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Theory of fine-structure effects in thermal collisions of $-excited sodium atoms:
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Thermal energy collisions of twp-excited alkali-metal atoms have been examined, taking into consider-
ation the fine-structure splitting of atomic energy levels. Collisional-induced transitions between fine-structure
levels and energy-pooling processes have been investigated by means of combined semiclassical approxima-
tion (CSA). The operator of evolution was constructed with the aid of a numerical solution of a time-dependent
guantum electronic equation with appropriate asymptotic Hamiltonian and single trajectory approximation for
nuclear motion at large internuclear separatiBn§&eneralized multichannel Landau-Zener model with adia-
batic phase averaging for sm&lhas been included in CSA. Numerical results for cross sections in case of
scattering of two P-excited sodium atoms in a collision energy range of 300—2000 K have been obtained. The
estimation of results accuracy was carried out. The propensity rule for detailed collisional-induced fine-
structure transitions has been established.
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I. INTRODUCTION 1
iz T (2], +1)(25,+1)

The energy-pooling processes in thermal collisional en-

ergy range in most of the experimental and theoretical works 1 J2
have been considered without a resolution of atomic fine X Z _2 Tjmyjomy, nder (4
structure my=—J; My=-j;

where o; . i re energy-pooling cr ions of
A(Nap)+B(npp)—A(Nolo) +B(nel ), ) €€ Tjymyjym;, nyl; AT€ ENETGY-POOING Cross sections o
processes with fixed initial values of momenta projections
where ngl, is the ground state of the atom. By means of
modern experimental techniques one can populate separate
groups of fine-structure levels of colliding ator(see, for  pgegides energy pooling the fine-structure effects in thermal
example, reviewg1,2]). The energy-pooling reaction with gcattering of excited atoms are collision-induced fine-
resolved atomic fine structure could be written as structure transitions

A(np,jimy)+B(np,jomy)—A(Nngle) +B(nelg). (5

A(Npay) +A(Npaz)—A(ngloag) +Alngltas);  (2) A(np;,)+A(np;,)—A(np;) +A(np)). (6)

here all a;, «; are quantum numbers detailed in the finethe ¢ross section of this process is calculated as the average

structure. There are different possible sets of quantum numsy e initial projections and the sum over final projections of
bers for descriptions of initial and final states, for example 45ia1 momenta of detailed cross sections

the L picture and thel picture[3], corresponding tds andjj

schemes of electronic structure in atoms. Sometimes, for 1

light atoms especially, it is difficult to define what picture is T, ii0= 75 -

more suitable in practic€3,4]. Because the) picture was SR EREICI LR

applied rather than the one in most of the recent experi- i1 is i iy
ments(see references belgywe apply thel picture. How- % E 2 2 2
ever, the present approach allows us to transform consider- Mi==1 M=l mi= il mi=—j)
ation from one picture to anothégec. Il B 2. If atomic fine

structure is not distinguished in the final state, instead of Eq. X O myjomy, jimjsmy,

(2) we have

)

Where‘fjlmljsz, jim}j;m, @re cross sections of detailed pro-

A(npjl)+A(npj2)_)A(n0|0)+A(nflf)- (3) cesses
Cross section of the proce&?) is equal to the average over A(np,j1m1)+A(np,j2m2)—>A(npjim£)+A(npjémé).
projectionsm;, m, of total electronic momentg,, j, of (8)
separated atoms in the initial state
The influence of initial polarization of excited atoms on
energy-pooling processes has been investigated mostly in ex-
*E-mail address: Inna.Yurova@pobox.spbu.ru periments with excited alkali-metal atomsp@—Spj2 (Na)
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[5], 3p, m;—3p, m, (Na) [4], 4p;—4p; (K) [6], 6p;—6p; adiabatic quasimolecular potential curvésr example, see
(C9 [7,8]; 5s—nl (Rb) [9]. In the experimen(3] the depen- the review[22]).
dence of probability of associative ionization on initial po- The quasiclassical approach to nuclear motion seems to
larization of 3p-excited atoms Na was considered. Besidese the most suitable one at smB/lbut it needs to be joined
alkali-metal atoms, the proce$3) has been investigated in with classical description at largR, because there are no
collisions with excited alkaline-earth-metal targets: Cacalculations of adiabatic curves there. Thus, we combine in
[10,11], Sr[12,13, Ba[14—14. Moreover, there are experi- the present paper the quantum nonstationary approach for the
ments with excited atoms of other kinds: €47], In [18], electronic problem and classical trajectory approximation for
and Yt[19] with the observation of the reactidB). nuclear motion at larg® with the quasiclassical method of
Despite the great number of experimel@s 19, there are  nonadiabatic transitions at smdll For these purposes the
only a few theoretical works dealing with fine-structure ef-space of relative internuclear distance is divided into two
fects in the field of thermal collisions of neutral excited at- zones: theénner zone of smalR: R<R,,;;and theouterzone
oms: in[20,21] the energy pooling in sodium has been con-of largeR: R>R,,;; (see Refs[21], [23], [24], and[25]). The
sidered. Approaches developed[2D,21] did not take into R4 is the boundary point or the matching radius. Thus three
account the spin-orbit splitting of atomic energy levels or thebasic assumption§—iii) could be formulated as follows:
interaction between colliding atoms at large internuclear dis- (i) In the outer regiolrR>R,,,,: the nuclear motion can be
tances. That is why methodi20,21] could hardly be applied considered as the classical one and fixed trajectory formalism
to the problem of interest without any generalization. could be applied there. From comparative estimations of the
In the present paper, the choice of the proper approximavalue of atom-atom interaction, the energy of spin-orbit split-
tion is considered in Sec. Il. The basic equations are preting, and the value of thermal collision enerBy,;, one can
sented in Sec. lll. Average phase approximation and formuassume the validity of straight trajectory approximafiad],
las for cross sections are presented in Sec. IV. The details ofeglect the change of the value of relative velogitduring
numerical calculations are described in Sec. V. The resultthe collision in the outer region, and putv ., . The equa-
for cross sections of processé&), (8), (3), and (5) with tion of the straight trajectory is well known,
propensity rules for fine-structure transitions and discussions
are presented in Sec. VI and concluding remarks are pre-

sented in Sec. VII. R(t)=p?+v?t?, 9)

Il. CHOICE OF APPROXIMATION where,p is the impact parameter.

