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Quantum reflection by Casimir–van der Waals potential tails

Harald Friedrich,* Georg Jacoby, and Carlo G. Meister
Physik-Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 6 November 2001; published 27 February 2002!

We study the reflectivity of Casimir–van der Waals potentials, which behave as2C4 /r 4 at large distances
and as2C3 /r 3 at small distances. The overall behavior of the reflection amplitudeR depends crucially on the
parameterr5A2MC3 /(\AC4) which determines the relative importance of the21/r 3 and the21/r 4 parts of
the potential. Near threshold,E5\2k2/(2M )→0, the reflectivity is given byuRu;exp(22bk), with b depend-
ing on r and the shape of the potential at intermediate distances. In the limit of large energies, lnuRu is
proportional to2k1/3 with a known constant of proportionality depending only onC3. For small values ofr,
the reflectivity behaves as for a homogeneous21/r 3 potential in the whole range of energies and does not
depend onC4 or the shape of the potential beyond the21/r 3 region. For moderate and large values ofr, the
reflectivity depends onC4 and on the potential shape. For sufficiently large values ofr, which are ubiquitous
in realistic systems, there is a range of energies beyond the near-threshold region, where the reflectivity shows
the high-energy behavior appropriate for a homogeneous21/r 4 potential, i.e., lnuRu is proportional to2Ak
with a proportionality constant depending only onC4. This conspicuous and model-independent signature of
the Casimir effect is illustrated for the reflectivities of neon atoms scattered off a silicon surface, which were
recently measured by Shimizu@Phys. Rev. Lett.86, 987 ~2001!#.
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I. INTRODUCTION

A particle moving through a classically allowed regio
can be reflected by a potential without reaching a class
turning point. Such ‘‘quantum reflection’’ can, e.g., be caus
by the long-range part of an atom-surface interaction, an
is an important effect, because it reduces the probability
the incident atom to come close enough to interact with
shorter-ranged forces and to be inelastically scattered or
sorbed. For potential tails vanishing faster than 1/r 2, the
quantum reflection probability approaches unity as the ve
ity of the projectile approaches zero, so it is always no
negligible at sufficiently low energies@1–3#.

The current intense activity on cold atoms has made qu
tum reflection by attractive potential tails a topic of cons
erable interest@4#. The electrostatic interaction of a polariz
able atom and a surface is a van der Waals poten
proportional to21/r 3 @5#. At very large distances, howeve
retardation becomes important and the potential beco
proportional to21/r 4 as described by Casimir and Polder
1948 @6#. The retarded van der Waals potential is just o
manifestation of the ‘‘Casimir effect’’ which describes forc
induced by the zero-point energy of the quantized elec
magnetic field. A detailed review of the state of the art in t
theoretical understanding and experimental investigation
the Casimir effect has just been published by Bordaget al.
@7#. The Casimir effect is experimentally observable in qua
tum reflection by a retarded van der Waals potential tail
recently demonstrated by Shimizu@8#, who showed that the
inclusion of the retardation effects is necessary in orde
explain the observed reflectivities.

In some applications, e.g., atomic mirrors constructed
laser beams totally reflected on the inside of a prism@9,10#,
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the atom-surface interaction contains not only the Casim
van der Waals contribution, but it can also contain a sho
ranged repulsive part coming from the evanescent elec
field outside the prism. The short-ranged repulsive term
the attractive Casimir–van der Waals term can combine
produce a potential barrier. In such cases, the energy de
dence of the reflection probability is close to the classica
predicted sharp step at the barrier energy, and the quan
effects mainly smooth this sharp-step behavior.

The aim of this paper is to study quantum reflection
Casimir–van der Waals potentials in detail and to investig
how the behavior of the reflectivity as a function of ener
depends on the strength parameters and the shape of th
tential. We focus on purely attractive potential tails, whe
reflection is forbidden classically and is a quantu
mechanical effect at all energies.

In Sec. II we briefly review a few general aspects of qua
tum reflection, and we show how the reflectivity depends
energy in the case of homogeneous potential tails. In Sec
we generalize this theory to Casimir–van der Waals pot
tials, and we discuss the energy dependence of the refle
ity expected for various values of the parameters determin
the strength of the potential in the short-distance and
long-distance regimes. The influence of the shape of the
tential in between the two limits is illustrated with the help
three realistic models. In Sec. IV, we show how recent d
of Shimizu on quantum reflection of neon atoms by a silic
surface@8# fit in to the expectations presented in Sec. III.

II. GENERAL ASPECTS OF QUANTUM REFLECTION,
HOMOGENEOUS TAILS

The unambiguous definition of amplitudes and probab
ties for transmission through a localized region of coordin
space implies that there are unidirectional solutions of
equations of motion on either side of this region. Unidire
©2002 The American Physical Society02-1
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tional solutions of the Schro¨dinger equation are provided b
the appropriate WKB wave functions@11#,

cWKB~r !}
1

@p~r !#1/2
expS 6

i

\E
r

p~r 8!dr8D , ~1!

as long as these WKB wave functions are accurate appr
mations of the exact solutions. In Eq.~1!, p(r ) is the local
classical momentum of a particle of massM moving in a
potentialV(r ),

p~r !5A2M @E2V~r !#, ~2!

and the condition for applicability of the WKB approxima
tion is essentially that the local de Broglie waveleng
2p\/p(r ) should vary slowly with the coordinater. More
precisely~see@11#, p. 48 of @12#!,

uB~r !u!1,

B~r !5
\2

@p~r !#3/2

d2

dr2@p~r !21/2#5\2S 3

4

~p8!2

p4
2

1

2

p9

p3D .

~3!

The WKB wave functions~1! are poor approximations whe
B(r ), the ‘‘badlands function,’’ is significantly nonzero. The
accurately approximate solutions to the Schro¨dinger equation
when the condition~3! is fulfilled. This is clearly the case i
the dependence ofV on r is negligible, but Eq.~3! is also
increasingly well fulfilled towards smallr values if V(r ) is
more singular than 1/r 2 at the origin,r 50. For potential tails
proportional to 1/r a, B(r ) becomes independent of energ
and proportional tor a22 for small r values@see the Appen-
dix, Eq. ~A6!#. For a.2, the WKB approximation thus be
comes increasingly accurate asr→0, and, for nonzero ener
giesE5” 0, also forr→`; i.e., the badlands where Eq.~3! is
not fulfilled lie between two WKB regions, one for smallr
and one for larger, where the Schro¨dinger equation has uni
directional solutions. It is hence meaningful to speak
transmission through or reflection by the badlands in the
of the potential, even when there is no potential barrier a
there are no classical turning points.

