the observed reflectivities. The importance of the Casimip=10. In contrast, the reflectivities obtained usipg-1
effect can be illustrated more directly, by plotting the data in(dotted and dot-dashed lines in Fig. @eviate significantly
the style of Figs. 2 and 5-7 above. from the data towards the high-energy end of the range cov-
Figure 8 showsin atomic unit$ the experimental data of ered in the figure. Within this range, the reflectivities ob-
Shimizu for reflection by the silicon surface. We have plottedtalned for p=10 are essentially those of a homogeneous
In(—In|R|) as a function of Irk. At the high-energy end of —1/r* potential (corresponding tgp—=), as already dis-
the figure, the data clearly approximate a straight line with cussed in connection with Fig. 7 above. Thus the data in Fig.
gradient nears, which is the signature of the high-energy 8 are not suitable for deducing an upper limit pnor,
behavior in a—1/r* potential. Fitting a straight line through equivalently, a lower limit on the length=8,/p; this is
the last six to ten data points yields gradients ranging frontonsistent with the value~0 quoted by Shimizu.
0.45 to 0.55. Fitting a straight line of gradiehthrough the For such large values @f, the length parametdr deter-
last six to ten data points yields mining the near-threshold behavi@?) of |R| is essentially
equal toB,, see Fig. 4. The straight line

IV. ILLUSTRATION

1
In(—In|R|)=5.2+ §|n K. (52 In(— In|R|) In(284)+Ink (54)

The straight ling52) is shown in the top right-hand part of is shown in the bottom left-hand part of Fig. 8; it fits in quite
the figure. Comparing this with E¢48), well with the low-energy behavior of the data, but their scat-
ter is very large.

1 1
In(—=In|R))=InB,y+ s Ink+ 5In B, (53
2 2 V. DISCUSSION
determines the strength paramefgy governing the long- The parametep defined by Eq(44) is the crucial quan-
distance part of the potential to b@&=exg2(5.2-InB,)] tity which determines how important the 1/ and the
=1140@&,. This compares favorably with the numbgy —1/r* parts of the Casimir—van der Waals potential are for

=1210G, corresponding to the value &7.0°°® Jnf  quantum reflection. Fgs<1, the reflectivities are essentially
which Shimizu gives fo€,. The data in Fig. 8 clearly do not those of a homogeneous1/r3 potential, and they are unaf-
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fected by the retardation effects in the potential. For moder- APPENDIX
ate and large values @i, the behavior appropriate for a
homogeneous- 1/r 3 potential sets in fok 83> p2 [Eq. (47)].

If p is sufficiently large, then there is a regime of Iowerf . luti f the Schi
energies corresponding kgB,<p? [Eq. (49)], where the re- unctions(1) are accurate solutions of the Sctiltger equa-

flectivities are essentially those of a homogeneeus/r* tion when the conditior(3) is fulfilled [11,12,23. The fre-

potential and depend only on the strength paramgiei.e.,  duently quoted simpler conditio,8,16
C,) of the Casimir—van der Waals potential. In the energy

The accuracy of the WKB approximation is a local prop-
erty of the Schrdinger equation. First-order WKB wave

range defined by %&kB,<5p?, the reflectivities behave as d/ & p’
given by Eq.(48), and this shows up as a straight line of ar m) =h|— <E (A1)
gradient3 in a plot of In(—In|R|) against Irk. This is a P P

conspicuous and model-independent signature of retardation

effects in the potential and can be used to determine theften works too, but in general it is neither necessary nor
parametes,, i.e., the strengtiC,, of the — 1/r* part of the  sufficient. The example of a potential proportional to*1/
potential, as illustrated in Sec. IV. shows that it is not necessary: for zero energy, first-order

The transition between the 1/r* and the— 1/r3 regimes ~ WKB wave functions are exact solutions of the Salinger
can be expected near the energy given by Eg0), equation for allr, but the left-hand side of EqAL) is pro-
(kBy)Y?~2.3p, (kB3)Y*~1.7%, and for reflectivities portional tor and grows to infinity forr — . Note that the
near|R|~exp(—4p), see Eq(51). For moderate values ¢f  badlands function defined by E¢3) vanishes in this ex-
and for energies below the “transition point” given by Eq. ample. To see that the conditidAl) is not sufficient, con-
(50), the reflectivities depend on bopy and 33, and on the sider a particle with a moderate kinetic energy over a poten-
shape of the potential in between the long- and short-distandéal with oscillations of small scale and amplitude. For an
regimes. In the near-threshold regiofRR| is given by appropriate potential we could have, e.di/p(r)=1
exp(—2bk), andb dependgfor moderatep values signifi- +sin@r)/g®? and the left-hand side of E4A1) would be
cantly onp and the potential shape, see Fig. 4. |cos@n)|/\g, which becomes arbitrarily small ag— .