There are well-known theoretical approaches: quantum, (i) We believe that in the outer region the energy differ-
quasiclassical, and classical. Let us consider the purely quagnces between states frompng and other manifolds
tum approach: it could be applied in the very low-collision (n1l1n,l,) are large in comparison witk.,, so one can
temperature rangénot exceeding 1 K when hyperfine- neglect transitions between different manifolds there. This
structure effects are exhibité¢gee review2)). In the thermal ~assumption is valid for (83p) manifold of the Na system
energy range the purely quantum approach to the problem dor example, but it fails in the case of system Ggj6
nuclear motion needs to include a prohibitively large numbert+ Cs(6p), where manifolds (66d) and (606p) take ap-
of partial wavesN,,,.. For example, in the case of sodium- proximately the same energy interJas].
sodium collisions atE ., =100 K the N, is estimated as (iii) In the inner region, transitions between states by the
about 350 and more for higher energies. Above, the complisame molecular symmetry fromp3p and other manifolds
cated electronic part of the problem has to be solved: fof3s5s, 3s4d, 3s4f) [26] take place, and they are induced
np-np atom-atom collision the minimum number of two- by nonadiabatic interaction in small intervalR,, centered
atomic orbitals in the interval of large internuclear separa-at pointsR=R, of pseudocrossing$C9g between adiabatic
tionsRis equal to 36, for smalR the basis set is 1000 times molecular curve$24]. The size of intervald\R, should be
more. So one needs to solve minimum><380=12600 considerably less than the distances between the nearest PCs:
close-coupling equations at largeonly in one energy point. AR,<|R,—R,+1|; correspondent estimations are shown in
Keeping in mind about 50—100 points for formation of the Sec. 5.2 of Ref[21]. Within intervalsAR,, we assume the
energy dependences of cross sections we need a minimum edlidity of the approximation of constant local radial velocity
1P coupling differential equations of second order, the num-of nuclear motiorv g4, (see formula7) in Ref.[26]), thus a
ber is too large even for modern computer devices. suitable exactly solvable modg@dresently, the Landau-Zener

The advantages of classical trajectory approximation caone of nonadiabatic transitions could be applied there. Out-
be seen straightforwardly: if a trajectory is known, one isside of intervalsAR, nuclear motion can be considered as
required to solve only 36 coupled first-order time-dependenthe quasiclassical one along adiabatic potential curves. We
differential equations for electronigp-np functions at large  belive that these curves can suitably be described within the
R. On the other hand, the well-developed single trajectorymolecular scheme Hund’s ca&s [29].
formalism for nuclear motion under thermal energies breaks According to the assumptiofiii) the conservation of en-
down in the interval of small internuclear distances, whereergy of nuclear motion in the inner zone at impact parameter
the interaction between nuclei is considerably large, ang at pointsR, neglecting small intervals of PCs localizations
causes the splitting of the single trajectory to a number oAR,, could be written by formula
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JT T ) combining the latter estimations, we establish the collision
Econ=% Vrada T 52 P T Ua(R),  Ecol=nvcarl2, energies range of the validity of the present approximation
(10 300 K= E = 2000 K. (12)

where u is the reduced mass of the systemn,q, is the
radial velocity of relative nuclear motion on the curvavith
potential energyJ ,(R), andv g is the initial relative colli- lll. BASIC EQUATIONS
sion Velocity of nuclei. A. Coordinate frames
We combine all assumption§)—(iii) under the name

Combined Quasiclassical Approximatig@QA). According
to assumptiongi) and (iii) cross sections in CQA can be
calculated in impact parameter approximatj@]

The classical relative motion of two nuclei in the outer
region is described by the frame with the origin in the center
of mass of two nuclei and, with axe§ Y, Z, are parallel to
these by laboratory frame. The axsis directed along the
E_ N2 ro vector of initial relative collision velocity. This frame is
E—7> J’ P, pdp, (11 named as the frame center of mass with laboratory axes

L4 0 (FCMD). The collisional plane in FCML is the planéZ.
The azimuthal angle in the planeYZ defines the direction
of internuclear axis.

In the inner region we apply the molecular frarfeM)
with the origin in the center of mass, the aXm, that co-

By arr:alpgy W'thd Ref[21] we define the bOLrJ]ndary be- jncides withX, and the axigm, directed along the vector of
tween the inner and outer regionsRg,= pmax, WNer€pmax  internuclear separatiaR. In the initial state of collision, two

Is the maximum impact parameter for penetration of the oy, e FCML and FM coincide. As nuclei move relative to
atomic system into the inner region: in other words, at IM-aach other, the planém Zm in FM rotates together with the
pact parametersp>pms the system cannot reach any jniernclear axis relative to the plav@ in FCML.
pseudocrossingPC). From energy conservatiofil0) we The choice of coordinate frames reflects the application of

have pma=maxR{1-U.(Ry)/Ecoil;, where the maximum  gitterent approaches to the description of nuclear motion in

had to be found over all PCsn” in the inner region. The  hq outer and inner zond&7]. As nuclei are far from each
dependence fpay 0N Ecoy is shown in Fig. 1 of Refl21]. giher FCML is more suitable for application of single trajec-
For the system of two @-excited sodium atoms we have 41y approximation than the FM orfsee assumptiofi) in
Pmax—46—28a, at collision energies 300-2000 K. Note, that gec_ |, For small internuclear separations FM seems more
we do not take into account ion-valence PCs with laRge  gyjtable for the quasimolecular approaiee assumption
such as PC &7 —7'3 localized atR,=57a, (see Fig. i) in Sec. II.

