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Exact electron spectra in collisions of two zero-range potentials with nonzero impact parameters
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The Sturmian theory of ion-atom collisions is constructed for arbitrary~nonzero! impact parameters. The
approach is essentially nonperturbative, and has a wide range of applicability: from low velocities, provided
that quantum motion of heavy particles can be neglected, to high velocities, as long as the relativistic effects
are not important. The theory is applied to calculation of electron spectra at low and high collision velocities.
For slow collisions we describe Fermi oscillations in the spectra of ejected electrons. At higher velocities our
theory confirms the possibility of cusp formation even when the heavy particles are neutral in the final state.
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I. INTRODUCTION

In recent years, the novel technique of cold-target rec
ion momentum spectroscopy~COLTRIMS! has allowed experi-
mentalists to map out the full momentum distributions
ejected electrons@1#. The large amounts of data from
COLTRIMS experiments present a challenge for atomic th
ries. For several reasons ion-atom and atom-atom collis
are notoriously difficult to describe exactly in quantum m
chanics. Probably the most important conceptual difficulty
connected with the essential time dependence of collis
processes, where initial conditions are set up att→2`, but
solutions are usually needed att→1`. Thus, in principle,
complete solutions for all values of a time variable a
required.

In this paper we consider only collisions involving on
electron transitions. There are two principal methods to
tain exactsolutions to this problem:~i! direct numerical so-
lution in three-dimensional~3D!1time by discretization of
the Schro¨dinger equation in a finite box@2–4# and ~ii ! ex-
pansion over basis sets@5#. We do not consider any pertu
bation theories in this paper. Difficulties of the direct nume
cal method are mainly due to the necessity to keep the
finite, while physical initial and boundary conditions requi
extension of the box to infinity. This approach is complete
out of the scope of this paper and will not be discuss
further.

Successful application of basis set expansion techniq
depends primarily on the kind of basis functions used. T
bases can be divided into two broad categories by their c
figurational properties: atomic and molecular. Atomic ba
@6# provide a good description of inelastic processes that
cur at large internuclear distances. However, the appro
breaks down at smaller internuclear distances because at
bases cannot describe the quasimolecular topology of
electronic motion@7#. Notwithstanding many creative effort
to remedy this situation@8#, the expansion over atomic bas
cannot provide exact solutions in a wide range of collis
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parameters~relative velocities and impact parameters! with-
out introducingad hocparameters. It should be noted, how
ever, that the initial conditions are easy to set up in th
bases, and the asymptotic translational motion of the elec
can be accurately described.

The situation is reversed in case of molecular bases. T
provide the best description of the electronic motion top
ogy but it is difficult to make them Galilean invariant and
account for the translational motion of electrons with t
nuclei att→2`, i.e., to satisfy correct physical initial con
ditions. This problem was recognized as early as in 1958
Bates and McCarroll@9#, and since then there were numero
~more or less successful! attempts@10# to correct this situa-
tion by appendingad hocelectron translation factors~ETF!
to molecular functions.

A rigorous way to make molecular bases asymptotica
Galilean invariant has been found by Solov’ev and Vinits
@11#. They proposed a time-dependent scaling of the spa
variables q5r /R(t) and an additional transformation o
wave functions to preserve the form of the Schro¨dinger equa-
tion. While essentially solving the translational problems,
Solov’ev-Vinitsky scale transformation still does not addre
another drawback of theadiabaticmolecular bases; namely
it is difficult to describe the interaction with the continuum
especially when one of the adiabatic energy curves cro
the ionization threshold. In terms of the close-coupli
method it means that one of the coupled differential eq
tions disappears at some moment of time, since the num
of bound states is decreased by one@12#. Another example is
the crossing of the Rydberg spectrum by a superpromot
to reach the continuum one has to take into account an
nite number of interaction regions. These difficulties prac
cally precluded reliable theoretical studies of the ionizat
processes in ion-atom collisions by using molecular base

The solution to this problem was found in a novel use
Sturmian molecular bases@13#. The main innovation is the
integration over an energy parameterv. Sincev is not an
eigenvalue in the Sturmian case, the integration can be
tended over both discrete (Rev,0) and continuous (Rev
.0) parts of the Schro¨dinger equation’s spectrum. Thus, e
ery Sturmian function carries information about transitio
between discrete levels~excitation! as well as about ioniza
tion. It follows that the convergence of such a technique

rs-
©2002 The American Physical Society22-1



, i

tu
in

ct
am
tr
a

e
all

th

‘a
e
li

on
to

al
e

te
s
re

m
nt
ex
d
.

em
e

th

ou

in
i-

t i

he

ac-
u-

n
tion
e
ne
gh
e-
.
ide
al
nu-
re

e.,
the

as
ysi-

de-
our
pec-
lity

r-
ermi
-

-
ty.
ion
e
ate.
the

ry

in a

ly

th

ga-

S. YU. OVCHINNIKOV, D. B. KHREBTUKOV, AND J. H. MACEK PHYSICAL REVIEW A65 032722
expected to be very good. Indeed, in some special cases
possible to obtainexactresults by using a finite~and small!
number of Sturmian functions. For instance, just one S
mian function will be sufficient to obtain exact solutions
this paper.

The theory employing H2
1 ‘‘molecular’’ Sturmian func-

tions has already been successfully used to calculate ele
spectra in proton–hydrogen atom collisions at impact par
eterb50 @14#. This special case offers a degree of symme
not present atbÞ0 and also employs Sturmian functions th
are closely related to the more familiar H2

1 adiabatic eigen-
functions. These circumstances allowed for a rapidly conv
gent calculation of electron distributions so that essenti
exact results for proton-hydrogen collisions atb50 were
obtained.

In this paper we take the next major step by using
theory for bÞ0. For sufficiently largeb the cores do not
interpenetrate and one can model the dynamics of the ‘
tive’’ electron by using only the wave function well outsid
the core. When the wavelength of the electron’s de Brog
wave is much larger than the dimension of the core then
can use a model where the radius of the core shrinks
point. This is the zero-range-potential~ZRP! model@15# dis-
cussed in Sec. II A. In this model onlys-wave interaction are
present and they are described by thes-wave scattering
lengtha. We consider the model of two zero-range potenti
mowing along a straight-line trajectory. This model has be
used to study rearrangement and ionization@16,17#, but their
solutions have always been restricted to impact parame
b50. This is a fundamental defect, since physical proces
at b50 involve the interpenetration of atomic cores whe
the zero-range assumption is invalid.

