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Orbiting resonances and bound states in molecular scattering
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A family of orbiting resonances in molecular scattering is globally described by using a single pole moving
in the complex angular momentum plane. The extrapolation of this pole at negative energies gives the location
of the bound states. Then a single pole trajectory, which connects a rotational band of bound states and orbiting
resonances, is obtained. These complex angular momentum singularities are derived through a geometrical
theory of the orbiting. The downward crossing of the phase shifts throughp/2, due to the repulsive region of
the molecular potential, is estimated by using a simple hard-core model. Some remarks about the difference
between diffracted rays and orbiting are also given.
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I. INTRODUCTION

After a long search, about two decades ago it beca
possible to observe orbiting resonances~or quasibound
states! in molecular beam scattering@1–5#. Although these
phenomena can be quite naturally interpreted in the fra
work of scattering theory@6#, their semiclassical nature cal
for a more refined analysis, mainly geometrical, which h
been partially performed by several authors, and notably
Berry @7–9#. In this spirit, also advocated has been the use
the complex angular momentum plane polology, especi
by Bosanac@10–12#, Connor@13,14# and Nussenzveig~see
in particular his book@15# and the references quoted therein!.
In the latter approach, however, some problems remain,
a detailed phenomenological analysis is in part still missi

In the standard complex angular momentum approach
generally considers a given class of potentials, and then
plores the analytical properties of the partial waves alo
with their asymptotic behavior in the complex angular m
mentum plane. If these analytical properties and asympt
behaviors allow for using the Watson transformation@16#,
then a resummation of the partial wave expansion can
performed, and the total scattering amplitude can be re
sented in terms of poles along with a background integ
The main limit of this method consists of the fact that
works only for a rather restricted class of potentials, nota
for the Yukawian class@17#, which is not very important in
molecular scattering. Nussenzveig@18–20#, in a series of
very significant papers, extended the complex angular
mentum method with particular attention to optical pro
lems. In this context, the hard-core potential has been tre
in detail, and, in addition to the Watson resummation, a
the Poisson transformation has been used~see also Ref.@9#!.
The latter seems to be more promising for semiclassical s
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tering theories like the one that is of interest in the pres
paper. However, it must be noted that molecular scatterin
usually described in terms of the Lennard-Jones or Mor
type potential@21#; it is worth noting that singular potential
of the typeg2r 2n, n.2, present an infinite number of pole
in the first quadrant of the complex angular momentu
plane, and, in such a situation, one is forced to use a m
fied Watson transformation. As far as we know, this appro
has been rigorously proved in the caseg2r 24 by Dombey
and Jones@22#, and then conjectured forg2r 2n, n.4. Fur-
thermore, several authors, and notably those from the U
sala school@23–25#, have applied the phase-integral meth
to derive locations and residues of the poles in the comp
angular momentum plane, for singular potentials of the fo
V(r )5g2r 2nf (r ) (n>4). It should be noted that the pri
mary goal of all these researches consists of substitutin
the partial-wave expansion, in a region where it is slow
convergent, more rapidly convergent representations.
latter then split the scattering amplitude into a sum of p
contributions and one or more integral terms which are u
ally evaluated by means of the saddle point method.

Our viewpoint is quite different. We think that also in th
region where only one partial wave is dominant a comp
angular momentum representation can be useful if we w
to interpolate the various orbiting resonances with a sin
moving pole, whose extrapolation at negative energies
then give the bound states. With this in mind, we focus o
attention on the poles of the scattering amplitude in the co
plex angular momentum plane, and we neglect, to a cer
extent, the background integral, as will be explained bel
To this purpose, a geometrical method of derivation of
complex angular momentum poles is implemented: inst
of studying the analytical and asymptotic properties of
partial waves for a specific class of potentials, we analyze
particle motion~and specifically the orbiting! in a Riemann-
ian space whose metric is induced by the potential.

