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Theoretical study of resonant vibrational excitation of CO2 by electron impact
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We report the results of a fullyab initio study of resonant vibrational excitation of CO2 by electron impact
via the 3.8 eV2A1 shape resonance. First, we solve the fixed-nuclei, electronic scattering problem using the
complex Kohn variational method for a variety of symmetric-stretch geometries and for a range of bending
angles. We then carry out a three-mode treatment of the nuclear dynamics using a complex local potential or
‘‘boomerang’’ model using resonance parameters derived from our calculated fixed-nuclei cross sections. The
results show that a multidimensional treatment of the nuclear motion is essential for a proper description of the
vibrational dynamics of CO2, in particular for describing resonant excitation of the two components of the
well-known lowest Fermi dyad.
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I. INTRODUCTION

Much of the work onab initio treatments of electron
molecule collisions has been directed at developing accu
methods for solving the fixed-nuclei problem posed by el
tron scattering from a nonspherical, polarizable charge
tribution, with full allowance for exchange. Of the man
approaches that have been attempted over the past two
cades, several have proved flexible and robust enough t
capable of treating elastic and inelastic collisions with fai
general multielectronic-state expansions and accurate ta
wave functions, even in the case of polyatomic targets@1#.
While accurateab initio calculations of low-energy electron
molecule scattering are now being performed even for m
sized polyatomic targets, it is the case that the preponder
of these calculations have been carried out at a single fix
nuclei geometry corresponding to the equilibrium target c
figuration. The fixed-nuclei electronic problem gives an i
portant, but often incomplete, description of the full electro
molecule collision. The nuclear dynamics problem, i.e.,
set of processes that control the flow of electronic ene
into nuclear degrees of freedom, is also of fundamental
portance in studying electron collisions with polyatomic ta
gets and is key to developing an understanding ofelectron-
driven chemistriesin a variety of contexts, from modeling
energy flow in a gas laser system to understanding the
duction of reactive species in low-temperature process
plasmas.
1050-2947/2002/65~3!/032716~13!/$20.00 65 0327
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Negative ion shape resonances, which are ubiquitou
low-energy electron-polyatomic cross sections, play an
portant role in both vibrational excitation and dissociati
electron attachment~DEA!. The energy dependence of
resonance feature from a fixed-nuclei electronic cross sec
calculation can give only some indication of the probabiliti
of resonant vibrational excitation or DEA; determining th
cross sections for such processes requires detailed stud
the nuclear dynamics. The equations that govern the dyn
ics of the nuclei have been derived by applying formal re
nance scattering theory@2# to electron-molecule collisions
within a Born-Oppenheimer framework@3#. The formal
theory is most often applied in an approximate form kno
as the local complex potential or ‘‘boomerang’’ model@4#.
The one-dimensional version of this equation can easily
parametrized and has therefore become a popular and o
successful semiempirical tool in the analysis of reson
electron-molecule cross sections.

The resonance parameters needed to construct a
complex potential for the boomerang model need not
treated as semiempirical parameters if they can be extra
from an analysis of the cross sections obtained from accu
fixed-nuclei scattering calculations@5#. Alternatively, one
could attempt to compute the resonance parameters dire
by analyzing the complex eigenvalues of a non-Hermit
~complex-symmetric! Hamiltonian obtained either by com
plex scaling@6,7# or by complex absorbing potential method
@8,9#. The viability of such anab initio approach to the com
©2002 The American Physical Society16-1
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plete problem has been demonstrated for a number of
atomic targets. The extension of the basic approach to p
atomic targets would require a complex potential ene
surfaceand an appropriate extension of the dynamics ca
lations to include multiple nuclear degrees of freedom.
fact, very little work has been done in this area and
majority of the calculations that have appeared have use
one-dimensional treatment of the nuclear motion, even in
case of polyatomics. There have been a few notable ex
tions. Using a completelyab initio approach, Orel and Ku
lander@10# have studied resonant dissociative recombinat
of H3

1 with a two-dimensional treatment of the dynamic
More recently, Kazansky@11,12# has looked at the effects o
coupling several vibronic modes in the case of resonant
brational excitation of CO2. These studies, however, em
ployed model potential parameters.

In this paper, we undertake anab initio study of resonant
vibrational excitation of CO2 by electron impact. CO2 is in-
teresting for a number of reasons. Although the princi
features of the low-energy cross sections, namely, the
matic rise in the total cross section below 2 eV and the re
nance feature near 3.8 eV, have been the subject of m
theoretical investigations, starting with the pioneering mo
potential calculations of Morrison, Lane, and Collins@13#, it
was not until 1998 that anab initio study was performed tha
was able to show conclusively that the low-energy rise in
elastic cross section was the result of a virtual state@14#.
Only recently hasab initio theory correctly accounted fo
both the low-energy behavior and the resonance peak@15,16#
or been able to achieve quantitatively correct differen
cross sections below 6 eV@15#.