The ZRP model has several features that make it a
nable to the molecular Sturmian theory. Most importa
there is only one Sturmian function and a closed-form
pression for it has been found@19#. Because there is no nee
to truncate an infinite series, an exact solution is possible
this paper we find the exact solution for this model probl
and study the effect that nonzero impact parameters hav
the electron distributions in the process

A21A→A1A1e2, ~1!

where the electron-atom interaction is modeled by
s-wave scattering phase shift

k cotd521/a, ~2!

with constant scattering lengtha.
The theory is built along the general lines presented in

previous paper@13# ~Secs. III A and III B!. However, the
relative simplicity of the ZRP case allows us to analyze
detail the crucially important problem of the initial cond
tions ~Sec. III C!. It is not trivial to satisfy initial conditions
in this theory because the solution is actually carried ou
Fourier space (v space! while the initial conditions must be
set up in the physical time space (t space!. It has been shown
already @13# that v and t space can be connected by t
stationary-phase approximation att→2`. In Sec. III C we
03272
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show that two more considerations should be taken into
count while dealing with the initial conditions. First, the Fo
rier integral must converge which requires a solution inv
space that would decrease at large positive Rev. Second, the
stationary-phase approximation of the exact solution it
space must coincide with the stationary-phase approxima
of the initial conditions. This allows us to find the uniqu
solution to the problem. Although our solution uses only o
molecular Sturmian wave function it is exact even for hi
collision velocities@18#. This emphasizes the difference b
tween molecular Sturmian functions and adiabatic bases

We construct a theory that has an extraordinarily w
range of validity in terms of collision energy: from therm
energies, as long as we can neglect quantum motion of
clei, up to high energies provided that relativistic effects a
not significant yet. The theory is mathematically exact, i.
we do not use or imply any approximations. Therefore,
results of calculations presented in Sec. V can be used
reference data for other theoretical methods and, if the ph
cal conditions of validity are satisfied, i.e.,s-wave domi-
nance in electron-atom scattering, they can be used to
scribe experimental data. To illustrate the wide range of
theory we show cusp and binary encounter peaks in the s
tra at high energies. Our calculations confirm the possibi
of cusp formation when heavy particles~atoms! are neutral
in the final state@20#. We did not see a pronounced interfe
ence between gerade and ungerade amplitudes, called F
oscillations@21#, in the electron spectra at low collision ve
locity ~adiabatic regime! when the impact parameterbÞ0,
that were found forb50 @17#. Our calculations are com
pared with hidden crossing results at low collision veloci
Note, that in ZRP model the electron spectra at low collis
velocity is different from the spectra of collisions of positiv
ions with atoms, where the saddle-point electrons domin
In this model there are no saddle-point electrons since
potential has no saddle points@16#.

II. ION-ATOM COLLISIONS IN THE SCALED
REPRESENTATION: ZERO-RANGE POTENTIALS

A. General

Consider two nuclei moving along a classical trajecto
R(t) with the initial velocityv and impact parameterb, and
one electron described by the time-dependent Schro¨dinger
equation

F2
1

2
¹ r

21V„r ,R~ t !…Gc~r ,t !5 i
]c~r ,t !

]t
. ~3!

This semiclassical treatment should be considered exact
wide range of collision velocitiesv, with the exception of
ultracold collisions. In this paper we will consider on
straight-line trajectories.

The Schro¨dinger equation for a zero-range potential wi
an eigenenergy«a52a2/2 is equivalent to Eq.~3! with V
50 everywhere, except the pointr5r j 0, where r j 0 is the
ZRP’s position. The boundary condition determines the lo
rithmic derivative of the wave functionr jc at r j50,
2-2
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1

r jc

]~r jc!

]q U
r j→0

52a, ~4!

wherer j5ur2r j 0u. The general solution of the Schro¨dinger
equation in the vicinity of the pointr j50 has the form

c~r ,t !ur j→05
cj

r j
1bj , ~5!

wherecj andbj are constants. Substituting Eq.~5! into Eq.
~4! we obtain the following boundary condition@15#:

c~r ,t !ur j→05Nj~ t !S 1

r j
2a D , ~6!

where the coefficientNj (t) might depend ont, but not onr .
Systems of several ZRPs can be considered, and we atta
additional indexj to distinguish positions of different ZRPs

B. Scale transformation

The translational and rotational effects are best accou
for in scaled coordinates, as proposed by Solov’ev and V
itsky @11#. The Solov’ev-Vinitsky scale transformation o
Eqs.~3! and ~6! involves the change of variables@13#,

q5
r

R~ t !
, ~7!

t5E
2`

t dt8

R2~ t8!
, ~8!

and the transformation of the wave function

c~r ,t !5
1

R3/2~t!
expS iṘ~t!

2R~t!
q2Dw~q,t!. ~9!

In a reference frame that rotates counterclockwise around
vectorn5v3b, whereb is the impact-parameter vector an
v is the initial-velocity vector, with the frequencyV we ob-
tain a new Schro¨dinger equation

F2
1

2
¹q

21
1

2
V2q21VL̂nGw~q,t!5 i

]w~q,t!

]t
. ~10!

In scaled coordinates$q,t% the ZRP’s boundary condition
Eq. ~6! become

w~q,t!uqj→05Nj~t!S 1

qj
2aR~t! D , ~11!

whereNj (t) does not depend onq. The Galilean invariance
of w(q,t) means that basis functions do not have to be mo
fied in anad hocway by attaching the translation factor
and that they are therefore orthogonal.

The properties and advantages of the scaled transfo
tion were presented elsewhere@13#, and the reader is referre
to that paper for details. Here we will only briefly summari
the most important features of this transformation. They a
03272
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~1! In the original physical coordinates$r ,t% the nuclei
move along a trajectoryR(t), therefore the interaction be
tween the electron and the nuclei depends on the directio
the vectorR(t). In the scaled space$q,t%, the nuclei do not
move anymore either in the radial or angular sense; they
fixed at q56 ẑ/2. Consequently, the potential in the tran
formed coordinates does not depend on the direction ofR(t).
The dynamical effects are described by the scalar func
R(t) and two additional terms in the new Hamiltonian of E
~10!: the simple harmonic oscillator term and the angu
momentum operator.