The strength parametef3; and C, defining the short-  However, the term involving thp”/p? in the badlands func-
and long-distance parts of the Casimir—van der Waals potertion (3) contains a contribution which is proportional to
tial are determined by the dipole polarizability of the projec- \/q sin(gr) and becomes larger and larger fpr-co.
tile atom, see Eq(27). The polarizability depends on the  Mody et al. [4] point out that quantum reflection is gen-
electronic structure of the atom and €3 and C, can be erated in the region where the WKB approximation breaks
expected to be similar for similar electronic configurations.down, and they observe that this occurs mainly near the point
This is confirmed by Table I, where the values@f andC,  r,, where the absolute value of the potential energy is equal
agree to within a factor of 2.5 for the alkali-metal atomsto the (asymptoti¢ kinetic energy, i.e., the total energy
from Li to Cs. The crucial parametes is given by p

=(\J2M/#%)(C3//C,), see Eq(44), so for given values of 72K2
C; and C, we obtain smallp values for small masses and [V(ro)|=E= VR (A2)

largep values for large masses. A reflectivity behaving as for
a homogeneous— 1/r* potential, as a conspicuous and
model-independent signature of the Casimir effect, is thu
most likely to be observed for heavy projectiles. Of course,
the energy where appreciahlebservablg reflection occurs
is then correspondingly small. ro=k 2B ,)t 2. (A3)
Large values op are ubiquitous in realistic systems, see,

e.g., Table | and the above data for neon atoms reflected by Ehe maximum of the left-hand side of EGA1), however,
silicon surface. This means that quantum reflection of atomsccurs for[4,8]
is quite generally dominated by the retardation effects in the
Casimir—van der Waals potential. The transiti@®0) be- 212 a—
tween the— 1/r4 and the— 1/r 3 regimes occurs for extremely oM V()] 5

. . . a+2
small reflectivities wherp is large. Information about the
short-distance part of the potential, i.e., about the parameter .
B and/or the shape of the potential, is more readily obtaine§0rreésponding to
in systems with small or moderaje values. These can be
achieved by choosing light projectiles or surfaces with small
dielectric constants, which reduces the strength of the whole
potential[10] and also the rati€;//C,.

or the homogeneous potential tédl), we have[see Eq.
15)]

(A4)

(A5)

a—2 1/
2a+2) 0

This is smaller than the positian, defined by Eqs(A2) and
(A3) by a factor of 2 fora=3 and 1.5 fora=4.

This work was supported by the Deutsche Forschungs- For the homogeneous potential téd), the badlands func-
gemeinschaft, Az.: FR 591/10-1. tion (3) is
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FIG. 9. Scaled badlands functid as defined by Eq¥3) and FIG. 10. Scaled badlands functihas defined by Eq€3) and

(A10) as function of the dimensionless coordinater/| for scaled (A10) as a function of the dimensionless coordinater/| for the
energies k/K)?=0.1 (long dashed ling 1.0 (solid line), and 10  three shape functions, [Eq. (34), dotted ling, v, [Eq. (36), dashed
(short dashed line The shape function is that of EB7) approxi- line], and vy [Eq. (37), dot-dashed ling The scaled energy is
mating the exact hydrogen-surface interaction. The vertical bargk/K,)2=1 and the vertical bars mark the pointg=r,/l where
mark the pointxg=ry/l where the conditioitA2) is fulfilled at the  the condition(A2) is fulfilled for the various potentials.
respective(scaled energies.

0 3 " 5(B)*

5a2(8,)2 4 s o
B(r)= (Ba) B(r 165, B(r) e (A9)
16r2a+2[k2+ (ﬁa)a72/ra]3
ala+1)(B,)*? The dependence d@(r) on the strength parameters of the
N 4ret 2K+ (B )a72/ra]2’ (AB) potential can be scaled out by writing
and maxima of B(r)| occur when 1./ K
- B(r)=—§<—,—), (A10)
a—2 2 'K
kzzF(a)(:Ba)a , P 0
wherel andK, are the parameters introduced in Sec. Ill A,
5 9 9a 20({ a+2

(A7) see Eqs(28), (29), and(32). The scaled badlands functi@h
depends only on the scaled coordinateand on the scaled
(asymptoti¢ wave numbek/K, [or equivalently, scaled en-
ergy (k/Ko)?], and, of course, on the potential shape. The

Foe=[F (@) 14, (A8) scale_d badl-ands function. is shown in Fig. 9 as a function of
the dimensionless coordinate=r/| for three values of the
with r, as given by Eq(A3). For a>4, the functionB(r)  scaled energy, namelk/K,)?=0.1, 1.0, and 10. The shape
has a zero at=3[1—5/(a+ 1)]¥r,; there is a larger maxi- function underlying this illustration is that of E@37) ap-
mum of |B| above and a smaller one below this zero. Forproximating the exact hydrogen-surface interaction. The ver-
a=3,4, only the plus sign before the square root in &F.) tical bars mark the pointsy=rq/l, wherer is the position
yields a positive value oF (a), namelyF(3)=0.7174 and fulfilling Eq. (A2) at the respective energy. The shape depen-

F(4)=1, SO ,5,=0.895, for =3 andr,,=ro for «  dence of the badlands function is illustrated in Fig. 10 show-

=4. The conjecture that reflection occurs mainly in the re-ing B for the three shape functions, [Eq. (34)], v, [Eq.

gion (A2) is justified more readily on the basis of the bad- (36)], andv, [Eq. (37)]. Here the scaled energy was taken as
lands function(3) than via the simpler conditiofAl). (k/K)?=1, and the vertical bars again mark the poirgs

For the Casimir—van der Waals potenipl the expres- =ry/l. Figures 9 and 10 show that the position of the maxi-
sion for the badlands function is more complicated, but thenum of the badlands i¢roughly) given by the condition
small+ and the large- behavior follow from Eq.(A6) for (A2), not only for homogeneous potential tails but also for
a=3 anda=4, respectively, those of the Casimir—van der Waals type.

F@)= 1 2ava 2a+8 V! 27

a+1)’

The positions of these maxima are
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