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We report the results of a fullgb initio study of resonant vibrational excitation of G®y electron impact
via the 3.8 eV?A, shape resonance. First, we solve the fixed-nuclei, electronic scattering problem using the
complex Kohn variational method for a variety of symmetric-stretch geometries and for a range of bending
angles. We then carry out a three-mode treatment of the nuclear dynamics using a complex local potential or
“boomerang” model using resonance parameters derived from our calculated fixed-nuclei cross sections. The
results show that a multidimensional treatment of the nuclear motion is essential for a proper description of the
vibrational dynamics of Cg in particular for describing resonant excitation of the two components of the
well-known lowest Fermi dyad.
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[. INTRODUCTION Negative ion shape resonances, which are ubiquitous in
low-energy electron-polyatomic cross sections, play an im-
Much of the work onab initio treatments of electron- portant role in both vibrational excitation and dissociative
molecule collisions has been directed at developing accuralectron attachmen(DEA). The energy dependence of a
methods for solving the fixed-nuclei problem posed by electesonance feature from a fixed-nuclei electronic cross section
tron scattering from a nonspherical, polarizable charge disealculation can give only some indication of the probabilities
tribution, with full allowance for exchange. Of the many of resonant vibrational excitation or DEA; determining the
approaches that have been attempted over the past two dgross sections for such processes requires detailed study of
cades, several have proved flexible and robust enough to like nuclear dynamics. The equations that govern the dynam-
capable of treating elastic and inelastic collisions with fairlyics of the nuclei have been derived by applying formal reso-
general multielectronic-state expansions and accurate targeance scattering theory2] to electron-molecule collisions
wave functions, even in the case of polyatomic targéls within a Born-Oppenheimer framework3]. The formal
While accurateab initio calculations of low-energy electron- theory is most often applied in an approximate form known
molecule scattering are now being performed even for midas the local complex potential or “boomerang” modd].
sized polyatomic targets, it is the case that the preponderandée one-dimensional version of this equation can easily be
of these calculations have been carried out at a single fixegparametrized and has therefore become a popular and often
nuclei geometry corresponding to the equilibrium target consuccessful semiempirical tool in the analysis of resonant
figuration. The fixed-nuclei electronic problem gives an im-electron-molecule cross sections.
portant, but often incomplete, description of the full electron- The resonance parameters needed to construct a local
molecule collision. The nuclear dynamics problem, i.e., thecomplex potential for the boomerang model need not be
set of processes that control the flow of electronic energyreated as semiempirical parameters if they can be extracted
into nuclear degrees of freedom, is also of fundamental imfrom an analysis of the cross sections obtained from accurate
portance in studying electron collisions with polyatomic tar-fixed-nuclei scattering calculation&]. Alternatively, one
gets and is key to developing an understandinglettron-  could attempt to compute the resonance parameters directly
driven chemistriesn a variety of contexts, from modeling by analyzing the complex eigenvalues of a non-Hermitian
energy flow in a gas laser system to understanding the prdcomplex-symmetric Hamiltonian obtained either by com-
duction of reactive species in low-temperature processinglex scaling6,7] or by complex absorbing potential methods
plasmas. [8,9]. The viability of such arab initio approach to the com-
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plete problem has been demonstrated for a number of diwas used in analyzing the data. Most recently, Alah| has
atomic targets. The extension of the basic approach to polybeen able to achieve a decisive improvement in energy reso-
atomic targets would require a complex potential energyution down to 7 meV which allowed him to perform sepa-
surfaceand an appropriate extension of the dynamics calcurate measurements of the excitation functions for each mem-
lations to include multiple nuclear degrees of freedom. Inber of the lowest Fermi dyad and to measure the excitation
fact, very litttle work has been done in this area and thecross sections with high accuracy. The fact that moddrn
majority of the calculations that have appeared have used igitio methods have now been shown to be capable of
one-dimensional treatment of the nuclear motion, even in th@chieving a high level of accuracy in solving the fixed-nuclei
case of polyatomics. There have been a few notable eXceiproblem for this system and that gxperimental results of un-
tions. Using a completelgb initio approach, Orel and Ku- Precedented quality are now available has prompted us to
lander[10] have studied resonant dissociative recombinatiorindertake a detailed first-principles study of the vibrational
of Hy* with a two-dimensional treatment of the dynamics. €xcitation dynamics in the™ + CO, system. We are present-
More recently, Kazansk11,12 has looked at the effects of ng our initial results of that study in this paper. _
coupling several vibronic modes in the case of resonant vi- The outline of this paper is as follows. The next section

brational excitation of CQ These studies, however, em- gives a brief description of the Io_cal c_omplex pote_ntial or
ployed model potential parameters. boomerang model for resonant vibrational excitation. The

In this paper, we undertake a initio study of resonant equations_ are Fhen recast in time-dependent fprm. We foIIow
vibrational excitation of C@Q by electron impact. CQis in-  With a brief discussion of methods for solving the time-
teresting for a number of reasons. Although the principadePendent Schainger equation and describe the multicon-
features of the low-energy cross sections, namely, the drdiguration time-dependent Hartree method used in this work.
matic rise in the total cross section below 2 eV and the reso@Ur results for CQ are presented in Sec. lll. We begin with
nance feature near 3.8 eV, have been the subject of ma brief discussion of the fixed-nuclei calculations from which
theoretical investigations, starting with the pioneering modef® complex resonance surface was constructed, and then
potential calculations of Morrison, Lane, and Colljig], it ~ Present the results of our multidimensional complex local
was not until 1998 that aab initio study was performed that Potential calculations. Section IV contains a discussion
was able to show conclusively that the low-energy rise in theénd some concluding remarks. We employ atomic units
elastic cross section was the result of a virtual sfaw.  throughout.

