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Orbiting resonances and bound states in molecular scattering
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A family of orbiting resonances in molecular scattering is globally described by using a single pole moving
in the complex angular momentum plane. The extrapolation of this pole at negative energies gives the location
of the bound states. Then a single pole trajectory, which connects a rotational band of bound states and orbiting
resonances, is obtained. These complex angular momentum singularities are derived through a geometrical
theory of the orbiting. The downward crossing of the phase shifts thratghdue to the repulsive region of
the molecular potential, is estimated by using a simple hard-core model. Some remarks about the difference
between diffracted rays and orbiting are also given.
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[. INTRODUCTION tering theories like the one that is of interest in the present
paper. However, it must be noted that molecular scattering is

After a long search, about two decades ago it becamasually described in terms of the Lennard-Jones or Morse-
possible to observe orbiting resonancéw quasibound type potentia[21]; it is worth noting that singular potentials
state$ in molecular beam scatteririd —5]. Although these of the typeg?r ~", n>2, present an infinite number of poles
phenomena can be quite naturally interpreted in the framédn the first quadrant of the complex angular momentum
work of scattering theor}6], their semiclassical nature calls plane, and, in such a situation, one is forced to use a modi-
for a more refined analysis, mainly geometrical, which hadied Watson transformation. As far as we know, this approach
been partially performed by several authors, and notably byias been rigorously proved in the cag& * by Dombey
Berry [7-9]. In this spirit, also advocated has been the use ofind Jone$22], and then conjectured fay’r ", n>4. Fur-
the complex angular momentum plane polology, especiallfhermore, several authors, and notably those from the Upp-
by Bosanad10-12, Connor[13,14 and Nussenzvei¢see sala schoo[23-25, have applied the phase-integral method
in particular his book15] and the references quoted thejein to derive locations and residues of the poles in the complex
In the latter approach, however, some problems remain, anghgular momentum plane, for singular potentials of the form
a detailed phenomenological analysis is in part still missingV(r)=g?r ~"f(r) (n=4). It should be noted that the pri-

In the standard complex angular momentum approach onmary goal of all these researches consists of substituting to
generally considers a given class of potentials, and then exhe partial-wave expansion, in a region where it is slowly
plores the analytical properties of the partial waves alongonvergent, more rapidly convergent representations. The
with their asymptotic behavior in the complex angular mo-latter then split the scattering amplitude into a sum of pole
mentum plane. If these analytical properties and asymptoticontributions and one or more integral terms which are usu-
behaviors allow for using the Watson transformat{di], ally evaluated by means of the saddle point method.
then a resummation of the partial wave expansion can be Our viewpoint is quite different. We think that also in the
performed, and the total scattering amplitude can be repreegion where only one partial wave is dominant a complex
sented in terms of poles along with a background integralangular momentum representation can be useful if we want
The main limit of this method consists of the fact that it to interpolate the various orbiting resonances with a single
works only for a rather restricted class of potentials, notablymoving pole, whose extrapolation at negative energies can
for the Yukawian clas$17], which is not very important in then give the bound states. With this in mind, we focus our
molecular scattering. Nussenzvdil8—20, in a series of attention on the poles of the scattering amplitude in the com-
very significant papers, extended the complex angular moplex angular momentum plane, and we neglect, to a certain
mentum method with particular attention to optical prob-extent, the background integral, as will be explained below.
lems. In this context, the hard-core potential has been treatefb this purpose, a geometrical method of derivation of the
in detail, and, in addition to the Watson resummation, alsacomplex angular momentum poles is implemented: instead
the Poisson transformation has been useg also Ref9]). of studying the analytical and asymptotic properties of the
The latter seems to be more promising for semiclassical scapartial waves for a specific class of potentials, we analyze the

particle motion(and specifically the orbitingn a Riemann-
ian space whose metric is induced by the potential.