~2! If uvtu@b, then functionsw(q,t) are Galilean invari-
ant under translations in the plane ofv andR; thereforethere
is no need for translation factors, i.e., phase factors that ar
required to writec(r ,t) in frames moving relative to a par
ticular reference frame.

~3! Since the parameter of a ZRP is changed accordin
a→aR(t) in scaled coordinatesq5r /R(t) @Eqs. ~6! and
~11!#, all dependence ont comes from the multiplicative
factor R(t) in the boundary conditions.

~4! For straight-line trajectories the nuclei rotate with t
constant angular velocityV5vb in the scaled representa
tion, therefore it will be convenient to introduce the angle
rotation u5Vt, 0<u<p, as a new ‘‘time’’ in the Schro¨-
dinger equation andR(u)5b/sinu.

In scaled coordinates$q,u% the initial conditions are

w~q,u!uu→0,qjÞ050, ~12!

uw~q,u!uu→0,qj /u5r j /b5uc i~r j !u. ~13!

The initial condition Eq.~12! ensures that there is no con
tinuum in the initial state and condition Eq.~13! normalizes
the wave function.

C. Electron spectra

To obtain the spectra of the ejected electrons we pro
our time-dependent wave function onto plane waves,

A~k!5 lim
t→1`

E wk* ~r ,t !c~r ,t !d3r , ~14!

where

wk~r ,t !5
1

~2p!3/2
expS ik•r2 i

k2

2
t D . ~15!

It is more convenient to evaluate the projection in the sca
space. Since the scale transformation conserves w
function normalization and the exponential factors canc
one has

A~k!5 lim
u→p20

E wk* ~q,u!w~q,u!d3q, ~16!

where the functionwk(q,u) is the transformed plane wave
2-3
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wk~q,u!5S b

2p sinu D 3/2

3expH iV

2 sinu S 2
k

v
•q1Fq21S k

v D 2Gcosu D J .

~17!

Taking the complex conjugate and changing variables

u5p2 ũ, ~18!

we have

wk* ~q,u!5S i

v D 3/2

KV~q,ũ;k/v,0! →
ũ→10

S i

v D 3/2

d~q2k/v !,

~19!

whereKV is the propagator for an harmonic oscillator pote
tial with fundamental frequencyV and the limit is obtained
by definition.

Changing the order of the integration and taking the lim
we get@22#

A~k!5S i

v D 3/2

w~q,u!uu5p,q5k/v5S i

v D 3/2

w~k/v,p!.

~20!

At first glance it might seem that unitarity would impl
* uA(k)u2 dk51, i.e., the initial state is always complete
ionized. This conclusion is incorrect because one canno
terchange integration overk and the limitu→p.

UsingCOLTRIMS techniques, experimentalists measure
electron spectra at the fixed recoil momentum of the tar
ion. These spectra are given by the following formulas@23#:

T~k!5
iv

~2p!3E expF2 i E
2`

`

V~b,t !dtGe2 iK'•bA~k,b!d2b,

~21!

whereK' andK i5DE/v are the components of the targe
ion recoil momentum that are perpendicular and paralle
the initial velocity, respectively, andV(b,t) is the atom-atom
potential. In the case of the ZRP model the potentialV(b,t)
equals zero, but to better describe the physical situatio
realistic potentialV(b,t) could be introduced. Equation~21!
represents an exact definition ofT(k) as a two-dimensiona
Fourier transform ofA(k,b) times a phase factor. Using th
stationary-phase method to evaluate the integral Eq.~21!, we
obtain, thatb5b(K') and

T~k!}A„k,b~K'!…. ~22!

As a specific example of Eq.~22!, consider a polarization
potentialV(b,t)52a0/2R4(t) and ignore the phase varia
tion of A(k,b); then

T~k!5
1

8p2

vb~K'!

K'

expF i
2

3
K'b~K'!GA„k,b~K'!…,

~23!
03272
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where

b~K'!5S 3pa0

4vK'
D 1/4

. ~24!

In the results presented here we compute onlyA(k,b).
Connection to a specific experiment is to be understood
actly via Eq.~21! or approximately via Eq.~24! or a variant
thereof.

III. EXACT STURMIAN SOLUTION

A. Scaled representation and Sturmian functions
for zero-range potentials

Since we consider only collisions of twoidentical ZRP’s
moving along straight-line trajectories, the time-depend
Schrödinger equation in the scaled space Eq.~10! has the
form

F2
1

2
¹q

21
1

2
V2q21VL̂nGw~q,u!5 iV

]w~q,u!

]u
, qÞ6

ẑ

2
.

~25!

The boundary conditions at the ZRP’s positionsq656 ẑ/2
are

w~q,u!u uq2q6u→05N6~u!S 1

uq2q6u
2aR~u! D , ~26!

where for straight-line trajectories

R~u!5
b

sinu
. ~27!

The Sturmian functions for this problem are defined
the following differential equation

F2
1

2
¹q

21
1

2
V2q21VL̂nGSp~v;q!5VvSp~v;q!,

~28!

and the boundary conditions atq6,

Sp~v;q!u uq2q6u→05const3S 1

uq2q6u
2arp~v! D ,

~29!

whererp(v) are called Sturmian eigenvalues. We also
quire thatSp(v;q) should be finite whenq→`. There are
only two Sturmian functions in this case, and, since the ZR
are identical, one of these functions is gerade, and ano
one is ungerade. The indexp therefore will assume only two
values:21 or u and11 or g. These Sturmian functions hav
the form @19#
2-4
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Sp~v;q!5Ap

a
FGS q,

ẑ

2
,v D 1pGS q,2

ẑ

2
,v D G

5
1

2Apa Dv21/2~0! F ei (v/2)b•q

Uq2
ẑ

2
U

3Dv21/2S A2VUq2
ẑ

2
U D 1p

e2 i (v/2)b•q

Uq1
ẑ

2
U

3Dv21/2S A2VUq1
ẑ

2
U D G , ~30!

whereG(q,q8,v) is Green’s function of the harmonic osci
lator with rotation@Eq. ~A11!# andDv21/2(z) is a parabolic
cylinder function@24#. These Green’s functions are discuss
in Appendix A. See also the paper by de Oliveira@25#. The
Sturmian normalization constantsAp/a are obtained in Ap-
pendix B from the condition

E S̃p~v;q!Sp~v;q!d3q52
drp

dv
, ~31!

which is equivalent to the usual Sturmian normalization c
dition with a potential@13# but is more convenient in the
ZRP case. The dual functionS̃p(v;q) is obtained from
Sp(v;q) by inverting the axis of rotation. Substituting E
~30! into Eq. ~29! we obtain the Sturmian eigenvalues

rp~v!52
1

a
F2pGr~v!1pGS ẑ

2
,2

ẑ

2
,v D G

52
1

a

@A2VDv21/28 ~0!1pDv21/2~A2V!#

Dv21/2~0!
,

~32!

whereG(q,q8,v) is Green’s function of the harmonic osci
lator with rotation@Eq. ~A14!# andDv8 (x)[]Dv(x)/]x.