A remarkable feature of quantum reflection by a poten
tail falling off faster than 1/r 2 is that the reflection probabil
ity uRu2 always goes to unity at thresholdE50. Regardless
of whether or not there is a potential barrier, the absol
value of the reflection amplitude~which we shall call the
‘‘reflectivity’’ ! has the universal behavior

uRu ;
k→0

122bk, ~4!

wherek is the wave number defining the asymptotic kine
energy,E5\2k2/(2M ). The lengthb in ~4! is a ‘‘tail param-
eter’’ which depends only on the potential beyond the in
WKB region; it also determines the near-threshold quant
tion rule and level density just below threshold and can
derived from the zero energy solutions of the Schro¨dinger
equation in the tail region as described in detail in@13#. For
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potential tails falling off faster than 1/r 2, there are, forE
50, two linearly independent solutions of the Schro¨dinger
equation behaving asymptotically (r→`) as c0;1, c1
;r . Following these solutions to smallerr values allows
them to be written as

c0,1~r !5D0,1@p0~r !#21/2cosF 1

\Er

`

p0~r 8!dr82
1

2
f0,1G

~5!

in the inner WKB region;p0 is the local classical momentum
~2! at E50. The length parameterb is given @13# by the
differencef02f1 of the phases and the ratioD1 /D0 of the
amplitudes appearing in Eq.~5!,

b5
D1

D0
sinS f02f1

2 D . ~6!

Consider a homogeneous potential tail,

Va~r !52
Ca

r a 52
\2

2M

~ba!a22

r a
, a.2. ~7!

Here we have introduced the length parameterba , which is
related to the potential strengthCa via Planck’s constant and
sets the scale on which to expect quantum effects.
Schrödinger equation with the potential~7! can be rescaled
so that it only contains one parameter, namelykba , so all
properties of its solutions can only depend onkba . Since
a.2, kba→` corresponds to the semiclassical limit an
kba→0 corresponds to the anticlassical or extreme quan
limit, see Refs.@14,15# and p. 322 of Ref.@12#. The zero
energy solutions of the Schro¨dinger equation with the poten
tial ~7! are Bessel functions of order61/(a22), and the
lengthb as given by Eq.~6! is @13,15–17#,

b5ba

sin@p/~a22!#

~a22!2/(a22)

GS 12
1

a22D
GS 11

1

a22D 5
def

ba . ~8!

In particular,

b35pb3 for a53, b45b4 for a54,

and ba;~p/a!ba for a→` . ~9!

A further useful example is the exponential potential,

Vexp~r !52
\2

2M
~K0!2 exp~2r /bexp!, ~10!

where the ‘‘inner’’ WKB region is actuallyr→2`, and we
haveb5pbexp. The Schro¨dinger equation with the potentia
~10! can be solved analytically at all energies@18#, and the
reflectivity is @11,16#

uRexpu5exp~22pkbexp!. ~11!
2-2
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QUANTUM REFLECTION BY CASIMIR–van der WAALS . . . PHYSICAL REVIEW A 65 032902
Near threshold, the leading behavior of the exponentia
Eq. ~11! is indistinguishable from the linear behavior~4!, but
the exponential behavior~11! is valid for all ~positive! ener-
gies. For other potentials, the behavior ofuRu significantly
above threshold is not so simple, but numerical calculati
have shown@19# that replacing~4! with the corresponding
exponential

uRu ;
k→0

exp~22bk! ~12!

reproduces the next-to-leading behavior ofuRu quite well in a
number of cases, including homogeneous potential tails~7!.

For potential tails vanishing faster than 1/r 2, the high-
energy limit is the semiclassical limit@15#, and the reflection
amplitudes vanish in this limit. The energy dependence
the reflection amplitudes at large energies depends on de
of the potential, and there is no universally valid formu
such as~4! or ~12! for the low-energy limit. If there is a
discontinuity in one of the derivatives of the potential, th
the lowest ordern for which this occurs dominates the re
flectivity, which vanishes as\n in the semiclassical limit.
When all derivatives of the potential are continuous, the
flectivity usually vanishes exponentially.

For large energies, the badlands function~3! becomes
smaller and smaller and more and more localized in the
gion where the absolute value of the potential energy
roughly equal to the total energy~see the Appendix!. Prok-
ovskii et al. @20,21# analyzed an approximation of the refle
tion amplitude based on a perturbative treatment of the b
lands functionB(r ) ~see also Maitra and Heller@22#!, and
they derived the asymptotic formula

R;2 i expS 2i

\ E r t
p~r !dr D , ~13!

wherer t is the complex turning point with the smallest~posi-
tive! imaginary part.

For the exponential potential~10!, the complex turning
points are given by

r t,exp
(n)

bexp
52 lnS k2

~K0!2D1~2n11!ip, n50,61,62, . . . ,

~14!

and n50 corresponds to the one with the smallest posit
imaginary part. Taking the integral in the exponent on
right-hand side of~13! over the pathr 52 ln@k2/(K0)

2#bexp
1j ipbexp, j50→1, yields R;2 i exp(22pkbexp),
which agrees with the exact result~11! for uRexpu — at all
energies@19#.

For a homogeneous potential tail~7! with integer power
a, there are altogethera complex turning points located a
(21)1/ar 0, wherer 0 is the point at which the absolute valu
of the potential energy,uVa(r 0)u, is equal to the asymptotic
kinetic energy, i.e., the total energyE5\2k2/(2M ),

r 05k22/a~ba!122/a. ~15!
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The complex turning point with the smallest positive imag
nary part is

r t,a5FcosS p

a D 1 i sinS p

a D Gk22/a~ba!122/a. ~16!

In the integral in the exponent in Eq.~13!, a path along the
real axis gives real contributions and only affects the ph
of the reflection amplitude. Integrating along a pathr
5Re(r t,a)1 i j Im(r t,a), j50→1, yields the following
expression for the absolute value of the reflection amplitu
Ra ~at high energies!:

uRau;exp~2Bakr0!5exp~2Baaa!. ~17!

Here we have introduced the abbreviation

aa5kr05~kba!122/a. ~18!

The coefficientsBa appearing before thek-dependent term
aa in the exponent in Eq.~17! are

Ba52 sinS p

a DReH E
0

1A11FcosS p

a D1 i j sinS p

a D G2a

djJ .