*Email address: demic@icb.ge.cnr.it In view of the fact that we are treating a semiclassical
TAuthor to whom correspondence should be sent. FAX39  scattering problem, the concept of particle péwh trajec-
010314218. Email address: viano@ge.infn.it tory) still conserves its meaning. We are therefore allowed to
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study the geodesidse., the particle pathsn a space whose phase shifts by regarding them as the ones produced by a
Riemannian metric is given bp?dx'dx), n2=1—V/E, E  repulsive hard core in a sense that will be explained in detail
being the energy and the potential. The coordinates re-  in Sec. lIl.
quire a more detailed comment: in fact, one generally claims The paper is organized as follows: in Sec. Il we outline a
to solve the dynamical problem in the whole spateby  geometric theory of the orbiting, and obtain an approximate
using a unique coordinate system for all the points of thd©Presentation of the scattering amplitude in terms of moving
space being considered. Here we prefer to introduce locdloles (complex angular momentum pojedn Sec. Il we
coordinates that are appropriate to describe locally the paldenve a fitting formula for the phase shifts that accounts als_o
ticle trajectories, and then to use different coordinate systemi@r the role of the nonresonating phase shifts. Section IV is
elsewhere in space. We are thus led to consider the Jacobiégvoted to the phenomenological analysis. Finally, in Sec. V
of the transformation connecting the local coordinates to th&ve draw some conclusions, and briefly discuss the difference
ambient space coordinates. The transformation is singular iRétween orbiting and diffracted rays, and, accordingly, be-
those domains where the Jacobian vanishes. We can théffeen resonances and diffraction.
work out the problem by means of two geometrical tools:
geodesics, which describe locally the particle paths, and Ja-  |I. OUTLINE OF THE GEOMETRICAL THEORY
cobians. The global solution emerges by patching up geode- OF THE ORBITING
sic segments which represent local solutions. We will show )
in Sec. Il that by the sole use of these geometrical ingredi- L€t us start from the Helmholtz's equation
ents it is possible to obtain a representation of the scattering
ampli_tgde in terms of complex angular momentum plane sin- Au+k2n2u=0, (
gularities(poles.

However, this representation is not complete, and can
only be regarded as an approximation; in what follows wewhereE is the energy an® the potential. Now, we look for
shall discuss the pros and cons of this representation. First af solution of Eq(1) of the following form:
all we obtain an angular distribution in terms of the Legendre
functions(not polynomial$ of a complex index that present . 3
a logarithmic singularity forwardgi.e., at null scattering U(X’k):f Alx,B)e"0Pd B, (xe k). @
angle. This fact suggests that a compensating background
term is missing in a representation which uses only polesthe principal contribution tai(x,k), ask—c, corresponds
However, it is possible to project the scattering amplitudeto the stationary points ab, in the neighborhoods of which
(represented only by polg®n the partial waves, and the the exponential expkiP) ceases to oscillate rapidly. These
result can be regarded as a faithful representation, at least fgationary points can be obtained from the equation
an angular momentum sufficiently small. Furthermore, the;(x, 8)/98=0 [assuming thav?®(x,3)/98%+0]. Then,

consequent integrgkotal) cross section is finite, since the pe following asymptotic expansion of ask— =, is valid:
singularity of the Legendre functions involved is only loga-

rithmic. On the other hand, the advantage of this representa- = A
tion is that the entire sequence of orbiting resonances can be u(x,k)=ek®xpo > T
fitted by using a single pole. The latter, while moving as a m=0 (ik)™
function of the energy, is able to describe in an ordered way
the passage of the phase shifts of various angular momenvehere 8, is the unique stationary point db at fixedx. The
through 7/2, which is the value of the phase shifts corre-leading term of expansiof8) reads
sponding to the resonances. Therefore, a global view and
explanation of the orbiting resonances is obtained. u(x,k)=Ag(x)e'k®xho) (4

Furthermore, these moving poles produce bound states at
those values of the energy where the angular momentugyhere
(which is real at negative energyakes integer values. We
thus obtain a trajectory of the complex angular momentum -1
pole as a function of the energy, which gives bound states at Ap(X) =A(x,,80)( )
negative energy and resonances at positive energy. Obvi- =B,
ously, the bound states are not observed directly by scattering
experiments. Their existence is, however, revealed by the o 92D
fact that the phase shif} at zero energy is given hy, 7 (as xex 1780 —3

