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Exact electron spectra in collisions of two zero-range potentials with nonzero impact parameters
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The Sturmian theory of ion-atom collisions is constructed for arbittagnzerg impact parameters. The
approach is essentially nonperturbative, and has a wide range of applicability: from low velocities, provided
that quantum motion of heavy particles can be neglected, to high velocities, as long as the relativistic effects
are not important. The theory is applied to calculation of electron spectra at low and high collision velocities.
For slow collisions we describe Fermi oscillations in the spectra of ejected electrons. At higher velocities our
theory confirms the possibility of cusp formation even when the heavy particles are neutral in the final state.
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[. INTRODUCTION parametergrelative velocities and impact paramejensth-
out introducingad hocparameters. It should be noted, how-

In recent years, the novel technique of cold-target recoilever, that the initial conditions are easy to set up in these
ion momentum spectroscogoLTRIMS) has allowed experi- bases, and the asymptotic translational motion of the electron
mentalists to map out the full momentum distributions ofcan be accurately described.
ejected electrond1]. The large amounts of data from  The situation is reversed in case of molecular bases. They
COLTRIMS experiments present a challenge for atomic theoprovide the best description of the electronic motion topol-
ries. For several reasons ion-atom and atom-atom collisionsgy but it is difficult to make them Galilean invariant and to
are notoriously difficult to describe exactly in quantum me-account for the translational motion of electrons with the
chanics. Probably the most important conceptual difficulty isnuclei att— — o, i.e., to satisfy correct physical initial con-
connected with the essential time dependence of collisioditions. This problem was recognized as early as in 1958 by
processes, where initial conditions are set up-at-o, but  Bates and McCarro[l9], and since then there were numerous
solutions are usually needed tat: +«. Thus, in principle, (more or less successfuhttempty 10] to correct this situa-
complete solutions for all values of a time variable aretion by appendingad hocelectron translation factor&TF)
required. to molecular functions.

In this paper we consider only collisions involving one- A rigorous way to make molecular bases asymptotically
electron transitions. There are two principal methods to obGalilean invariant has been found by Solov'ev and Vinitsky
tain exactsolutions to this problem(i) direct numerical so- [11]. They proposed a time-dependent scaling of the spatial
lution in three-dimensional3D)-+time by discretization of variables g=r/R(t) and an additional transformation of
the Schrdinger equation in a finite bok2—4] and (i) ex-  wave functions to preserve the form of the Sclinger equa-
pansion over basis sef§]. We do not consider any pertur- tion. While essentially solving the translational problems, the
bation theories in this paper. Difficulties of the direct numeri- Solov’ev-Vinitsky scale transformation still does not address
cal method are mainly due to the necessity to keep the boanother drawback of thadiabatic molecular bases; namely,
finite, while physical initial and boundary conditions require it is difficult to describe the interaction with the continuum,
extension of the box to infinity. This approach is completelyespecially when one of the adiabatic energy curves crosses
out of the scope of this paper and will not be discussedhe ionization threshold. In terms of the close-coupling
further. method it means that one of the coupled differential equa-

Successful application of basis set expansion techniqudsns disappears at some moment of time, since the number
depends primarily on the kind of basis functions used. Theof bound states is decreased by ¢h2]. Another example is
bases can be divided into two broad categories by their corthe crossing of the Rydberg spectrum by a superpromotion:
figurational properties: atomic and molecular. Atomic basedo reach the continuum one has to take into account an infi-
[6] provide a good description of inelastic processes that ocaite number of interaction regions. These difficulties practi-
cur at large internuclear distances. However, the approactelly precluded reliable theoretical studies of the ionization
breaks down at smaller internuclear distances because atonpcocesses in ion-atom collisions by using molecular bases.
bases cannot describe the quasimolecular topology of the The solution to this problem was found in a novel use of
electronic motior] 7]. Notwithstanding many creative efforts Sturmian molecular bas¢43]. The main innovation is the
to remedy this situatiof8], the expansion over atomic bases integration over an energy parameter Since w is not an
cannot provide exact solutions in a wide range of collisioneigenvalue in the Sturmian case, the integration can be ex-

tended over both discrete (Re<0) and continuous (Re
>0) parts of the Schitinger equation’s spectrum. Thus, ev-
*Permanent address: loffe Physical Technical Institute, St. Petergry Sturmian function carries information about transitions
burg, Russia. between discrete levelgxcitation as well as about ioniza-
"Present address: CromoGraphics, San Francisco. tion. It follows that the convergence of such a technique is
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expected to be very good. Indeed, in some special cases, it&how that two more considerations should be taken into ac-
possible to obtairexactresults by using a finitéand small  count while dealing with the initial conditions. First, the Fou-
number of Sturmian functions. For instance, just one Sturrier integral must converge which requires a solutionwin
mian function will be sufficient to obtain exact solutions in space that would decrease at large positivewR8econd, the
this paper. stationary-phase approximation of the exact solutiont in
The theory employing K" “molecular” Sturmian func-  space must coincide with the stationary-phase approximation
tions has already been successfully used to calculate electr@f the initial conditions. This allows us to find the unique
spectra in proton—hydrogen atom collisions at impact paramsolution to the problem. Although our solution uses only one
eterb=0 [14]. This special case offers a degree of symmetrymolecular Sturmian wave function it is exact even for high
not present ab+# 0 and also employs Sturmian functions that collision velocities[18]. This emphasizes the difference be-
are closely related to the more familiag Hadiabatic eigen- tween molecular Sturmian functions and adiabatic bases.
functions. These circumstances allowed for a rapidly conver- We construct a theory that has an extraordinarily wide
gent calculation of electron distributions so that essentiallyjange of validity in terms of collision energy: from thermal
exact results for proton-hydrogen collisions a0 were €nergies, as long as we can neglect quantum motion of nu-
obtained. clei, up to high energies provided that relativistic effects are
In this paper we take the next major step by using thenot significant yet. The theory is mathematically exact, i.e.,
theory forb#0. For sufficiently largeb the cores do not We do not use or imply any approximations. Therefore, the
interpenetrate and one can model the dynamics of the «gotesults of calculations presented in Sec. V can be used as
tive” electron by using on|y the wave function well outside reference data for other theoretical methods and, if the phySl'
the core. When the wavelength of the electron’s de Brogliecal conditions of validity are satisfied, i.es;wave domi-
wave is much larger than the dimension of the core then onBance in electron-atom scattering, they can be used to de-
can use a model where the radius of the core shrinks to 8cribe experimental data. To illustrate the wide range of our
point. This is the zero-range-potenti@RP) model[15] dis-  theory we show cusp and binary encounter peaks in the spec-
cussed in Sec. Il A. In this model Onjyvvave interaction are tra at hlgh energies. Our calculations confirm the pOSSlblllty
present and they are described by thwave scattering ©f cusp formation when heavy particléstoms are neutral
lengtha. We consider the model of two zero-range potentialsh the final statg20]. We did not see a pronounced interfer-
mowing along a straight-line trajectory. This model has beergnce between gerade and ungerade amplitudes, called Fermi
used to study rearrangement and ionizafib®,17], but their oscillations[21], in the electron spectra at low collision ve-
solutions have always been restricted to impact parametelgcity (adiabatic regimewhen the impact parametér# 0,
b=0. This is a fundamental defect, since physical processe§iat were found forbo=0 [17]. Our calculations are com-
at b=0 involve the interpenetration of atomic cores wherepared with hidden crossing results at low collision velocity.
the zero-range assumption is invalid. Note, that in ZRP model the electron spectra at low collision