There have been a number of experimental studies
resonant vibrational excitation of CO2. Oscillatory structure
in the cross section over the resonance region was firs
vealed in transmission experiments by Bonness and Ha
@17#. More observations followed and detailed studies of
brational excitation were performed by Cadezet al., @18#
who measured differential excitation functions at seve
fixed angles and noted that the resonance couples strong
symmetric-stretch motion, having observed energy-loss s
tra at 4 eV for the symmetric-stretch mode up ton8525.
These authors also observed some structure in the excit
functions which became more pronounced with increas
vibrational quantum number. Cadezet al. @18# also per-
formed one-dimensional boomerang calculations with pot
tial parameters chosen to give a best fit to the observed d
Currell and Comer@19# cited evidence for strong polyatomi
effects in the excitation functions of certain vibrational le
els, in particular the~1,0,0! and ~0,2,0! modes, which are
strongly coupled members of a resonant Fermi dyad. T
argued that bending as well as stretching deformations of
resonance state both played a role in the excitation dynam
This assertion was given further support by the meas
ments of Johnstone, Akther, and Newell@20#, who reported
absolute cross sections for individual vibrational levels
recording several electron energy-loss spectra over a rang
incident energies. The energy resolution of the experim
did not permit observation of the peaks for individual me
bers of the Fermi polyads, so a least squares fitting proce
03271
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was used in analyzing the data. Most recently, Allan@21# has
been able to achieve a decisive improvement in energy r
lution down to 7 meV which allowed him to perform sep
rate measurements of the excitation functions for each m
ber of the lowest Fermi dyad and to measure the excita
cross sections with high accuracy. The fact that modernab
initio methods have now been shown to be capable
achieving a high level of accuracy in solving the fixed-nuc
problem for this system and that experimental results of
precedented quality are now available has prompted u
undertake a detailed first-principles study of the vibratio
excitation dynamics in thee21CO2 system. We are presen
ing our initial results of that study in this paper.

The outline of this paper is as follows. The next secti
gives a brief description of the local complex potential
boomerang model for resonant vibrational excitation. T
equations are then recast in time-dependent form. We fol
with a brief discussion of methods for solving the tim
dependent Schro¨dinger equation and describe the multico
figuration time-dependent Hartree method used in this wo
Our results for CO2 are presented in Sec. III. We begin wit
a brief discussion of the fixed-nuclei calculations from whi
the complex resonance surface was constructed, and
present the results of our multidimensional complex lo
potential calculations. Section IV contains a discuss
and some concluding remarks. We employ atomic un
throughout.

II. THEORETICAL FORMULATION

Theoretical treatments of resonant vibrational excitat
are generally based on rigorous resonance scattering th
@3#, formulated within the Born-Oppenheimer approxim
tion. The principal result of the theory is the so-calle
nuclear wave equation that governs the nuclear dynam
due to the resonance state~s!:

@E2Eres2Ks#jn i
~s!5~c resHelPfn i

!

1~c resHelPGP
1PHelc res!jn i

~s!,

~2.1!

whereE is the total energy,Ks is the nuclear kinetic energy
operator,Hel is the fixed-nuclei electronic Hamiltonian,c res
is the electronic resonance wave function,Eres is the ‘‘adia-
batic’’ resonance energŷc resuHeluc res&, and Pfn i

is the
nonresonant background scattering wave function associ
with an initial target state labeled byn i . The variables is
used to denote the internal nuclear coordinates. This is
inhomogeneous wave equation which, due to the presenc
the nuclear Greens’s functionGP

1 , involves an effective
Hamiltonian that is complex, nonlocal, and energy dep
dent. While explicit construction of the effective Hami
tonian from first principles is possible@22#, the computa-
tional effort required for a realistic calculation on
polyatomic target would be extremely tedious, and hence
follow the usual practice of approximating the effectiv
nuclear Hamiltonian by a simpler local operator.
6-2
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THEORETICAL STUDY OF RESONANT VIBRATIONAL . . . PHYSICAL REVIEW A 65 032716
A. Local complex potential model

The complex local potential or boomerang model can
derived from the nuclear wave equation under a set of s
plifying approximations. The conditions under which the
approximations are justified are well understood@5# and, in a
few cases, have been tested against the rigorous non
theory@23–25#. The boomerang model for the wave equati
that determines the nuclear dynamics is@4#

@E2Ks2Eres~s!1 iG~s!/2#jn~s!5fn~s!. ~2.2!

In Eq. ~2.2!, the negative ion energy surface is characteriz
by a real partEres(s) and an imaginary part2 iG(s)/2, and
the ‘‘entry amplitude’’fn is defined as

fn~s!5@G~s!/2p#1/2hn~s!, ~2.3!

wherehn is the initial vibrational wave function of a neutra
target. The resonantT matrix for vibrational excitation is
obtained by projecting the solution of Eq.~2.2! onto the
‘‘exit amplitude’’ fn8 :

Tnn8~E!5^fn8ujn&. ~2.4!

Combining Eqs.~2.2! and~2.4! allows us to writeTnn8(E) as
the matrix element of a nuclear Green’s function betwe
entry and exit amplitudes:

Tnn8~E!5^fn8u
1

E2Ks2Eres~s!1 iG~s!/2
ufn&. ~2.5!