- - : : B/,

explained by the generalized Levinson theoyavheren, is B=Bg
the number of bound states with angular momentum equal to
| (see Refs[26,27], and Secs. lll and 1Y These nonresonat- The leading term(that hereafter will be written ase*®,
ing phase shifts decrease at higher energy passing througimitting the subscript zejocan be substituted into Eql)
/2 in a downward direction. This downward crossing of and then, by collecting the powers ok}iand nulling their
/2 does not correspond to a resonance, but it is rather due tefficients, we obtain two equation&) the eikonal equa-
a repulsive potential. We can, however, fit this part of thetion
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2 2 \Y ) after the crossing
(V®)=n=1— = (6) glke gllko—(ml2)] (13)
and (b) the transport equation (i) For the clockwise orbiting wave we have, after the
V. (A2V®)=0 % crossing through the poird=0,
The physical meaning of the transport equationis that the _ after the crossing _
probability current density is conserved. In order to exploit ek g iTko=(m/2)] (14)

the geometrical content of the eikonal equation, it is conve-

nient to replace the optical index with a Riemaniann met-  Therefore, for each complete tour, both the counterclockwise
ric tensorg;; . Then, the eikonal equation can be rewritten asyng the clockwise oriented rays cross the antipodal points
#=0 and#= 7, and accordingly, in both cases the amplitude
=1, [gij=(gij)_l], (8) acquires a factor{ 1). _ _ _

We have seen that at the antipodal points the amplitude
, becomes infinite if we use thé representation. But in the
{x'} representing a system of local coordinates. Accordinglymaslov construction use is made of thgrepresentationy,
the transport equation will be rewritten in the fOIIOWing being the variable Conjugate &), and in thepg representa_

form: tion the intensity of the ray tube is finif@9].
In the case of unstable states the probability current den-
i D K2 Jol AZS) gii @ -0 ) sity is not conserved and a tunnelling through the centrifugal
\/5 T OX ] X ' barrier can, indeed, produce an attenuation of the intensity of

the ray tube. The phenomenon can be represented by pictur-

whereg=|det (g;;)|. Now, we consider the tube composed ing trajectories which leave tangentially the circular orbit
by the trajectories which describe only circular orbits andand emerge at large distances. In this process the witible
assuming, at this stage, that there is no leakage from the tulspace is involved and we must analyze the Jacobiafnthe

and, accordingly, there is no attenuation in the ray tube intransformation relating the local coordinates, which are ap-
tensity. The angular coordinates used drand ¢ and, for  propriate for describing the orbiting, to the coordinates of the
the sake of simplicity, we set the radius of the orbit to 1; thenambient space, which is the whok® space equipped with

we haveg;;=1,g,,=Sir*6,g,,=0,=0. From Egs.(8) and  the Euclidean metric. The leakage from the tube of circular

(9) we get trajectories can be described as follows. A beam of particles
5 enter the interaction region, describe circular orbits of radius
do _ R, and, after a certain number of revolutions can emerge and
— =1, (10 . . ) : ; .
de leave tangentially the interaction region. In atomic scattering,

the latter is not well defined because of the long tail of the
1 . ,dd potentials. However, we can regard as the domain of interest
[sing| | do |sin6|A gg) (=0 (@Fnm), (1D for the orbiting process, the region delimited by the centrifu-
gal barrier from one side, and by the hard cdog more
where we suppose that both the phdsand the amplitudé  precisely by the high order singularity of the potential at the

do not depend omp. origin) from the other side. It is precisely in this domain that
From Eq.(10) we haved = + 6+ const. Next, substituting the orbiting resonances take place; the lifetime of these states
Eq. (10) into Eq.(11) we finally obtain[see formula4)] is then related to the probability of tunneling across the cen-
trifugal barrier. The ambient space is properly described by
_const .. _ the Cartesian coordinates,{/,z), the z axis being directed
u(6,k)= me (0#nm,n=0132...), along the incident beam and positively oriented in the direc-