Only recently hasab initio theory correctly accounted for

both the low-energy behavior and the resonance pEaf 6 Il. THEORETICAL FORMULATION
or been able to achieve quantitatively correct differential ) o o
cross sections below 6 e\d5]. Theoretical treatments of resonant vibrational excitation

There have been a number of experimental studies oie generally based on rigorous resonance scattering theory
resonant vibrational excitation of GOOscillatory structure  [3], formulated within the Born-Oppenheimer approxima-
in the cross section over the resonance region was first rdilon. The principal result of the theory is the so-called
vealed in transmission experiments by Bonness and Hasté#/clear wave equation that governs the nuclear dynamics
[17]. More observations followed and detailed studies of vi-due to the resonance stede
brational excitation were performed by Cadetal, [18]
who measured differential excitation functions at several [E—Ees=Ks]é,.(8)=(¢resHelP¢,,)
fixed angles and noted that the resonance couples strongly to
symmetric-stretch motion, having observed energy-loss spec- +(resHelPGh PHe e €,,(S),
tra at 4 eV for the symmetric-stretch mode up itb=25. 2.1
These authors also observed some structure in the excitation ’

functions which became more pronounced with increasin . . I
y %vhereE is the total energyKy is the nuclear kinetic energy

vibrational quantum number. Cades al. [18] also per- ) : ) . o
formed one-dimensional boomerang calculations with poten@PeratorHe; is the fixed-nuclei electronic Hamiltoniage

tial parameters chosen to give a best fit to the observed datZ. the" electronic resonance wave functiée is the “adia-
Currell and Comef19] cited evidence for strong polyatomic Patic” resonance energyyiredHellfres), and P¢,, is the
effects in the excitation functions of certain vibrational lev- nonresonant background scattering wave function associated
els, in particular the1,0,0 and (0,2,0 modes, which are Wwith an initial target state labeled by . The variables is
strongly coupled members of a resonant Fermi dyad. Theysed to denote the internal nuclear coordinates. This is an
argued that bending as well as stretching deformations of th&thomogeneous wave equation which, due to the presence of
resonance state both played a role in the excitation dynamicthe nuclear Greens's functioG, , involves an effective
This assertion was given further support by the measuredamiltonian that is complex, nonlocal, and energy depen-
ments of Johnstone, Akther, and NewedD], who reported dent. While explicit construction of the effective Hamil-
absolute cross sections for individual vibrational levels bytonian from first principles is possiblg22], the computa-
recording several electron energy-loss spectra over a range tbnal effort required for a realistic calculation on a
incident energies. The energy resolution of the experimenpolyatomic target would be extremely tedious, and hence we
did not permit observation of the peaks for individual mem-follow the usual practice of approximating the effective
bers of the Fermi polyads, so a least squares fitting proceduraiclear Hamiltonian by a simpler local operator.
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A. Local complex potential model tionary packet determined by the final state. Since the poten-

The complex local potential or boomerang model can pdial surface is complex, the normalization of the wave packet
derived from the nuclear wave equation under a set of sim t iN EQ. (2.7) is not conserved, and the packet decays as a
plifying approximations. The conditions under which thesefunction of time at a rate determined by the magnitude of the

approximations are justified are well underst¢biiand, ina  "€sonance width.
few cases, have been tested against the rigorous nonlocal FOr Problems with only one nuclear degree of freedom,

theory[23—25. The boomerang model for the wave equationthere are no obvious computational advantages in choosing
that determines the nuclear dynamic$43 the time-dependent approach over the time-independent ap-

proach other than for the physical insight it offers into the

[E—K —EedS)+il(s)/2]€,(S)=,(S). (2.2  problem. However, for problems with multiple degrees of
freedom, there are decided advantages to the time-dependent

In Eq. (2.2, the negative ion energy surface is characterizechpproach, since it does not involve the solution of large sys-

by a real parE,.4(s) and an imaginary part-il'(s)/2, and  tems of complex linear equations. Moreover, the exponential

the “entry amplitude” ¢, is defined as decay of the wave packet generally leads to its effective dis-
" appearance after only a few vibrational periods, so the wave
¢,(s)=[T'(s)/2m] *n,(s), (2.3 packet need only be propagated for a short time. The time-

dependent approach can thus be made quite efficient, as we
shall see, even for multidimensional problems.

The “standard” method for solving the time-dependent
Schralinger equation proceeds by introducing a discrete set
of points for each degree of freedom and constructing an
T, (E)=(d,|E,). (2.4) explicit solution_of _the_ equations _of motion f_or. a wave

packet propagating in time on the discrete, multidimensional

Combining Eqs(22) and(24) allows us to WriteTVV,(E) as g”d A serious problem with this appl’oaCh is that the com-

the matrix element of a nuclear Green’'s function betweerPutational effort required scales exponentially with the num-
entry and exit amplitudes: ber of degrees of freedom, making it prohibitively expensive

to implement as the number of degrees of freedom grows.