B. Time-dependent Schro¨dinger equation

The differential equations of the boomerang model m
be recast in a time-dependent formulation, as first shown
McCurdy and Turner@26#, by writing the nuclear Green’s
function in Eq.~2.5! as the Fourier transform of the prop
gator for the time-dependent Schro¨dinger equation. The reso
nantT matrix for vibrational excitation is then expressed

Tnn8~E!52 i E
0

`

dteiEt^fn8uC t&, ~2.6!

with

C t5e2 iHtfn ~2.7!

and

H5Ks1Eres~s!2 iG~s!/2. ~2.8!

The physical content of the boomerang model is that
electron is first captured into a temporary negative ion s
with a probability determined by the entry amplitude. T
nuclear Green’s function controls the evolution of the ne
tive ion state and the probability of vibrational excitation
determined by an overlap with the exit amplitude. In t
time-dependent picture, the meaning of Eqs.~2.6!–~2.8! is
clear: the resonant transition amplitude for excitation
given as the Fourier transform of the overlap between a w
packet propagating on a complex potential surface and a
03271
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tial surface is complex, the normalization of the wave pac
C t in Eq. ~2.7! is not conserved, and the packet decays a
function of time at a rate determined by the magnitude of
resonance width.

For problems with only one nuclear degree of freedo
there are no obvious computational advantages in choo
the time-dependent approach over the time-independent
proach other than for the physical insight it offers into t
problem. However, for problems with multiple degrees
freedom, there are decided advantages to the time-depen
approach, since it does not involve the solution of large s
tems of complex linear equations. Moreover, the exponen
decay of the wave packet generally leads to its effective
appearance after only a few vibrational periods, so the w
packet need only be propagated for a short time. The tim
dependent approach can thus be made quite efficient, a
shall see, even for multidimensional problems.

The ‘‘standard’’ method for solving the time-depende
Schrödinger equation proceeds by introducing a discrete
of points for each degree of freedom and constructing
explicit solution of the equations of motion for a wav
packet propagating in time on the discrete, multidimensio
grid. A serious problem with this approach is that the co
putational effort required scales exponentially with the nu
ber of degrees of freedom, making it prohibitively expens
to implement as the number of degrees of freedom gro
Several approximate methods have been developed to
move this obstacle. In the time-dependent Hartree~TDH!
method, for example, the wave function is represented a
single product of one-dimensional functions, thereby simp
fying the computational effort at the cost of a proper tre
ment of correlation between the degrees of freedom. T
multiconfiguration time-dependent Hartree~MDTDH!
method@27# offers a practical alternative to the TDH metho
that retains the essential rigor of the standard method. In
MCTDH method, as in the standard method, we start wit
time-independent orthonormal product basis set:

$x j 1

(1)~Q1!•••x j f

( f )~Qf !%, j i51, . . . ,Ni , ~2.9!

where we have assumed that there aref degrees of freedom
in a problem described by nuclear coordinatesQ1 , . . . ,Qf .
For computational efficiency, the basis functionsx j i

( i ) are

chosen as the basis functions of a discrete variable repre
tation ~DVR! @28#.

The central idea in the MCTDH scheme is that one c
employ a smaller, but now time-dependent, basis for expa
ing the wave function, i.e.,

C~Q1 , . . . ,Qf ,t !5 (
j 151

n1

••• (
j f51

nf

Aj 1••• j f
~ t !)

k51

f

w j k

(k)~Qk ,t !,

~2.10!

with nk!Nk . The single-particle functions in turn are repr
sented as linear combinations of the primitive basis in E
~2.9!,
6-3
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w j k

(k)~Qk ,t !5 (
i k51

Nk

ci kj k

(k) ~ t !x i k
(k)~Qk!. ~2.11!

Since both the coefficientsAj 1••• j f
, and the single-particle

functions are time dependent, the wave function represe
tion is not unique. Uniqueness can be achieved by impos
additional constraints on the single-particle functions wh
keep them orthonormal for all times@27#. The MCTDH
method has been applied to a variety of problems rang
from reactive and surface scattering to the determination
photodissociation and photoabsorption spectra~see@27# and
references therein!. The MCTDH approach is particularly
useful when treating large systems. An impressive succes
the MCTDH method was the calculation of the absorpt
spectrum of the pyrazine molecule@29,30# in which the
quantal motion of all 24 internal degrees of freedom evo
ing on two coupled electronic surfaces was accurately de
mined. Due to the existence of a conical intersection in t
system, all modes are coupled, giving raise to highly co
plex motion. More recently, the MCTDH method has be
applied to the spin-boson model including 80 vibration
modes@31#.