1(a) in Ref.[26]); ion-valence PCs could be important in the
case of ionization process¢22]). We applied the set of
sodium-sodium adiabatic curves from the configuration inter- ) o o
action(Cl) calculations and Landau-Zener parameters of PCs The method of asymptotic Hamiltonian was applied in
from Ref.[26] with a correction of the misprint in parameter Ref.[34]in the case of Na(B) +Na(3p) slow collisions and
2V, of PC 1(d) in Table | in [26] from 1.80<10 5 to in [32,33 in the case of RBRBE* thermal collisions. We

1.80x 10~*. Along with the letter set, we applied another setcannot apply unchanged Hamiltonians proposed in letter ref-
of Landau-Zener parametefsee Sec. VI A erences because, in the case oftfb* interaction[33], the

dipole-dipole operator dominates in the Coulomb part of the

interaction; on the other hand, the asymptotic Hamiltonian,

proposed iff34], contains the quadrupole-quadrupole opera-
In the case of the (83p) system of two isolated sodium tor, but the Coriolis term was not included in it because of its

atoms the maximum energy difference between fine-structurémallness for too small collision velocities, considered in

components, PE(3psp) —E(3pyp)], is equal to 49.4 K [34]. We construct the asymptotic Hamiltonigl, combin-

[28], so one can establish the lower limit of the validity of ing expressions frorfi33,34

assumptior(i) asE.,;=200-300 K. One can determine the

upper collisional energy limit of the validity of the present Has=HitHot Voot Vi,

approximation from the position of the highest quasimolecu-

lar curve and we can also_take into consideration the modq_l|l, H, are effective Hamiltonians of valence electrons in

approach. for the inner region. - - separate atomd/,, is the Coriolis operator, and, is the
The highest curve obtained in the last work was theoperator of interaction between colliding atoms.

(3s4f) curve: the next upper curve should be thesgp)

one. If collision energy exceeds the threshold of excitation of

the (3s5p) state, the model approach requires more quasi-

molecular curves than is computed now, so we can estimate In order to construct the matrix of asymptotic Hamil-

the upper energy limit as the excitation energy of the5(3 tonian(13) in the outer region, one needs to apply a suitable

state, that is about 2000 K, so we hafzg;; <2000 K. Thus, basis set for electronic wave function. According to assump-

Tyt =2

where E, and E,, are energies of initial and final states,
Py i§ the p_robability of transition between statgeandy’,
andp is the impact parameter.

B. Asymptotic Hamiltonian and operator of evolution

Interval of validity of CQA

1. 3p3p subspace of electronic wave functions
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tion (i) from Sec. Il we expect that there are no transitions in  TABLE I. Labeling of two-electronspp-basis functions injj
the outer region betweenp3p and 35s, and 34d and  representation.
3s4f electronic configurations of the NaNa system

N ji myp o mp N jp my o mp

(Hadg,=0: |B)e(3s5s, 3s4d, 3s4f), 1 32 32 32 32 19 32 -12 32 32

|y> (3p3p). (13) 2 3/2 32 32 1/2 20 3/2 -1/2 3I2 1/2

3 32 32 12 12 21 3/2 -1/2 112 12

From propertieg13) it follows that it is sufficient to con- 4 32 32 32 -12 22 32 -12 312 -12
struct the matrix of asymptotic Hamiltonian only imp3p 5 82 382 Y2 -Y2 23 32 -12 12 -12
subspace. The two-electrons asymptot3p basis set can 6 32 32 32 =32 24 32 -2 32 -3/2
be composed from different products of spin-orbitai§ m_ 7 32 12 32 32 25 12 -12 32 32
of separated atoms 8 32 12 32 12 26 12-12 32 12
9 3/2 12 1/2 1/2 27 1/2 =1/2 12 1/2

B, m (1,0)=Rap(1) Y 1m(F) xm (), 10 32 12 32 -12 28 12 -12 32 -112

11 3/2 1/2 1/2 -1/2 29 1/2 -1/2 12 -1/2

m=-1,0,1; m=+1/2. (14) 12 32 12 32 —3/2 30 12 —1/2 3/2 -3/2

13 12 12 3/2 32 31 3/2-32 32 32

Here, Y, is the spherical function an;glmS is one-electron 14 12 12 3/2 1/2 32 32 -3/2 32 12
Spin function. 15 1/2 1/2 1/2 1/2 33 3/2 =3/2 1/2 1/2
16 12 1/2 3/2 —-1/2 34 3/2 -3/2 32 -1/2

2. Representations for electronic wave functions 17 12 12 1/2 -12 35 3/2 -3/2 12 -1/2

18 1/2 1/2 3/2 -3/2 36 3/2 -3/2 312 -3/2

In order to apply any picturef. or J, see Sec.)lfor a
description of electronic states in the outer region, and also
to construct the matrix of asymptotic Hamiltonian, one needs
to apply different representations for electronic wave func-
tions:Is, jj y andMA. Note thaﬂ_s representation is equival_ent momenta, can be expected as good quantum numbks.
to the L picture, jj to the J picture. In any representation

. ) . : wave functions can be obtained from tlseones by the uni-
two—glectronlc two-center bg5|s functions §hould be.ant|sym_,Eary transformation with the matritd MA-s:
metric versus the permutation of the spatial and spin coordi-
nates of two electrons. In the present paragraph we consider
different representations in the §3p) subspace. |WASMg)= >, fog,?ﬂs,mllmslmlzmszlmu,msl, MmjoMgy),
Is representationTwo-electron two-center antisymmetric (17)
basis functions with orbital momenta of electrohs=1,
=1, their projectionsm;;, m,, and projections of spins wherew is the parity,A is the module of the total orbital
(mg;, Mg, =+ 1/2) can be written as momentum projectionS and Mg are the total spin and its
projection of the two-atomic systenm;;mg;, m;,Mmg,) are
1 two-electrons two-center orbital from tHe representation.
E(l_Plz) The matrix of M(MA1) can be found by the application of
symmetrization operators to tHe basis functiondfor ex-
X[ Bm, gy (11,01) By m,(12,02)]. ample, see formula@.2.1 and(3.2.2 in Ref. [21]) and then
with hybridization inX (o) —3(7) subspace in order to
(15 get the diagonal form of quadrupole-quadrupole operator
[39]. Note that molecular basis functions without hybridiza-
tion coincide with these from Table | in R€f34]).