Several approximate methods have been developed to re-
TVV'(E):<¢V'|E_KS_ Eres(s)+i1“(s)/2|¢”>' (25 move this obstacle. In the time-dependent Hartf€BH)
method, for example, the wave function is represented as a
single product of one-dimensional functions, thereby simpli-
fying the computational effort at the cost of a proper treat-

The differential equations of the boomerang model mayment of correlation between the degrees of freedom. The

be recast in a time-dependent formulation, as first shown bynulticonfiguration time-dependent Hartre6MDTDH)
McCurdy and Turnef26], by writing the nuclear Green’s method[27] offers a practical alternative to the TDH method
function in Eq.(2.5 as the Fourier transform of the propa- that retains the essential rigor of the standard method. In the
gator for the time-dependent Schinger equation. The reso- MCTDH method, as in the standard method, we start with a
nantT matrix for vibrational excitation is then expressed astime-independent orthonormal product basis set:

where 7, is the initial vibrational wave function of a neutral
target. The resonant matrix for vibrational excitation is
obtained by projecting the solution of ER.2) onto the
“exit amplitude” ¢, :

B. Time-dependent Schradlinger equation

T, (E)= —if dteE e, [Ty, (2.6 XPQo--xP@py, =L N, (29
0
with where we have assumed that there fadegrees of freedom
ot in a problem described by nuclear coordinaf@s . .. ,Q;.
Vi=e "¢, (2.7 For computational efficiency, the basis functiop®’ are

chosen as the basis functions of a discrete variable represen-
tation (DVR) [28].

H=Ks+E,ods)—il(s)/2. (2.9 The central idea in the MCTDH scheme is that one can
employ a smaller, but now time-dependent, basis for expand-

The physical content of the boomerang model is that théng the wave function, i.e.,

electron is first captured into a temporary negative ion state

with a probability determined by the entry amplitude. The

ng n¢ f
nuclear Green’s function controls the evolution of the nega¥ (Q,, ... Q;,t)= >, --- >, Ajl"'jf(t)]'_'[ go}t)(Qk,t),
jf:]. k=1

and

tive ion state and the probability of vibrational excitation is =1
determined by an overlap with the exit amplitude. In the (210
time-dependent picture, the meaning of E(56)—(2.8) is

clear: the resonant transition amplitude for excitation iswith n,<Ny. The single-particle functions in turn are repre-
given as the Fourier transform of the overlap between a waveented as linear combinations of the primitive basis in Eq.
packet propagating on a complex potential surface and a sté2.9),
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Ny whereRis the CO bond distance amdmeasures the angle of
@}E)(Qk,t)z_E ci"k‘j)k(t))(i“k‘)(Qk). (2.1)  one of the CO bonds from linear geometry. The reduced
=1 masses in these coordinates are

Since both the coefficientd; ...;., and the single-particle pn1=Mg/2, (3.3

functions are time dependent, the wave function representa-
tion is not unique. Uniqueness can be achieved by imposing
additional constraints on the single-particle functions which
keep them orthonormal for all time27]. The MCTDH
method has been applied to a variety of problems ranginyVe have performed calculations in one, two, and three-
from reactive and surface scattering to the determination oflimensions. For the 1D calculations, we use only the
photodissociation and photoabsorption spetiee[27] and  Symmetric-stretch coordinate. For the 2D calculations, we
references therein The MCTDH approach is particularly use only one of the degenerate bending modes, thereby re-
useful when treating large systems. An impressive success 6fficting the nuclei to motion in a fixed plane.

the MCTDH method was the calculation of the absorption

spectrum of the pyrazine molecu[@9,30 in which the A. Resonance surface construction

guantal motion of all 24 internal degrees of freedom evolv-

ing on two coupled electronic surfaces was accurately deter. The fixed-nuclei calculations were carried out using the
9 P . o lLely dete complex Kohn variational method, as described in our earlier
mined. Due to the existence of a conical intersection in thi

system, all modes are coupled, giving raise to highly Conjaaper[15]. In the Kohn method, we use a stationary prin-

plex motion. More recently, the MCTDH method has beenCIple for the T matrix,

applied to the spin-boson model including 80 vibrational

modes[31]. Tstar= Ttrial — 2[ Y(H-E)¥, (3.5
In our calculations on CQ we have tested the accuracy

of the MCTDH scheme by carrying out boomerang calculawhich is evaluated with a trial wave function for thé\ (

tions in both one and two dimensiorigD and 2D using 1 1)-electron system of the form

both the standard method and the MCTDH method. The two

methods produced virtually identical results for this problem. V= A[Dy(Fq, ... I)F(Tns1)]

For the 3D calculations, we used only the MCTDH method.