In our calculations on CO2, we have tested the accurac
of the MCTDH scheme by carrying out boomerang calcu
tions in both one and two dimensions~1D and 2D! using
both the standard method and the MCTDH method. The
methods produced virtually identical results for this proble
For the 3D calculations, we used only the MCTDH metho

III. COMPUTATIONS

To recapitulate briefly, the procedure we followed f
computing thee21CO2 vibrational excitation cross section
begins with a variational determination of the fixed-nuc
electron scattering cross sections, for the appropriate t
symmetry, at a series of different nuclear geometries. F
each such calculation, we obtain a resonance energy
width by examining the energy dependence of the eig
phase sum@32#. If the geometry is such that the CO2

2 ion is
electronically bound, then the eigenphase sum will show
evidence of a resonance. For these geometries, the w
G(s) is taken to be zero andEres(s) is obtained from the
lowest eigenvalue of the (N11)-electron electronic Hamil-
tonian. From the electronic resonance parameters, we
struct an analytic expression for the complex resonance
face from a least squares fit of the computed fixed-nu
resonance energy data.

For solving the time-dependent Schro¨dinger equation, we
use conventional normal coordinates@33#, with the restric-
tion that the two CO bond distances are constrained to
equal. With this restriction, the symmetric-stretch coordin
S1 and the doubly degenerate bend coordinatesS2a andS2b
become

S152R cosu, ~3.1!

S2a
2 1S2b

2 5R2 sin2u/@11MC/~2MO!#2, ~3.2!
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whereR is the CO bond distance andu measures the angle o
one of the CO bonds from linear geometry. The reduc
masses in these coordinates are

m15MO/2, ~3.3!

m2a5m2b5MCS 11
MC

2MO
D . ~3.4!

We have performed calculations in one, two, and thr
dimensions. For the 1D calculations, we use only
symmetric-stretch coordinate. For the 2D calculations,
use only one of the degenerate bending modes, thereby
stricting the nuclei to motion in a fixed plane.

A. Resonance surface construction

The fixed-nuclei calculations were carried out using t
complex Kohn variational method, as described in our ear
paper@15#. In the Kohn method, we use a stationary pri
ciple for theT matrix,

Tstat5Ttrial 22E C~H2E!C, ~3.5!

which is evaluated with a trial wave function for the (N
11)-electron system of the form

C5A@Fo~rW1 , . . . ,rWN!F~rWN11!#

1(
m

dmQm~rW1 , . . . ,rWN11!, ~3.6!

where Fo is the ~Hartree-Fock! ground state of CO2, A
antisymmetrizes the coordinates of the incident electron w
those of the target electrons, and the sum contains squ
integrable, (N11)-electron terms that describe correlatio
and polarization effects. The scattering functionF(rWN11) is
further expanded in a combined basis of Gaussian (f i) and
continuum~Ricatti-Bessel,j l , and Hankelhl

1! basis func-
tions

F~rW !5(
i

cif i~rW !1(
lm

@ j l~kr !d l l o
dmmo

1Tll ommo
hl

1~kr !#Ylm~ r̂ !/r . ~3.7!

Applying the stationary principle@Eq. ~3.5!# results in a set
of linear equations for the coefficientsci , dm , andTll ommo

.

The T-matrix elementsTll ommo
are the fundamental dynam

cal quantities from which all fixed-nuclei cross sections a
derived.

Calculated resonance positions and lifetimes are critic
sensitive to a proper description of the dynamic respons
the target to the incident electron, an effect that is descri
by including asymptotically decaying closed channels in
trial wave function. These terms are chosen by singly ex
ing the occupied target orbitals into unoccupied virtual orb
als. For symmetries in which shape resonances appear
6-4
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THEORETICAL STUDY OF RESONANT VIBRATIONAL . . . PHYSICAL REVIEW A 65 032716
have found that a ‘‘relaxed self-consistent field’’ procedu
which includes only symmetry- and spin-conserving sin
excitations of the target, captures the dominant physical
fect of a shape resonance, which is relaxation of the targe
the presence of an extra electron. These procedures, a
with other parameters of the calculations, are fully describ
in Ref. @15#. In that earlier work, we carried out calculation
in 2Pu symmetry for several different linear, symmetri
stretch geometries. For this work, we have extended th
calculations to include bent geometries as well, using
same basis sets and prescriptions previously employed. U
bending, the doubly degenerate2Pu resonance state split
into two nondegenerate~Renner-Teller! states of symmetry
2A1 and 2B1. For the work reported here, we consider
only the ~lower! 2A1 resonance surface.

Figure 1 gives a representative sampling of the fix
nuclei 2Pu(2A1) cross sections for linear and bent geo
etries. Figure 1~a! shows that, as the molecule is stretch
from its equilibrium position, the resonance energy dro
and its width decreases. In linear geometry, the2Pu reso-
nance state crosses the neutral ground state, i.e., bec
electronically bound, at a CO distance of;2.55 bohr. Fig-
ure 1~b! shows the effect of bending the molecule wh
holding the CO bond lengths fixed at their equilibrium valu
~2.194 bohr!. For CO bond distances less than 2.5 bo
bending the molecule away from linear geometry causes
resonance to broaden dramatically as it decreases in en
The parameters extracted from these fixed-nuclei cross
tions give the resonance energy relative to the CO2 ground
state. The total electronic energy is the resonance energy
the CO2 ground state energy. From a series of results suc
these, we have constructed the energy and width surface
the CO2