~19!

The numerical values of the coefficientsBa are listed in
Table I for a53, . . . ,8. For largea, the real part of the
integral in Eq.~19! becomes unity andBa;2p/a.

An alternative and very simple approach to derive an
proximation for the reflectivity of homogeneous potent
tails is based on the idea of comparison potentials. At ene
E5\2k2/(2M ), the region in coordinate space important f
reflection is around the valuer 0 defined by Eq.~15!. At r
5r 0, the depth of the potential isVa(r 0) and the derivative
is (2a/r 0)Va(r 0). The exponential potential~10! has the
depth Vexp(r 0) and the derivative is (21/bexp)Vexp(r 0).
Depth and derivative of the exponential potential can
made to agree with depth and derivative of the homogene
potential atr 0 if the width parameterbexp of the exponential
is chosen as

bexp5r 0 /a. ~20!

An approximation to the reflectivity of the homogeneous p
tential is obtained by taking the~exact! expression~11! for
the reflectivity of the exponential potential for this value
bexp,

TABLE I. The coefficientsBa , which are given by Eq.~19! and
appear beforeaa5(kba)122/a in the exponents describing the high
energy behavior~17! of the reflectivities of homogeneous potenti
tails.

a 3 4 5 6 7 8

Ba 2.24050 1.69443 1.35149 1.12025 0.95450 0.831
2-3



e

o

th

er

i

tic
y

he
-

o

rg

c-

ti
e
lu

x-

lly
r

di-
f

HARALD FRIEDRICH, GEORG JACOBY, AND CARLO G. MEISTER PHYSICAL REVIEW A65 032902
uRau'exp~22pkr0 /a!5expS 2
2p

a
~kba!122/aD .

~21!

Here we have inserted the right-hand side of Eq.~18! for kr0.
The approximation~21! contains the same power ofkba in
the exponent as does Eq.~17!, and the coefficient in the
exponent corresponds to the large-a limit of the coefficients
Ba .

In the limit of large powers,a→`, the expressions~17!
and ~21! agree with the near-threshold behavior~12!

uRau ;
k→0

exp~22kba! ~22!

when the large-a limit for the length parameterba is inserted
according to Eq.~9!. For finite powersa, the expressions
~17! and~21! are clearly wrong near threshold, because th
exponents depend on a power ofkba which is smaller than
unity. This dependence seems correct at high energies, h
ever, and numerical results below strongly support Eq.~17!
as the correct expression for the high-energy behavior of
reflectivity of homogeneous potential tails.

In Fig. 1, we show the~numerically calulated! reflectivi-
ties uRau of homogeneous potential tails for powersa
53, . . . ,6. In part ~a! of the figure, we plot ln(uRau) as
functions of kba . The near-threshold behavior~22! mani-
fests itself in a linear decrease of lnuRau for small values of
kba , and the gradient is22ba /ba , with theba’s as given
by Eq. ~8!. This linear decline slows down towards high
energies, however, where we expect2 ln(uRau) to be propor-
tional to aa5(kba)122/a according to Eq.~17!. This is in
fact borne out by the numerical calculations, as illustrated
part ~b! of Fig. 1, where we have plotted ln(uRau) as func-
tions of aa . The straight solid lines show the asympto
behavior predicted by Eq.~17!; their slope is determined b
the coefficientsBa given in Eq.~19! and Table I. The con-
vergence of the numerically calulated reflectivities to t
straight lines predicted by Eq.~17! seems obvious. The be
havior predicted by Eq.~21! would also corresponds t
straight lines in part~b! of Fig. 1, but the gradients
22p/a differ from those of Eq.~17! by up to 8% ~for a
54) and clearly do not correctly describe the high-ene
behavior of the reflectivities.

The reflectivitiesuRau are monotonously decreasing fun
tions of kba . This means that, for a given energy~fixed
value of k! the reflectivity increases with decreasingba .
Making the potential weaker increases the quantum reflec
ity at a given energyE. At the same time, the region wher
reflection is essentially generated, i.e., where the abso
value of the potential is equal toE, moves to smallerr values
according to Eq.~15!.

The behavior of ln(uRau) changes from proportionality to
kba at small energies to proportionality to (kba)122/a at
large energies. Writing

uRu5exp@2Bkm# ~23!

and taking~natural! logarithms leads to
03290
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te ln~2 lnuRu!5 ln B1m ln k, ~24!

so the powerm of k appearing in the exponent is best e
posed by plotting ln(2 lnuRu) as a function of lnk, or more
appropriately for the homogeneous potential~7!, as function
of ln(kba). This has been done in Fig. 2 for the numerica
calculated reflectivitiesuRau already shown in Fig. 1. Fo
large negative values of ln (kba), the graphs approach
straight lines of unit gradient, whose intercept with the or
nate is ln(2ba /ba), see Eq.~8!. For large positive values o

FIG. 1. ReflectivitiesuRau of homogeneous potential tails~7! for
powersa ranging from 3 to 6. The natural logarithms lnuRau of the
reflectivities are plotted as functions ofkba in part ~a! of the figure
and as functionsaa5(kba)122/a in part ~b!.
2-4



n
ffi

e
c

e

r

the

hy-
ated

ne-
c-

th
y
u-
ua-

the
tions
n
ort-
ion
or

o

of
a-
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ln(kba), the graphs approach straight lines of gradie
122/a, whose intercept with the ordinate gives the coe
cient ln(Ba), see Eq.~19!, Table I.

III. CASIMIR –VAN DER WAALS POTENTIAL TAILS

The Casimir–van der Waals potential between a sph
cally symmetric ground-state atom and a perfectly condu
ing surface at a distancer can be derived@6# from the knowl-
edge of the ~complex! frequency-dependent dipol
polarizability ad( iv) of the atom, and it is given by@23#

FIG. 2. ReflectivitiesuRau of homogeneous potential tails~7! for
the powersa53, 4, and 6. Here we plot ln(2 lnuRau) as functions
of ln(kba). For large negative values of ln(kba), the curves ap-
proach straight lines of unit gradient whose intercepts with the
dinate give the logarithms of 2ba /ba , see Eq.~8!. For large posi-
tive values of ln(kba), the curves approach straight lines
gradient 122/a whose intercepts with the ordinate yield the log
rithms of the coefficientsBa in Eq. ~19!, see Table I.
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VCvdW
(`) ~r !5

21

4pa fs r 4E0

`

adS i j

a fsr
D e22j~2j212j11!dj,

~25!

wherea fs5e2/(\c) is the fine-structure constant. A simila
formula for a dielectric surface is given in@10#. The
asymptotic behavior for small and large distances is

VCvdW~r ! ;
r→0

2
C3

r 3 52
\2

2M

b3

r 3 ,

~26!