The ZRP model has several features that make it amacelocity is different from the spectra of collisions of positive
nable to the molecular Sturmian theory. Most important,ions with atoms, where the saddle-point electrons dominate.
there is only one Sturmian function and a closed-form ex{n this model there are no saddle-point electrons since the
pression for it has been fourid9]. Because there is no need Potential has no saddle poirlts6].
to truncate an infinite series, an exact solution is possible. In
this paper we find the exact solution for this model problem
and study the effect that nonzero impact parameters have on
the electron distributions in the process

II. ION-ATOM COLLISIONS IN THE SCALED
REPRESENTATION: ZERO-RANGE POTENTIALS

A. General

A +A—A+A+e, (1) . . . . .
Consider two nuclei moving along a classical trajectory
where the electron-atom interaction is modeled by theR(t) with the initial yeIOC|tyv and_lmpact parame.t.érz and
: , one electron described by the time-dependent Stthger

s-wave scattering phase shift

equation
kcoté=—1/a, 2 1
2

V2+V(r,R(1) [4(r,t)=i w;;’t). (3)

with constant scattering lengtn

The theory is built along the general lines presented in our
previous papefl13] (Secs. Il A and Il B. However, the This semiclassical treatment should be considered exact in a
relative simplicity of the ZRP case allows us to analyze inwide range of collision velocities, with the exception of
detail the crucially important problem of the initial condi- ultracold collisions. In this paper we will consider only
tions (Sec. 1l Q. It is not trivial to satisfy initial conditions straight-line trajectories.
in this theory because the solution is actually carried out in  The Schrdinger equation for a zero-range potential with
Fourier space ¢ space¢ while the initial conditions must be an eigenenergy ,= — @?/2 is equivalent to Eq(3) with V
set up in the physical time spacespace. It has been shown =0 everywhere, except the point=r;,, whererj, is the
already[13] that  andt space can be connected by the ZRP’s position. The boundary condition determines the loga-
stationary-phase approximationtat —c. In Sec. Il C we  rithmic derivative of the wave function;s atr;=0,
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1Y)
ryy dq

=—a, (4)

wherer;=|r—r;o|. The general solution of the Schiiager
equation in the vicinity of the point;=0 has the form

S
J

wherec; andb; are constants. Substituting E@) into Eq.
(4) we obtain the following boundary conditidd5]:

1
‘;b(r!t)lerO:Nj(t)(_'_a)v (6)

rj

where the coefficien;(t) might depend on, but not onr.

PHYSICAL REVIEW 85 032722

(1) In the original physical coordinates,t} the nuclei
move along a trajectorR(t), therefore the interaction be-
tween the electron and the nuclei depends on the direction of
the vectorR(t). In the scaled spadgy, 7}, the nuclei do not
move anymore either in the radial or angular sense; they are

fixed atq= +7/2. Consequently, the potential in the trans-
formed coordinates does not depend on the directidR(oy.
The dynamical effects are described by the scalar function
R(7) and two additional terms in the new Hamiltonian of Eq.
(10): the simple harmonic oscillator term and the angular
momentum operator.

(2) If Jut|>D, then functionsp(q,7) are Galilean invari-
ant under translations in the planevoandR; thereforethere
is no need for translation factors.e., phase factors that are
required to writey(r,t) in frames moving relative to a par-
ticular reference frame.

Systems of several ZRPs can be considered, and we attach an(3) Since the parameter of a ZRP is changed according to
additional index to distinguish positions of different ZRPs. «— aR(7) in scaled coordinateg=r/R(t) [Egs. (6) and

B. Scale transformation

(11)], all dependence om comes from the multiplicative
factor R(7) in the boundary conditions.

The translational and rotational effects are best accounted (4) For straight-line trajectories the nuclei rotate with the

for in scaled coordinates, as proposed by Solov’ev and Vin
itsky [11]. The Solov’ev-Vinitsky scale transformation of

Egs.(3) and(6) involves the change of variablé$3],

r

q= R’ (7)
_ft dt’ ®
Ry
and the transformation of the wave function
1 iR(7T) o
lﬁ(r,t)— RSIZ(T) ex 2R(7')q QD(qlT) ( )

constant angular velocityl=vb in the scaled representa-
tion, therefore it will be convenient to introduce the angle of
rotation 0=Q 7, 0 @<, as a new “time” in the Schro
dinger equation an&(#)=b/siné.