Obviously, we can satisfy Eq.~25! by choosing solutions
in the following form:

wp~q,u!5
1

A2p i
E

C
Bp~v!Sp~v;q!e2 ivu dv, ~33!

whereC is a contour in the complex plane ofv, andBp(v)
are the coefficients to be determined by the initial conditio
Eq. ~12! on wp(q,u) at u→0 corresponding tot→2`.

The initial conditions depend upon the actual physi
situation. In this paper we will assume two moving ZR
infinitely far from each other with the electron either in th
gerade or ungerade state as initial conditions. This cho
gives two solutionswu(q,u) andwg(q,u) with well-defined
symmetry. To obtain the common experimental initial con
03272
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tion when the electron is in the bound state of one of
ZRPs, we can combine these two functions,

wa~q,u!5
1

A2
@wu~q,u!1wg~q,u!#. ~34!

The solution proceeds by satisfying the boundary con
tions at ZRPs first, which leads to a three-term recurre
relation for coefficientsBp(v). Then the solutions of the
recurrence relations are chosen to ensure convergence o
integral in Eq.~33! and to satisfy the initial conditions on
wp(q,u).

B. Boundary conditions and three-term recurrence relations

To satisfy the boundary conditions at ZRPs (q56 ẑ/2),
we substitute the Sturmian boundary conditions Eq.~29! into
the integral representation Eq.~33! and compare the resu
with the boundary conditions Eq.~26!. We obtain the three-
term recurrence relation for the coefficientBp(v),

rp~v11!Bp~v11!2rp~v21!Bp~v21!52ibBp~v!,

~35!

whererp(v) is the Sturmian eigenvalue given by Eq.~32!.
In what follows, it will be more convenient to introduc

new coefficientsCp(v),

Bp~v!5
ei (p/2)v

rp~v!
Cp~v!, ~36!

which satisfy the three-term recurrence relation

Cp~v11!1Cp~v21!5
2b

rp~v!
Cp~v!. ~37!

The asymptotic solutions of the three-term recurrence
lation are derived by Braun’s quasiclassical formula@26#

Cp~v!'A4 rp
2~v!

rp
2~v!2b2

3expS 6 i E
0

v

arcsin
b

rp~v8!
dv82 i

p

2
v D ,

~38!

where the Sturmian eigenvaluerp(v) is given by Eq.~32!.
At large negativeRev the solutions are oscillatory, an

we define two linearly independent solutionsCL6(v) by
their asymptotic form Eq.~38!,

CL6~v!5expF6 i S p

2
v1

p

4
1

aA2V

v
A2v D G

1O~v21/2!, when Rev→2`. ~39!

We also introduce the solutionsCR(v) that decrease expo
nentially at large positive Rev:
2-5
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CR~v!5cosS p

2
v1

p

4 DexpS 2
aA2V

v
Av D

1O~v21/2!, when Rev→`. ~40!

It is important to recognize that any three-term recurre
relation has infinitely many significantly different solution
Indeed, if we know a particular solution of a three-term
currence relation then we can multiply this solution by
arbitrary periodic function with the periodT51 and obtain
another solution of the same recurrence relation. To cho
from the many solutions to the recurrence relation Eq.~37!,
we require that the integral in Eq.~33! must converge. The
Sturmian functionsS(v;q) rapidly decrease at large negativ
Rev on the contourC, but oscillate with slowly changing
amplitude at Rev.0. Therefore, to ensure convergence,
require that our coefficientsCp(v) decrease at Rev.0 on
the contourC. The most general solution that decreases
ponentially at large positive Rev has a form

Cp~v!5 f ~v!Cp
R~v!, ~41!

wheref (v)5 f (v1T) is a periodic function with the period
T51.

C. Initial conditions in v space

The initial condition Eq.~12! in v space has the form

E
C

ei (p/2)v

rp~v!
f ~v!Cp

R~v!Sp~v;q!dv50. ~42!

To satisfy the initial condition Eq.~12! we choose the con
tour of integration in Eq.~33! parallel to the real axis, bu
shifted into the complex plane by an amounta.0. In this
case the initial condition Eq.~12! requires that the integran
in Eq. ~42! has no singularities in the upper plane and d
creases exponentially on the upper semicircle at infinity.
cause the Sturmian eigenvaluesrp(v) have zeros and pole
only on the positive real axis, this choice of the conto
allows us to avoid singularities ofCR(v) and 1/rp(v) and
set up the initial condition Eq.~12!. Since the periodic func-
tion f (v) should have no singularities and should not
crease on the upper semicircle at infinity, then it should h
the form f (v)5(n50

` f nei2npv. Notice that all terms excep
n50 in the Fourier expansion off (v) give the trivial solu-
tions wp(q,u)50 since we can close the contour of integr
tion in the upper plane for anyu. Then the coefficientf 0 is
determined by the initial condition Eq.~13!.