VCvdW~r ! ;
r→`

2
C4

r 4 52
\2

2M

~b4!2

r 4 .

The strength parameters governing the short-distance and
long-distance behavior of the potential are@23#

C35
1

4pE0

`

ad~ iv!dv, C45
3

8p

ad~0!

a fs
516.36ad~0!.

~27!

The exact Casimir–van der Waals potential between a
drogen atom and a conducting surface has been calcul
numerically and tabulated by Marinescuet al. @23#, and these
authors also give approximate results, based on a o
electron model potential, for alkali-metal atoms as proje
tiles. The strength parametersC3 and C4 applying for the
various potentials in Ref.@23# are listed in Table II.

In Eq. ~26! we now have two quantum-mechanical leng
parameters,b3 andb4, defining the potential strength; the
are usually quite large, typically of the order of many tho
sands of Bohr radii, see Table II. In the upper of the eq
tions ~26!, r→0 meansr values small compared tob3 and
b4, but of course the interaction between the atom and
surface necessarily becomes more complicated at separa
of a few Bohr radii. Whether or not the projectile atom ca
come close enough to the surface to interact via these sh
ranged forces, resulting in inelasic scattering or adsorpt
~‘‘sticking’’ !, depends on whether the atom is transmitted
reflected by the potential tail~26!.

r-
of the
s
l
ameters

rt-
e

TABLE II. Potential parameters determining the short-distance and the long-distance behavior
Casimir–van der Waals potentials given by Marinescuet al. @23# for the interaction of hydrogen or variou
alkali-metal atoms with a perfectly conducting surface, see Eq.~26!. The calculations for the alkali-meta
atom projectiles are based on a one-electron model potential. The first two rows list the strength par
C3 andC4 in atomic units. The next two rows show the corresponding lengthsb3 andb4 in units of the Bohr
radius. The last two rows give the lengthl @Eq. ~28!# ~in Bohr radii!, which sets a scale separating the sho
and long-distance regimes, and the crucial parameterr @Eq. ~44!#, which determines the relative importanc
of the 21/r3 and the21/r4 parts of the potential.

H Li Na K Rb Cs

C3 0.250 1.447 1.576 2.153 2.291 2.589
C4 73.62 2683 2662 4789 5221 6579
b3 919 3.6613104 1.3213105 3.0693105 7.1393105 1.2553106

b4 520 8.2393103 1.4943104 2.6133104 4.0333104 5.6463104

l 294 1854 1690 2225 2278 2540
r 1.77 4.44 8.84 11.75 17.70 22.23
2-5
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A. Scaling

In contrast to the homogeneous potentials~7!, the poten-
tial tail ~26! contains an energy-independent intrinsic leng

l 5
C4

C3
5

~b4!2

b3
, ~28!

which naturally defines a scale separating the large-r region,
r @ l , from the small-r region, r ! l . It seems useful to ex
press the distance coordinater in units of this length, i.e., in
terms of the dimensionless variablex5r / l . We also intro-
duce the strength parameterK0,

\2~K0!2

2M
5
def C3

l 3 5
C4

l 4 , ~29!

so the full Casimir–van der Waals potential can be written

VCvdW~r !5
\2~K0!2

2M
vS r

l D , ~30!

and the asymptotic behavior~26! of VCvdW(r ) translates into
the following behavior of the dimensionless ‘‘shape fun
tion’’ v(x),

v~x!;H 21/x3 for x→0,

21/x4 for x→`.
~31!

The limiting behavior~26! is fixed by any two of the four
parametersb3 , b4 , l , K0 and the other two can be ex
pressed in terms of those. For example,

K05Ab3

l 3 5
~b3!2

~b4!3 , K0l 5
b3

b4
5Ab3

l
5

A2M

\

C3

AC4

.

~32!

With the definitions~28! and ~29!, the Schro¨dinger equation
with the Casimir–van der Waals potential~30! is

F d2

dr2 1k21~K0!2vS r

l D Gc~r !50. ~33!

Except for the case of hydrogen atom projectiles, we
not know exactly the shape of the potential between the
limits of large and short distances. Shimizu’s@8# recent
analysis of neon atoms specularly reflected by a silicon o
glass surface was based on the simple shape function

v1~x!52
1

x31x4 . ~34!

The corresponding full potential~30! is

V1~r !52
C4

~r 1 l !r 3 , ~35!

showing that the lengthl can be identified withl/2p, where
l is the effective atomic transition wavelength that contr
utes to the polarizability of the atom@8#. A smoother transi-
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tion from small to largex values is described with the help o
an arcus tangent as used by Holstein@24# in a review of the
Casimir–van der Waals potentials between two atom
Adapted for our present purposes, this corresponds to
shape function

v2~x!52
1

x3

2

p
arctanS p

2xD . ~36!

Figure 3 shows the functions2x3v1,2(x) which start at unity
for x50 and behave as 1/x for largex.

The shape of the exact hydrogen-surface potential ta
lated in @23# lies between the two shapes~34! and ~36!. We
have constructed a rational approximationvH(x), which re-
produces the exact potential to within a maximum relat
error of 0.7%,

vH~x!52
1

x3 S 110.22x

110.95x10.22x2D . ~37!

TABLE III. Parameters for the shape function~38! for the
Casimir–van der Waals potentials between alkali-metal atoms a
conducting surface. The potentials defined via Eqs.~30! and ~38!
with these shapes and the strength parameters of Table II repro
the potentials obtained by Marinescuet al. @23# on the basis of a
one-electron model potential to within a maximum relative error
less than 0.6% in all cases.

Li Na K Rb Cs

z 0.3 0.35 0.4 0.4 0.41
h 0.98 0.98 1 1 1

FIG. 3. Shape functionsv1(x) @Eq. ~34!# ~dotted line!, v2(x)
@Eq. ~36!# ~dashed line!, andvH(x) @Eq. ~37!# ~dot-dashed line!. The
plotted quantity is2x3v(x) in all cases. The shape functionvH(x)
reproduces the values corresponding to the exact hydrogen-su
interaction tabulated by Marinescuet al. @23# ~solid boxes! to
within a maximum relative error of 0.7%.
2-6
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The shape functionvH is also shown in Fig. 3, and the fille
boxes show the values corresponding to the exact pote
tabulated in@23#.