In view of the fact that we are treating a semiclassi
scattering problem, the concept of particle path~or trajec-
tory! still conserves its meaning. We are therefore allowed
©2002 The American Physical Society28-1
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study the geodesics~i.e., the particle paths! in a space whose
Riemannian metric is given byn2dxidxj , n2512V/E, E
being the energy andV the potential. The coordinatesxi re-
quire a more detailed comment: in fact, one generally cla
to solve the dynamical problem in the whole spaceR3 by
using a unique coordinate system for all the points of
space being considered. Here we prefer to introduce lo
coordinates that are appropriate to describe locally the
ticle trajectories, and then to use different coordinate syst
elsewhere in space. We are thus led to consider the Jaco
of the transformation connecting the local coordinates to
ambient space coordinates. The transformation is singula
those domains where the Jacobian vanishes. We can
work out the problem by means of two geometrical too
geodesics, which describe locally the particle paths, and
cobians. The global solution emerges by patching up geo
sic segments which represent local solutions. We will sh
in Sec. II that by the sole use of these geometrical ingre
ents it is possible to obtain a representation of the scatte
amplitude in terms of complex angular momentum plane s
gularities~poles!.

However, this representation is not complete, and
only be regarded as an approximation; in what follows
shall discuss the pros and cons of this representation. Fir
all we obtain an angular distribution in terms of the Legen
functions~not polynomials! of a complex index that presen
a logarithmic singularity forwards~i.e., at null scattering
angle!. This fact suggests that a compensating backgro
term is missing in a representation which uses only po
However, it is possible to project the scattering amplitu
~represented only by poles! on the partial waves, and th
result can be regarded as a faithful representation, at leas
an angular momentum sufficiently small. Furthermore,
consequent integral~total! cross section is finite, since th
singularity of the Legendre functions involved is only log
rithmic. On the other hand, the advantage of this represe
tion is that the entire sequence of orbiting resonances ca
fitted by using a single pole. The latter, while moving as
function of the energy, is able to describe in an ordered w
the passage of the phase shifts of various angular mom
through p/2, which is the value of the phase shifts corr
sponding to the resonances. Therefore, a global view
explanation of the orbiting resonances is obtained.

Furthermore, these moving poles produce bound state
those values of the energy where the angular momen
~which is real at negative energy! takes integer values. W
thus obtain a trajectory of the complex angular moment
pole as a function of the energy, which gives bound state
negative energy and resonances at positive energy. O
ously, the bound states are not observed directly by scatte
experiments. Their existence is, however, revealed by
fact that the phase shiftd l at zero energy is given bynlp ~as
explained by the generalized Levinson theorem! wherenl is
the number of bound states with angular momentum equa
l ~see Refs.@26,27#, and Secs. III and IV!. These nonresonat
ing phase shifts decrease at higher energy passing thr
p/2 in a downward direction. This downward crossing
p/2 does not correspond to a resonance, but it is rather du
a repulsive potential. We can, however, fit this part of t
03272
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phase shifts by regarding them as the ones produced
repulsive hard core in a sense that will be explained in de
in Sec. III.

The paper is organized as follows: in Sec. II we outline
geometric theory of the orbiting, and obtain an approxim
representation of the scattering amplitude in terms of mov
poles ~complex angular momentum poles!. In Sec. III we
derive a fitting formula for the phase shifts that accounts a
for the role of the nonresonating phase shifts. Section IV
devoted to the phenomenological analysis. Finally, in Sec
we draw some conclusions, and briefly discuss the differe
between orbiting and diffracted rays, and, accordingly,
tween resonances and diffraction.

II. OUTLINE OF THE GEOMETRICAL THEORY
OF THE ORBITING

Let us start from the Helmholtz’s equation

Du1k2n2u50, S n2512
V

ED , ~1!

whereE is the energy andV the potential. Now, we look for
a solution of Eq.~1! of the following form:

u~x,k!5E A~x,b!eikF(x,b)db, ~xPR3!. ~2!

The principal contribution tou(x,k), ask→`, corresponds
to the stationary points ofF, in the neighborhoods of which
the exponential exp(ikF) ceases to oscillate rapidly. Thes
stationary points can be obtained from the equat
]F(x,b)/]b50 @assuming that]2F(x,b)/]b2Þ0#. Then,
the following asymptotic expansion ofu, ask→`, is valid:

u~x,k!.eikF(x,b0) (
m50

`
Am

~ ik!m
, ~3!

whereb0 is the unique stationary point ofF at fixedx. The
leading term of expansion~3! reads

u~x,k!5A0~x!eikF(x,b0), ~4!

where

A0~x!5A~x,b0!S U]2F

]b2U21/2D
b5b0

3expH i
p

4
sgnS ]2F

]b2 D
b5b0

J . ~5!