Our coefficientsCp(v) should provide correct initial con
ditions Eq.~13! on the functionw(q,u). To choose the ap
propriate f 0 we require that for Rev→2` our calculated
coefficients lead to the same stationary-phase result as
coefficients in the similar integral representation of the init
conditions. The asymptotic analysis is given in detail in A
pendix C. To analyze the asymptotic behavior ofCR(v) at
large negative Rev we write CR(v) as linear combination
of two oscillatory solutionsCL6(v), Eq. ~39!:

CR~v!5J1~v!CL1~v!1J2~v!CL2~v!. ~43!
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The periodic functionsJ1(v) andJ2(v) are determined by
the Wronskians

J6~v!57
i

2
W$CR~v!,CL7~v!%, ~44!

where W$A(v),B(v)%[A(v11)B(v)2A(v)B(v11).
The asymptotic analysis~Appendix C! at u→0 andu→p by
the stationary-phase method shows that

f 052A2bV i @J0
2#21 ~45!

and

S005J0
1@J0

2#21, ~46!

whereS00 is the elastic-scattering amplitude and

J0
65E

0

1

J6~v! dv ~47!

are the first terms in the Fourier expansions of the perio
functions J6(v). Equation ~45! defines the normalization
constant and the contour of integration in Eq.~33! was speci-
fied earlier. The time-dependent wave function that satis
the initial conditions is

wp~q,u!5@J0
2#21AbV

p

3E
2`1 ia

`1 ia

eiv(p/22u)Sp~v;q!
Cp

R~v!

rp~v!
dv, a.0.

~48!

An alternative Eq.~46! for the elastic scattering amplitud
is

S005E w~q,u!w̃~q,u!dq. ~49!

Methods to evaluate Eq.~49! are discussed in Appendix D
Comparison betweenS00 from Eqs.~46! and~49! provides a
check on the accuracy of our calculations.

D. Ionization probabilities and electron spectra

One way to calculate the ionization probabilityPion is by
using unitarity

Pion512uS00u2. ~50!

Notice that the ionization probabilities are determined o
by the solutions of the three-term recurrence relations
fined by Eqs.~39! and ~40!:

Pion512UJ0
1

J0
2U2

512U E0

1

W$CR~v!,CL1~v!%dv

E
0

1

W$CR~v!,CL2~v!%dv
U 2

.

~51!
2-6
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To obtain electron spectra we substitute the wave func
Eq. ~48! into Eq. ~19!:

A~k!5@J0
2#21

b

vAp i
E

2`1 ia

`1 ia

e2 ivp/2Sp~v;k/v !
Cp

R~v!

rp~v!
dv.

~52!

Integrating the electron spectra over all electron momen

Pion5E uA~k!u2 dk ~53!

is another way to calculate the ionization probability. Aga
we use the two independent calculations ofPion to check the
accuracy of our calculations. All relevant formulas can
found in Appendix D.

E. Analytic solution for a special case

To check the method introduced above we apply it to
system with a known solution, namely, switch off one of t
ZRPs. Then the exact time-dependent solution for one Z
with parametera moving along a straight-line trajector
R(t) with velocity v is

C~r ,t !5A a

2p

expS 2aUr2
R~ t !

2 U D
Ur2

R~ t !

2 U ei (a2/2)teiv•re2 i (v2/8)t.

~54!

In the scaled representation, Eq.~54! becomes

w~q8,u!5A a

2p
eiVqx8AR~u!

exp@2aR~u!uq81 ẑ8/2u#

uq81 ẑ/28u

3expH 2
i

2
t~u!@v2~q81 ẑ8/2!22a2#J , ~55!

where

t~u!52
b

v
cot~u! ~56!

and the primed coordinates remind us that we work in
rotating reference frame. We place thez axis alongv, the x
axis alongb, so that the coordinate system rotates coun
clockwise aroundy axis.

The Sturmian function for one ZRP located atq5 ẑ/2
from Eq. ~30! is

S~v;q!5
ei (V/2)qx

2Apauq1 ẑ/2u

Dv21/2~A2Vuq1 ẑ/2u!
Dv21/2~0!

, ~57!

with Sturmian eigenvalues
03272
n
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a

P

e

r-

r~v!5
A2V

a

Dv21/28 ~0!

Dv21/2~0!
5

2AV

a

GS 2
v

2
1

3

4D
GS 2

v

2
1

1

4D . ~58!

The analytic solutionCR(v) of the three-term recurrenc
relation Eq.~37! with r(v) from Eq. ~58! is found to be

CR~v!5Dv21/28 ~0!D2v21/2~A2Va/v !

5cosS p

2
v1

p

4 DD2v21/2~A2Va/v !

D2v21/2~0!
, ~59!

which has the required asymptotic behavior Eq.~40! at large
positive Rev. The asymptotic behavior ofC(v) at large
negative Rev is

CR~v!'cosS p

2
v1

p

4
1

aA2V

v
A2v D ,

when Rev→2`. ~60!

Comparing this with Eqs.~43! and ~39! we have

J6~v!51/2, ~61!

so thatS0051. This is the known result for one ZRP. T
connect with Eq.~55! we substitute Eqs.~57!, ~58!, and~59!
into the integral representation Eq.~48! and compare the
result with Eq.~55!. In this way we obtain the following
equality:

S ab

2p sinu D 1/2 eiVqx

Uq1
ẑ

2
U expS 2ab cscuUq1

ẑ

2
U D

3expF iV

2
cotuS Uq1

ẑ

2
U2

2
a2

v2 D G
5

A2ab

2p

eiVqx

Uq1
ẑ

2
U E2`

`

D2v21/2SA2Va

v D

3Dv21/2S A2VUq1
ẑ

2
U D expF i S p

2
2u DvGdv.

~62!

We have not found this equality in standard tables but h
verified it by an asymptotic analysis. Both sides of Eq.~62!
satisfy the same Schro¨dinger equation and asymptotic cond
tions, therefore the identity holds generally.

IV. COMPUTATION

To calculateCp
R(v) we rewrite the three-term recurrenc

relation Eq.~37! in the form
2-7
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Cp
R~v21!5

2b

rp~v!
Cp

R~v!2Cp
R~v11!, ~63!

where the Sturmian eigenvaluerp(v) is given by Eq.~32!.
We start the solution of the three-term recurrence relation
~63! at v i , where Rev i is large and positive. For example
to get the ionization probability with accuracy 1027 in the
casev51, b51, anda51 we use Rev i5200. The final
results should be independent of the value of Imv i.0, but
if Im v i,0.1, Cp

R(v) has very sharp structures due to po
of 1/rp(v) and if Im v i.2, we lose accuracy sinc
Cp

L1(v)!Cp
L2(v). In our calculations we choose Imv i

51. We use the asymptotic expression Eq.~63! for the initial
valuesCp

R(v i) andCp
R(v i11).