2 ion shown in Fig. 2.
There are several points to be noted when conside

these results. It is well known@34,35# that the 2A1 state of
CO2

2 is a stable negative ion, i.e., is electronically boun
when the molecule is either stretched or bent sufficien
This behavior is reflected in the resonance width shown
Fig. 2, which goes to zero at such geometries. Stretching
molecule in linear geometry causes the width to decre
monotonically and the corresponding resonance parame
can easily be obtained by fitting the calculated eigenph
sums to a Breit-Wigner form with a smooth backgroun
Calculating resonance parameters for large bending an
however, presents something of a problem. Figure 1~b!
shows that the resonance width increases as its position
creases, i.e., that the width remains finite as the reson
position approaches zero. To understand this behavior,
important to bear in mind that symmetric-stretch motion w
zero bend angle does not change the symmetry of the m
ecule and hence does not significantly change the ang
momentum character of the resonance, whose lowestl com-
ponent at equilibrium isp wave. Bending the molecule, how
ever, breaks the degeneracy of the2Pu resonance and mixe
an s-wave component into the2A1 resonance. There is n
angular momentum barrier associated with ans wave so it is
not surprising that such an admixture causes the wi
which is the inverse of the resonance lifetime, to increas

The dramatically different properties of the resonance s
03271
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face under stretching and bending reflect the fact that, m
ematically, the trajectory of ans-wave resonance pole in th
complex plane near zero energy is markedly different fr
that of a resonance that has angular momentum greater
zero. When plotted in the momentum plane, ans-wave pole
approaches the origin from the negative imaginary axis,
it becomes a virtual state. This means that at some point
real part of the resonance energy becomes negative
equivalently, the magnitude of the imaginary part of the re
nance momentum is larger than its real part. This behavio
illustrated in Fig. 3, in which a cut through the energy a
width surfaces of Fig. 2 at a fixed CO bond length~2.4 bohr!

FIG. 1. e21CO2 fixed-nuclei integrated cross sections, in un
of a0

2, in 2A1 symmetry:~a! symmetric-stretch dependence in line
geometry;~b! bend-angle dependence at equilibrium CO bond d
tance.
6-5
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FIG. 2. Complex2A1 resonance energy of CO2
2 , in units of hartrees, as a function of symmetric-stretch distance, in units of bohrs

bend angle, in degrees. Left panel shows the real part of the energy surface and the right panel shows the corresponding width.
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is plotted as a trajectory in the complex energy and mom
tum planes. If the real part of the resonance energy is ne
tive, it becomes ‘‘invisible’’ in the sense that it has no effe
that can be seen in the energy dependence of the cross
tion. The practical consequence of this behavior in the c
of the 2A1 CO2

2 resonance is that there is a finite range
bending angles, from the point where the real part of
resonance energy first becomes negative to the point whe
becomes electronically bound, where the resonance pa
eters cannot be extracted by analyzing the energy de
dence of the fixed-nuclei cross sections. These portion
the resonance surfaces shown in Fig. 2, generally co
sponding to bend angles between 15° and 30°, were th
fore constructed by smoothly interpolating between the
points for which a Breit-Wigner fit of the data could be ca
ried out and the points where the2A1 state becomes elec
tronically bound. In fact, the vibrational excitation cross se
tions we calculated were rather insensitive to the portions
the resonance surface that had to be interpolated, since
wave packet rapidly decays as the width increases and h
hardly samples these large-angle regions.

Another point worth noting concerning the behavior
the resonance state with changing geometry is that the di
moment of the CO2 becomes nonzero when the molecule
nonlinear. That is another aspect of the symmetry break
and the coupling ofs-wave components into the resonan
state that contributes to the increase in width with increas
bending angle. For small bending angles the dipole mom
is small, and its consequences are not great. As the ben
angle increases and the resonance surface crosses that
ground state and becomes the bound anion, there migh
another effect due primarily to the dipole. The long-ran
dipole potential can alter the nature of the transition of bou
states to resonances and produce pole trajectories tha
different from that shown in Fig. 3. That fact has been d
cussed by Domcke@22# in the context of electron scatterin
from heteronuclear diatomics. Ultimately, similar consid
ations may apply to the potential surfaces for CO2

2 , al-
though the picture is substantially more complicated
polyatomics because there are multiple paths from one
ometry to another. However, as we will see below, the wa
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FIG. 3. Trajectory of the2A1 resonance pole as a function o
bend angle for a fixed CO bond length~2.4 bohr!. ~a! Energy plane;
several values of the bend angle are indicated along the curve~b!
Momentum plane. All scales are in atomic hartree units.
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packet dynamics in the bending mode are such that for
calculations presented here the packet does not probe
crossing region significantly. Instead the region where
width is still increasing with increasing bending ang
strongly determines the properties of the cross sections.