MA representation In this molecular representation by
Hund’s casda), L andS the total electronic orbital and spin

|m Mgy, MyoMgp) =

P, is the operator of the permutation of all coordinates of
electrons 1 and Zd)ml'msl and thequz,mSz are one-electron

(14). 3. Matrix of asymptotic Hamiltonian in3p3p subspace
ji representationjj functions can be obtained by transfor-

mation from thels basis set with unitary matrig(i -9 Let us consider the construction of separate terms in the

asymptotic Hamiltoniari13).
Effective operators of valence electrons in separate at-
. . _ ii-1 H HE
lj1my,jomp)= >, T}J:I_mS:LjZmzvmllmslmlzm52|mllmSl’ Mi,Msy), oms We assume as in Reff33] that these operators are di
agonal injj representation
(16)
jji—ls —chm I2mz Hi'jlmljzmzz Eji5m1vm2' =12, (18)
J1M1)2Ma.My 1 Mgy M5 Mg 1m,l%mSl 1m|2%msz’

_ whereE; are energies of electronic states of isolated atoms

WI’]ei‘eC!LinTlii vom,, i=1,2 are the Clebsh-Gordan coefficients including spin-orbit splittingEs,; one can fincEji andEg,

[35]. The labeling of thgj basis functions is given in Table I. in tables[28]. We expect also, as it was done in R&3] for
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the Rb+Rb system, that the value of spin-orbital splitting in

PHYSICAL REVIEW A 65 032726

TABLE II. Eigenvalues of operatoV,q for Na(3p) +Na(3p)

the two-atomic system is not changed significantly in theSystem.

interval o>R>15a, at least.
From the expressions for Coriolis operator in Refs.
[30,31,36,24 we have

Veor=— N jx:.’jlx"'ij ) (19

at

where is the angle of rotation around the the vector of the
total nuclear orbital momenturd, which is directed along

the axisX (see Sec. Ill A, J, is the operator of the rotation
of space and spin coordinates of electrons around theXaxis

and]lx andjz,( are operators of the projections on the aXis

MA-staté Ref.[34] Ref.[40] Ref.[41] Present
1420, —365 —554 —-381  —367
gy, %11, 1460 2220 1526 1468
I, %M 0 0 0 0
MM 0 0 0 0
h1's, ,h1%% ;P c —-3328'  —2289 2202
h2's g ,h2%s ;P ¢ o 0 0

4n MA representation the operatdg, has diagonal form.
®Labels h1 and h2 mean different statesS ) and *S;, con-
structed from P(o) and (=) atomic orbitals by hybridization in
order to diagonaliz®,, (iu andil states in Ref[26], corresponding

of the total electronic momenta of separate atoms. The claso upper and lower adiabatic potential curves

sical description of nuclear motion in the molecular frame
assumes the proportionality of Coriolis operats,, to the
angular velocity of nuclebg/dt in the frame FCML, that
can be found from the equation of the traject¢®y

de
at

pv

R?"

(20

With the aid of expressiond9), (9), and(20), and applying
the quantum expression for matrix elements of operator of

projection of total electronic momentum of atdnj;, [37],
we can write

pv ~ ,
(VCOF)j 1Myjom, = RZ < mll.] 1x| ml)

- ’
X{My|J 2, M) & 1Ji5jzj§ mlmiilngméil ’

(milJ a mi = 1) = (my = 1] 1,/ m;)

1~ . :
=§\/(Ji+mi)(1i—mi+1), i=1,2.
(21)

In the outer region the Coulomb part of interatomic inter-
actionV, can be represented in the form of a series expan
sion in powers of R [38], the first two components in it in

states are the quadrupole-quadrupole and the second-or

dipole-dipole terms; adding the exchange part we have fO{h

V,, the expression

Vip= =V g/ R®=V/RO+ Vg, (22

whereVy,, Vg, andVe, are quadrupole-quadrupole, second-
order dipole-dipole and exchange operators.

Quadrupole-quadrupole interactionVy, between two
identical p-excited atoms has been constructed inltheep-
resentatiorj 39]

‘See text in Sec. 1l B 3.
9The value is obtained by the diagonalization of the madiirom
Ref.[40].

2

(qu)a,B: ME

=2

(—1)»4!
W(Qg)ml,mz(Qg)ml’ ,m2’ 5m511

X Mgy s 5m52' m (23)

(Qg)ml, m2= <r2><ml|Y’2‘| m2>'

Here @=|m;mg;m,mg,) and|B)=|mim,,m;ms,) are two-
electronic states with;=1,=1; Y4 are spherical functions;
quadrupole operator of the isolated atom with one effegiive
electron, Q5)m1/.mz2/,» one can find in Table Ill of Re{39]
and Table Il of Ref[34]. It is seen from formuld23), that
values of all matrix elements of operatdfy, can be ex-
pressed via the single parametef)—the mean square ra-
dius of the valence electron in thep2xcited state of iso-
lated atom.

We transformed operatd?yq (23) from Is into the MA
representation by means of formuld$) and(17). The ma-
trix of V4 is diagonal in theMA basis set and with accuracy
to a value of the multiplie(r?) coincides with matrice€s
from Table Il in Ref[41] and from Table IV in Ref[40] (see
Table Il in present papgrNote that in Ref[34] they appar-

. . S .ently did not nt for the existen f the non diagonal
the case of two identical atoms being in the same electron(% y did not account for the existence of the non diagona

‘0‘0’)—2(7777) matrix elements of the operatdfy in the
olecular representation without hybridization. Note also,
at in Ref.[42] actually the quadrupole-quadrupole matrix
elements have been considered and applied irsthepre-
sentation instead of thiIA one (see Table | in Ref{42)).
Applying the one-electron model potential for the calcu-
lation of the 3 wave function, we estimated the value of the
(r?) as 39.2—39.8%. This value is close to what (a§) has
been estimated in Ref42] by the method of Bates and
Damgaard[43], but differs from the 54.6(2), calculated in
Ref.[40] by the variation-perturbation method, and from the
46.9223, calculated in Ref[44] by the multiconfiguration
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TABLE llI. Matrix elements ofVg for Na(3p) +Na(3p) system  almost does not change the results for cross sections because
in MA representation. of the smallness of matrix elements ¥§ in comparison
with the quadrupole-quadrupole and Coriolis matrix ele-
Molecular state  Ref40]" Ref.[47] Ref.[45]" Ref.[41]  ments in the outer region, and we do not apply the operator

0.2, 2600 6303 1560 2509 V6 @ny more(see Sec. Y _
', 2, _500 9134 3830 5431 Exc?a}[r_wge n;]teractlprlvex.t_ln 'R?;a:_-[%] mat:u:fes ?f
1, 2, 1010 9134 2940 1910 asymptotic exchange interaction in tierepresentation for
Iy + 3y + n,Sn,s, NySnp andnipn,p excited states of two interact-
DI Eg —500 7550 4310 4270 . . : f .
h1ls® p1s b 2000 1460 3410 1816 ing atoms were derived in analytical expressions, see Table
hzlzg* 'h232'ib 20200 2550 4310 397 4.3 of the Ref[24]. Matrix of exchange interaction in the
9’ u case of P3p states of sodium atoms, is constructed by

means of formuld4.76—4.77 from Ref.[24], it can be writ-

#Nondiagonal matrix elements are not shown.
ten as

bSee notations of states in Table II.