M2a= pop=M¢

14 Me 3.4
tomg) (3.4

+2 d/.L®M(F1! EC !FN+1)! (36)
[ll. COMPUTATIONS m

To recapitulate briefly, the procedure we followed for where @, is the (Hartree-Fock ground state of CQ, A
computing thee™ + CO, vibrational excitation cross sections antisymmetrizes the coordinates of the incident electron with
begins with a variational determination of the fixed-nucleithose of the target electrons, and the sum contains square-
electron scattering cross sections, for the appropriate totahtegrable, N+ 1)-electron terms that describe correlation

symmetry, at a series of different nuclear geometries. Fromq polarization effects. The scattering functi(ry . 1) is

each such calqu!ation, we obtain a resonance energy anjdrther expanded in a combined basis of Gaussig) and
width by examining the energy dependence of the €igenzninyum (Ricatti-Bessel,;, and Hankelh,") basis func-
phase sunp32]. If the geometry is such that the GOionis 7o

electronically bound, then the eigenphase sum will show no
evidence of a resonance. For these geometries, the width

I'(s) is taken to be zero anB,(s) is obtained from the F(N=2> ¢ ¢i(F)+|§: [J1(Kr) & Smm,
lowest eigenvalue of theN+ 1)-electron electronic Hamil- ' m
tonian. From the electronic resonance parameters, we con- +Tllommoh|+(kr)]YIm(F)/r- 3.7)

struct an analytic expression for the complex resonance sur-
face from a least squares fit of the computed flxed'nUCIe,'Applying the stationary principléEq. (3.5] results in a set
resonance energy data. . of linear equations for the coefficie d,, andT

For solving the time-dependent ScHioger equation, we q nes, d,., Hommy:
use conventional normal coordinates], with the restric-  The T-matrix elementsT nn are the fundamental dynami-
tion that the two CO bond distances are constrained to beal quantities from which all fixed-nuclei cross sections are
equal. With this restriction, the symmetric-stretch coordinatederived.

S, and the doubly degenerate bend coordin&gsand S,, Calculated resonance positions and lifetimes are critically
become sensitive to a proper description of the dynamic response of
the target to the incident electron, an effect that is described

S,=2Rcosé, (3.1) by including asymptotically decaying closed channels in the

trial wave function. These terms are chosen by singly excit-
5 5 5 5 ing the occupied target orbitals into unoccupied virtual orbit-
Sat Sip=R*sif0/[1+Mc/(2Mo)]?, (3.2 als. For symmetries in which shape resonances appear, we
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have found that a “relaxed self-consistent field” procedure, 20— T T T T I
which includes only symmetry- and spin-conserving single .

excitations of the target, captures the dominant physical ef- [ (a) - E(gg)jis

fect of a shape resonance, which is relaxation of the target in '| ! - Rgco;;2:1944

the presence of an extra electron. These procedures, along j5of- ;1 — - R(CO)=2.25 -
with other parameters of the calculations, are fully described ‘\', v ! <=+ R(CO)=2.3

in Ref.[15]. In that earlier work, we carried out calculations N ‘ . «=+ R(CO)=24

in 2I1, symmetry for several different linear, symmetric-
stretch geometries. For this work, we have extended those
calculations to include bent geometries as well, using the
same basis sets and prescriptions previously employed. Upon
bending, the doubly degenerafél, resonance state splits
into two nondegeneratéRenner-Teller states of symmetry
2A; and ?B;. For the work reported here, we considered 50—
only the (lower) 2A; resonance surface.

Figure 1 gives a representative sampling of the fixed-
nuclei 2IT,(%A;) cross sections for linear and bent geom-
etries. Figure (a) shows that, as the molecule is stretched 0
from its equilibrium position, the resonance energy drops 0
and its width decreases. In linear geometry, thé, reso-
nance state crosses the neutral ground state, i.e., become:
electronically bound, at a CO distance-e2.55 bohr. Fig- 200
ure 1b) shows the effect of bending the molecule while
holding the CO bond lengths fixed at their equilibrium values -
(2.194 bohy. For CO bond distances less than 2.5 bohr,
bending the molecule away from linear geometry causes the (59}
resonance to broaden dramatically as it decreases in energy.
The parameters extracted from these fixed-nuclei cross sec- _
tions give the resonance energy relative to the, @@und 5=
state. The total electronic energy is the resonance energy plusg
the CQ ground state energy. From a series of results such as ¢
these, we have constructed the energy and width surfaces for 2
the CQ,~ ion shown in Fig. 2. ©

There are several points to be noted when considering
these results. It is well knowf84,35 that the ?A; state of S0
CO, is a stable negative ion, i.e., is electronically bound,
when the molecule is either stretched or bent sufficiently. i
This behavior is reflected in the resonance width shown in
Fig. 2, which goes to zero at such geometries. Stretching the 0
molecule in linear geometry causes the width to decrease
monotonically and the corresponding resonance parameters Energy (eV)
can easily be obtained by fitting the calculated eigenphase
sums to a Breit-Wigner form with a smooth background. F2|G 1. e +CQO, fixed-nuclei intggrated Cross sections,.in.units
Calculating resonance parameters for large bending angle® . in “A, symmetry:(a) symmetric-stretch dependence in linear
however, presents something of a problem. Figufb) 1 geometry;(b) bend-angle dependence at equilibrium CO bond dis-
shows that the resonance width increases as its position d&"ce:
creases, i.e., that the width remains finite as the resonance
position approaches zero. To understand this behavior, it iface under stretching and bending reflect the fact that, math-
important to bear in mind that symmetric-stretch motion withematically, the trajectory of aswave resonance pole in the
zero bend angle does not change the symmetry of the motomplex plane near zero energy is markedly different from
ecule and hence does not significantly change the anguldnat of a resonance that has angular momentum greater than
momentum character of the resonance, whose lolwvesin-  zero. When plotted in the momentum plane,samave pole
ponent at equilibrium ip wave. Bending the molecule, how- approaches the origin from the negative imaginary axis, i.e.,
ever, breaks the degeneracy of tHé, resonance and mixes it becomes a virtual state. This means that at some point the
an swave component into théA; resonance. There is no real part of the resonance energy becomes negative or,
angular momentum barrier associated withsamave so itis  equivalently, the magnitude of the imaginary part of the reso-
not surprising that such an admixture causes the widthnance momentum is larger than its real part. This behavior is
which is the inverse of the resonance lifetime, to increase. illustrated in Fig. 3, in which a cut through the energy and