The leading term~that hereafter will be written asAeikF,
omitting the subscript zero! can be substituted into Eq.~1!
and then, by collecting the powers of (ik) and nulling their
coefficients, we obtain two equations:~a! the eikonal equa-
tion
8-2
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ORBITING RESONANCES AND BOUND STATES IN . . . PHYSICAL REVIEW A65 032728
~“F!25n2512
V

E
, ~6!

and ~b! the transport equation

“•~A2
“F!50. ~7!

The physical meaning of the transport equation~7! is that the
probability current density is conserved. In order to expl
the geometrical content of the eikonal equation, it is con
nient to replace the optical indexn2 with a Riemaniann met-
ric tensorgi j . Then, the eikonal equation can be rewritten

gi j
]F

]xi

]F

]xj
51, @gi j 5~gi j !

21#, ~8!

$xi% representing a system of local coordinates. Accordin
the transport equation will be rewritten in the followin
form:

1

Ag
(

i

]

]xi
HAgS A2(

j
gi j

]F

]xj
D J 50, ~9!

whereg5udet (gi j )u. Now, we consider the tube compose
by the trajectories which describe only circular orbits a
assuming, at this stage, that there is no leakage from the
and, accordingly, there is no attenuation in the ray tube
tensity. The angular coordinates used areu and f and, for
the sake of simplicity, we set the radius of the orbit to 1; th
we haveg1151,g225sin2u,g125g2150. From Eqs.~8! and
~9! we get

S dF

du D 2

51, ~10!

1

usinuu H d

du S usinuuA2
dF

du D J 50 ~uÞnp!, ~11!

where we suppose that both the phaseF and the amplitudeA
do not depend onf.

From Eq.~10! we haveF56u1const. Next, substituting
Eq. ~10! into Eq. ~11! we finally obtain@see formula~4!#

u~u,k!5
const

Ausinuu
e6 iku ~uÞnp,n50,1,2, . . . !,

~12!

where the termse6 iku represent waves traveling in counte
clockwise sense (eiku) or in a clockwise sense (e2 iku). At
this point let us note that approximation~12! fails at u
5np (n50,1,2, . . . ), i.e., this approximation is not uni
form. In particular, we are obliged to find the connecti
formulas relating the traveling waves when they cross
antipodal pointsu50 andu5p. These connection formula
can be established by the use of the Maslov indexes. Her
simply give the results~the interested reader is referred
Refs.@28,29#!.

~i! For the counterclockwise orbiting wave we have, af
the crossing through the pointu50,
03272
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eiku ——→
after the crossing

ei[ ku2(p/2)]. ~13!

~ii ! For the clockwise orbiting wave we have, after th
crossing through the pointu50,

e2 iku ——→
after the crossing

e2 i[ ku2(p/2)]. ~14!

Therefore, for each complete tour, both the counterclockw
and the clockwise oriented rays cross the antipodal po
u50 andu5p, and accordingly, in both cases the amplitu
acquires a factor (21).

We have seen that at the antipodal points the amplit
becomes infinite if we use theu representation. But in the
Maslov construction use is made of thepu representation (pu
being the variable conjugate tou), and in thepu representa-
tion the intensity of the ray tube is finite@29#.

In the case of unstable states the probability current d
sity is not conserved and a tunnelling through the centrifu
barrier can, indeed, produce an attenuation of the intensit
the ray tube. The phenomenon can be represented by pi
ing trajectories which leave tangentially the circular or
and emerge at large distances. In this process the wholeR3

space is involved and we must analyze the JacobianJ of the
transformation relating the local coordinates, which are
propriate for describing the orbiting, to the coordinates of
ambient space, which is the wholeR3 space equipped with
the Euclidean metric. The leakage from the tube of circu
trajectories can be described as follows. A beam of partic
enter the interaction region, describe circular orbits of rad
R, and, after a certain number of revolutions can emerge
leave tangentially the interaction region. In atomic scatteri
the latter is not well defined because of the long tail of t
potentials. However, we can regard as the domain of inte
for the orbiting process, the region delimited by the centri
gal barrier from one side, and by the hard core~or more
precisely by the high order singularity of the potential at t
origin! from the other side. It is precisely in this domain th
the orbiting resonances take place; the lifetime of these st
is then related to the probability of tunneling across the c
trifugal barrier. The ambient space is properly described
the Cartesian coordinates (x,y,z), the z axis being directed
along the incident beam and positively oriented in the dir
tion of the outgoing particles. The local coordinat
(u0 ,f0 ,t) are defined as follows:u0 is the angle measure
along the meridian circle from the point of incidence of t
ray; f0 is the azimuthal angle, andt is a parameter along th
ray tangential to the circular orbit. We can then evaluate
Jacobian~see also Ref.@28#!:

J5
]~x,y,z!