Hartree-Fock method. Perhaps the last discrepancy can be  Vex=0.4320A'R>¥ RV ¢y 1+ Veyot Vexa/R)
explained by the correlation energy effect, which appeared in
carculations%44]. Y i X exp(—0.945R),
The operator osecond-order dipole-dipole interactiaa
given by formulas(17) and (28) in the review[38]. In the  whereV,;, i=1,2,3 are constant matriced,is the coeffi-
paper[45] the simple analytical expression for matrix ele- cient in asymptotic expression for the one-electron radal 3
ments of dipole-dipole interaction in thierepresentation has function of sodium atom for large electron-nucleus separa-
been obtained, according to R§#5], the matrixVg in the  tion r: Rz,(r) =Ar*exp(-0.472). We estimated the value

sum(22) has the diagonal form of parameterA as A=0.159 by means of the effective one-
electron potential method. Exchange interaction decreases
m;m,(3 cos 9 -2) exponentially whileR— being induced by overlap of
(Ve)a,p=| ~Csst Caa 12j4j5 atomic wave functions located on different centers. The es-
. timation of matrix element¥ ., (25 shows, that at internu-
3mi—ji(j1+1) clear distance®R>R 5, WhereR,=27—29%, (outer re-
$ 2j1(2j,—1) gion) one can neglect by exchange interaction in comparison
o with quadrupole-quadrupole and Coriolis one.
3m;—jo(j,+1)| 3cod 91 Gathering expressions(18)—(22), one can obtain
St 2j(2j,—1) 2 asymptotic Hamiltonian for the system Nal)3+ Na(3p).
y Dependences on internuclear distarRef eigenvalues of
L3c 3mi—ji(j1+1) asymptotic Hamiltoniar{13) for two cases of Coriolis inter-
*2j1(2j,—1) action have been obtaingéfigs. 1a) and Xb)]. It is seen,

that asymptotic interaction cannot mix states with different

sums of total momentd,+j, at the outer zone, also the

interaction does not cause new PCs between curves in Fig. 1

when Coriolis interaction raises. These features are displayed

X‘Sjljg‘sjzj;émlmﬁmzmg? (249 in results for cross sections of collisional-induced fine-
structure transitiongSec. V).

3ms—j,(j,+1) 9codd—8cod 9+1
2j2(2j,—1) 2

a=|j;mjomy), B=|jimij,m;).
Values of constants in the formul24) in the case of two C. Operator of evolution U®* in outer region
3p-excited sodium atoms have been calculated in RE] According to the assumptiofii) from Sec. Il and equali-
ties (13), values of matrix elements of operatdf“ between
Css=3040, Cy= — 7420, Cy=Cs=331, Cy=—1050. (3p3p) and other subspaces, could be put equal to zero

Besides Ref[45] other calculations of operatdty have been Ug”ﬁ‘, = Oppr ; U‘;‘g=0;

made. Opposite to Reff45], where the matrix oV is diag-

onal in thejj representation, in Ref§40—42,47 the matrix

of Vg is diagonal inMA or thels representation, in Ref34] |B).|B") € (3s5s,  3s4d, 3s4f), [y)e(3p3p).
the matrix of Vg is diagonal inMA exceptoo-m matrix

elements in% subspace. The matrig24) was transformed

into theMA basis set in the present paper. Values of diagonalhe dimension of functional space where the operatdf
matrix elementd/q are presented in Table lll. One can seeshould be defined, is equal to 86, the number is summed
that there is significant disagreement in values and in signBom dimensions 2, 36, 20, and 28 of subspaces563,
between different sets of results for operafgr. Fortunately, (3p3p), (3s4d), and (34f), respectively. In fact, equali-
the inclusion of the operatdrg into the present calculations ties (25) give an opportunity to calculate only the restricted

(29
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30 - of rotational transformation We introduce a distancBc,,
(a) > R4t by the condition, that foR> R, Coriolis interaction
20 | becomes much larger than other components of asymptotic
Hamiltonian(27)
310} ___ ,
o = E====== Ps/zF32 (Vagikt (Ve)ik<(Veodik, 1,k=1,36; Reo<R. (29)
|
[=}
g or = P1/2Pa/e One can see from formuld9), that the Coriolis term is the
/”’f infinitesimal operator in respect to the rotation in the space
10} Pi/ePise of electronic functions around the ax¥s which is perpen-
dicular to the collisional plané&ec. Il A). Bearing in mind,
—20 e that matrices of energies of isolated atoms commute with the
26 27 29 31 33 35 37 39 41 43 45 47 matrix of Coriolis interaction, the solution of ER7) in the
R (a0) zoneR> R, can be expressed via matikof the rotational
30 - transformation
(b)
20 [ \I,jlml, jzmz(_tCor): ’ Z, ) lemljzmz,
= J1mijomy
g 10_ P3/2P3/2 4 1! ! 4 1! ’
™ jimijomy,[jimijoms),
[=]
< ot % P1/2Pase N
= YJlmlizmvaimiiémé_Dmimi(a’ B, v)
P1/2P1/2
XDyl B 10055100,
05 27 =9 81 35 95 87 99 41 43 45 47 (30)
R (a0)

. . o whereD!. . are WignerD-functions (Ref. [35]) with argu-
bFIG' l'fE'%\invahée.s of ?Sym'?touc l'l'_'?m”ton'm) lnlg’gg’ﬁ ments:a=7/2, B=arcsin(-p/Re,), and y= /2. With the
su dstf):ce Ior ofs_,o 'u": atoms ?r co;sgon .enbe)ls‘g)ﬂ;? aid of transformation(30) we can restrict numerical proce-

and two values of impact parametés) p=5a; (b) p=272o- dure of Eq.(27) by substitution in initial condition§28) the
infinity by definite value otc,, that could be found from the
value of R, [see condition29) and the equation of trajec-
tory (9)]. Thus for the operator of evolution we have

UOUI(_OOa_tmat):Y'UOUI(_tCora_tmat)- (31)

operatorU°" on the subspace @p with the dimension
equal to 36. Matrix elements &f°“ are defined by expres-
sions

o (=, ~tma) = (Vo —tmad|@’),  |@),la’) e 3p3p,
(26) It is useful to establish theymmetry propertiesf the opera-

. ) tor U following from the identity of colliding atoms and
where—t,,;is the moment of time, when system reaches thgrgm the symmetry against the time inversion

boundary of the inner region, moving frohs — o, from Eq.