The dramatically different properties of the resonance surwidth surfaces of Fig. 2 at a fixed CO bond leng2¥ bohy

Cross section
=
3
|

100 -
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FIG. 2. Complex?A, resonance energy of GO, in units of hartrees, as a function of symmetric-stretch distance, in units of bohrs, and
bend angle, in degrees. Left panel shows the real part of the energy surface and the right panel shows the corresponding width.

is plotted as a trajectory in the complex energy and momen- 0.01 — T
tum planes. If the real part of the resonance energy is nega-
tive, it becomes “invisible” in the sense that it has no effect
that can be seen in the energy dependence of the cross sec
tion. The practical consequence of this behavior in the case
of the 2A; CO,™ resonance is that there is a finite range of
bending angles, from the point where the real part of the 001
resonance energy first becomes negative to the point where it
becomes electronically bound, where the resonance param-
eters cannot be extracted by analyzing the energy depen- 0.02
dence of the fixed-nuclei cross sections. These portions of
the resonance surfaces shown in Fig. 2, generally corre- -
sponding to bend angles between 15° and 30°, were there-
fore constructed by smoothly interpolating between the last
points for which a Breit-Wigner fit of the data could be car- -
ried out and the points where thfé\; state becomes elec-
tronically bound. In fact, the vibrational excitation cross sec- 702 -0.15 0.1 -0.05 0 0.05
tions we calculated were rather insensitive to the portions of Re(E)
the resonance surface that had to be interpolated, since the
wave packet rapidly decays as the width increases and hence
hardly samples these large-angle regions. - (b) .
Another point worth noting concerning the behavior of

1
>
]
)
Ne)

Im(E)

-0.03

the resonance state with changing geometry is that the dipole ol ]
moment of the C@ becomes nonzero when the molecule is s .
nonlinear. That is another aspect of the symmetry breaking o

and the coupling ob-wave components into the resonance _
state that contributes to the increase in width with increasing % |
bending angle. For small bending angles the dipole moment =
is small, and its consequences are not great. As the bending 03 ]
angle increases and the resonance surface crosses that of the I i
ground state and becomes the bound anion, there might be
another effect due primarily to the dipole. The long-range 041 N
dipole potential can alter the nature of the transition of bound
states to resonances and produce pole trajectories that are
different from that shown in Fig. 3. That fact has been dis- ost——l— 7
cussed by Domckg22] in the context of electron scattering

from heteronuclear diatomics. Ultimately, similar consider-

ations may apply to the potential surfaces for £O al- FIG. 3. Trajectory of the’A; resonance pole as a function of
though the picture is substantially more complicated forbend angle for a fixed CO bond length4 bohy. (a) Energy plane;
polyatomics because there are multiple paths from one geseveral values of the bend angle are indicated along the c{byve.
ometry to another. However, as we will see below, the wavemMomentum plane. All scales are in atomic hartree units.

Re(k)
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FIG. 4. One-dimensiongbymmetric-stretchboomerang results ST 717 T T
for e-CO, elastic (0—0) and vibrationally inelastic (8>1) cross iempirical
sections, in units o&3. (b ~~ Semuempirica

- — ab initio

packet dynamics in the bending mode are such that for the
calculations presented here the packet does not probe the r ]
crossing region significantly. Instead the region where the
width is still increasing with increasing bending angle E s
strongly determines the properties of the cross sections. ~

05 -

B. One-dimensional results

We first computed cross sections for symmetric-stretch i
excitation using a one-dimensional boomerang treatment that
constrains the nuclei to lie along a line. Cadgal.[18] had b 1 L
previously carried out such calculations, using semiempiri- 3 3.5 53 6
cally determined resonance parameters chosen to give a best 0-0 distance (bohr)

fit to their measured cross sections. Figure 4 shows our 1D FlG. 5. C ) ’ ab initi .
results for the resonant elastic ane->Q vibrational excita- - 5. Comparison of preseab initio resonance parameters
tion cross sections. The results at this level give something JPr CO, in linear geometry with semiempirical results of Cadez

. ' e - ..~ "etal.[18] (a) CO, ground state and real part of GOresonance
a textbook picture of a “diatomic” shape resonance, similar