]~u0 ,f0 ,t!
5t~R cosu02t sinu0!. ~15!

The domain where the Jacobian vanishes is composed b~a!
the surfacet50; and~b! the semiaxis (z>0,x50,y50) rep-
resented byt5 t̄5R cotu0. When the Jacobian vanishes th
8-3
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eikonal approximation fails~for a detailed discussion of thi
very delicate mathematical point see Ref.@28#!; furthermore,
on the surfacet50 there is an attenuation of the intensi
flux. We shall return below on this point. On the other han
we can still use the transport equation written in the follo
ing form:

1

J

d

dt
~JA2!50, ~16!

wheneverJÞ0, and the current density is conserved. In p
ticular, in the asymptotic region we can writeA5const/AJ.

Now, sincet5Ar 22R2, r being the radial variable (r 2

5x21y21z2), thent tends tor as r→`. Accordingly, we
obtain AJ→ irAsinu0 as r→`. At this point, in order to
evaluate the contribution to the wave function, at large v
ues ofr, of the various classes of trajectories, we must d
tinguish between counterclockwise and clockwise orien
orbits. We start considering the contributions of the coun
clockwise trajectories that leave the circular orbit witho
completing one tour and that cross thez axis only once. We
have, for large values ofr,

u0~k,r ,u0
1! ;

r→`

a~k,u0
1!

eik(Ru0
1

1r )

irAsinu0
1

5a~k,u0
1!e2 ip/2

eikr

r

eikRu0
1

Asinu0
1

~17!

(0,u0
1,p). Formula~17! requires some comments. Her

after we shall use a superscript (1) for all the quantities that
refer to counterclockwise trajectories, and a superscr
(2) for all what refers to clockwise oriented rays; the su
script (0) in the notation ofu refers to the fact thatu0 ac-
counts only for the trajectories that have not completed
circular orbit. The factora(k,u0

1) describes the leakage o
the particles by the tunneling effect. The phaseF @see for-
mula ~4!# now readsF(u0

1 ,r )5Ru0
11t ;

r→`
Ru0

11r , and

the factore2 ip/2 can be regarded as the Maslov phase s
due to the crossing of the trajectory across thez axis, where
the JacobianJ vanishes@see formula~13!#. We can now ob-
serve that the angleu0

1 coincides with the scattering angleus

~see Fig. 1!; we can then evaluate the contribution to t
scattering amplitude due to the counterclockwise trajecto
which have not completed one orbit. We obtain, with obvio
notation

f (0)
1 ~k,us!5a~k,us!

e2 ip/2eikRus

Asinus

~0,us,p!. ~18!

Similarly, we can evaluate the contribution to the scatter
amplitude of a clockwise trajectory which has not comple
one tour. By observing thatu0

252p2us , we have
03272
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f (0)
2 ~k,us!5~21!a~k,us!

eikR(2p2us)

Asinus

~0,us,p!. ~19!

Notice that the factor (21) is due to the product of two
Maslov phase factors, in view of the fact that the clockw
trajectory crossed thez axis twice, even if it has not com
pleted one orbit.

Adding f (0)
1 to f (0)

2 , we obtain the contribution of all the
rays that have not completed one orbit,

f (0)~k,us!5 f (0)
1 1 f (0)

2

52 ia~k,us!
eikRus2 ieikR(2p2us)

Asinus

~0,us,p!. ~20!

We must now take into account the contribution of all tho
trajectories that describe more than one complete circ
orbit before emerging. Let us assume that they dom (m
PN) complete tours. The anglesu0,m

6 are related to the scat
tering angleus as follows:

u0,m
1 5us12pm ~m50,1,2, . . . !, ~21!

u0,m
2 52p2us12pm. ~22!

We have, for 0,us,p,

FIG. 1. Geometrical model of orbiting: the ray below~solid line
with open arrows! travelsu0

1 radians in counterclockwise sense; th
ray above~dashed line with filled arrows! travels in a clockwise
sense and crosses the axial caustic~i.e., thez axis! twice before
emerging in the direction of the scattering angleus .The angleu0

1

coincides with the scattering angleus .
8-4



t
ha
he

n
gh
e
a

t

a
e fi-
-
ribe

the

-
e

ad
e
s to

cts
ec-
ver,
lar,
h

or-
ot
ing
lly
r
rac-
ual
ero
the

ter
du-

ber

he

g,
,’’

at-

e

e

s

ORBITING RESONANCES AND BOUND STATES IN . . . PHYSICAL REVIEW A65 032728
f ~k,us!52 i (
m50

`

~21!mei2pmkRa~k,us!