In scaled coordinatefy, 8} the initial conditions are

(P(q! 0)|9—>O,qj¢O:O! (12)
|€D(q-a)|ﬁeo,qj/0=rj/b:|¢i(rj)|- (13

The initial condition Eq.(12) ensures that there is no con-
tinuum in the initial state and condition E(L3) normalizes
the wave function.

C. Electron spectra

In a reference frame that rotates counterclockwise around the Tq gptain the spectra of the ejected electrons we project
vectorn=vxb, whereb is the impact-parameter vector and oy time-dependent wave function onto plane waves,

v is the initial-velocity vector, with the frequendy we ob-

tain a new Schidinger equation

1,1 - (g, 7)
-5 Vit 592q2+QLn o(g,n)=i———.

> (10

In scaled coordinatefy, 7} the ZRP’s boundary conditions

Eq. (6) become

1
<p<q,r)|qﬁo=N,—(r)(a—aRm), (1
J

whereN;(7) does not depend og. The Galilean invariance
of ¢(qg,7) means that basis functions do not have to be modi
fied in anad hocway by attaching the translation factors,

and that they are therefore orthogonal.

The properties and advantages of the scaled transforma-
tion were presented elsewhédes], and the reader is referred
to that paper for details. Here we will only briefly summarize

A(k)=lim f¢§(r,t)¢(r,t)d3r, (14)

t—+oo

where

: k2
cpk(r,t)z—mex;{m-r—lit). (15

It is more convenient to evaluate the projection in the scaled

space. Since the scale transformation conserves wave-
function normalization and the exponential factors cancel,

one has

A(k)=lim
60— m7—0

f @i (9,0 ¢(q,0)d3q, (16)

the most important features of this transformation. They arewhere the functionp,(q, ) is the transformed plane wave
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b 32 where
(Pk(q’e):(Zwsine)
0 [ K 2 k)= 370 ™ (24)
: . 24 = )= 4vK
XeXp{ZsinH(Zv q+|{qg-+ cosé | (. 1
(17) In the results presented here we compute oh(¥k,b).

Connection to a specific experiment is to be understood ex-

Taking the complex conjugate and changing variables actly via Eq.(21) or approximately via Eq(24) or a variant

~ thereof.
O0=m—10, (18
we have I1l. EXACT STURMIAN SOLUTION
i\32 5 i\32 A. Scaled representation and Sturmian functions
e (q,0)= (;) Kqo(g,8;klv,00 — (;) 6(q—k/v), for zero-range potentials
f=+0 (19) Since we consider only collisions of twidentical ZRP’s

moving along straight-line trajectories, the time-dependent

whereK, is the propagator for an harmonic oscillator poten-Schralinger equation in the scaled space EtD) has the
tial with fundamental frequenc§) and the limit is obtained form

by definition. L L 50(q.6) .
Changing the order of the integration and taking the limit,|] ‘o2, ~ 2.2 A _ ¢(d, z
we get[22] 2Vq+ 29 q°+QL,le(g,0)=i EY R q+ 12.
. (25)

32 312
A(k):<_) ¢(q16)|0=ﬂ',q=k/v:<_) (P(k/U,W) . . A
v v The boundary conditions at the ZRP’s positians= * z/2

20 are

At first glance it might seem that unitarity would imply
[|A(k)|2dk=1, i.e., the initial state is always completely _ _
ionized. This conclusion is incorrect because one cannot in- #(2.0)ljg-q.~0=N=(6) lg—q-| aR(9)], (26
terchange integration ovérand the limit6— .
Using COLTRIMS techniques, experimentalists measure thg,nere for straight-line trajectories
electron spectra at the fixed recoil momentum of the target

ion. These spectra are given by the following formyla3]:
Thy= =Y f i f " Vib,td

(k)= 2m)° exg —i o (b,t)dt

(21) The Sturmian functions for this problem are defined by
the following differential equation

whereK, andK;=AE/v are the components of the target-
ion recoil momentum that are perpendicular and parallel to 1
the initial velocity, respectively, and(b,t) is the atom-atom _ §V§+ EquerQf_n Sp(@;9) =QwS,(w;q),
potential. In the case of the ZRP model the potentigh,t)
equals zero, but to better describe the physical situation a (28
realistic potentiaV(b,t) could be introduced. Equatig21)
represents an exact definition Btk) as a two-dimensional and the boundary conditions at ,
Fourier transform ofA(k,b) times a phase factor. Using the

b
e KL DAk, b)d?b, sin?

stationary-phase method to evaluate the integra &), we 1
obtain, thatbo=b(K,) and Sp(w;q)|‘q_qi|_>0= consX (W —app(o) |,
T(k) <Ak, b(K.)). (22 29

As a specific example of Eq22), consider a polarization where p,(w) are called Sturmian eigenvalues. We also re-
potential V(b,t) = — a¢/2R*(t) and ignore the phase varia- quire thatS,(w;q) should be finite whemm—c. There are
tion of A(k,b); then only two Sturmian functions in this case, and, since the ZRPs
are identical, one of these functions is gerade, and another
one is ungerade. The indgxtherefore will assume only two
values:—1 oruand+1 org. These Sturmian functions have
(23 the form[19]

1 vb(K,)

2
T(k): gz TGXF{I §KLb(Kl) A(k,b(KL)),
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o z P
Sp(w;q)= ;G 95 +pG 9= 5@
1 ei(v/Z)b~q
 2{maD, 1(0) z
2
2 e—i(u/2)b-q
><Dw71/2 \/29 q_z +p 2
a+5
z
wa_l,z( V20 q+§) , (30)