. o X i state.(b) CO, resonance width.
to what is found ine” +N, scattering, with deep, well-

e s 06 Vi for e resonace wath T g proved
’ o much of the impetus for the multidimensional studies pre-
these 1D results exhibit, with very shallow valleys betweenSented in the next section
adjacent peaks. That Cadetal. [18] were able to produce '
so little structure with their model calculations can be under-
stood by comparing their empirically determined resonance
parameters with our calculated results, which are both shown To establish convergence criteria for the time-dependent
in Fig. 5. The real part of the resonance curve they derived isalculations and to test the sensitivity of the results to param-
very close to ourab initio result, which is not surprising, eters such as grid size, propagation time, and initial vibra-
since this parameter determines the position and overall erional state representation, we first performed a series of co-
velope of the cross section. The width function they derivedplanar, 2D calculations using both the MCTDH method and
however, is significantly larger than our result in the criticalan explicit 2D wave packet propagation code that used a
regions that the wave packet samples. This compariso@hebyshev expansion of the propagator. For the MCTDH
serves to highlight the limitations of a 1D treatment for thiscalculations, the ground vibrational state was obtained nu-
target molecule: in order to successfully model the observetherically on the grid by a relaxation technique, i.e., by
data, one is forced to compensate for the constrained linegropagating an initial wave packet in imaginary time. For the
motion by adopting what we believe to be an unrealisticallycalculations with the explicit propagator, the ground vibra-

C. Multidimensional results
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) ) FIG. 7. Comparison of results for the vibrationally elastic cross
FIG. 6. Comparison of MCTDH results in 1D, 2D, and 3D for gection, in units ofa2, with the ab initio bending potentialsolid
the .reso.nant.compzpnent of the vibrationally elasi€O, cross  cyrvg and with a width that decreases with increasing bending
section, in units o&3. angle (broken curvé:

tional state was approximated as a product of single-modgurfaceW¥, effectively vanishes before it returns back to its
functions in the appropriate normal mode coordinates. Thenitial position.
results were found to be completely insensitive to the repre- The boomerang model describes only the resonance com-
sentation ofy, and we found virtually identical results with ponent of the scattering; for the vibrationally elastic cross
both approaches. In both cases, we used products of singleection, there will be a substantial nonresonant background
mode wave functions for the final target vibrational states. component that must be included before a meaningful com-

For the 3D calculations, all of our results were obtainedparison with experiment can be made. We have therefore
using the MCTDH method. The grids used covered the rangadded a linear background, which we estimated from our
3.6=5,=<6.0 and—1.5<(S,,,S,,)<1.5. The DVR’s used earlier adiabatic nuclei calculatiof$5], to the 3D MCTDH
were a 64-point sine DVR in the symmetric stretch and aresults for the vibrationally elastic cross section. These re-
64-point harmonic oscillator DVR in each of the bends.sults are shown in Fig. 9, along with three sets of experimen-
There were four single-particle functions in each dimensiontal measurement20,36,37. Tanakaet al. [36] and Gibson
The Fourier transform in Eq2.6) converged in all cases for et al. [37] report absolute integrated cross sections with
times less than 75 atomic time units. which we can compare directly. Johnstogteal. [20] report

We begin with results for the resonant component of theabsolute cross sections at a fixed scattering angle of 20°, so
elastic cross section. The 1D, 2D, and 3D results are showywe have scaled their results by an overall constant, on the
in Fig. 6. We see that the pronounced interference featuregssumption that the angular dependence of the cross section
found in the 1D calculations are strongly damped in 2D ands independent of enerdyd8]. The calculated results appear
that in the 3D calculations they are entirely absent. This igo be in better agreement with the results of Tanetkal. and
the result of the sharp rise in the resonance width that acdohnstonest al. than with the measurements of Gibsetral.
companies bending, which in turn leads to an increasingly Before turning our attention to the vibrationally inelastic
rapid decay of the wave packet. In the 1D model, the centeresults, we must make some preliminary remarks. Because
of the wave packet can effectively survive long enough tothe ground-state potential surface of £@ a symmetric
reflect off the outer classical turning point on the potentialfunction of the bending coordinat&s, andS,,,, the target
wall and return with sufficient amplitude to produce the ob-vibrational functions for exciting these modes can be classi-
served structure. When the bending degrees of freedom afeed as even or odd functions of these variables. Since our
introduced, the wave packet is rapidly damped. To verify thatreatment considers only a singfé; negative ion surface,
the effective absence of interference structure is indeed dughich is also completely symmetric about the initial linear
to the functional dependence of the width on the bendinggeometry with respect to bending, there is nothing in the
motion, and not simply on the increased dimensionality ofdynamics that can cause the initial wave packet to evolve in
the resonance surface on which the wave packet propagatesway that breaks this symmetry. Consequently, only cross
we repeated the 3D calculations with a width function thatsections corresponding to excitation of an even number of
has the same dependence®n butdecreasesvith increas-  bending quanta are nonzero with this model. This is simply a
ing bend angle. Those results are shown in Fig. 7. The intereflection of the fact that the single-electronic-state model
ference structure appears once again in these calculationssed here does not allow for coupling of the azimuthal an-
Figure 8 contrasts the behavior of the wave packets in 3D fogular momentum of the scattered electron and the vibrational
the cases with and without the full bend-dependent width byangular momentum of the molecule. We shall return to this
showing a series of snapshots of the reduced densitgoint in the discussion. Another point concerns the represen-
J¥(S1,S:4,S0)|?dSy, . It can be seen that on théA;  tation of the target vibrational wave functions. The existence
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Time: 0 Time: 0