3
eikRus2 ieikR(2p2us)

Asinus

. ~23!

Once again the factor (21), at eachm, is due to the produc
of two Maslov phase factors, corresponding to the fact t
both the counterclockwise and the clockwise rays cross tz
axis twice for each complete circular orbit. The terma(k,us)
can be regarded as a damping factor that gives the atte
tion of the tube of circular orbits due to the tunneling throu
the centrifugal barrier. At fixedk we can thus represent th
leakage of the tube of orbiting particles by the use of
exponential of the following form: exp(2gRu0,m

6 ). Accord-
ingly, the damping factora(k,us) can be split in the produc
of two terms as follows:g(k) exp(2gRu0,m

6 ). Coming back
to the scattering angleus , we rewrite expression~23! as
follows @see also formulas~21! and ~22!#:

f ~k,us!52 ig~k! (
m50

`

~21!mei2pmm
eimus2 ieim(2p2us)

Asinus
~24!

(0,us,p), wherem5R(k1 ig). Next, we use the follow-
ing expansion:

1

2 cospm
5eipm (

m50

`

~21!m ei2pmm ~ Im m.0!. ~25!

By using equality~25! we can rewrite formula~24! as

f ~k,us!52g~k!eip/4
e2 i[ m(p2us)2p/4]1ei[ m(p2us)2p/4]

2 cospmAsinus
~26!

(0,us,p). The right-hand side~rhs! of formula ~26! con-
tains the asymptotic behavior ofA2pm times the Legendre
functions Pm21/2(2cosus) for umu→` and umu(p2us)@1
~see Ref.@30#!. Then, writingPm21/2(2cosus) in place of its
asymptotic behavior, we have forumu→` and 0,us,p:

f ~k,us!52g~k!eip/4
A2pmPm21/2~2cosus!

2 cospm
. ~27!

Finally, by settingm21/25l, we obtain, for 0,us<p,

f ~k,us!5g~k!eip/4
Ap

2
A2l11

Pl~2cosus!

sinpl
. ~28!

It is then convenient to rewrite formula~28! in the following,
more conventional, form:

f ~E,u!5G~E!
Pl(E)~2cosu!

sinpl~E!
~0,u<p!, ~29!

where the scattering angle is now simply denoted byu, and
G(E)5 1

2 Apeip/4g(k)A2l11 is the factor referred to the
03272
t

ua-

n

energyE. The rhs of formula~29! is singular atu50, where
Pl(E)(2cosu) presents a logarithmic singularity@31#; there-
fore, representation~29! is only an approximation, since
background compensating term that makes the amplitud
nite and regular at every value ofu is neglected. Neverthe
less this approximation is very useful because it can desc
a sequence of resonances and bound states. In fact, if Rel is
an integer and Iml!1, then the denominator sinpl(E) is
close to zero and, accordingly, we observe a bump in
cross section, i.e., we have an orbiting resonance. Sincel is
a function of the energy, representation~29! describes a se
quence of resonances which are obtained whenever Rl
crosses integer values, while Iml remains very small. As we
shall see in Sec. IV, Iml tends to zero asE tends to zero. For
negative energy Iml50 and we have bound states inste
of resonances whenever Rel crosses integer values. At th
end, we obtain a pole trajectory connecting bound state
resonances as it will be shown in Sec. IV.

III. ORBITING RESONANCES AND BOUND STATES

In this paper we focus our attention only on those effe
that contribute to the more relevant component of the sp
trum: the orbiting resonances and the bound states. Howe
they do not exhaust the entire phenomenology: in particu
there are also the ‘‘direct component’’ of the collision whic
is essentially composed of direct reflections, and the ‘‘f
ward glory’’ contribution. The former component does n
require particular explanations; instead, it is worth spend
a few words about the forward glory contribution, especia
in relation with the so called ‘‘glory undulations.’’ The latte
effect is produced by those paths that, moving through att
tive and repulsive regions of the potential undergo eq
positive and negative deflections and finally emerge at z
angle. Then, the interference between such paths and
forward-diffracted trajectories with a large impact parame
gives rise to forward glory oscillations that appear as un
lations ~glory undulations! in the total cross section@15,21#.
The total number of oscillations can be related to the num
of bound states in the potential@21#. This relationship is one
of the motivations of the great attention devoted to t
‘‘glory undulations’’ by several authors@32#. In our analysis
we do not consider the ‘‘direct component’’ of the scatterin
which can be globally described by a ‘‘background term
which we neglect.