PHYSICAL REVIEW 85 032722

tion when the electron is in the bound state of one of the

ZRPs, we can combine these two functions,

1

®a(q,0)= \/E[%(q,@)*'@g(q,@)]- (34

The solution proceeds by satisfying the boundary condi-

tions at ZRPs first, which leads to a three-term recurrence

relation for coefficientsB,(w). Then the solutions of the

recurrence relations are chosen to ensure convergence of the

integral in EQ.(33) and to satisfy the initial conditions on
(Pp(qva)-
B. Boundary conditions and three-term recurrence relations

To satisfy the boundary conditions at ZRRg=(*2/2),
we substitute the Sturmian boundary conditions @2§) into

whereG(q,q’,®) is Green’s function of the harmonic oscil- the integral representation E¢83) and compare the result

lator with rotation[Eq. (A11)] andD,,_45(z) is a parabolic

with the boundary conditions E¢26). We obtain the three-

cylinder function[24]. These Green’s functions are discussedterm recurrence relation for the coefficiéB( ),

in Appendix A. See also the paper by de Oliveigb]. The
Sturmian normalization constan{ar/« are obtained in Ap-
pendix B from the condition

dpp

do (31)

f Sy(w;0)Sy(w;q)d3g=—

which is equivalent to the usual Sturmian normalization con-

dition with a potential[13] but is more convenient in the
ZRP case. The dual functioﬁp(w;q) is obtained from

Sy(w;q) by inverting the axis of rotation. Substituting Eq.

(30) into Eq. (29 we obtain the Sturmian eigenvalues

z z )

272

1 [V2QD],_1,(0)+pD,_14+2Q)]
a D,-120) '

(32

ppl(®)= = =| 217G, () + PG

a

whereG(q,q’,w) is Green'’s function of the harmonic oscil-
lator with rotation[Eq. (A14)] andD (x)=dD ,(x)/dx.

Obviously, we can satisfy Eq25) by choosing solutions
in the following form:

1 )
¢p<q,o>=ﬁfcsp<w>sp<w;q>e'w”dw, (33

whereC is a contour in the complex plane af, andB,(w)

pplw+1)Bpy(w+1)—pp(0—1)By(w—1)=2ibB,(w),
(35
wherep,(w) is the Sturmian eigenvalue given by E§2).

In what follows, it will be more convenient to introduce
new coefficientC,(w),

ei(m2)o
Bp(w)= ch(w)a (36)
which satisfy the three-term recurrence relation
Cp(w+1)+Cp(w—1)=ﬂC (). (37)
pplw) P

The asymptotic solutions of the three-term recurrence re-
lation are derived by Braun’s quasiclassical formg]

. 4] ph(w)
TN b
><exp<ti

where the Sturmian eigenvalyg(w) is given by Eq.(32).

At large negativeRew the solutions are oscillatory, and
we define two linearly independent solutio@®*(w) by
their asymptotic form Eq(38),

%) b o
f arcsi——do'—i—w |,
0 pp(wl)
(38

are the coefficients to be determined by the initial conditions

Ed. (12) on ¢,(q,6) at 6—0 corresponding to— — .

The initial conditions depend upon the actual physical
situation. In this paper we will assume two moving ZRPs
infinitely far from each other with the electron either in the

ar\2Q)

C(w)=exg +i| ot +

~

+0(w 2, when Rav— —o.

(39

gerade or ungerade state as initial conditions. This choice

gives two solutionsp,(d, #) and ¢4(q, #) with well-defined

We also introduce the solutior@R(w) that decrease expo-

symmetry. To obtain the common experimental initial condi-nentially at large positive Re:
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- o a\2Q The periodic functions* (w) andJ ™ (w) are determined by
CR(a)):cos(Eer 2 ex;{ - \/Z) the Wronskians
Y [ -
+O(™™), when Rev—c. (40 I¥(@)=F53W{CR(0),C ()}, (44)

It is important to recognize that any three-term recurrence
relation has infinitely many significantly different solutions. where  W{A(w),B(w)}=A(w+1)B(w)—A(w)B(w+1).
Indeed, if we know a particular solution of a three-term re-The asymptotic analysig\ppendix Q at 6— 0 andf— by
currence relation then we can multiply this solution by anthe stationary-phase method shows that
arbitrary periodic function with the period =1 and obtain - 4
another solution of the same recurrence relation. To choose fo=2v2bQi[Jq ] (45
from the many solutions to the recurrence relation 67),
we require that the integral in E¢33) must converge. The
Sturmian function$(w;q) rapidly decrease at large negative Soo=Jdd13517°4, (46)
Rew on the contourC, but oscillate with slowly changing
amplitude at Re>0. Therefore, to ensure convergence, WewhereSy, is the elastic-scattering amplitude and
require that our coefficient€,(w) decrease at R@>0 on

and

the contourC. The most general solution that decreases ex- P q
ponentially at large positive Re has a form Jo = 0 I (0)do (47)
— R
Cplw)=f(w)Cp(w), (4D are the first terms in the Fourier expansions of the periodic

functions J* (w). Equation (45) defines the normalization
constant and the contour of integration in E83) was speci-
fied earlier. The time-dependent wave function that satisfies
the initial conditions is

wheref(w)=f(w+T) is a periodic function with the period
T=1.

C. Initial conditions in @ space
The initial condition Eq(12) in w space has the form L b
a{l2)in o sp ep(0,0)=[35 1"\ —

ei(ﬂ'/Z)w
———f(w)CY(w)Sy(w;q)dw=0. 42 i R
J’cpp(w) (w) p(a)) p(a) q)dw (42 XJ +ia gio(m2-0)g (w;q)Cp(w) o, a=0.
—o+ia P pp(w)