Density Density

3.5(-2) 3.5(-2) 1
3.0(-2) 3.0(-2) -
2.5(-2) 2.5(:2) 1
2.0(-2) 2.0(-2) A
1.5(-2) 1.5(-2) A
1.0(-2) 1.0(-2)
5.0(-3) 5.0(-3)
0.0(0) 0.0(0)
1.5
S,
S1 Pl
Time : 6.0 Time: 6.0
Density
5,
4.
4.
3.
3.
2.
2.
1.
1.
5,
0.0

Time : 12.0 Time : 12.0

Density

3.0(-5) -
2.5(-5)
2.0(-5)
1L.5(-5) 1
1.0(-5) -
5.0(-6) -
0.0(0)

FIG. 8. Probability density from wave packets at three times during propagation: Left cofdmmnitio width function; right column,
width decreasing with increasing bending angle. All quantities are in atomic units. Numbers in parentheses on vertical axes indicate power
of 10, i.e., 5 4)=5x10"%.

of an accidental near degeneracy, or Fermi resonance, bhigher polyads—for example, the (2,0,0), (1,2,0), (0,4,0)
tween the (1,0,0) and (0,2,0) vibrational levels of £Qs  triad—making it impossible to talk about a series of pure
well known. Because of this degeneracy and the fact that theymmetric-stretch or bend states. If one uses product wave
two states have the same symmetry, the normal mode dédnctions for the vibrational target states as we have done
scription of the vibrational wave functions is not valid, as thehere, then it is important to bear in mind that the appropriate
true wave functions of this “Fermi dyad” are almost 50-50 linear combinations of these statesd, consequently, coher-
mixtures of zeroth-order symmetric-stretch and bend statesnt combinations of the corresponding excitagonplitude$

[33]. This near degenerate grouping of states extends tmust be used to describe the true physical states.
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text) (0,0,0)—(n,0,0) cross sections from 3D boomerang calcula-

FIG. 9. Integrated vibrationally elastic cross sections, in units oftions.

a3, for e +CO,. 3D boomerang+ calculated background cross o )
sections from Rescignet al. [15] compared with experimental re- with excitation. This latter effect results from the fact that the

sults of Tanakaet al. [36], Gibsonet al.[37], and Johnstonet al. ~ wave functions for the higher vibrational levels extend closer
[20]. Differential cross sections of Johnstoeeal. at 20° were  and closer to the outer classical turning point and thus over-
multiplied by a factor of 20. lap more effectively with the wave packet before it decays.
Figure 12 shows the pure bend (0,0,8(0,2,0) excita-
Figure 10 shows cross sections for the “pure” (0,0,0) tion cross sections from the MCTDH calculations in 2D and
—(1,0,0) symmetric-stretch excitation calculated in 1D, 2D,3D. The 2D resultgwhich have been multiplied by 2 for
and 3D. The damping of the interference structure in theconsistency with the full 3D resultsigain show weak inter-
multidimensional treatments is again strikingly evident, al-ference structure which is absent in the 3D calculations. In
though the envelope of the cross section is rather insensitiveomparing these cross sections with those for exciting the
to the dimensionality of the ion surface. We have also carriegymmetric stretch modes, one notes that there is a shift in the
out calculations in 3D for a progression of symmetric-stretchpeak position of almost 1 eV and a significant difference in
excitation cross sections, which are shown in Fig. 11. Theréhe overall shape. Another striking difference is that the
is evidently no shift in the peak position as the level ofbending excitation cross sections appear to have a significant
excitation increases, but one can see some weak interferenbgckground component that rises with decreasing collision
structure beginning with (4,0,0) that gradually increasesnergy. We must emphasize that these calculations capture
only the resonance component of the excitation cross sec-
4 k i I E I

Cross Section
n
T
Cross Section
T

Incident Energy (eV) 0

Incident Energy (eV)

FIG. 10. Integrated vibrationally inelastic cross sections, in units
of a3, for e”+CO,. “Pure” symmetric-stretch(see text (0,0,0) FIG. 12. Integrated vibrationally inelastic cross sections, in units
—(1,0,0) cross sections from 1D, 2D, and 3D boomerang calculaef ag, for e+ CO,. “Pure” bend (see text (0,0,0)—(0,2,0) cross
tions. sections from 2D and 3D boomerang calculations.
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FIG. 13. The effect of Fermi resonance on vibrationally inelastic !

cross sections, in units ral‘(z, fore”+CQO,  : comparison of vibra-
tional excitation cross sections computed using unperturbed and
perturbed (Fermi dyad representations of the vibrational wave
functions.

~
T

— calculated
4 Johnstone et al. _]
== Allan

tions, so we cannot attribute the “background” to the virtual
state mechanism that is responsible for the low-energy be-
havior in the total elastic cross section. The behavior of the
(0,0,0)—(0,2,0) excitation cross sections is solely a result
of the topology of the width surface.

The strong mixing of the two normal modes by the Fermi
resonance requires that the computed excitation amplitudes, i
which refer to the unperturbed target states, be appropriately 0 11 No*e
combined with the correct mixing coefficients. We write the 0 2 4 6 8
physical vibrational wave functions as Incident Energy (V)

Cross Section

m=an100-b7020 (lower Ferm), FIG.. 14. Comparison of computed gross sectllons, in unm%of
for excitation of lowest Fermi dyad with experimental results of
Johnstoneet al. [20] and Allan[21]. (a) Lower Fermi level;(b)

mi=bniotane (upper Fermi. (38 upper Fermi level.