. . t t
(9) one hastmat=v/\/R2mat— p?, functions¥, are solutions U?:ml i3y j,m,j,m,=U});m2jlml il
of the nonstationary Schedinger matrix equation e et

. d ?;r:“lizmz-J'm'i'm/:i(jl+j2+jiﬂé)u?lut_mljz_mzi'—m'i/—m"

V0= (Ha oW o). @7 s L@
Initial conditions for Eq.(27) are D. Operator of nonadiabatic transitions U™ in inner region

1P, (—©))=|a), |a)e(3p3p). (28) The asymptotic HamiltoniafiL3) is not valid in the inner

region, and moreover, the single trajectory approximation for

Here|a) are 303p basis functions, they could be written in nuclear motion breaks thefsee assumptior(§)—(iii) in Sec.
any representatioris, jj, or M A; the connection between !I]. In analogy with the operator of evolutidd®, we can
different representations is established by formul#s)—  construct the model operatd”, that transforms the elec-
(17). tronic wave function as a result of passing by the two-atomic

In order to obtain the solution of E¢27) one needs to System the inner zone from one boundary p&jt, to an-
begin the numerical procedure from infinitely larger R. other oneR.,, for given impact parameter and collision
Really one begins the procedure from sufficiently large defienergy
nite values, that demands computational time. These wastes .
could be escaped by the application of the analytical method V(Ra) = U (R0 (33
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Points R\, are defined by the same internuclear distancevhere the first property is written for multiplet states, value
Rmat but different anglesp= in collisional plane(see Sec. of u, does not depend on projections of total splg, Mg ,
lllA). The dimension of the matrix of the operatdf' is the  and @ means all quantum numbers of the given state except
same as th&)°" one; propertieg25) are not valid for the of Mg. The second property is written for states with
operatorU"™ [see assumptiofiii) in Sec. Ill, but there are  #0.
other properties of matrix elements 0f", presented below.

In order to find the operatdn'“_\{ve apply the generalized IV. CROSS SECTIONS AND AVERAGING
method of nonadiabatic transitions, combining formulas OVER ADIABATIC PHASES
from Refs.[26], [24], and[36]. Let the number of PCs in the _ _ _
inner zone equah,, and the unitary transition matrices ~ We calculate cross sections with the aid of form(la),
N(n), n=1,...,n,,, transform adiabatic electronic functions "Where both statey), _|?’ )€(3p3p) in the case of the fine-
«) and @) after passing of the single separate PBetween structure transitiori8); in the case of the energy-pooling pro-

curvesa and B, located at the poinlR=R,, cess(5) |7') 'S the final s@te 8nl.
The transition probabilityP, ., can be calculated as a

Ri(ny) = —(N(n))g =P ein, a#B: matrix element of a product of operators
a, a n ’ ’
A . ‘ P ' r:|[UOUt'T”_MA'Uin‘(UOUt'T”_MA’U] ’ ,|2.
(NN, o= ()5 s=e'*1-Py; n " (39
(N(n))y =8, v, ¥ *a, B (34)  Herethe operatod®is defined by formulag25)—(32), the

operator U™ by Eq. (36), the matrix TU~MA=TUi~Is),
Parameters,,, ¢, and o, of the matrix N, (34) can be (TMAZI)T connects rg_qrgifr_‘taﬁdiwith MA one(see for-
found with the aid of any suitable exactly solvable model ofMulas(16) and (17). TW~"% is applied here, because the
two states[24]. In the case of the Landau-Zener moae| operatorU°' is constructed irjj representation due to the

=0, P, is the Landau-Zener probability of the transition, the definition of initial states in thel picture (Sec. ), and the
value of p=< /4 [24]. operatorU™ in the MA one due to the scheme of Hundis

Let diagonal matricesA(Rn,RnH) transform adiabatic ati:inopted in thg inn(_ar region. Matri>n<1)elements of the operator
wave functions according to the assumpti@n) of Sec. Il U (36) corﬁam adiabatic phase&dd (35) as arguments of
after passing by the system of the interval between adjacefi¢nctions sifi¢f ] and coBa ]. One can expect, that these
PCs, located at point®, and R, ;, functions get phase functions change rapidly with the variation pfunder the

multipliers in accordance with the quasiclassical approach thermal collision energies, and after the integration over the
impact parameter in the formula for cross sectiam) with

A, (R, Rysq)=exp(idnnii), trans_iti_on probability from Eq(398), all terms with oscillating
’ ' multipliers become considerably small and one could neglect

Ryt them. This approximation we call Iphase averagingt can
on, nH:j ko (R)ARS, o, N=1,...Nn,. (35  be written as the equality
R,

n

From the equality (100 we find the k.(R) P, => |U%", 2P 5|(U°“t)g, 1% (39

= V2u[Eoi(1—p?/R?) + U (R)] is the classical impulse of «p

the radial nuclear motion along adiabatic cufwe The tran-  \ynere the matriP™ can be obtained as the product of prob-
sition operator in the inner region can be written with acCU-ghjlity matrices from single P@(m)

racy to real phase as the product of matrices defined by

formulas(34) and (35) [24] P"=P(1)P(2)-P(n,)P(ny)---P(1). (40)