We evaluate the recurrence relation Eq.~63! up to v f

where we can use asymptotic expressions forCp
L6(v f) given

by Eq. ~39! to calculate the periodic functionsJ1(v) and
J2(v) of Eq. ~44!. For the same example, we usev f
52000. To keep requisite accuracy in the numerical eva
tion of the integral in Eq.~47! we calculateJ1(v) and
J2(v) at 20 points from the intervalv f,v<v f11. Then
we obtain the elastic scattering amplitudeS00 from Eq. ~47!.

To obtain the electron spectra

A~k!5e( i /2)b•kaS Ukv 2
ẑ

2
U D 1pe2( i /2)b•kaS Ukv 1

ẑ

2
U D ,

~64!

where

a~k!5
b

2pkvAiaJ0
2Ev f

v i Dv21/2~A2Vk!

Dv21/2~0!

Cp
R~v!

rp~v!

3e2 iv(p/2)dv, ~65!

we substitute Sturmian functionsSp(v;k/v) from Eq.~30! to
Eq. ~52!. Notice that Eq.~65! is singular atk50. To obtain
an expression free of this singularity we use the recurre
relation Eq. ~63! and the recurrence relation fo
Dv(q)/Dv(0),

Dv11~q!

Dv11~0!
2

Dv21~q!

Dv21~0!
5q

Dv~x!

Dv8 ~0!
, ~66!

to obtain

a~k!5
1

2pvJ0
2AiV

2aEv i

v f Dv21/2~A2Vk!

Dv21/28 ~0!

3Cp
R~v!e2 iv(p/2)dv, ~67!

where

Dv8 ~0!5A2p
2v/2

G~2v/2!
~68!
03272
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and G(v) is the gamma function@28#. This transformation
deletes singularities atk/v6 ẑ/2 and removes poles in th
integrand associated with zeros ofrp(v).

V. RESULTS AND DISCUSSION

The computed spectrum of electrons for fast collisio
v510, are shown in Fig. 1~a! for b50.1 and Fig. 1~b! for
b50.3. Both figures contain two main features: cusps a
the binary-encounter ridge. There is a prominent cusp c
tered atk50 corresponding to slow electrons in the targ
frame and a smaller cusp centered atk51 corresponding to
slow electrons in the projectile frame. The binary-encoun
ridge is atuk2vu5v. The relative amount of cusp electron
to binary electrons decreases rapidly with increasing imp
parameter. These features are similar to those observe
high-energy ion-atom collisions. Both cusp peaks have
actly the shape predicted by and Gariabotti and Barrach
@20# for electron transfer to continuum states of neutral p
jectiles, namely,

s}
1

Z1
21uk2vu2

. ~69!

The binary-encounter ridge is now no longer a pu
s-wave shape, as it was forb50 where we had only an

FIG. 1. Electron distributionsuA(k)u2 for the initial velocity v
510 a.u. and the impact parametersb50.1 a.u. ~a! and b
50.3 a.u.~b!.
2-8
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isotropic distribution in the projectile frame of referen
@17#. The higher partial waves arise because rotational c
pling at bÞ0 transfers part of the ejecteds wave to waves
with l .0 resulting in the departures from isotropy as seen
Fig. 1.

The results of the calculations of the ionization probab
ties for initial velocityv51 and gerade symmetry as a fun
tion of the impact parameter are shown in Fig. 2. The io
ization cross section oscillates with increasing frequency
the impact parameter tends to zero. Figure 2 also shows
results of our calculations using the hidden-crossing the
@7#. Assuming that only one branch point is important, w
have for the hidden-crossing ionization probability the res

Pion54 exp~2uSu!@12exp~2uSu!#sin2~D/2!, ~70!

where

S52 Im E
c
E~t!dt, D52 ReE

c
E~t!dt, ~71!

andE(R) is the adiabatic eigenenergy. The contourc starts at
the pointt50 on the lowest sheet, goes around the bra

FIG. 2. The ionization probabilityPion as a function of the im-
pact parameter forv51 a.u. and ‘‘gerade’’ symmetry. The soli
lines are our exact calculations and the dot-dashed lines are
two-state hidden-crossing calculations. The dot shows the resu
the ‘‘zero impact parameter’’ calculations.

FIG. 3. The same as in Fig. 2 for ‘‘ungerade’’ symmetry.
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point between the lowest and second sheets, and finish
the pointt50 on the second sheet. Evaluating Eq.~71! by
integrating by parts we obtain

E
c
E~t!dt5E

0

v

arcsin
b

rp~v8!
dv8. ~72!

For gerade symmetry the hidden-crossing results are
good agreement with the exact calculations and show tha
oscillations known as Stuekelberg oscillations are associ
with the interference between the transitions of incoming a
outgoing phases of collision. The hidden-crossing theory a
shows thatb50 is an essential singularity of the ionizatio
probability and the limitb50 does not exist for the gerad
state. Prior calculations@16# at b50 give a result that is
outside of the oscillations and is more than twice the aver
of the oscillations. For ungerade symmetry~Fig. 3! there are
no oscillations, and our exact calculations uniformly rea
the limit b→0 where they coincide with prior calculation
@16# at b50.

The velocity dependence of the ionization probabiliti
for b50.8 are shown in Fig. 4. While for high velocities th
ionization probabilities are approximately the same, for lo

ur
of

FIG. 4. The velocity dependence of the ionization probabilit
Pion for b50.8 a.u. Probabilities corresponding to~g! ‘‘gerade’’
and ~u! ‘‘ungerade’’ symmetries are shown.

FIG. 5. Comparison of exact, solid curve, and two-state hidd
crossing, dot-dashed, electron distributionsuA(k)u2v3 vs kz /v for
v50.2 a.u.,b50.8 a.u. in the center-of-mass frame.
2-9
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velocities the ionization probability for ungerade symme
is much greater than that for gerade symmetry. For this
son we do not find Fermi oscillations in the electron spec

Figure 5 shows the comparison between the exact ca
lations of the electron spectra forb50.8, v50.2, and the
two-state hidden-crossing calculations@27# in the case of un-
gerade symmetry. The total ionization probability is 3
times bigger than the two-state hidden-crossing result s
gesting that more adiabatic states are involved in the ion
tion process.