More generally, let us briefly recall that in classical sc
tering theory if the deflection function goes through zero~or
through a negative multiple ofp for a nonzero value of the
impact parameter! the differential cross section diverges lik
(sinQ)21 (Q being the classical deflection angle!. The diver-
gence can occur either in the forward directionQ522np
(n50,1,2, . . . ; forward glory!, or in the backward direction
Q52(2n11)p (n50,1,2, . . . ; backward glory!. Return-
ing to the geometrical theory of the orbiting outlined in th
previous section, we see that, up to formula~26!, f (k,us)
presents singularities atus50 andus5p, which are due to
the factor (sinus)

21/2. Next, passing from formula~26! to
representation~27! we introduce the Legendre function
Pl(2cosus) which are logarithmically singular atus50, but
8-5
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regular atus5p. The smoothing of these singularities corr
sponds to the passage from the classical to the semiclas
approximation. As we have already noted several times,
obtained representation is far from being complete, as it d
not represent the direct components of the collision: diffr
tion, direct reflection, and forward glory contribution@15#.

Hereafter we will show that representation~29!, in spite
of the limits mentioned above, can, nevertheless, repre
an ordered sequence of orbiting resonances. With this
mind, we project the amplitude~29! on thel th partial wave,
obtaining

al5
e2id l21

2ik
5

G~E!

p

1

~a1 ib2 l !~a1 ib1 l 11!
, ~30!

wherea1 ib5l. Next, when the elastic unitarity conditio
may be applied, we get the following relationship amongG,
a, andb:

G~E!52
p

k
b~2a11!. ~31!

From Eqs.~30! and ~31! we obtain

d l5sin21
b~2a11!

$@~ l 2a!21b2#@~ l 1a11!21b2#%1/2
. ~32!

Formula ~32! represents a sequence of orbiting resonan
i.e., an ordered set of phase shifts that crossd l5p/2 with
positive derivative.

The bound states are not directly revealed by scatte
experiments. We know, however, from the generaliz
Levinson theorem thatd l(0)5nlp, wherenl is the number
of bound states with angular momentuml, including those
states which are not admitted by the Pauli principle@27#.
Hereafter we shall consider, however, atom-atom scatte
where the Pauli excluded states are not involved. Furt
more, in the cases considered in the next section we s
deal with a sequence of phase shifts whose zero-energy v
is exactlyp. This implies that there is a sequence of bou
states with increasing value of the angular momentuml. We
shall see that these bound states can be connected with
tinuity to the sequence of orbiting resonances, thus obtain
a band of bound states and resonances~rotational band! gen-
erated by a unique pole moving in the complex angular m
mentum plane. At this point we are faced with the proble
of finding a representation which is able to describe th
phase shifts that do not resonate but decrease from their z
energy value, which isp, and crossp/2 downward, and also
that part of the phase shifts that decrease after a resona
Since these phase shifts are due to the repulsive compo
of the potential, we can assume, in a very rough model,
they are produced by a hard-core potential. In the subseq
section we shall see that this model, in spite of its roughn
is in reasonable agreement with the phenomenological d

First, let us recall that the phase shifts produced by
impenetrable sphere of radiusr 0 are given by@33#
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d l5tan21
Jl 11/2~kr0!

Nl 11/2~kr0!
, ~33!

where Jl 11/2 and Nl 11/2 denote the Bessel and Neuman
functions, respectively. It is easy to check that whenkr0
5( l 11)p/2, then the phase shiftd l , given by formula~33!,
equals (2p/2); but the phenomenological data~see the next
section! indicate that the radiusr 0 of the hard core, which
models the repulsive component of the interaction, var
with l. We can then writekrl instead ofkr0, and relate this
expression to the angular momentum@a(a11)#1/2 through
the equalitykrl5Bl@a(a11)#1/2, whereBl is a phenomeno-
logical parameter. We then glue together the term describ
the orbiting to the hard-core phase shifts as

d l5sin21S b~2a11!