(12) tion of the outgoing particles. The local coordinates
(69,d0,7) are defined as followsd, is the angle measured
where the terme* ¥’ represent waves traveling in counter- along the meridian circle from the point of incidence of the
clockwise senseg“’) or in a clockwise sensee(“%). At  ray; ¢, is the azimuthal angle, andis a parameter along the
this point let us note that approximatioii2) fails at ¢  ray tangential to the circular orbit. We can then evaluate the
=nw (n=0,1,2...), i.e., this approximation is not uni- Jacobiansee also Ref.28]):
form. In particular, we are obliged to find the connection
formulas relating the traveling waves when they cross the AX,y,2)
antipodal point®9=0 andé= 7. These connection formulas = m
can be established by the use of the Maslov indexes. Here we 0o
simply give the resultgthe interested reader is referred to
Refs.[28,29). The domain where the Jacobian vanishes is composéd) by
(i) For the counterclockwise orbiting wave we have, afterthe surfacer=0; and(b) the semiaxis{=0x=0y=0) rep-
the crossing through the poi#t=0, resented byr= r=R cotf,. When the Jacobian vanishes the

=7(Rcosfy— 7siné). (15)
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eikonal approximation failgfor a detailed discussion of this X

very delicate mathematical point see R&8]); furthermore,
on the surfacer=0 there is an attenuation of the intensity
flux. We shall return below on this point. On the other hand,
we can still use the transport equation written in the follow- -
ing form: 1

d 2
T(9A)=0, (16)

ol

wheneverld# 0, and the current density is conserved. In par-
ticular, in the asymptotic region we can wrife= constA/J.
Now, sincer=+r2—RZ%, r being the radial variabler(
=x2+y2+7%), then 7 tends tor asr—o. Accordingly, we
obtain \JJ—iry/sing, as r—. At this point, in order to
evaluate the contribution to the wave function, at large val-
ues ofr, of the various classes of trajectories, we must dis-
tinguish between counterclockwise and clockwise oriented FIG. 1. Geometrical model of orbiting: the ray beldsolid line
orbits. We start considering the contributions of the counterwith open arrowstravelsd; radians in counterclockwise sense; the
clockwise trajectories that leave the circular orbit withoutray above(dashed line with filled arrowstravels in a clockwise

completing one tour and that cross thaxis only once. We sense and crosses the axial caugtie., thez axis) twice before
have, for large values af emerging in the direction of the scattering angle The angled,

coincides with the scattering angtg .

r—o elk(Rag +1)
uo(k,r,8g) ~ a(k,by)——— ikR(27— 0
irysinég foyk,0s)=(—D)a(k, ) ——
0 (0) S S \/SITGS
ek ikRoy

=a(k,6g)e '"P— 17 (0<fs<mr). (19

rsing,

N . Notice that the factor 1) is due to the product of two
(0< 6o <m). Formula(17) requires some comments. Here- Maslov phase factors, in view of the fact that the clockwise
after we shall use a superscript  for all the quantities that  trajectory crossed the axis twice, even if it has not com-
refer to counterclockwise trajectories, and a superscript pleted one orbit.
(—) for all what refers to clockwise oriented rays; the sub-  Adding f(+0) to (g, we obtain the contribution of all the
script (0) in the notation ofi refers to the fact thaly ac-  rays that have not completed one orbit,
counts only for the trajectories that have not completed one
circular orbit. The factorm(k, ;) describes the leakage of

—ft -
the particles by the tunneling effect. The phasdsee for- fo)(k,0s) =T o)+ (o)

mula (4)] now reads® (63 ,r)=Rég + rr:xRngrr, and oikRAs_joikR(2m—65)
the factore '™ can be regarded as the Maslov phase shift = —ia(k, fs) -
due to the crossing of the trajectory across #texis, where Vsin b

the Jacobiand vanishegdsee formula13)]. We can now ob-
serve that the anglé, coincides with the scattering angle
(see Fig. 1 we can then evaluate the contribution to the
scattering amplitude due to the counterclockwise trajectorie¥Ve must now take into account the contribution of all those
which have not completed one orbit. We obtain, with obvioustrajectories that describe more than one complete circular

(0< 0s<r). (20

notation orbit before emerging. Let us assume that theynddm
e N) complete tours. The angleé»gfm are related to the scat-
—im/24ikROg tering angled, as follows:
f(+0)(k, 05) = a(k, GS)W
S Ogm=0s+2mm (M=0,12...), (21
(0<Os<m). (18)
Similarly, we can evaluate the contribution to the scattering Oom=2m= O+ 2mm. (22
amplitude of a clockwise trajectory which has not completed
one tour. By observing thad, =27 — 65, we have We have, for B< 6,<1r,