B. One-dimensional results

We first computed cross sections for symmetric-stre
excitation using a one-dimensional boomerang treatment
constrains the nuclei to lie along a line. Cadezet al. @18# had
previously carried out such calculations, using semiemp
cally determined resonance parameters chosen to give a
fit to their measured cross sections. Figure 4 shows our
results for the resonant elastic and 0→1 vibrational excita-
tion cross sections. The results at this level give somethin
a textbook picture of a ‘‘diatomic’’ shape resonance, simi
to what is found ine21N2 scattering, with deep, well
defined interference structures@4#. Experiment@18,20#, how-
ever, shows structure that is far less pronounced than w
these 1D results exhibit, with very shallow valleys betwe
adjacent peaks. That Cadezet al. @18# were able to produce
so little structure with their model calculations can be und
stood by comparing their empirically determined resona
parameters with our calculated results, which are both sh
in Fig. 5. The real part of the resonance curve they derive
very close to ourab initio result, which is not surprising
since this parameter determines the position and overall
velope of the cross section. The width function they deriv
however, is significantly larger than our result in the critic
regions that the wave packet samples. This compar
serves to highlight the limitations of a 1D treatment for th
target molecule: in order to successfully model the obser
data, one is forced to compensate for the constrained lin
motion by adopting what we believe to be an unrealistica

FIG. 4. One-dimensional~symmetric-stretch! boomerang results
for e-CO2 elastic (0→0) and vibrationally inelastic (0→1) cross
sections, in units ofa0

2.
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large value for the resonance width. This finding provid
much of the impetus for the multidimensional studies p
sented in the next section.

C. Multidimensional results

To establish convergence criteria for the time-depend
calculations and to test the sensitivity of the results to para
eters such as grid size, propagation time, and initial vib
tional state representation, we first performed a series of
planar, 2D calculations using both the MCTDH method a
an explicit 2D wave packet propagation code that use
Chebyshev expansion of the propagator. For the MCT
calculations, the ground vibrational state was obtained
merically on the grid by a relaxation technique, i.e.,
propagating an initial wave packet in imaginary time. For t
calculations with the explicit propagator, the ground vibr

FIG. 5. Comparison of presentab initio resonance parameter
for CO2

2 in linear geometry with semiempirical results of Cad
et al. @18# ~a! CO2 ground state and real part of CO2

2 resonance
state.~b! CO2 resonance width.
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tional state was approximated as a product of single-m
functions in the appropriate normal mode coordinates. T
results were found to be completely insensitive to the rep
sentation ofhno

and we found virtually identical results wit
both approaches. In both cases, we used products of sin
mode wave functions for the final target vibrational state

For the 3D calculations, all of our results were obtain
using the MCTDH method. The grids used covered the ra
3.6<S1<6.0 and21.5<(S2a ,S2b)<1.5. The DVR’s used
were a 64-point sine DVR in the symmetric stretch and
64-point harmonic oscillator DVR in each of the bend
There were four single-particle functions in each dimensi
The Fourier transform in Eq.~2.6! converged in all cases fo
times less than 75 atomic time units.

We begin with results for the resonant component of
elastic cross section. The 1D, 2D, and 3D results are sh
in Fig. 6. We see that the pronounced interference feat
found in the 1D calculations are strongly damped in 2D a
that in the 3D calculations they are entirely absent. This
the result of the sharp rise in the resonance width that
companies bending, which in turn leads to an increasin
rapid decay of the wave packet. In the 1D model, the ce
of the wave packet can effectively survive long enough
reflect off the outer classical turning point on the poten
wall and return with sufficient amplitude to produce the o
served structure. When the bending degrees of freedom
introduced, the wave packet is rapidly damped. To verify t
the effective absence of interference structure is indeed
to the functional dependence of the width on the bend
motion, and not simply on the increased dimensionality
the resonance surface on which the wave packet propag
we repeated the 3D calculations with a width function th
has the same dependence onS1, but decreaseswith increas-
ing bend angle. Those results are shown in Fig. 7. The in
ference structure appears once again in these calculat
Figure 8 contrasts the behavior of the wave packets in 3D
the cases with and without the full bend-dependent width
showing a series of snapshots of the reduced den
* uC t(S1 ,S2a ,S2b)u2dS2b . It can be seen that on the2A1

FIG. 6. Comparison of MCTDH results in 1D, 2D, and 3D f
the resonant component of the vibrationally elastice-CO2 cross
section, in units ofa0

2.
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surfaceC t effectively vanishes before it returns back to
initial position.

The boomerang model describes only the resonance c
ponent of the scattering; for the vibrationally elastic cro
section, there will be a substantial nonresonant backgro
component that must be included before a meaningful co
parison with experiment can be made. We have there
added a linear background, which we estimated from
earlier adiabatic nuclei calculations@15#, to the 3D MCTDH
results for the vibrationally elastic cross section. These
sults are shown in Fig. 9, along with three sets of experim
tal measurements@20,36,37#. Tanakaet al. @36# and Gibson
et al. @37# report absolute integrated cross sections w
which we can compare directly. Johnstoneet al. @20# report
absolute cross sections at a fixed scattering angle of 20°
we have scaled their results by an overall constant, on
assumption that the angular dependence of the cross se
is independent of energy@38#. The calculated results appea
to be in better agreement with the results of Tanakaet al.and
Johnstoneet al. than with the measurements of Gibsonet al.