$@~ l 2a!21b2#@~ l 1a11!21b2#%1/2D
1Al tan21S Jl 11/2„Bl@a~a11!#1/2

…

Nl 11/2„Bl@a~a11!#1/2
…

D , ~34!

where Al , as well asBl , depends onl, and both can be
regarded as fitting parameters. As we shall show in Sec.
formula ~34! is able to reproduce an ordered sequence
orbiting resonances, and also gives in the correct order
downward crossing of the phase shiftsd l throughp/2. The
parameterAl in formula ~34! accounts for the strength of th
repulsive action which models the singularity of the poten
at the origin. This strength decreases as the angular mom
tum increases, in agreement with the fact that the radiu
the hard core increases withl. From the phenomenologica
analysis the dependence ofAl and Bl on l turns out to be
nearly linear@see Figs. 3~c! and 3~d!#.

It is interesting to notice that a similar approach has be
applied also in nuclear physics, in particular in thea-a and
a-40Ca elastic scattering~see Refs.@34,35#!. In these works
the hard-core-type interaction has been used in place of
more realistic, but less tractable, exchange forces which,
timately, give rise to nonlocal potentials. However, in th
case the approximation is not very faithful; in fact, while th
fits of the rotational resonances are very satisfactory,
what concerns the downward passage of the phase shifts
theory yields only the general trend, but lacks for details.
analysis of the complex angular momentum singularities
sociated with nonlocal potentials is currently in progre
which aims at obtaining a more accurate representation
the downward behavior of the nuclear phase shifts.

IV. PHENOMENOLOGICAL ANALYSIS

In this section a series of numerical fits, performed
using formula~34!, will be presented. The experimental da
being considered concern the H-Kr system, and are ta
from Ref. @5#; in particular, we refer to Fig. 3 of that refer
ence. In formula~34! the quantitiesAl andBl are considered
as free fitting parameters, and for what concerns the fu
8-6
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tions a(E) and b(E) we adopt the following parametriza
tions:

a~a11!52IE1a0 , ~35!

b5d1a~E!AE1d2AE, ~36!

where I 5mR2 is the moment of inertia,m is the reduced
mass,R the interparticle distance, andE is the center of mass

FIG. 2. H-Kr system.~a! Observed phase shifts@5# and corre-
sponding fits@see formula~34!# for the partial wavesl 54,5,6 vs the
energy of the center of massE. d150.13 (meV)21/2;
d2520.48 (meV)21/2 @see formula~36!#. l 54: observed (s), fit-
ted ~dotted line!. l 55: observed (1), fitted ~dashed line!. l 56:
observed (h), fitted ~dash-dotted line!. ~b! a(a11) vs E @see for-
mula~35!#. I 55.1 (meV)21; a0515.8. The filled dots indicate the
energyEl of the resonance for the partial wavesl 54,5,6: The open
circles indicate the energy valuesEl of the bound states forl
50,1,2,3 extrapolated from the linea(a11): E0521.55 meV,
E1521.35 meV,E2520.96 meV,E3520.37 meV.
03272
energy; the parametersd1 and d2, which from the analysis
turn out to be nearly independent ofl, and the intercepta0
are to be determined through the fits of the experimen
phase shifts~see the figure legends for numerical details!.

In Fig. 2~a! the fits of the phase shifts forl 54,5,6, which
display orbiting resonances, are shown. The upward cr
ings of d l5p/2, i.e., the energies of the resonances, are
ported in Fig. 2~b! in correspondence with the integer valu
of a54,5,6 ~filled dots!, along with their interpolation with
the line a(a11) as a function ofE. The good agreemen
between resonance locations (E.0) and the linea(a11)
strongly supports the correctness of the linear parametr
tion ~35!. Sincea0.0, we can extrapolate, forE,0, the
location of the bound states corresponding tol 50,1,2,3
~open circles!.

In Figs. 3~a! and 3~b! the fits of the phase shifts forl
50,1 and l 52,3 are shown. The high energy behavior
well reproduced, whereas the Levinson value atE50 ~i.e.,
d l5p), which is clearly satisfied by the experimental data
not reached by the fitting curves. On the other hand, i
quite tempting to notice that if we extrapolate these theo
ical phase shifts to the unphysical region at negative ene
~in spite of the fact that the phase shifts have physical me
ing exclusively at non-negative energy!, they get close to the
valued l5p approximately at the energiesE0 , E1 , E2, and
E3, which closely correspond to the location of the bou
states that have been recovered from Fig. 2~b!, and whose
angular momenta are preciselyl 50,1,2,3. In Figs. 3~c! and
3~d! the values of the parameterAl and Bl that result from
the fits of Figs. 2~a!, 3~a!, and 3~b! are displayed as function
of l. Al presents a nearly linear decrease withl, while Bl
increases almost linearly withl.