UM=exp(ic)Uy),(UT))", Matrix elements of matriceB(n), n=1,--,n,, are equal to
square modules of elements of single transition matrices
. N(n) (34): P(n), s=|[N(n)]1...|%. Note that nonzero matrix
(36) elements ofP" (40) are equal to elements, these have been
calculated in Ref[26].
Note, that in formula$35) and(36) under the point oR;, .3 From consideration given in the present section, it fol-
the turning point on curvea are assumed. According to the lows, that after averaging over adiabatic phases it is suffi-
assumptiorfiii) from Sec. Il we apply the scheme Hungis cient to find values of transition probabilities through single
in the inner region, the following properties of the operatorPC instead of complex matrix elements of matricfe@)

12= A(Rma RONJARL RN AR, N,

U™ could be expressed by equalities: (34). We proved the validity of the phase averaging approxi-
: mation for sodium-sodium thermal collisions by numerical

(U'”)a,MSY P aMg k=Ua5MSY i Mg calculations of the energy-pooling cross section without

phase averaging and with it, considering the motion along

(UM, 1 a=(UM), 4, (37)  curves by 'S, symmetry. Results of calculations showed
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that cross sections calculated with phase averaging and withvhere stateg’* and y* differ from statesy’ andy by the
out it differ maximum at 6% foiE.,;= 300 K; then as colli- inversion of time, it is equivalent to the inversion of signs of
sion energy grew up to 2000 K, the maximum differenceall momenta;g,=Eq+E; j, andE, =Ecq+ Eiiié' It was

between results decreased up to 2%. Thus deviation is N@hecked that calculated cross sections satisfy the equality
large and one can believe, that the validity of phase averagyy) exactly for all collision energieg ., the satisfiability of

ing is proved. Note, that calculations without phase averaggetajled balance rule confirms the correctness of present cal-
ing demand much more computer time, than with application,;|5tions.

of phase averaging approximation.

Taking into account expressioriél) and (38), in adia-
batic average phase approximation the expression for the
cross section could be written as Averaged and detailed cross sections of collisional-

induced fine-structure transitiori§) and(8), have been cal-

VI. RESULTS AND DISCUSSIONS

E.\Y2 rRya . ) culated with the aid of formulagtl) and(7). Averaged over

Oyt = 277(E—7) f >, |[ueutTi-MAY 12pn projectionsm,, m, and summed ovean; , mj, cross sections
v 0 wp (6) are presented in Figs(@ and Zb). The present calcula-
X|[(-|-(Jj—MA>)tr(Uout)tr]ﬁy,|2pdp tions showed that transition without the change of sym

+j are less efficient then these with conservation of the sum
[Figs. 2a) and Zb)]. Also it was noticed, that transitior{6)

with the change of the surfy +j, take place mostly in the
inner zone, but transitions with the constant symj, take
place mostly in the outer zone. It is seen from Figs) 2nd
2(b), that cross sections of inelastic processes with the
change of the sum of total electronic momenta of atoms
A(j1+j2)=1 and A(j;+]j,)=2 do not differ from each
other considerably in case of transitions 3/23/2/21/2 and
3/21/2—1/21/2 [curves(2) and (3) in Figs. 2a) and 2b)].
The letter could be explained by the symmetry properties of
V. CALCULATIONS quadrupole-quadrupole operai@3).

In order to check our calculations with formuldl) we Results of calculations of detailed cross secti8)slead
. i . . . N
controlled the conservation of unitary properties of the op-t0 the propensity rule: Transitions ;mjm,—j1m; j2m;

erator U™ on different steps of calculation procedure, also?'® the most efficient withy jt j= 1 +]5 o
we solved Eq.27) in both jj and MA representations and A(j1+j,) =0 (43)
obtained the same results. The rotational transformations 1ol
(31) and symmetry propertie$2) allowed us to reduce the  Taking in mind transitions between states, that are not
time of numerical calculations, also they reduce the numbegonnected by detailed balance r@e) and symmetry prop-
of independent detailed cross sections of proce&®esom  erties (32), the propensity rule is confirmed in case of the
1296 to 432. ) first 122 of the most efficient collisional-induced fine-
Calculations of the matrix elements of the matfx (40)  strycture transitions. It follows from present calculations,
were made with the aid of a program from RE26]. The  that their cross sections are almost independent on collision
value ofRc,, in formula(29) has been chosen in the interval gpergy ate 900 °K. In notations of Table | the first ten
110-120a; the amplifying of this value did not change of the most efficient transitions are: 17-27, 15-29, 5-25,
results more than on 0.1%. 3-30, 1-36, 6-10, 11-21, 10-20, 419, and 11-16. Energy
Calculations were made with two different choices of thegependences of cross sections of transitions 15—29, 5-25,
operatoVg: with values from formulg24), and with values  ang 3-30 relative to the transition 17—27 are presented in
from Ref.[47], (see Table Il in this papégrResults showed Fig. 3@). The transition 17-27(1/2 1/2, 1/2-1/2—1/2
that the cross section is almost independent on the choice af 1/ 1/2 1/3 has the most valued cross section, the corre-
Ve. In practice it is possible to calculate cross sections okpondent energy dependence is presented in Fiy. Bro-
fine-structure transitions without the inclusion of the operatoensity rule and steady energy dependences of cross sections
V¢ into consideration. in case of collisional-induced fine-structure transitions could
We examined the influence of the. exchange interactiorpe explained by the features of eigenvalue curves of
Vex (25 on the results. The calculations showed that theasymptotic HamiltoniafiFig. 1], as it was discussed in Sec.
results are not sensitive to the inclusion of Mg, into the |11 D. We could not find obvious propensity rule in case of
asymptotic Hamiltoniar{13). transitions withA(j;+j,)=1, 2. We noted, that transitions
The property of cross sections relative to inversion ofyith the maximum value ofrf,+m,—m;—mj) are more
time is expressed by the detailed balance riff'mula  effective in general than other ones nevertheless.

E,

12 -
+2 E_z) j |[UOUt'(Uom)tr]yy’|2pdp- (41)
mat

The second integral in the sufd1) does not contain the
matrix P", because it is calculated over the outer region,
where there are no transitions between states from p3g 3
manifold and from other ong8s5s, 3s4d, and ¥4f) there
[see assumptiofii) in Sec. .