032728-4



ORBITING RESONANCES AND BOUND STATES IN . .. PHYSICAL REVIEW A5 032728

* energyE. The rhs of formulg29) is singular atf=0, where
f(k,6g)=—i>, (—1)Me?™MkRa(k, 6;) P\ e)(—cos6) presents a logarithmic singularif1]; there-
m=0 fore, representatioi29) is only an approximation, since a
QikROs_ j okR(27m— 0 bgckground compensating term th.at makes the amplitude fi-
% ) (23)  nite and regular at every value éfis neglected. Neverthe-
NS less this approximation is very useful because it can describe

) ) a sequence of resonances and bound states. In fact)ififke
Once again the factor<1), at eachm, is dug to the product g, integer and Im<1, then the denominator sin(E) is
of two Maslov phase faptors, correspond|_ng to the fact thag|gse to zero and, accordingly, we observe a bump in the
both the counterclockwise and the clockwise rays crosg the ;oss section. i.e.. we have an orbiting resonance. Sirise
axis twice for each complete circular orbit. The teak, 6) a function of the energy, representati) describes a se-

can be regarded as a damping factor that gives the attenuggence of resonances which are obtained whenevex Re
tion of the tube of circular orbits due to the tunneling through . osses integer values, while krremains very small. As we

the centrifugal barrier. At fixe& we can thus represent the gh4)1 see in Sec. IV. Ik tends to zero aE tends to zero. For

leakage of the tube of orbiting particles by the use of anggative energy Iv=0 and we have bound states instead
exponential of the following form: exp{yRé,). Accord-  of resonances whenever Recrosses integer values. At the
ingly, the damping factoa(k, 65) can be split in the product end, we obtain a pole trajectory connecting bound states to
of two terms as followsg(k) exp(— ¥R, ). Coming back  resonances as it will be shown in Sec. IV.

to the scattering angléd, we rewrite expressiori23) as

follows [see also formulag2l) and(22)]:
[ &1 ( )] I1l. ORBITING RESONANCES AND BOUND STATES

(YY) ialu(2m—0 . .
e jgin(2m 09 In this paper we focus our attention only on those effects

Jsin 6, that contribute to the more relevant component of the spec-
(24) trum: the orbiting resonances and the bound states. However,
they do not exhaust the entire phenomenology: in particular,
(0<0s<m), whereu=R(k+iy). Next, we use the follow- there are also the “direct component” of the collision which
Ing expansion: is essentially composed of direct reflections, and the “for-
ward glory” contribution. The former component does not
require particular explanations; instead, it is worth spending

f(k, )= —ig(lomz=0 (—1)me2mmu

:eiwu 20 (_ 1)mei27rm,u (|m /U“>0) (25)

2 cosmu a few words about the forward glory contribution, especially
in relation with the so called “glory undulations.” The latter
By using equality(25) we can rewrite formuld24) as effect is produced by those paths that, moving through attrac-
' _ tive and repulsive regions of the potential undergo equal
k.6 = (k)e‘”"‘e_“w— Os) = ml4] 1 @il p(m=05) = mla] positive and negative deflections and finally emerge at zero
Vs g 2 cosmun/sin o, angle. Then, the interference between such paths and the

(26) forward-diffracted trajectories with a large impact parameter
gives rise to forward glory oscillations that appear as undu-
(0< 6s< ). The right-hand sidérhs) of formula (26) con- lations(glory undulation$ in the total cross sectiof5,21].
tains the asymptotic behavior Q/im times the Legendre The total number of oscillations can be related to the number
functions P, 1/(—coséy) for |u|—o and |u|(7— 65)>1 of bound states in the potenti@1]. This r_elationship is one
(see Ref[30]). Then, writingP,, _ 1,( — coséy) in place of its of the motivations of the great attention devoted to the

asymptotic behavior, we have fou|— o~ and 0< ;< “glory undulations” by several author32]. In our analysis
we do not consider the “direct component” of the scattering,