The expression

vX~x!52
1

x3 S 11zx

11hx1zx2D ~38!

can also be used to approximate the shapes of the al
surface potentials given by Marinescuet al. in @23#. The
functions defined with the parametersh andz listed in Table
III reproduce the respective alkali-surface potentials of@23#
within a maximum relative error of less than 0.6% in a
cases. The similarity of the parametersz andh obtained for
the various atoms in Table III shows that the shape functi
for the alkali-surface potentials based on one-electron mo
potentials are all actually quite similar.

Further effort has since gone into more sophisticated
terminations of the parameters of alkali-surface interactio
in particular of the van der Waals coefficientC3 @25–27#. A
list of these more recentC3 values is given in Table IV.

B. Near-threshold reflectivities

Since the Casimir–van der Waals potential falls off fas
than 1/r 2 for large r, the near-threshold reflectivity is give
by Eq. ~4! or, as it turns out, more accurately by Eq.~12!.
The parameterb depends on the potential tail, i.e., on th
length parametersb3 andb4 and on the shape functionv(x).
For the shape function~34!, the Schro¨dinger equation~33!
possesses analytical solutions at threshold (k50) @28#. The
solutions behaving asymptotically (r→`) asc0(r );1 and
c1(r );r are

c0,15Ar ~r 1 l !@A0,1J1~z!1B0,1Y1~z!#, z52Ab3

r
1

b3

l
,

~39!

whereJ1 andY1 are the ordinary Bessel functions of ord
unity @18#, and the coefficientsA0,1,B0,1 are

A052
p

l
Y1~2K0l !, B05

p

l
J1~2K0l !,

A15p~K0lY18~2K0l !1 1
2 Y1~2K0l !!, ~40!

B152p~K0lJ18~2K0l !1 1
2 J1~2K0l !!.

Casting the small-r behavior of the wave functions~39! into
the WKB form ~5! yields the amplitudes

TABLE IV. Results of more sophisticated determinatio
@25–27# of the van der Waals parameterC3 of the alkali-surface
interaction.

Li @25# Na @26# K @27# Rb @27# Cs @27#

1.518 1.889 2.86 3.36 4.14
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D0,15A\ lA~A0,1!
21~B0,1!

2 ~41!

and the phases

f0,15
3

2
p24K0l 12 arctan

B0,1

A0,1
, ~42!

so the lengthb determining the near-threshold reflectivity i
according to Eq.~6!,

bv1
5

l /p

J1~2K0l !21Y1~2K0l !2 . ~43!

The properties of the reflectivity depend crucially on t
parameter

r5
def

K0l 5
b3

b4
5

A2M

\

C3

AC4

. ~44!

This is clear from Eq.~43! for the near-threshold behavio
with the shape function~34!, but it is also true for other
potential shapes and beyond the near-threshold region
will be shown below.

For large values ofr, we have J1(2r)21Y1(2r)2

→1/(pr) and bv1
→r l 5b4. For small values of r,

J1(2r)21Y1(2r)2→1/(pr)2 and bv1
→pr2l 5pb3. These

limits are consistent with the results~9! for homogeneous
potentials, because the Casimir–van der Waals potentia
dominated by the21/r 3 behavior whenb3!b4 and by the
21/r 4 behavior whenb4!b3. This perhaps counterintuitive
observation is readily understandable when we write the
tential ~35! in the form

V1~r !52
\2

2M F r 3

b3
1

r 4

~b4!2G21

. ~45!

The dependence of the length parameter~43! on r is shown
in Fig. 4. The dotted lines show both the ratiobv1

/b3 @part

~a!#, which approaches the valuep ~appropriate for a homo-
geneous21/r 3 potential! in the limit r→0, and the ratio
bv1

/b4 @part ~b!#, which approaches unity~appropriate for a

homogeneous21/r 4 potential! in the limit r→`.
For the shape functions~36! and ~37!, the zero-energy

solutions of the Schro¨dinger equation~33! are not known
analytically, so we derived the near-threshold behavior of
reflectivity by numerically solving Eq.~33!. The length pa-
rameterb was obtained by fitting the reflectivity to the ex
ponential form~12! in the limit k→0, and the results are
shown in Fig. 4 as dashed@shape functionv2, Eq. ~34!# and
dot-dashed lines@shape functionvH , Eq. ~37!#, respectively.

Figure 4 illustrates the transition of the near-threshold
flectivity from the expectations for a21/r 3 potential for
small values ofr5b3 /b4 to those of a21/r 4 potential for
large values ofr. It also illustrates how this transition de
pends on the shape functionv(x). For the shape function
~34!, bv1

/b4 depends monotonically onr and approaches
2-7
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the large-r limit from below. For the other shapes~36! and
~37!, b approachesb4 from above, and the ratiob/b4 re-
mains greater than unity all the way down tor'1. The
largest differences inb due to the different potential shape
are seen aroundr'1. The ratiobv2

/bv1
has a maximum

value of 1.19 forr50.63. The value ofbH differs from bv2

or bv1
by less than 10%.

FIG. 4. Length parametersb determining the near-threshold re
flectivities of Casimir–van der Waals potential tails according
Eq. ~12!. Part~a! shows the ratiob/b3, which would bep accord-
ing to Eq. ~9! for a homogeneous21/r 3 potential; part~b! shows
the ratio b/b4, which would be unity for a homogeneous21/r 4

potential. The dotted lines give the analytical results~43! for the
shape function~34! and the dashed lines give the numerical resu
obtained for the shape function~36!. The dot-dashed lines give th
numerical results obtained for the shape function~37! describing
the hydrogen-surface potential tabulated in@23#.
03290
C. Beyond the near-threshold region

For high energies, the badlands function~3! becomes
smaller and smaller and more and more concentrated aro
small r values~see the Appendix!. The maximum of the bad-
lands function is close to the pointr 0 where the absolute
value of the potential equals the total energy. If this point l
well in the small-r domain of the Casimir–van der Waa
potential, i.e., ifr 0! l , then the potential behaves like a h
mogeneous potential~7! with a53 aroundr 0, and we expect
the reflectivity to be given by Eq.~17!,

uRCvdWu ;
k→`

exp@2B3~kb3!1/3#, B352.2405. ~46!

Inserting~15! with a53 for r 0 into the conditionr 0! l leads
to k22/3(b3)1/3! l , so the energy range where we expect E
~46! to hold is given by

kb3@S b3

l D 3/2

5r3. ~47!