To satisfy the initial condition Eq(12) we choose the con-
tour of integration in Eq(33) parallel to the real axis, but (48)
shifted into the complex plane by an amowt 0. In this
case the initial condition Eq12) requires that the integrand
in Eqg. (42) has no singularities in the upper plane and de-
creases exponentially on the upper semicircle at infinity. Be- ~
cause the Sturmian eigenvalyeg ) have zeros and poles Soozf ¢(9,0)¢(q,0)dq. (49)
only on the positive real axis, this choice of the contour
allows us to avoid singularities €%(w) and 1p,(w) and  Methods to evaluate Eq49) are discussed in Appendix D.
set up the initial condition E¢(12). Since the periodic func-  Comparison betweeS, from Eqgs.(46) and (49) provides a
tion f(w) should have no singularities and should not in-check on the accuracy of our calculations.
crease on the upper semicircle at infinity, then it should have
the formf(w)==_, f,""". Notice that all terms except D. lonization probabilities and electron spectra
n=0 in the Fourier expansion df{ w) give the trivial solu-
tions ¢,(q,0) =0 since we can close the contour of integra-
tion in the upper plane for ang. Then the coefficient, is
determined _bY the initial condition Eng). o Pion=1—|S0d 2. (50)

Our coefficientsC,(w) should provide correct initial con-
ditions Eq.(13) on the functione(q, 6). To choose the ap- Notice that the ionization probabilities are determined only
propriatef, we require that for Re— —o our calculated by the solutions of the three-term recurrence relations de-
coefficients lead to the same stationary-phase result as thigied by Eqgs(39) and (40):
coefficients in the similar integral representation of the initial

An alternative Eq(46) for the elastic scattering amplitude

One way to calculate the ionization probabilRy,, is by
using unitarity

2

conditions. The asymptotic analysis is given in detail in Ap- 1 R Lt

pendix C. To analyze the asymptotic behaviorG§t(w) at 2 0 W{C(w),C™" (w)}dw

large negative Re we write CR(w) as linear combination Pion=1— N

of two oscillatory solution<C-*(w), Eq. (39): 0 J W{CR(w),C""(w)}dw
0

CRw)=3"(w)C" " (w)+ I (w)C" (w). (43 (51)
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To obtain electron spectra we substitute the wave function o 3
Eq. (48) into Eg. (19): 20D ,{0) 20 1“( - §+ 7
p(w)= - = . (58)
b i CR(w) a D, 10) a rl - 1) N 1
AK)=[I-1T1—— g iwm/?2 K/ p d >+7
(k)=[Jo1 odoi) eia So(w;klv) po(@) ®

(520 The analytic solutionCR(w) of the three-term recurrence
relation Eq.(37) with p(w) from Eq. (58) is found to be
Integrating the electron spectra over all electron momenta

CR(w)=D},_1,(0)D_,_12Qalv)

Pion= | |A(K)|2dk 53 w1220
f| (k)| (53 :COS(;ML%)D Dl/2(\/;‘)1lv), 59
—w—1/2

is another way to calculate the ionization probability. Again,
we use the two independent calculationggf, to check the
accuracy of our calculations. All relevant formulas can be
found in Appendix D.

which has the required asymptotic behavior Ef) at large
positive Rew. The asymptotic behavior o€(w) at large
negative Rew is

T T a\2()
E. Analytic solution for a special case CR(w)~CO{ Eaﬁ— 7 + 5 V= w) ,
To check the method introduced above we apply it to a
system with a known solution, namely, switch off one of the when Rew— —o, (60)

ZRPs. Then the exact time-dependent solution for one ZRP
with parametera moving along a straight-line trajectory Comparing this with Eqs43) and(39) we have
R(t) with velocity v is

ex;{—a

o

W(r,t)= Vﬂ ‘
r—

I (w)=1/2, (61)
R(1)

r——

) o - so thatSyy=1. This is the known result for one ZRP. To
gl (@2tglv-rg=iw /et connect with Eq(55) we substitute Eq¥57), (58), and(59)
into the integral representation E¢8) and compare the
result with Eq.(55). In this way we obtain the following
(54) equality:

2
R(t)
2

In the scaled representation, E§4) becomes ab |\ V2 g0y 5
2wsin0) = exp( —abcsch q+§
2 z
a exd —aR(0)|q’ +2'/2]] q+ =
1,0)=\/5—=€"%R(0 - 2
e(q’,0) o (6) q 302 _
i iQ ol g z a?
xexp[—Et(ﬁ)[vz(q’+2’/2)2—a2]}, (55) xexgeotdl|at 5~z
_ \2ab el ax f’” b ( \/ZQa)
where T o S[) e Ty
b "2
t(6)=— —cot(0) (56) .
v z T
XDw,]_/z \/29 q+§ exgi 5—0 o |dw.
and the primed coordinates remind us that we work in the
rotating reference frame. We place thexis alongv, the x (62
axis alongb, so that the coordinate system rotates counter- ) o
clockwise around axis. We have not found this equality in standard tables but have

verified it by an asymptotic analysis. Both sides of E&p)
satisfy the same Schdinger equation and asymptotic condi-
tions, therefore the identity holds generally.

The Sturmian function for one ZRP located @t 22
from Eq. (30) is

el@2% D1 4(20|q+2/2])

S(w;q)= _ , (57) IV. COMPUTATION
Ve o malqt2  Du-1d0)
To calculateCFFf(w) we rewrite the three-term recurrence
with Sturmian eigenvalues relation Eq.(37) in the form

032722-7



S. YU. OVCHINNIKQV, D. B. KHREBTUKOQOV, AND J. H. MACEK PHYSICAL REVIEW AG65 032722

Chlo—1)= (b)c (0)~Cw+1), (63)
where the Sturmian eigenvalyg(w) is given by Eq.(32).
We start the solution of the three-term recurrence relation Eq
(63 at w;, where Rew; is large and positive. For example,
to get the ionization probability with accuracy 10in the
casev=1, b=1, ande=1 we use Rew;=200. The final 14
results should be independent of the value ofdg>0, but
if Im w;<0.1, CR(w) has very sharp structures due to poles
of 1/p,(w) and if Im w;>2, we lose accuracy since
CL+(w)<CL (w). In our calculations we choose lm;
= 1 We use the asymptotic expression EJ) for the initial
valuesCH(w;) andCf(w;+1).