)eiwm‘/z”'“Pu—l/Z(_Cosas) ) which can be globally described by a “background term,”

f(k,05)=—g(k 2 cosn . (27D which we neglect. _ _ _
More generally, let us briefly recall that in classical scat-
Finally, by settingu—1/2=\, we obtain, for 6< § =, tering theory if the deflection function goes through z@no
= through a negative multiple of for a nonzero value of the
A T P\ (—cosfy) impact parametgrthe differential cross section diverges like
f(k, 6S)=g(k)e'”’47v2)\+ 1 % (28)  (sin®)"1 (O being the classical deflection angl&he diver-
gence can occur either in the forward directi®r= —2n
It is then convenient to rewrite formu(&8) in the following, (n=0,1,2 ... ;forward glory), or in the backward direction
more conventional, form: O=—-(2n+1)7 (n=0,1,2...; backward glory. Return-

ing to the geometrical theory of the orbiting outlined in the
previous section, we see that, up to form@®), f(k, o)
presents singularities #&,=0 and #s= 7, which are due to
the factor (sirg) Y2 Next, passing from formuld26) to
where the scattering angle is now simply denotedbbgnd  representation(27) we introduce the Legendre functions
G(E)=13me'™g(k) 2\ +1 is the factor referred to the P, (—cosé) which are logarithmically singular &= 0, but

P\ (g)(—cos0)

f(E,@)ZG(E)W

(0<b=<m), (29

032728-5



ENRICO DE MICHELI AND GIOVANNI ALBERTO VIANO PHYSICAL REVIEW A 65 032728

regular atds= 7. The smoothing of these singularities corre- i 1a(krg)

sponds to the passage from the classical to the semiclassical o =tan 1N—(kr)’ (33

approximation. As we have already noted several times, the I+a/Z 270

obtained representation is far from being complete, as it does

not represent the direct components of the collision: diffracwhere J;, 1, and N, denote the Bessel and Neumann

tion, direct reflection, and forward glory contributioh5]. functions, respectively. It is easy to check that when
Hereafter we will show that representatit@0), in spite = (I +1)#/2, then the phase shif , given by formula(33),

of the limits mentioned above, can, nevertheless, represeeguals (- m/2); but the phenomenological daisee the next

an ordered sequence of orbiting resonances. With this isection indicate that the radius, of the hard core, which

mind, we project the amplitud@9) on thelth partial wave, models the repulsive component of the interaction, varies

obtaining with |. We can then writékr, instead ofkr,, and relate this
expression to the angular moment{im(«+ 1)]*? through
e2%—1 G(E) 1 @0 the equalitykr,=B,[ a(«+1)]*2, whereB, is a phenomeno-
Q=05 = A - ) logical parameter. We then glue together the term describing
21k ™ (atif=l(atiptl+1) the orbiting to the hard-core phase shifts as
wherea+iB=N\. Next, when the elastic unitarity condition
may be applied, we get the following relationship amdag 5 —sin-1 B(2a+1)
i =sin
@ andp: | {[(1— )2+ B2+ a+ 1) 2+ g2} 12
& Ji 4 12Bl[a(a+1)]Y
G(E)=— 1 B2a+1). (31) +A,tan‘1( e Bila )]1,2) , (34)
N 1B [ a(a+1)]"9)

From Egs.(30) and(31) we obtain
where A;, as well asB,, depends orl, and both can be

regarded as fitting parameters. As we shall show in Sec. 1V,
B(2a+1) (32 formula (34) is able to reproduce an ordered sequence of
{[(1— @)+ B2I[ (1 + a+1)2+ g21Y2° orbiting resonances, and also gives in the correct order the
downward crossing of the phase shifisthrough /2. The
parameted, in formula (34) accounts for the strength of the
repulsive action which models the singularity of the potential
at the origin. This strength decreases as the angular momen-
m increases, in agreement with the fact that the radius of
e hard core increases withFrom the phenomenological
analysis the dependence Af and B, on | turns out to be
nearly linear{see Figs. &) and 3d)].
It is interesting to notice that a similar approach has been

8=sin"!

Formula(32) represents a sequence of orbiting resonance
i.e., an ordered set of phase shifts that créss /2 with
positive derivative.