For small values ofr, the conditionkb3@1 is also needed
because Eq.~46! refers to the high-energy behavior in
21/r 3 potential and is, of course, not valid in the nea
threshold region.

The behavior~46! will always be reached for sufficiently
high energies, but ifr is large, the reflectivity may be domi
nated by the21/r 4 nature of the potential, not only in th
near-threshold region but also for larger energies, where
asymptotic behavior~17! already applies — fora54,

uRCvdWu'exp@2B4~kb4!1/2#, B451.694 43. ~48!

For Eq.~48! to hold, the pointr 0 where the absolute value o
the potential equals the total energy should lie in the largr
domain,r 0@ l . Inserting Eq.~15! with a54 into this condi-
tion yieldsAk!Ab4/ l 5b3 /(b4)3/2. We can thus expect the
reflectivity to be given by Eq.~48! in the energy range de
fined by

1!kb4!S b3

b4
D 2

5r2, ~49!

where the first inequality ensures that the range lies
enough beyond the near-threshold region.

The overall behavior of the reflectivity is thus characte
ized by a linear dependence of2 lnuRCvdWu on k near thresh-
old, Eq.~12!, which changes to proportionality tok1/3 at high
energies~46!. How this transition occurs depends essentia
on the parameterr5b3 /b4. For very small values ofr, the
reflectivity corresponds to that of a21/r 3 potential~see Sec.
II, Figs. 1 and 2! in the whole range from threshold to th
high-energy limit. For sufficiently large values ofr, there is
a range of energies defined by Eq.~49!, where we expect the
reflectivity to be given by Eq.~48!. For sufficiently high
energy, the reflectivity will eventually be given by Eq.~46!.

Figure 5 shows ln(2 lnuRCvdWu) as a function of ln(kb3)
for a small value ofr, namelyr5 1

10 . The three curves cor
respond to the three shape functions~34! ~dotted line!, ~36!
~dashed line!, and~37! ~dot-dashed line!. The respective val-

s
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ues of the lengthb determining the near-threshold reflectivi
according to Eq.~12! are given byb/(pb3)50.916, 0.954,
and 0.933, showing that the near-threshold behavior dep
only weakly on the shape of the potential and is already q
close to the expectation for a21/r 3 potential. The reflectiv-
ity in fact behaves much like that of a21/r 3 potential in the
whole range of energies and merges into the straight lin
gradient 1

3 corresponding to the high-energy behavior E
~46!.

Figure 6 shows ln(2 lnuRCvdWu) as a function of ln(kb3)
for r51, which impliesb35b4. The results obtained for th
three shape functions~34!, ~36!, and~37! are again shown a

FIG. 5. ReflectivitiesuRCvdWu of Casimir–van der Waals poten
tials for r5

1
10. The results for the three shape functions~34!, ~36!,

and ~37! are shown as~hardly distinguishable! dotted, dashed, and
dot-dashed lines, respectively. The straight solid line shows
high-energy behavior expected for a homogeneous21/r 3 potential
according to Eq.~46!.

FIG. 6. ReflectivitiesuRCvdWu of Casimir–van der Waals poten
tials for r51. The three curves correspond to the shape functi
~34! ~dotted line!, ~36! ~dashed line!, and ~37! ~dot-dashed line!.
The straight solid line shows the high-energy behavior expected
a homogeneous21/r 3 potential according to Eq.~46!.
03290
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.dotted, dashed, and dot-dashed lines, respectively. Thb
value determining the near-threshold reflectivity shows
larger dependence on the potential shape and is given
b/b4(5b/b3)50.925, 1.081, and 1.009 for the three cas
The curves in Fig. 6 show a more gradual transition from
straight line of unit gradient describing the near-thresh
behavior~12! to the straight line of gradient13 corresponding
to the high-energy behavior in a21/r 3 potential, Eq.~46!.

Figure 7 shows ln(2 lnuRCvdWu) for r510, which implies
b3510b4. Again the dotted, dashed, and dot-dashed lin
correspond to the three shape functions~34!, ~36!, and~37!,
but the dependence on shape is now very small. Theb value
determining the near-threshold reflectivity is given byb/b4
50.999, 1.002, and 1.010, respectively. For values
ln(kb4) near and above 2, the curves are close to the stra
~solid! line of gradient 1

2 corresponding to the high-energ
behavior in a21/r 4 potential @Eq. ~48!#. The high-energy
behavior in a21/r 3 potential is shown as a straight dash
line, and it lies somewhat above the curves and the stra
solid line in Fig. 7.

The transition from the~high-energy! behavior~48! ap-
propriate for a homogeneous21/r 4 potential to that of a
homogeneous21/r 3 potential~46! may be expected near th
point where the two lines defined by Eqs.~48! and ~46! in-
tersect, i.e., whereB4(kb4)1/25B3(kb3)1/3. This point is
given by

k

K0
5

kb4

r2 5
kb3

r3 5S B3

B4
D 6

55.345, ~50!

e

s

or

FIG. 7. ReflectivitiesuRCvdWu of Casimir–van der Waals poten
tials for r510. The results for the three shape functions~34!, ~36!,
and ~37! are shown as~hardly distinguishable! dotted, dashed, and
dot-dashed lines, respectively. The straight solid line shows
high-energy behavior expected for a homogeneous21/r 4 potential
according to Eq.~48!; the straight dashed line shows the hig
energy behavior expected for a homogeneous21/r 3 potential ac-
cording to Eq.~46!.
2-9
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and it lies in between the range of energies fulfilling Eq.~49!
and the range fulfilling Eq.~47!. At the point of intersection
~50!, the reflectivity~46! of the homogeneous21/r 3 poten-
tial and the reflectivity~48! of the homogeneous21/r 4 po-
tential ~both in the high-energy limit! are equal and given by

uRintersectu5exp„2B4~kb4!1/2
…5exp„2B3~kb3!1/3

…

5exp~23.92r!. ~51!

The reflectivities are, of course, not necessarily given ac
rately by the expressions~46! and/or~48! for energies in the
transition region, but the value~51! can be used as a guid
for the order of magnitude of the reflectivity near the ene
defined by Eq.~50!.

For the case shown in Fig. 7,r510, the transition is
expected forkb4'530, ln(kb4)'6.3, which is well out-
side the range of the figure. The value ofuRintersectu @Eq. ~51!#
is near 10217 at this value ofk, so the transition from the
21/r 4 behavior to the21/r 3 behavior can be expected
very small reflectivities indeed. For the range covered in F
7, the reflectivities are essentially those of a homogene
21/r 4 potential, see Fig. 2.