We evaluate the recurrence relation E§3) up to w;
where we can use asymptotic expressionﬁp?(wf) given
by Eg. (39) to calculate the periodic functions' (w) and
J (w) of Eq. (44). For the same example, we us&
=2000. To keep requisite accuracy in the numerical evalua-
tion of the integral in Eq.(47) we calculateJ” (w) and
J” (w) at 20 points from the intervab;<w=w;+1. Then
we obtain the elastic scattering amplitusig from Eq. (47).

To obtain the electron spectra

_ z . k z
_ alii2)b-k Lpe (bkgl |2 2
A(k)=¢€ a pe a > o)
(64)
FIG. 1. Electron distribution$A(Kk)|? for the initial velocity v
where =10 a.u. and the impact parametebs=0.1 a.u. (@) and b
=0.3 a.u.(b).
b oD, 1A 2QK) C(w) _ _ . _
a(k)= —— andI'(w) is the gamma functioh28]. This transformation
2akv \/GJ Dy-10)  pplw) . = A )
0 deletes singularities dt/v =2z/2 and removes poles in the
x e 10(m2)q 4 (65) integrand associated with zeros @f(w).
we substitute Sturmian functio®(w;k/v) from Eq.(30) to V. RESULTS AND DISCUSSION

Eq. (52). Notice that Eq(65) is singular atk=0. To obtain

an expression free of this singularity we use the recurrencg :Tlfz)e ;:)emsp::\jvdn Sirﬁ)elfitg:u(r}na) ?;rekl)e:(:golnz:grg%g QE;)I]EI;IO”S'
relation Eq. (63 and the recurrence relation for b=0.3. Both figures contain two main features: cusps and

D.(a)/D.(0), the binary-encounter ridge. There is a prominent cusp cen-
tered atk=0 corresponding to slow electrons in the target
D,+1(9) _ D,-1(q) _ D,(X) (66) frame and a smaller cusp centeredatl corresponding to
D,+1(0) D,_1(0) q D/ (0) ' slow electrons in the projectile frame. The binary-encounter
ridge is atlk—v|=uv. The relative amount of cusp electrons
to obtain to binary electrons decreases rapjdl_y with increasing impac't
parameter. These features are similar to those observed in
high-energy ion-atom collisions. Both cusp peaks have ex-
a(k . /'Q f @Dy 1/2( ‘/mk) actly the shape predicted by and Gariabotti and Barrachina
21-er0 D! _1%0) [20] for electron transfer to continuum states of neutral pro-
. jectiles, namely,
X C(w)e (™ d e, (67)
1
€«
where Zf+|k—v|2' (69)
D’(O)=\/_ 2°? (69) The binary-encounter ridge is now no longer a pure

swave shape, as it was fdr=0 where we had only an
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1.0

!
EEER
0.0 0.1 0.2 0.3 0.4 05

b (a.u.) v (a.u)
FIG. 2. The ionization probabilitf;,, as a function of the im- FIG. 4. The velocity dependence of the ionization probabilities

pact parameter fo=1 a.u. and “gerade” symmetry. The solid p. for b=0.8 a.u. Probabilities corresponding tg) “gerade”
lines are our exact calculations and the dot-dashed lines are owing (u) “ungerade” symmetries are shown.

two-state hidden-crossing calculations. The dot shows the result of

the “zero impact parameter” calculations. point between the lowest and second sheets, and finishes at

. e L the point7=0 on the second sheet. Evaluating Edl) by
isotropic distribution in the projectile frame of reference integrating by parts we obtain

[17]. The higher partial waves arise because rotational cou-

pling atb+0 transfers part of the ejectexiwave to waves ® b
with >0 resulting in the departures from isotropy as seen in f E(T)dT:f arcsin——do’. (72
Fig. 1. c 0 pple

The results of the calculations of the ionization probabili-

ties for initial velocityv =1 and gerade symmetry as a func- . .
tion of the impact parameter are shown in Fig. 2. The ion-9°°d agreement with the exact calculations and show that the

ization cross section oscillates with increasing frequency ag;cillatio_ns known as Stuekelberg osci_llgtions are as;ociated
the impact parameter tends to zero. Figure 2 also shows tH’&'th the interference bgtvyeen the transmons Of. incoming and
results of our calculations using the hidden-crossing theor)(?'“'tgomg phaseg of collision. _The.hldden_-crossmg.the?ory also
[7]. Assuming that only one branch point is important, Weshows thatb=0 is an essential singularity of the ionization

have for the hidden-crossing ionization probability the resultpr()bab”it.y and the I?mitb:O does not. exist for the gera_de
state. Prior calculationfl6] at b=0 give a result that is

P.on=4 exf—|S|)[1—exp—|S|)]si(A/2), (70)  outside of the oscillations and is more than twice the average
of the oscillations. For ungerade symmetRig. 3) there are
where no oscillations, and our exact calculations uniformly reach
the limit b—0 where they coincide with prior calculations
[16] atb=0.
S=2 ImJ E(r)dr, A=2 Ref E(ndr, (71 The velocity dependence of the ionization probabilities
¢ ¢ for b=0.8 are shown in Fig. 4. While for high velocities the
ionization probabilities are approximately the same, for low

For gerade symmetry the hidden-crossing results are in

andE(R) is the adiabatic eigenenergy. The contostarts at
the point7=0 on the lowest sheet, goes around the branch