The bound states are not directly revealed by scatterir:)g_“
experiments. We know, however, from the generalize
Levinson theorem tha# (0)=n,m, wheren, is the number
of bound states with angular momentumincluding those
states which are not admitted by the Pauli princif2&]. , X e ! )
Hereafter we shall consider, however, atom-atom scatterin@p‘%“ed also in nuclear physics, in particular in éaex and
where the Pauli excluded states are not involved. Furtherd~ C@ elastic scatteringsee Refs[34,35). In these works
more, in the cases considered in the next section we shdff€ hard-core-type interaction has been used in place of the
deal with a sequence of phase shifts whose zero-energy valljaore real|§t|c, put less tractable, exchange forces Wr_nch, .uI—
is exactlys. This implies that there is a sequence of boundfiMmately, give rise to nonlocal potentials. However, in this
states with increasing value of the angular momentuvile ~ ©8S€ the approx_lmanon is not very faithful; in fa(_:t, while the
shall see that these bound states can be connected with cdfis ©f the rotational resonances are very satisfactory, for
tinuity to the sequence of orbiting resonances, thus obtaininyNat concerns the downward passage of the phase shifts, the

a band of bound states and resonar{cetational bangigen- eory_yields only the general trend, but lacks _for deta@ls. An
erated by a unique pole moving in the complex angular moé@nalysis of the complex angular momentum singularities as-
mentum plane. At this point we are faced with the problemsoc'ated with nonlocal potentials is currently in progress

of finding a representation which is able to describe thos&/hich aims at obtaining a more accurate representation of

phase shifts that do not resonate but decrease from their zertt® downward behavior of the nuclear phase shifts.

energy value, which isr, and crossr/2 downward, and also

th_at part of the phase.shlfts that decrease aﬁgr a resonance. IV. PHENOMENOLOGICAL ANALYSIS

Since these phase shifts are due to the repulsive component

of the potential, we can assume, in a very rough model, that In this section a series of numerical fits, performed by

they are produced by a hard-core potential. In the subsequensing formula(34), will be presented. The experimental data

section we shall see that this model, in spite of its roughnesseing considered concern the H-Kr system, and are taken

is in reasonable agreement with the phenomenological datérom Ref.[5]; in particular, we refer to Fig. 3 of that refer-
First, let us recall that the phase shifts produced by amnce. In formuld34) the quantitiesh; andB, are considered

impenetrable sphere of radiug are given by[33] as free fitting parameters, and for what concerns the func-
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FIG. 2. H-Kr system(a) Observed phase shiff§] and corre-
sponding fit§ see formulg34)] for the partial wave$=4,5,6 vs the
energy of the center of massE. d;=0.13 (meV) Y3
d,=—0.48 (meV) ?[see formula36)]. | =4: observed Q), fit-
ted (dotted ling. 1=5: observed {), fitted (dashed ling |=6:
observed [0), fitted (dash-dotted ling (b) a(a+1) vsE [see for-
mula(35)].1=5.1 (meV) !; ay=15.8. The filled dots indicate the
energyE, of the resonance for the partial waves4,5,6: The open
circles indicate the energy valuds of the bound states for
=0,1,2,3 extrapolated from the line(a+1): Ej=—1.55 meV,
E;=—-1.35 meV,E,=—0.96 meV,E;=—0.37 meV.

tions a(E) and B(E) we adopt the following parametriza-
tions:

a(a+1)=2IE+ ay, (35

B=d;a(E)VE+d,E,

where | = uR? is the moment of inertiay is the reduced
mass R the interparticle distance, artlis the center of mass

(36)
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energy; the parameteds, andd,, which from the analysis
turn out to be nearly independent lpfand the intercepig
are to be determined through the fits of the experimental
phase shift§see the figure legends for numerical dejails

In Fig. 2(a) the fits of the phase shifts fo=4,5,6, which
display orbiting resonances, are shown. The upward cross-
ings of 6= /2, i.e., the energies of the resonances, are re-
ported in Fig. 2b) in correspondence with the integer values
of «=4,5,6 (filled dotg, along with their interpolation with
the line a(a+1) as a function ofe. The good agreement
between resonance locations>0) and the linea(a+1)
strongly supports the correctness of the linear parametriza-
tion (35). Since ap>0, we can extrapolate, fdE<O0, the
location of the bound states correspondinglte0,1,2,3
(open circles