IV. ILLUSTRATION

Shimizu @8# recently presented experimental data for t
reflectivity of neon atoms scattered from a silicon or a gl
surface. He fitted the observed data to the reflectivities
tained by solving the Schro¨dinger equation with the potentia
~35! and concluded that the data revealed manifestation
the Casimir effect, because a21/r 4 contribution in the po-
tential was needed to reproduce the energy dependenc
the observed reflectivities. The importance of the Casi
effect can be illustrated more directly, by plotting the data
the style of Figs. 2 and 5–7 above.

Figure 8 shows~in atomic units! the experimental data o
Shimizu for reflection by the silicon surface. We have plott
ln(2 lnuRu) as a function of lnk. At the high-energy end o
the figure, the data clearly approximate a straight line wit
gradient near12 , which is the signature of the high-energ
behavior in a21/r 4 potential. Fitting a straight line throug
the last six to ten data points yields gradients ranging fr
0.45 to 0.55. Fitting a straight line of gradient1

2 through the
last six to ten data points yields

ln~2 lnuRu!55.21
1

2
ln k. ~52!

The straight line~52! is shown in the top right-hand part o
the figure. Comparing this with Eq.~48!,

ln~2 lnuRu!5 ln B41
1

2
ln k1

1

2
ln b4 ~53!

determines the strength parameterb4 governing the long-
distance part of the potential to beb45exp@2(5.22 ln B4)#
511 400a0. This compares favorably with the numberb4
512 100a0 corresponding to the value 6.7310256 J m4

which Shimizu gives forC4. The data in Fig. 8 clearly do no
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reach energies high enough for the21/r 3 part of the poten-
tial to become important. This indicates that we are in
regime of larger, b4!b3, which is confirmed by compar
ing with the reflectivities calculated by solving the Schr¨-
dinger equation with the above value ofb4 (11 400a0) and
r510. In contrast, the reflectivities obtained usingr51
~dotted and dot-dashed lines in Fig. 8! deviate significantly
from the data towards the high-energy end of the range c
ered in the figure. Within this range, the reflectivities o
tained for r510 are essentially those of a homogeneo
21/r 4 potential ~corresponding tor→`), as already dis-
cussed in connection with Fig. 7 above. Thus the data in F
8 are not suitable for deducing an upper limit onr or,
equivalently, a lower limit on the lengthl 5b4 /r; this is
consistent with the valuel'0 quoted by Shimizu.

For such large values ofr, the length parameterb deter-
mining the near-threshold behavior~12! of uRu is essentially
equal tob4, see Fig. 4. The straight line

ln~2 lnuRu!5 ln~2b4!1 ln k ~54!

is shown in the bottom left-hand part of Fig. 8; it fits in qui
well with the low-energy behavior of the data, but their sc
ter is very large.

V. DISCUSSION

The parameterr defined by Eq.~44! is the crucial quan-
tity which determines how important the21/r 3 and the
21/r 4 parts of the Casimir–van der Waals potential are
quantum reflection. Forr!1, the reflectivities are essentiall
those of a homogeneous21/r 3 potential, and they are unaf

FIG. 8. ReflectivitiesuRu as observed by Shimizu@8# for the
scattering of neon atoms by a silicon surface~filled dots!. The figure
shows ln(2 lnuRu) as a function of lnk. The straight solid line in the
top right-hand part of the figure shows the high-energy beha
expected for a homogeneous21/r 4 potential according to Eq.~48!
for b4511 400. The straight solid line in the bottom left-hand pa
of the figure shows the near-threshold behavior~12! for b5b4

511 400. The curves were calculated by solving the Schro¨dinger
equation with the shape functionsv1 ~34! or vH ~37! for the above
value ofb4, andr510 (b3510b4) or r51 (b35b4).
2-10
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fected by the retardation effects in the potential. For mod
ate and large values ofr, the behavior appropriate for
homogeneous21/r 3 potential sets in forkb3@r3 @Eq. ~47!#.
If r is sufficiently large, then there is a regime of low
energies corresponding tokb4!r2 @Eq. ~49!#, where the re-
flectivities are essentially those of a homogeneous21/r 4

potential and depend only on the strength parameterb4 ~i.e.,
C4) of the Casimir–van der Waals potential. In the ene
range defined by 1!kb4!5r2, the reflectivities behave a
given by Eq.~48!, and this shows up as a straight line
gradient 1

2 in a plot of ln(2 lnuRu) against lnk. This is a
conspicuous and model-independent signature of retarda
effects in the potential and can be used to determine
parameterb4, i.e., the strengthC4, of the 21/r 4 part of the
potential, as illustrated in Sec. IV.

The transition between the21/r 4 and the21/r 3 regimes
can be expected near the energy given by Eq.~50!,
(kb4)1/2'2.3r, (kb3)1/3'1.75r, and for reflectivities
nearuRu'exp(24r), see Eq.~51!. For moderate values ofr
and for energies below the ‘‘transition point’’ given by E
~50!, the reflectivities depend on bothb4 andb3, and on the
shape of the potential in between the long- and short-dista
regimes. In the near-threshold region,uRu is given by
exp(22bk), and b depends~for moderater values! signifi-
cantly onr and the potential shape, see Fig. 4.

The strength parametersC3 and C4 defining the short-
and long-distance parts of the Casimir–van der Waals po
tial are determined by the dipole polarizability of the proje
tile atom, see Eq.~27!. The polarizability depends on th
electronic structure of the atom and soC3 and C4 can be
expected to be similar for similar electronic configuration
This is confirmed by Table I, where the values ofC3 andC4
agree to within a factor of 2.5 for the alkali-metal atom
from Li to Cs. The crucial parameterr is given by r
5(A2M /\)(C3 /AC4), see Eq.~44!, so for given values of
C3 and C4 we obtain smallr values for small masses an
larger values for large masses. A reflectivity behaving as
a homogeneous21/r 4 potential, as a conspicuous an
model-independent signature of the Casimir effect, is t
most likely to be observed for heavy projectiles. Of cour
the energy where appreciable~observable! reflection occurs
is then correspondingly small.