For the coefficients in Eq(3.8), we used the values - .

—0.763 andb=0.647 derived by Dennisof8d]. Figure 13 indicates that the assumpuon_that the energy and angular
compares the excitation cross sections using these perturbg pendence of the Cross sections are approximately factor-
wave functions with those computed using unperturbed nor® le is probably valid here.

mal mode wave functions. The effect is very significant, re-

flecting the strong mixing of the normal modes in the physi- IV. DISCUSSION

cal members of the Fermi dyad and the very different ways

in which those modes couple to the resonance surface. Fig- We have attempted to show that the treatment of poly-
ure 14 compares the calculated cross sections with two setgomic effects in resonant electron-molecule collisions is
of experimental data. The measurements of Johnstbaé  amenable to a first-principles approach and have used the
[20], like the elastic results mentioned earlier, were taken aCQO, target as an example. We have demonstrated that the
a fixed angle of 20° and were thus scaled by the same factanteresting topology of the resonance surface demands a re-
to compare with our calculated total cross sections. The realistic multidimensional treatment of the nuclear dynamics.
cently reported measurements of AlIE2], which are also In fact, the strong mixing of the vibrational modes due to
shown in Fig. 14, were taken at a scattering angle of 135°Fermi resonance led to effects that cannot even be discussed
scaling these data by a factor ofrdgave values that com- within the context of a linear model. We are certainly not the
pare well with our calculated results. Tl initio results  first to suggest that polyatomic effects are important in this
agree rather well with the experimental data, especially in thease. Currell and Comé¢1.9] pointed out the importance of
location and relative magnitude of the peak cross sections, a®nsidering both stretching and bending in explairérgO,

well as their overall energy dependence. We note that theibrational dynamics as early as 1993 and KazarjgKij12]

good relative agreement between the two sets of experimefras performed model calculations on this problem as well.
tal differential cross section measurements at 20° and 135fowever, in the absence of accurate fixed-nuclei data for
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both linear and nonlinear target geometries, no previoudatic coupling between the two resonance surfalctd
treatments have been able to achieve better than rough quatieuld lead to symmetry breaking effects that would provide a
tative agreement with experiment. mechanism for resonant excitation of odd levels of the bend-
While these results represent an important first step inng modes, which are known to be presgfit]. We plan to
approaching resonant vibrational excitation in £€om-  investigate these problems in future work. _
pletely from first principles, there are still a number of ques- We make a final point in closing. We have discussed the
tions to be answered. The unprecedented energy resolutidAcrease in the width of théA, resonance upon bending in
achieved in Allan’s measuremerisl] makes it clear that the {€rms of symmetry breaking and the admixture ofsamave

interference structure, although very weak, is present in th§°mPonent into the resonance. The tacit assumption we have

excitation cross sections for the lowest Fermi dyad Wh"emade is that the resonance surface is a continuous function of

our 3D calculations show no structure at all. Another curiouéhg bend anglle ?nd _srr}l()oéhly c(;)nvr\]/ecrt]s with t?g_reglon \(/jvl’rl]ere
difference concerns the energy behavior of the cross sectiofs°€COMES €lectronically bound. Ve have not discussed how
on the low-energy side of the resonance peak. In both Allan'd€ Presence of the dipole moment that accompanies bending

measurements and those of Johnstenal. [20], only the impacts this picture. The work of DomcK@2] and others
' Ornight even call the local complex potential model we have

while our calculations show a background for both levels.USed into guestion. The quality of the results we have ob-

The reason our calculations show this behavior is clear: thi2ined, however, would suggest that we have captured the

unperturbed symmetric-stretch cross section has no bacg_ominant physical mechanisms responsible for the resonant

ground, so when we take linear combinations of the twoYiPrational excitation of C@

amplitudes to form the cross sections for the dyad, the bend
amplitude gives a nonzero background for both levels.

There are several effects yet to be investigated. One pos- This work was performed under the auspices of the U.S.
sibility is that inclusion of asymetric stretch motion would Department of Energy by the University of California,
mitigate the dominance of the bending motion on the resoLawrence Berkeley, and Lawrence Livermore National
nance lifetime and lead to the weak interference structurgéaboratories under Contract Nos. DE-AC03-76SF00098 and
that is now missing. It is difficult to see, however, how suchW-7405-Eng-48, respectively. The work was supported by
an effect could cause the background cross section to vanishe U.S. DOE Office of Basic Energy Science, Division of
for only one of the levels of the dyad. Another open questionChemical Sciences, and computations were carried out at the
is what effect the?’B, component of resonance would have National Energy Research Scientific Computing Center at
on the dynamics. While we have yet to treat this problem inLawrence Berkeley National Laboratory. A.E.O. acknowl-
any detail, preliminary investigations indicate that th®,  edges support from the National Science Foundat@rant
resonance surface has a much weaker dependence on bewd. PHY-99-8787Y. H.D.M. gratefully acknowledges sup-
than the?A, state we have considered here, so including it inport through the “DFG Forschergruppe: Schwellenverhalten,
the dynamics might well change both the interference strucResonanzen und nichtlokale Wechselwirkungen bei nieder-
ture and the background cross sections. Morever, nonadi@nergetischen Streuprozessen.”
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