Before turning our attention to the vibrationally inelast
results, we must make some preliminary remarks. Beca
the ground-state potential surface of CO2 is a symmetric
function of the bending coordinatesS2a andS2b , the target
vibrational functions for exciting these modes can be cla
fied as even or odd functions of these variables. Since
treatment considers only a single2A1 negative ion surface
which is also completely symmetric about the initial line
geometry with respect to bending, there is nothing in
dynamics that can cause the initial wave packet to evolve
a way that breaks this symmetry. Consequently, only cr
sections corresponding to excitation of an even numbe
bending quanta are nonzero with this model. This is simpl
reflection of the fact that the single-electronic-state mo
used here does not allow for coupling of the azimuthal
gular momentum of the scattered electron and the vibratio
angular momentum of the molecule. We shall return to t
point in the discussion. Another point concerns the repres
tation of the target vibrational wave functions. The existen

FIG. 7. Comparison of results for the vibrationally elastic cro
section, in units ofa0

2, with the ab initio bending potential~solid
curve! and with a width that decreases with increasing bend
angle~broken curve!.
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FIG. 8. Probability density from wave packets at three times during propagation: Left column,ab initio width function; right column,
width decreasing with increasing bending angle. All quantities are in atomic units. Numbers in parentheses on vertical axes indica
of 10, i.e., 5(24)5531024.
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of an accidental near degeneracy, or Fermi resonance
tween the (1,0,0) and (0,2,0) vibrational levels of CO2

2 is
well known. Because of this degeneracy and the fact that
two states have the same symmetry, the normal mode
scription of the vibrational wave functions is not valid, as t
true wave functions of this ‘‘Fermi dyad’’ are almost 50-5
mixtures of zeroth-order symmetric-stretch and bend st
@33#. This near degenerate grouping of states extend
03271
e-

e
e-

es
to

higher polyads—for example, the (2,0,0), (1,2,0), (0,4,
triad—making it impossible to talk about a series of pu
symmetric-stretch or bend states. If one uses product w
functions for the vibrational target states as we have d
here, then it is important to bear in mind that the appropri
linear combinations of these states~and, consequently, coher
ent combinations of the corresponding excitationamplitudes!
must be used to describe the true physical states.
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Figure 10 shows cross sections for the ‘‘pure’’ (0,0,
→(1,0,0) symmetric-stretch excitation calculated in 1D, 2
and 3D. The damping of the interference structure in
multidimensional treatments is again strikingly evident,
though the envelope of the cross section is rather insens
to the dimensionality of the ion surface. We have also carr
out calculations in 3D for a progression of symmetric-stre
excitation cross sections, which are shown in Fig. 11. Th
is evidently no shift in the peak position as the level
excitation increases, but one can see some weak interfer
structure beginning with (4,0,0) that gradually increas

FIG. 9. Integrated vibrationally elastic cross sections, in units
a0

2, for e21CO2. 3D boomerang1 calculated background cros
sections from Rescignoet al. @15# compared with experimental re
sults of Tanakaet al. @36#, Gibsonet al. @37#, and Johnstoneet al.
@20#. Differential cross sections of Johnstoneet al. at 20° were
multiplied by a factor of 20.

FIG. 10. Integrated vibrationally inelastic cross sections, in un
of a0

2, for e21CO2. ‘‘Pure’’ symmetric-stretch~see text! (0,0,0)
→(1,0,0) cross sections from 1D, 2D, and 3D boomerang calc
tions.
03271
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with excitation. This latter effect results from the fact that t
wave functions for the higher vibrational levels extend clo
and closer to the outer classical turning point and thus ov
lap more effectively with the wave packet before it decay

Figure 12 shows the pure bend (0,0,0)→(0,2,0) excita-
tion cross sections from the MCTDH calculations in 2D a
3D. The 2D results~which have been multiplied by 2 fo
consistency with the full 3D results! again show weak inter-
ference structure which is absent in the 3D calculations
comparing these cross sections with those for exciting
symmetric stretch modes, one notes that there is a shift in
peak position of almost 1 eV and a significant difference
the overall shape. Another striking difference is that t
bending excitation cross sections appear to have a signifi
background component that rises with decreasing collis
energy. We must emphasize that these calculations cap
only the resonance component of the excitation cross

f

s

a-

FIG. 11. Integrated vibrationally inelastic cross sections, in un
of a0

2, for e21CO2. ‘‘Pure’’ symmetric stretch progression~see
text! (0,0,0)→(n,0,0) cross sections from 3D boomerang calcu
tions.

FIG. 12. Integrated vibrationally inelastic cross sections, in un
of a0

2, for e21CO2. ‘‘Pure’’ bend ~see text! (0,0,0)→(0,2,0) cross
sections from 2D and 3D boomerang calculations.
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THEORETICAL STUDY OF RESONANT VIBRATIONAL . . . PHYSICAL REVIEW A 65 032716
tions, so we cannot attribute the ‘‘background’’ to the virtu
state mechanism that is responsible for the low-energy
havior in the total elastic cross section. The behavior of
(0,0,0)→(0,2,0) excitation cross sections is solely a res
of the topology of the width surface.