Additional results not directly connected with the ma
topic of the manuscript are the simplified expression of
harmonic-oscillator Green’s function@19,25# given in Ap-
pendix A and the integral Eq.~62! that we cannot find in
tables of integrals. This result is written generally as

E
2`

`

Dx~a!D2x21~b!eic(x21/2)dx

5A p

cosc
expF i

4
~a22b2!tanc2

ab

2 coscG . ~73!

VI. CONCLUSIONS

We have developed new mathematical techniques
provide the first semianalytical solution of a nontrivial mod
for ion-atom collisions at impact parameters not equal
zero. These new techniques involve mainly finding appro
ate integration contours and solutions of three-term rec
rence relations, such that physical boundary and initial c
ditions are satisfied. While the mathematics needed to ve
the techniques are fairly involved, the computational pro
dure is actually quite simple. This method can serve to gu
similar approaches to other physical systems. In addition,
numerical results can be used to benchmark alternative c
putational methods. To that end we have presented comp
electron momentum distributions at select velocities and
pact parameters.

A comparison with the hidden-crossing theory at low v
locities shows good agreement for the gerade symmetry,
only order-of-magnitude agreement for the ungerade sym
try. It appears that more adiabatic states must be consid
in this latter case. Our results could serve as simulation d
for further tests of the hidden-crossing method forbÞ0.

It may even be possible to test some of the predicti
experimentally. The cusps and binary ridge at high veloci
are expected, but our new results show that the ridge is
isotropic even though electron ejection occurs only
s-wave scattering. At low energies, the absence of Fermi
cillations in the electron spectra is the main new feature. T
absence is traced to the small value of the gerade amplitu
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APPENDIX A: GREEN’S FUNCTIONS

We find the Green’s functions from the expression

G~q8,q9,E!5E
0

`

K~q8,q9,2 i t !e2Et dt, ~A1!

where K(q8,q9,t) is a propagator. The propagato
K(q8,q9,t) is a periodic function with periodT0 and has
singularities at integral multiples ofT0.

1. One-dimensional harmonic oscillator

The propagator K(q1 ,q2 ,t) and Green’s functions
G(q1 ,q2 ,E) for one-dimensional harmonic oscillator has t
form

K1D~q1 ,q2 ,t !5S V

2p i sinVt D
1/2

3expF iV

2 sinVt
@~q1

21q2
2!cosVt22q1q2#G ,

~A2!

G1D~q1 ,q2 ,E!5
2

ApV
G~1/22E/V!DE/V21/2~A2Vq.!

3DE/V21/2~2A2Vq,!. ~A3!

2. Three-dimensional harmonic oscillator

The propagator K(q8,q9,t) and Green’s functions
G(q8,q9,E) for three-dimensional harmonic oscillator ha
the form

K~q8,q9,t !5S V

2p i sinVt D
3/2

expF iV

2 sinVt
@~q821q92!

3cosVt22q8•q9#G , ~A4!

G~q8,q9,E!5
G~1/22E/V!

2pApVuq82q9uuq81q9u

3Fq,

]

]q.
2q.

]

]q,
G

3DE/V21/2~A2V q.!DE/V21/2~2A2V q,!.

~A5!

3. Three-dimensional harmonic oscillator with rotation

The propagator K(q8,q9,t) and Green’s functions
G(q8,q9,E) for three-dimensional harmonic oscillator wit
rotation has the form
2-10



ral

by
the

EXACT ELECTRON SPECTRA IN COLLISIONS OF TWO . . . PHYSICAL REVIEW A65 032722
K rot~q8,q9,t !5S V

2p i sinVt D
3/2

exp~ i @q83V#•q9!

3expF iV

2 sinVt
@~ uq82q9u212y8y9!

3cosVt22y8y9#G , ~A6!

Grot~q8,q9,E!5
exp~ i @q83V#•q9!

2puq82q9uuq82qxz9 u

G~1/22E/V!

ApV

3Fh ]

]j
2j

]

]hGDE/V21/2~A2Vj!

3DE/V21/2~2A2Vh!, ~A7!

where

j5
1

2
~ uq82q9u1uq82qxz9 u!,

h5
1

2
~ uq82q9u2uq82qxz9 u!5y8y9/j,

uq82qxz9 u5Auq82q9u214y8y9, ~A8!

qxz5(x,2y,z) is the reflection ofq in xz plane. In terms of
Whittaker functions@25# the Green’s function has the form

Grot~q8,q9,E!5
exp~ i @q83V#•q9!

4p3/2uq82q9uuq82qxz9 u
Fh ]

]j
2j

]

]hG
3F2GS 3

4
2

E

2V D ME/2V,1/4~Vj2!

3WE/2V,1/4~Vh2!

1GS 1

4
2

E

2V D ME/2V,21/4~Vj2!

3WE/2V,21/4~Vh2!G . ~A9!

For y50 we have

K rot~q8,q9,t !5S V

2p i sinVt D
3/2

3exp~ i @q83V#•q9!

3expS iV

2
uq82q9u2 cotVt D , ~A10!

and
03272
Grot~q8,q9,E!

5
exp~ i @q83V#•q9!

2puq82q9u

DE/V21/2~A2Vuq82q9u!
DE/V21/2~0!

. ~A11!

4. Regularized Green’s functions

Regularized Green’s functions are defined as

Gr~q,E!5 lim
q→q8

FG~q,q8,E!2
1

2puq2q8u
G . ~A12!

The Green’s functionsGr(q,E) for 3D oscillator with rota-
tion has the form

Gr~q,E!5
1

~2p!3/2

1

2A2V
GS 1

2
2

E

V D F1

y

]

]y
2

]2

]q2G
3DE/V21/2@A2V~y1q!#

3DE/V21/2@2A2V ~y2q!#uq50 . ~A13!

For y50 we have

Gr~E!5
A2V

2p

DE/V21/28 ~0!

DE/V21/2~0!
. ~A14!