Concluding, we illustrate the relationship between t
function b and the widthsG of the orbiting resonances
These quantities are related to the tunneling across the
trifugal barrier, which is now a complex quantity. We hav

Im K l~l11!

2mR2 L 5b~2a11!
1

^2mR2&
5

G

2
, ~37!

from which it follows

G5
b~2a11!

I
, ~ I 5moment of inertia!. ~38!

From Eq.~38! G can be easily evaluated, sincea(E), b(E),
and I are recovered from the fits of the phase shifts;
values ofG are, respectively,l 54, G54.6931022 meV;
l 55, G54.4531021 meV; l 56, G51.30 meV.

V. FINAL REMARKS

In conclusion, we want to stress the difference betwe
orbiting and diffracted rays. The diffracted rays can be e
plained as follows: when a ray grazes a boundary surfac
splits in two: one part keeps going as an ordinary r
whereas the other part travels along the surface. At ev
point along its path this ray splits in two again: one p
proceeds along the surface, and the other one leaves the
8-7
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FIG. 3. H-Kr system. Ob-
served phase shifts@5# and corre-
sponding fits @see formula~34!#
for the partial wavesl 50,1,2,3 vs
the energy of the center of massE.
For what concerns the meaning o
E0 , E1 , E2, andE3 see the legend
of Fig. 2. The values of the fits for
E,0 ~thinner lines! must be un-
derstood as explained in Sec. IV
~a! Case l 50,1. l 50: observed
(s), fitted ~dash-dotted line!. l
51: observed (1), fitted ~dashed
line!. ~b! Case l 52,3. l 52: ob-
served (s), fitted ~dash-dotted
line!. l 53: observed (1), fitted
~dashed line!. ~c! Al vs l. ~d! Bl vs
l. See formula~34!.
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face along the tangent to the surface itself. This splitting
be mathematically explained as due to the nonuniquenes
the Cauchy problem for geodesics in a Riemannian mani
with boundary~see Ref.@28#!. The damping factors can the
be related to the curvature of the diffracting body@28#. Con-
versely, for what concerns the orbiting case, the attenua
of the current of orbiting particles is produced by the leaka
of the ray tube of the particles which describe circular orb
and which is due to the tunneling across the centrifugal b
rier. It follows that the nature and the extent of the damp
factors are drastically different in these two phenomena.
can say that, while the diffracted rays are produced by e
effects, this is not at all the case for the orbiting phenome
Edge effects are indeed relevant in optics where the diffr
ing body ~i.e., the obstacle! is compact, but in particle scat
tering they can be observed only in those processes desc
by short-range potentials, e.g., decreasing exponentiallyr,
which can simulate boundary effects. This does not hap
in molecular scattering where the potentials that desc
properly the phenomena are of Lennard-Jones type, w
decrease, for large values ofr, only as an inverse powe
Thus, we can say that the near-forward diffractive scatter
by a potential of this type, which is having a long-range ta
is not due to edge diffraction but is rather produced by
contributions of very large angular momentum paths that
03272
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dergo small deflection caused by the tail of the potential~see
Ref. @15#!.

Finally, it is worth remarking that in the orbiting phenom
ena and in the case of diffracted rays, the attenuation ca
explained merely as a damping of the amplitude, while
phase remains real: in both cases we can properly spea
real rays. However, one is tempted to explain the attenua
of the intensity of the flux by introducing a complex phas
and, accordingly complex rays. We believe that this appro
is not at all convenient for describing orbiting and diffractio
phenomena, where the attenuation of the amplitude can
evaluated through the transport equation. Conversely, c
plex rays emerge, as appropriate mathematical solution
the eikonal equation, for representing the shadow of
caustic. Therefore, they play a relevant role in total refl
tion, where they describe the exponentially damped pene
tion into the rarer medium associated with the surface wa
traveling along the boundary. In molecular scattering th
are again present in rainbow phenomena, and precisely in
shadow of the rainbow caustic. In fact, we can show tha
the neighborhood of a caustic the nature of the eikonal eq
tion differs from the standard one: its characteristics, wh
are real in the illuminated region, become complex conjug
beyond the caustic~i.e., in the shadow of the caustic!, and
correspond to the complex rays.
8-8
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