The strong mixing of the two normal modes by the Fer
resonance requires that the computed excitation amplitu
which refer to the unperturbed target states, be appropria
combined with the correct mixing coefficients. We write t
physical vibrational wave functions as

h I5ah1002bh020 ~ lower Fermi!,

h II 5bh1001ah020 ~upper Fermi!. ~3.8!

For the coefficients in Eq.~3.8!, we used the valuesa
50.763 andb50.647 derived by Dennison@39#. Figure 13
compares the excitation cross sections using these pertu
wave functions with those computed using unperturbed n
mal mode wave functions. The effect is very significant,
flecting the strong mixing of the normal modes in the phy
cal members of the Fermi dyad and the very different w
in which those modes couple to the resonance surface.
ure 14 compares the calculated cross sections with two
of experimental data. The measurements of Johnstoneet al.
@20#, like the elastic results mentioned earlier, were taken
a fixed angle of 20° and were thus scaled by the same fa
to compare with our calculated total cross sections. The
cently reported measurements of Allan@21#, which are also
shown in Fig. 14, were taken at a scattering angle of 13
scaling these data by a factor of 4p gave values that com
pare well with our calculated results. Theab initio results
agree rather well with the experimental data, especially in
location and relative magnitude of the peak cross section
well as their overall energy dependence. We note that
good relative agreement between the two sets of experim
tal differential cross section measurements at 20° and 1

FIG. 13. The effect of Fermi resonance on vibrationally inelas
cross sections, in units ofa0

2, for e21CO2
2 : comparison of vibra-

tional excitation cross sections computed using unperturbed
perturbed ~Fermi dyad! representations of the vibrational wav
functions.
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indicates that the assumption that the energy and ang
dependence of the cross sections are approximately fa
able is probably valid here.

IV. DISCUSSION

We have attempted to show that the treatment of po
atomic effects in resonant electron-molecule collisions
amenable to a first-principles approach and have used
CO2 target as an example. We have demonstrated that
interesting topology of the resonance surface demands a
alistic multidimensional treatment of the nuclear dynami
In fact, the strong mixing of the vibrational modes due
Fermi resonance led to effects that cannot even be discu
within the context of a linear model. We are certainly not t
first to suggest that polyatomic effects are important in t
case. Currell and Comer@19# pointed out the importance o
considering both stretching and bending in explaininge-CO2
vibrational dynamics as early as 1993 and Kazanskii@11,12#
has performed model calculations on this problem as w
However, in the absence of accurate fixed-nuclei data

c

nd

FIG. 14. Comparison of computed cross sections, in units ofa0
2,

for excitation of lowest Fermi dyad with experimental results
Johnstoneet al. @20# and Allan @21#. ~a! Lower Fermi level;~b!
upper Fermi level.
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both linear and nonlinear target geometries, no previ
treatments have been able to achieve better than rough q
tative agreement with experiment.

While these results represent an important first step
approaching resonant vibrational excitation in CO2 com-
pletely from first principles, there are still a number of que
tions to be answered. The unprecedented energy resolu
achieved in Allan’s measurements@21# makes it clear that the
interference structure, although very weak, is present in
excitation cross sections for the lowest Fermi dyad, wh
our 3D calculations show no structure at all. Another curio
difference concerns the energy behavior of the cross sec
on the low-energy side of the resonance peak. In both Alla
measurements and those of Johnstoneet al. @20#, only the
upper level of the Fermi dyad has a nonzero backgrou
while our calculations show a background for both leve
The reason our calculations show this behavior is clear:
unperturbed symmetric-stretch cross section has no b
ground, so when we take linear combinations of the t
amplitudes to form the cross sections for the dyad, the b
amplitude gives a nonzero background for both levels.

There are several effects yet to be investigated. One
sibility is that inclusion of asymetric stretch motion wou
mitigate the dominance of the bending motion on the re
nance lifetime and lead to the weak interference struc
that is now missing. It is difficult to see, however, how su
an effect could cause the background cross section to va
for only one of the levels of the dyad. Another open quest
is what effect the2B1 component of resonance would ha
on the dynamics. While we have yet to treat this problem
any detail, preliminary investigations indicate that the2B1
resonance surface has a much weaker dependence on
than the2A1 state we have considered here, so including i
the dynamics might well change both the interference str
ture and the background cross sections. Morever, nona
ys

er-
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batic coupling between the two resonance surfaces@40#
could lead to symmetry breaking effects that would provid
mechanism for resonant excitation of odd levels of the be
ing modes, which are known to be present@41#. We plan to
investigate these problems in future work.

We make a final point in closing. We have discussed
increase in the width of the2A1 resonance upon bending i
terms of symmetry breaking and the admixture of ans-wave
component into the resonance. The tacit assumption we h
made is that the resonance surface is a continuous functio
the bend angle and smoothly connects with the region wh
it becomes electronically bound. We have not discussed h
the presence of the dipole moment that accompanies ben
impacts this picture. The work of Domcke@22# and others
might even call the local complex potential model we ha
used into question. The quality of the results we have
tained, however, would suggest that we have captured
dominant physical mechanisms responsible for the reso
vibrational excitation of CO2.
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