0.0003
0.95 | = 0.0002 |
3
8
s
< =
o2 < 0.0001 |
0.85 r
0.0000
0
0.75 ) ) ) . kv (a.u.)
0.0 0.1 0.2 0.3 0.4 0.5 ) _ _
b (a.u.) FIG. 5. Comparison of exact, solid curve, and two-state hidden
crossing, dot-dashed, electron distributigagk)|?v® vs k, /v for
FIG. 3. The same as in Fig. 2 for “ungerade” symmetry. v=0.2 a.u.,b=0.8 a.u. in the center-of-mass frame.
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velocities the ionization probability for ungerade symmetry APPENDIX A: GREEN'S FUNCTIONS

is much greater than that for gerade symmetry. For this rea-

son we do not find Fermi oscillations in the electron spectra.
Figure 5 shows the comparison between the exact calcu-

lations of the electron spectra ftr=0.8, v=0.2, and the . o S e Rt

two-state hidden-crossing calculatidi2s] in the case of un- G(a'.q".E)= Jo K(a'.q",—it)e"='dt, (A1)

gerade symmetry. The total ionization probability is 3.5

times bigger than the two-state hidden-crossing result sug-

gesting that more adiabatic states are involved in the ionizavhere K(q',q",t) is a propagator. The propagator

tion process. K(q',q",t) is a periodic function with period, and has
Additional results not directly connected with the main singularities at integral multiples df,.

topic of the manuscript are the simplified expression of the

harmonic-oscillator Green’s functiofil9,25 given in Ap-

pendix A and the integral Eq62) that we cannot find in

tables of integrals. This result is written generally as The propagator K(q;,q,,t) and Green's functions

G(g,,0,,E) for one-dimensional harmonic oscillator has the

We find the Green'’s functions from the expression

1. One-dimensional harmonic oscillator

o . form
f D,(a)D_,_(b)ect:~2gx

QO 1/2
1D, _
. K (qliqut)_(zﬂ_l S|th)
— . 2—bz)tanc—a—b (73
~ Vcosc™X 4(a 2 cosc|’ iQ 2 02)c080)
X ex m[(Q1+Q2)CO t—20,0,1|,

VI. CONCLUSIONS (A2)

We have developed new mathematical techniques that
provide the first semianalytical solution of a nontrivial model 2
for ion-atom collisions at impact parameters not equal to G°(q;,02,E)= —=T'(1/2-E/Q)Dg/q_1412Q0-)
zero. These new techniques involve mainly finding appropri- VT
ate integration contours and solutions of three-term recur- _
rence relations, such that physical boundary and initial con- XDein-1d ~204-). (A3)
ditions are satisfied. While the mathematics needed to verify
the techniques are fairly involved, the computational proce- 2. Three-dimensional harmonic oscillator
dure is actually quite simple. This method can serve to guide ., , .
similar approaches to other physical systems. In addition, our '€ PropagatorK(g’,q",t) and Green's functions
numerical results can be used to benchmark alternative cony?(d'»d",E) for three-dimensional harmonic oscillator has
putational methods. To that end we have presented Comple{ge form
electron momentum distributions at select velocities and im-
pact parameters. K(q',q",t)=
A comparison with the hidden-crossing theory at low ve-
locities shows good agreement for the gerade symmetry, but
only order-of-magnitude agreement for the ungerade symme- X cosQt—2q’ - q”]}, (A4)
try. It appears that more adiabatic states must be considered
in this latter case. Our results could serve as simulation data

Q 3 Q 12 n2
2 sinQt ex Zsith[(q +a")

for further tests of the hidden-crossing method lbet 0. I'(1/2-E/Q)
It may even be possible to test some of the predictionsg(q’,q",E)=
experimentally. The cusps and binary ridge at high velocities 2m\7Qlq’ —q"||a’ +q"|
are expected, but our new results show that the ridge is an-
isotropic even though electron ejection occurs only via % [q<i _q>i
s-wave scattering. At low energies, the absence of Fermi os- 0~ Jd0<
cillations in the electron spectra is the main new feature. This
absence is traced to the small value of the gerade amplitudes. XDgjo -1 \/mq>)DE/071/2( - \/Eq<).

(A5)
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3/2 . G (q/,q”,E)
Krot(d',9",t) = m) exp(i[q’' X Q2]-q") o _
_expli[q'XQ]-q") Dgg-12(v2Q[q" —q"|)
iQ ’ "2 2v'y" a Zﬂqu/_q”| DE/Q—l/Z(O) . (All)
X ex m[ﬂq —q'|*+2y'y")
4. Regularized Green'’s functions
xcosit—2y'y ]}' (A6) Regularized Green’s functions are defined as
L expi[q'xXQ]-q") I'(1/2—E/Q) G,(q,E)= lim | G(q,9",E)— —|. (Al2)
Grot(q q ,E): , 1 , ” ' aq—q’ 2’7T|q_q’|
2nla’ —q"lla’—a.l  V7TQ
P P The Green’s function§,(q,E) for 3D oscillator with rota-
X[na_g_ga Dejg- 1 V2Q8) tion has the form
2
XDgjg-12— V20 n), (A7) Gr(q'E):;;dl_E)[li_a—z}
(2m)¥22\20 2 QJlydy dq
where

X Degjo- 1 V2Q(y+0)]
XDE/Q—l/z[_\/m(y—qmq:o- (AL13)

Fory=0 we have

1
¢=5(a —a"[+]a"—d),

1 \2Q D (0)

7’:_(|qr_qn|_|qr_q" |):yry"/§, G.(E)= E/Q—1/2 . Al4d
2 “ (E) 27 Dgg-1/20) (A14)
o' —ail=Vla' —a"[*+4y'y”", (A8) APPENDIX B: NORMALIZATION INTEGRALS

B . . . To normalize Sturmian functions we calculate the integral
Oxz= (X, —V,2) is the reflection ofy in xz plane. In terms of

Whittaker functiong 25] the Green'’s function has the form 5
fSp(w;q)Sp(w;q)dgq

Grol 0" E) = —LG XU [ni—gi} [ 3 ;
4739 ~q'||a' —ay L "9E T In =N2{f G(q,z,w)G(q,E,w)d?’q
x| 2I °. E) M0, 14 Q€7 - z z
4 20 ' +J' G(q,—z,w)G(q,—E,w>d3q
X W20, 14(Q 7%) ; :
T ;1_ %) M E/ZQ,—1/4(Q§2) " pf G( N E'w) G( 4= E,w) d3q
~ z z
X Wep0, -1 Q7% |. (A9) +pf G(q’_i'w G(q,z,w)dgq} (B1)
where tildes over letters indicate dual functions obtained by
Fory=0 we have reversing the direction of the rotation axis. To calculate the

integrals in Eq(B1) we use the relation
3/2

Krot(q,:q,,lt):