(144.13 in Ref. [37]]: Average cross sections ehergy-pooling transitiong5)
have been calculated by means of formu{d4) and (4).
Ty Ey =0+ IE,, (42 Note, that cross sections in the formuldl) should be
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summed over over all final fine-structure states for giverd(c)]. One can see that the energy-pooling cross sections
final quantum numbersgn; ; if one takes into account the weakly depend on values ¢fj,.

unitary properties of the operatal’", the latter summation

We could not find any other results except ours about

could be done iMMA representation over all molecular states collisional-induced fine-structure transitions, but in the case
¢ with molecular potential curves having at large internu-Of energy-pooling processg8) race constants for different

clear separations the same energy limit,, n¢l; as the
energy of the final state in proce&s. As a result we have
the following expression for cross section:

E,

1/2
1
Ty ”(E (211+1)(212+1)m12,m22

Y i

Rmat . .
t. i —MA 2 .
X fo ; |[UOU-T” ]jlmlizmzo" ~P2yfpdp,

y=Ji2, ¥ =nolo, n¢ls. (44)

values of {;,j,) at T=640°K have been measurdgRef.
[5]). In order to compare our results with the d@fg we
calculated race constants with the Boltzmann distribution
function. One can see from Table IV that the dependence of
race constants on values f, j,, is stronger in Ref[5]
than ours. Also the relative values of race constants of
4F-state production in Ref5] are greater than ours, espe-
cially for the case 1/2, 1/2. The discrepancy of theoretical
and experimental results could be explained by the too nar-
row interval of QCA validity for calculation of race constants
(see Sec. )| and, on the other hand, by the possible inaccu-
racy of experimental data. Note that in experimddisveak
dependence of energy-pooling cross sections on fine-

Results for energy-pooling processes have been obtained fetructure quantum numbers in the picture had been ob-

three possible pairs of initial total momerjtg , [Figs. 4a)—

served.
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FIG. 3. Energy dependences of cross sections of collision-
induced fine-structure are the most efficient transiti(8)sin case
A(j1+],)=0. Solids—calculations withr?)=39.2a2, dashed—
with (r?)=46.%3. (a) Cross sections are relative to that of the
transition (17-2%: 1/2 1/2, 1/2-1/2-1/2-1/2, 1/2 1/2(b) Cross o
section of the transitiof17—-27.

Dependence of results on variation of potential and
pseudocrossings parameters

Actually in the present calculations the interatomic inter-
action in the outer region depends on the single numerical
parametexr?) of the quadrupole-quadrupole tefisee for-
mula (23) and the text thereiln Here the(r?) is the mean
square radius of afBvalence electron in an excited sodium
atom. Cross sections have been calculated with the present 00 1000 1200 1400 1600 1800 2000 2200
value of(r?)=39.2a3 and with the value 464§ from Ref. Eeoll (K)

[44], results are shown in Figs(&, 3(a), 3(b), and 4a)—

4(c). One can notice that these results are weakly sensitive to FG. 4. Energy dependences of averaged over initial projections
the variation of(r?) except the absolute values of cross sec-f total momenta energy-pooling cross sections in case of collisions
tions in the case of transitions wi#(j,+j,) =0 [Fig. 3b)],  (6) for three final excited states of sodium atogi;=>5s. (a), 4d
where the discrepancy between two sets of results reach@s, 4f (c) and different initial values of total electronic momenta of
19%. separate sodium atomg,(j,): solids and triangles+3/2, 3/2;

In the inner region, instead of application of interatomiclong dash and boxes¢3/2, 1/2; short dash and circles(3/2, 1/2;
interaction, we introduce a set of parameters of Landaukines—calculations with (r2)=39.223, scatters-with (r?)
Zener pseudocrossing®C9. In the present consideration, =46.%3.

cross section (10-16 cm?2)
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TABLE IV. Energy-pooling rate constants ratiek '2/kZ23?at

T=640 K.

jal2 nl Present Ref[5]

3/2,3/2 4D 2.2 29 ﬁE‘

312,312 4F 0.23 0.83 S

1/2,1/2 5 11 30 :

1/2,1/2 4D 292 392 =

1/2,1/2 4F 0.24 26 $
g
0

we apply two sets of PCs parameters. The set | is given fror g
Ref. [26], the set Il includes more thoroughly recalculated o
values of PCs parameters, with the addition of three PCs b
the symmetry®s [ : these PCs had not been mentioned in
Ref.[26]. Calculations with sets | and Il of PCs parameters
have been performed. Statistically averaged gyerj, ini-

tial channels, energy-pooling cross sections computed wit
set | are in complete agreement with our previous result:
(Ref.[26]). The comparison of results received with applica-
tion by two sets of PCs parameters is presented in Rly. 2
and Figs. %a)-5(c). It is seen from Fig. @), that the most
sensitive to the variation of PCs parameters is the cross se €
tion of transition 3/2 3/2-3/2 1/2 atE.,>900K. In the
case of energy-pooling processes, the most sensitive to tts
variation of Landau-Zener parameters is the cross section (v
4F-state productiofiFig. 5(c)].

VIl. CONCLUDING REMARKS

oss section

The present approach CSA combines the quantum deg
scription of electrons and the classic approach to nuclee
motion. CSA is suitable for practical calculations, as the ex-
ample, it was applied in the case of thermal collisions of
3p-excited sodium atoms in the present paper. Three pos
sible representations for electronic wave functions were
used, which gives an opportunity to apply as theicture,
and theJ picture as well, and to apply both Hund’s schemes
a andc. The present approach allows us to calculate coher
ence terms, obtained experimentally by means of coherel
population with known density matrix the group of fine- &
structure states by laser ligf,4]. These calculations have g
not been made in the present consideration because of tI°
absence of the density matrix that defines the population co
atomic initial states, and had to be known from conditions 01"'
expenments The proposed approximation could be applie g §
in cases of excited heavy atoms scattering, ifi RRb* and
Cs" 4+ Cs* collisions for example, and could be generalized ,,
in case of scattering alkaline-earth-metal atoms.

Note that the present consideration does not allow us 48
obtain energy-pooling cross sections into final states witt
detected fine structure, due to the restriction of the basis s
in the outer zone by single electronic configuratiop3®,
and due to the neglect by spin-orbit splitting of adiabatic
potential curves in the inner zone.

sect
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3/2). Solids—calculations with set | of Landau-Zener parameters,
dashed—uwith set II.
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