APPENDIX B: NORMALIZATION INTEGRALS

To normalize Sturmian functions we calculate the integ

E S̃p~v;q!Sp~v;q!d3q

5N2F E G̃S q,
ẑ

2
,v DGS q,

ẑ

2
,v D d3q

1E G̃S q,2
ẑ

2
,v DGS q,2

ẑ

2
,v D d3q

1pE G̃S q,
ẑ

2
,v DGS q,2

ẑ

2
,v D d3q

1pE G̃S q,2
ẑ

2
,v DGS q,

ẑ

2
,v D d3qG , ~B1!

where tildes over letters indicate dual functions obtained
reversing the direction of the rotation axis. To calculate
integrals in Eq.~B1! we use the relation

E G̃~q,q8,v!G~q,q9,v!d3q5
]

]v
G~q8,q9,v!, ~B2!

and the explicit form of the Green’s function~A11!. The final
result is

E S̃p~v;q!Sp~v;q!d3q52N2
a

p

drp

dv
, ~B3!
2-11
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then

N5Ap

a
, ~B4!

and the properly normalized Sturmian functions are

Sp~v;q!5Ap

a
FGS q,

ẑ

2
,v D 1pGS q,2

ẑ

2
,v D G . ~B5!

APPENDIX C: ASYMPTOTIC ANALYSIS

To see the connection between thev space andu space
we calculate integral in Eq.~33! by the stationary-phas
method. We assume that only large negative Rev will con-
tribute to the integral whenu→0. We use the asymptoti
formula Eq.~39! for parabolic cylinder functions with Rea
→2`. Then the phase to examine is

f~v!52
p

4
2vu2yA2v, ~C1!

where

y5A2V~a/v2 iq !, q5uq81 ẑu. ~C2!

By differentiating Eq.~C1! with respect tov, we find the
stationary-phase point

A2v05
y

2u
, ~C3!

the second derivative at the stationary point

f9~v0!52
u

2v0
, ~C4!

and the value of the stationary phase

f~v0!5uv02
p

4
. ~C5!

We should note here that the imaginary part of the stati
ary pointv0 given by Eq.~C3! is always positive. In order to
be consistent with our assumption that only large nega
Rev contribute to the integral Eq.~33!, we must require

q,a/v ~C6!

in these formulas.
We apply stationary-phase formula

E f ~v!exp@ if~v!#dv'A 2p i

f9~v0!
f ~v0!exp@ if~v0!#,

~C7!

to get
03272
-

e

w2~q,u!'A ab

2pu

eiVqx

q
expF2 i

vb

2u
~a/v2 iq !2G ,

~C8!

which is exactly the asymptotic form of Eq.~55! for u→0.
Let us consider the contribution from the other part

cosine ~positive imaginary exponent!. With the same as-
sumptions as before the phase becomes

f1~v!5~p2u!v1
p

4
1y* A2v, ~C9!

and the stationary point is

A2v0
152

y*

2~p2u!
. ~C10!

The second derivative at the stationary point is

f9~v0
1!52

p2u

2v0
1

, ~C11!

and the phase at the stationary point is

f~v0
1!5

p

4
2~p2u!v0

1 . ~C12!

The stationary point for this term always lies in the low
half-plane ofv. Again, to satisfy the additional conditio
~C6! the real part ofv0

1 is taken to be negative. Assumin
that all conditions are satisfied we obtain

w1~q,u!' iA ab

2p~p2u!

eiVqx

q

3expF i
vb

2~p2u!
~a/v1 iq !2G , ~C13!

which differs only by a factor ofi from the asymptotic form
of Eq. ~55! for u→p20.

Thus, we see that behavior of the solution atu→0 and
u→p20 is determined by stationary-phase points at la
negative Rev. This fact is used to set up initial conditions i
the problem with two ZRPs.

APPENDIX D: NORMALIZATION OF TIME-DEPENDENT
SOLUTIONS

The exact time-dependent solution can be written as

w~q,u!5
exp@2 i ~V/2!qr cosf#

q1
Fp~q1 ,u!

1p
exp@ i ~V/2!qr cosf#

q2
Fp~q2 ,u!, ~D1!

where
2-12
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Fp~k,u!5
1

2pJ0
2AbV

a

3E
2`1 ia

`1 ia

eiv(p/22u)
Dv21/2~A2Vk!

Dv21/2~0!

Cp
R~v!

rp~v!
dv,

a.0, ~D2!

q65Aqr
21~qz61/2!2, ~D3!

and qr , qz , andu are the cylindrical coordinates ofq. We
want to calculate the normalization integral

N~u!5E uw~q,u!u2 dq. ~D4!

Using Eq.~D1! we write

uw~q,u!u25I 1~q1 ,u!1I 1~q2 ,u!1pI2~q,u!, ~D5!

where

I 1~q6 ,u!5
uFp~q6 ,u!u2

q6
2 ,

I 2~q,u!5
2

q1q2
Re@e2 iVqr cosfFp~q1 ,u!Fp* ~q2 ,u!#.

~D6!

It is easy to show that

E I 1~q6 ,u!d3q54pE
0

`

uFp~q,u!u2 dq. ~D7!

In the last term we use the integral representation of a Be
function @28#,

J0~z!5
1

2pE0

2p

e6 iz cosf df ~D8!

to get

E
0

2p

I 2~q,u!df54p
J0~qrV!

q1q2
Re@Fp~q1 ,u!Fp* ~q2 ,u!#.

~D9!

It is convenient to use elliptic coordinates in further integ
tions
y

et

03272
el

-

j5q11q2 ,

h5q11q2 . ~D10!

We now have for the volume integral

E
0

2p

I 2~q,u!dq

52pE
0

`E
21

1

J0@VA~j221!~12h2!/2#

3Re$Fp@~j1h!/2,u#Fp* @~j2h!/2,u#%dj dh.

~D11!

The final result is

N~u!58pE
0

`

uFp~q,u!u2 dq

12pE
0

`E
21

1

J0@VA~j221!~12h2!/2#

3Re$Fp@~j1h!/2,u#Fp* @~j2h!/2,u#%dj dh.

~D12!

We evaluate this integral numerically to check thatN(u)
51 for 0,u,p, N(0)50, andPion5N(p).

To check the accuracy of our calculations of the elas
scattering amplitudeS00 we use the following formulas:

S005E w~q,u!w̃~q,u!dq. ~D13!

Using the same technique we obtain

S0058pE
0

`

Fp
2~q,u!dq

12pE
0

`E
21

1

J0@VA~j221!~12h2!/2#

3Fp@~j1h!/2,u#Fp@~j2h!/2,u#dj dh.

~D14!

The integral is evaluated numerically.
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