In Figs. 3a) and 3b) the fits of the phase shifts fdr
=0,1 andl=2,3 are shown. The high energy behavior is
well reproduced, whereas the Levinson valueeatO (i.e.,
8= ), which is clearly satisfied by the experimental data, is
not reached by the fitting curves. On the other hand, it is
quite tempting to notice that if we extrapolate these theoret-
ical phase shifts to the unphysical region at negative energy
(in spite of the fact that the phase shifts have physical mean-
ing exclusively at non-negative enejgthey get close to the
value 6= 7 approximately at the energi€s,, E;, E,, and
E3, which closely correspond to the location of the bound
states that have been recovered from Figdp),2and whose
angular momenta are precisdly0,1,2,3. In Figs. &) and
3(d) the values of the parametéy and B, that result from
the fits of Figs. 2a), 3(a), and 3b) are displayed as functions
of I. A, presents a nearly linear decrease wittwhile B,
increases almost linearly with

Concluding, we illustrate the relationship between the
function B8 and the widthsI' of the orbiting resonances.
These quantities are related to the tunneling across the cen-
trifugal barrier, which is now a complex quantity. We have

AA+1) 1 r
from which it follows
r= M (I=moment of inertia. (39

From EQq.(38) I" can be easily evaluated, sina¢E), B(E),
and | are recovered from the fits of the phase shifts; the
values of " are, respectivelyl=4, ['=4.69x10 2 meV;
|=5,'=4.45<10"! meV;I1=6,'=1.30 meV.

V. FINAL REMARKS

In conclusion, we want to stress the difference between
orbiting and diffracted rays. The diffracted rays can be ex-
plained as follows: when a ray grazes a boundary surface, it
splits in two: one part keeps going as an ordinary ray,
whereas the other part travels along the surface. At every
point along its path this ray splits in two again: one part
proceeds along the surface, and the other one leaves the sur-
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face along the tangent to the surface itself. This splitting camlergo small deflection caused by the tail of the poteritiaé

be mathematically explained as due to the nonuniqueness &ef.[15]).

the Cauchy problem for geodesics in a Riemannian manifold Finally, it is worth remarking that in the orbiting phenom-
with boundary(see Ref[28]). The damping factors can then ena and in the case of diffracted rays, the attenuation can be
be related to the curvature of the diffracting bd@g]. Con-  explained merely as a damping of the amplitude, while the
versely, for what concerns the orbiting case, the attenuatiophase remains real: in both cases we can properly speak of
of the current of orbiting particles is produced by the leakageeal rays. However, one is tempted to explain the attenuation
of the ray tube of the particles which describe circular orbits,of the intensity of the flux by introducing a complex phase,
and which is due to the tunneling across the centrifugal barand, accordingly complex rays. We believe that this approach
rier. It follows that the nature and the extent of the dampings not at all convenient for describing orbiting and diffraction
factors are drastically different in these two phenomena. W@henomena, where the attenuation of the amplitude can be
can say that, while the diffracted rays are produced by edgevaluated through the transport equation. Conversely, com-
effects, this is not at all the case for the orbiting phenomengplex rays emerge, as appropriate mathematical solutions of
Edge effects are indeed relevant in optics where the diffractthe eikonal equation, for representing the shadow of the
ing body (i.e., the obstacleis compact, but in particle scat- caustic. Therefore, they play a relevant role in total reflec-
tering they can be observed only in those processes describ&dn, where they describe the exponentially damped penetra-
by short-range potentials, e.g., decreasing exponentially in tion into the rarer medium associated with the surface waves
which can simulate boundary effects. This does not happetraveling along the boundary. In molecular scattering they
in molecular scattering where the potentials that describare again present in rainbow phenomena, and precisely in the
properly the phenomena are of Lennard-Jones type, whickhadow of the rainbow caustic. In fact, we can show that in
decrease, for large values of only as an inverse power. the neighborhood of a caustic the nature of the eikonal equa-
Thus, we can say that the near-forward diffractive scatteringion differs from the standard one: its characteristics, which
by a potential of this type, which is having a long-range tail,are real in the illuminated region, become complex conjugate
is not due to edge diffraction but is rather produced by thebeyond the caustié.e., in the shadow of the caustiand
contributions of very large angular momentum paths that uneorrespond to the complex rays.
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