Large values ofr are ubiquitous in realistic systems, se
e.g., Table I and the above data for neon atoms reflected
silicon surface. This means that quantum reflection of ato
is quite generally dominated by the retardation effects in
Casimir–van der Waals potential. The transition~50! be-
tween the21/r 4 and the21/r 3 regimes occurs for extremel
small reflectivities whenr is large. Information about the
short-distance part of the potential, i.e., about the param
b3 and/or the shape of the potential, is more readily obtai
in systems with small or moderater values. These can b
achieved by choosing light projectiles or surfaces with sm
dielectric constants, which reduces the strength of the wh
potential@10# and also the ratioC3 /AC4.
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APPENDIX

The accuracy of the WKB approximation is a local pro
erty of the Schro¨dinger equation. First-order WKB wav
functions~1! are accurate solutions of the Schro¨dinger equa-
tion when the condition~3! is fulfilled @11,12,22#. The fre-
quently quoted simpler condition@4,8,16#

U d

dr S \

p~r ! D U5\Up8

p2U!
1

2p
~A1!

often works too, but in general it is neither necessary
sufficient. The example of a potential proportional to 1/r 4

shows that it is not necessary: for zero energy, first-or
WKB wave functions are exact solutions of the Schro¨dinger
equation for allr, but the left-hand side of Eq.~A1! is pro-
portional tor and grows to infinity forr→`. Note that the
badlands function defined by Eq.~3! vanishes in this ex-
ample. To see that the condition~A1! is not sufficient, con-
sider a particle with a moderate kinetic energy over a pot
tial with oscillations of small scale and amplitude. For
appropriate potential we could have, e.g.,\/p(r )51
1sin(qr)/q3/2, and the left-hand side of Eq.~A1! would be
ucos(qr)u/Aq, which becomes arbitrarily small asq→`.
However, the term involving thep9/p3 in the badlands func-
tion ~3! contains a contribution which is proportional t
Aq sin(qr) and becomes larger and larger forq→`.

Mody et al. @4# point out that quantum reflection is gen
erated in the region where the WKB approximation brea
down, and they observe that this occurs mainly near the p
r 0, where the absolute value of the potential energy is eq
to the ~asymptotic! kinetic energy, i.e., the total energy

uV~r 0!u5E5
\2k2

2M
. ~A2!

For the homogeneous potential tail~7!, we have@see Eq.
~15!#

r 05k22/a~ba!122/a. ~A3!

The maximum of the left-hand side of Eq.~A1!, however,
occurs for@4,8#

\2k2

2M
5uV~r !u

a22

2a12
~A4!

corresponding to

r 5S a22

2a12D 1/a

r 0 . ~A5!

This is smaller than the positionr 0 defined by Eqs.~A2! and
~A3! by a factor of 2 fora53 and 1.5 fora54.

For the homogeneous potential tail~7!, the badlands func-
tion ~3! is
2-11
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B~r !5
5a2~ba!2a24

16r 2a12@k21~ba!a22/r a#3

2
a~a11!~ba!a22

4r a12@k21~ba!a22/r a#2
, ~A6!

and maxima ofuB(r )u occur when

k25F~a!
~ba!a22

r a
,

F~a!5
5

4
2

9

2a14
6

9a

4a18
A12

20

27S a12

a11D . ~A7!

The positions of these maxima are

r max5@F~a!#1/ar 0 , ~A8!

with r 0 as given by Eq.~A3!. For a.4, the functionB(r )
has a zero atr 5 1

4 @125/(a11)#1/ar 0; there is a larger maxi-
mum of uBu above and a smaller one below this zero. F
a53,4, only the plus sign before the square root in Eq.~A7!
yields a positive value ofF(a), namelyF(3)50.7174 and
F(4)51, so r max50.895r 0 for a53 and r max5r 0 for a
54. The conjecture that reflection occurs mainly in the
gion ~A2! is justified more readily on the basis of the ba
lands function~3! than via the simpler condition~A1!.

For the Casimir–van der Waals potential~s!, the expres-
sion for the badlands function is more complicated, but
small-r and the large-r behavior follow from Eq.~A6! for
a53 anda54, respectively,

FIG. 9. Scaled badlands functionB̃ as defined by Eqs.~3! and
~A10! as function of the dimensionless coordinatex5r / l for scaled
energies (k/K0)250.1 ~long dashed line!, 1.0 ~solid line!, and 10
~short dashed line!. The shape function is that of Eq.~37! approxi-
mating the exact hydrogen-surface interaction. The vertical b
mark the pointsx05r 0 / l where the condition~A2! is fulfilled at the
respective~scaled! energies.
03290
r

-

e

B~r ! ;
r→0

2
3

16

r

b3
, B~r ! ;

r→`

2
5~b4!2

k4r 6 . ~A9!

The dependence ofB(r ) on the strength parameters of th
potential can be scaled out by writing

B~r !5
1

r2B̃S r

l
,

k

K0
D , ~A10!

where l andK0 are the parameters introduced in Sec. III
see Eqs.~28!, ~29!, and~32!. The scaled badlands functionB̃
depends only on the scaled coordinater / l and on the scaled
~asymptotic! wave numberk/K0 @or equivalently, scaled en
ergy (k/K0)2#, and, of course, on the potential shape. T
scaled badlands function is shown in Fig. 9 as a function
the dimensionless coordinatex5r / l for three values of the
scaled energy, namely (k/K0)250.1, 1.0, and 10. The shap
function underlying this illustration is that of Eq.~37! ap-
proximating the exact hydrogen-surface interaction. The v
tical bars mark the pointsx05r 0 / l , wherer 0 is the position
fulfilling Eq. ~A2! at the respective energy. The shape dep
dence of the badlands function is illustrated in Fig. 10 sho
ing B̃ for the three shape functionsv1 @Eq. ~34!#, v2 @Eq.
~36!#, andvH @Eq. ~37!#. Here the scaled energy was taken
(k/K0)251, and the vertical bars again mark the pointsx0
5r 0 / l . Figures 9 and 10 show that the position of the ma
mum of the badlands is~roughly! given by the condition
~A2!, not only for homogeneous potential tails but also f
those of the Casimir–van der Waals type.

rs

FIG. 10. Scaled badlands functionB̃ as defined by Eqs.~3! and
~A10! as a function of the dimensionless coordinatex5r / l for the
three shape functionsv1 @Eq. ~34!, dotted line#, v2 @Eq. ~36!, dashed
line#, and vH @Eq. ~37!, dot-dashed line#. The scaled energy is
(k/K0)251 and the vertical bars mark the pointsx05r 0 / l where
the condition~A2! is fulfilled for the various potentials.
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