21 sinQt
xexpi[q' X Q]-q")

~ J
J' G(q,q',w)G(q,q",w)d3q=£G(q',q",w), (BZ)
. and the explicit form of the Green'’s functi¢A11). The final
ﬂ r |2 result is
xexp g’ —q"|*cotQt|, (A10)

f§< QS (waddg= NS (g
and plw;()Sp(w;q)a~q — do
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and the properly normalized Sturmian functions are

a
Sp(wi) = \/; )

APPENDIX C: ASYMPTOTIC ANALYSIS
To see the connection between thespace and space
we calculate integral in Eq(33) by the stationary-phase
method. We assume that only large negativewReill con-
tribute to the integral whe®—0. We use the asymptotic
formula Eq.(39) for parabolic cylinder functions with Re
— —oo. Then the phase to examine is

then

(B4)

G +pG . (B5)

z z
q,z,w q, E’w

B(w)=— 7 —w0b-y\ =0, (=
where
y=v2Q(alv—iq), q=|q'+2. (€2

By differentiating Eq.(C1) with respect tow, we find the
stationary-phase point

y
VT 00= 50, (ox)
the second derivative at the stationary point
¢ (wO):_Z_wO’ (CH
and the value of the stationary phase
d(wg)=O0wo— — (C5)

7

We should note here that the imaginary part of the station
ary pointwg given by Eq.(C3) is always positive. In order to

PHYSICAL REVIEW A65 032722
ab e %%

- _ /_ y
¢ (q,0) 270 q e

which is exactly the asymptotic form of E¢G5) for 6—0.

Let us consider the contribution from the other part of
cosine (positive imaginary exponent With the same as-
sumptions as before the phase becomes

vb
_I_

20

(a/v—iQ)z},
(C8)

a
¢+(w)=(77—9)w+z+y*\/—w, (C9
and the stationary point is
y*
\/—0)8—:—2(77—_0). (C].O)
The second derivative at the stationary point is
" + T 0
¢"(wg)=——, (C1y
2wq
and the phase at the stationary point is
+ ™ +
Plwg)= 7~ (7= 0oy . (C12

The stationary point for this term always lies in the lower
half-plane ofw. Again, to satisfy the additional condition
(C6) the real part ofwg is taken to be negative. Assuming
that all conditions are satisfied we obtain

PN
¢ (g.0)~i 2m(7m—0) (¢

. vb o
X ex Im(a/U-HQ) , (C13

which differs only by a factor of from the asymptotic form
of Eq. (55) for — 7—0.
Thus, we see that behavior of the solutionéat-0 and
6— 7—0 is determined by stationary-phase points at large

negative Rew. This fact is used to set up initial conditions in
the problem with two ZRPs.

be consistent with our assumption that only large negative

Rew contribute to the integral E433), we must require
g<alv (Co)

in these formulas.
We apply stationary-phase formula

2i
| twextigwodo= \|———f(wpexigwo],
?"(wo)

(C7)

to get

APPENDIX D: NORMALIZATION OF TIME-DEPENDENT
SOLUTIONS

The exact time-dependent solution can be written as

exd —i(€Q/2)q, cos¢]
Q-+
exdi(Q/2)q, cos¢]
p q

‘P(qya): Fp(quia)

Fo(d_.6), (DD

where
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Fo(k )= o
(s )_27TJ6 a
XJOCHa eiw(w/Z—H)D“’_l/Z( J20k) Cfi(w) ©
—w+ia Dy-120) Pp(w) ,
a>0, (D2)
9. = a7+ (0= 172, (D3)

andq,, q,, and @ are the cylindrical coordinates af. We
want to calculate the normalization integral

N(e)=f le(q,6)|*da. (D4)
Using Eq.(D1) we write
le(a,0)[°=11(q+,6)+11(q_,0)+ply(q,6), (D5)
where
F (9= ,0)|?
11(qe 6= P9z OF
q=
I2(q!0): Rqe—iﬂquOS¢Fp(q+ ,G)F;(Q— 19)]

d+9-
(D6)

It is easy to show that

f |1(qt,0)dBQ=47Tf:|Fp(q,0)|2dQ- (D7)

In the last term we use the integral representation of a Bessel

function[28],

1 (2n
Jo2)= 5= [T ag 09

to get

Jo(9,(2)
q+9-

2
fo 12(0,0)d =4 REFo(d4 OFS(A_.0)].

(D9)

It is convenient to use elliptic coordinates in further integra-

tions

PHYSICAL REVIEW 85 032722
§: Q+ + q— 1

7=0++Q-. (D10)

We now have for the volume integral

27
J 12(q,6)dq
0

© (1
=27Tf0 LlJo[Qv(gz—l)(l— 7°)12]

XRe[F [ (&4 7)/2,0]FF[(§—1)/2,0]}dEdn.
(D11)

The final result is

N(0)=8wf:|Fp<q.0>|2dq

o (1
+277f0 f_lJo[QV(fz—l)(l— 7°)12]

XRe[F[(&+7)/2,0]FF[(E—1)/2,0]1d¢E d7.
(D12
We evaluate this integral numerically to check tiNgo)
=1 for 0<6<, N(0)=0, andP;y,=N().

To check the accuracy of our calculations of the elastic
scattering amplitud&,g we use the following formulas:

Soo= f ¢(9,0)¢(q,0)da. (D13

Using the same technique we obtain
Soo=87rfo Fh(a,6)dq

o (1
+27Tfo ﬁlJo[Q\/(gz—l)(l— 7°)12]

XFpl(§+7)I2,0]F [(§—7)/2,0]dEdn.
(D14)

The integral is evaluated numerically.
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