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Ab initio calculation of the whole set of He double-photoionization cross sections
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The double photoionization of He is investigated using the hypersphéRicalatrix with semiclassical
outgoing waves method. Triply, doubly, and singly differential, as well as fully integrated, cross sections are
computed in a variety of geometrical and dynamical situations. The results are found to be in excellent
agreement with absolute measurements both in shape and, more importantly, in magnitude. This demonstrates
the robustness and accuracy of thisinitio method, which also provides a visualization of the formation of the
various cross sections during the expansion of the system. This visualization reveals that, for very asymmetric
energy sharings, the cross sections take their final form when the electrons are thousands of atomic units away
from the ionic core, a distance where no other method is able to describe the double continuum wave function

accurately.
DOI: 10.1103/PhysRevA.65.032711 PACS nuntber32.80.Fb
[. INTRODUCTION methods in the field increased very rapidly. An attempt to go

beyond the above-mentioned quadratic approximation was

Double photoionization of atoms by one photon has beundertaken by Kazansky and Ostrovsky. Their extended
come a “hot topic” in the last ten years. This is due, first, to Wannier ridge mode(EWRM) [19] revealed the inconsis-
a great increase in the intensity of highly monochromatictency of that approximation, at least as far as the angular
synchrotron radiation with well-defined polarization proper-distribution of the electrons is concerned, and gave qualita-
ties, and, second, to the development of powerful detectiotive ideas regarding the role of electron correlation in form-
techniques which are capable of simultaneously collectingng angular patterns under equal energy sharing conditions.
electrons over a wide range of angles and energies. ExperHowever, EWRM could not be reliably applied to the system
ments performed in the last decgde-13] have produced a in the vicinity of the nucleus, and this put the calculation of
large amount of information that is challenging to theory.accurate values of the cross sections beyond its reach. Mean-
Despite the theoretical advances that have been made in thighile, the 3 Coulomb wave$3C) approach[14] together
field over the same time scdl#4—-19, attempts to calculate with the convergent close couplit@CC) method[15] pro-
accurate differential cross sections have, in our view, yieldedided extensive sets of triply differential cross sections
disappointing results, although some recent developmen{d@DCS), which have been compared with experimental data
seem very promising20,22. In this paper, we present a with varying degrees of success. 3C has a phenomenological
theory which is capable of calculating accurate values for theharacter that qualifies it as a convenient and flexible tool to
absolute differential cross sections associated with doublget insights into the double-escape process, but not as a re-
photoionization of the helium atom. liable method to compute accurate cross sections, notably

Theoretical studies of the processes related with the twobecause its gauge dependence is too important. CCC implies
electron continuum started with the well-known paper bythat electron-electron correlations are neglected at large dis-
Wannier[23], which soon will celebrate its 50th anniversary. tances from the core, an approximation that undermines the
In that paper, Wannier deduced the threshold law for doublepredictive power of this method, giving rise to a complex
electron escape from an ingenious analysis of the classicglattern of successes and failures that is now well docu-
equations of motion of the two electrons far from the mented[28]. As a result, neither method was able to obtain
nucleus. After Wannier’s success, the theoretical interest imccurate absolute values of the entire set of cross sections
the problem remained quite moderate for decades. Twentgssociated with the double-photoionization prod@8s. The
years later, at last, his result was confirmed by the numerica screened Coulomb wave2SCO method[16-18 came
calculations of Vinkalns and Gailiti24], and one element of closer to this goal although it was later abandoned possibly
his analysis started to inspire developments in the fielddue to computational difficulties. In this respect, it should be
namely, the dominant contribution of symmetric back-to-noted that this method could be implemented only in the
back emisssion to the near-threshold double escape. Thewelocity gauge, and that it relied upon the Padenmation of
for years, investigations concentrated on the quantum oa divergent series, which is a widely used, but rather uncon-
semiclassical analysis of the system within a quadratic aptrolled, techniqud30].
proximation for the potential in the vicinity of the so-called  More recently, two methods have appeared, which both
Wannier configuration;~ —r, [25—-27. rely upon intense parallel computing, and seem to offer great

During the 1990s, the rate of development of theoreticapotential. For the time being, however, the time-dependent
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close couplingTDCC) method[20] has only produced the mental data. We also present the evolution of selected cross
ratio of double-to-single total photoionization cross sections with the hyperradil®to illustrate the rate of redis-
sections: On the other hand, the exterior complex scalingtribution of the total flux between the different outgoing
(ECS method[22] has only been applied to electron-impact channels. In Sec. VI, we summarize the main results of the
single ionization. In this situation, the present contributionpresent paper and outline the possible developments of our
appears as very timely. The theory proposed in this papeﬁnethod in the future. Atomic units are used hereafter unless
actually provides the entire set of absolute cross sections fd@therwise stated.

the double photoionization of He over a broad range of pho-

ton energies and for arbitrary sharing of the excess energy Il. BASIC NOTIONS AND EQUATIONS

above threshold between the two electrons. Moreover, it does ) . o

so with only moderate computational efforts, while providing 1€ basic formulation of the one-photon ionization prob-

an instructive insight into the dynamics of the process. 1M requires solving the inhomogeneous equation
Our method consists of merging two different approaches: 1
the hypersphericalR-matrix treatment of the two-electron (Ho—E)®(rq,r5)=— Ego. DgWo(ry,ro) 1)

system in the vicinity of the nucleus, and the semiclassical

description of the evolution of the system with the hyper- oo
spherical radiug throughout the external region. We call it for the stationary two-electron wave functidm (r,,r,) ob-
accordingly the hyperspheric& matrix with semiclassical tained within the rotating-wave approximation. We denote
outgoing waves (FRM-SOW) method. The advantages of the ground-state wave function and energy of the two-
the R-matrix approachi31] are well known(i) it is exact, so  electron HamiltoniartH, by Wo(r,r,) andE,, respectively,
that the accuracy of the results can be improved systematihe frequency of the incident light by, and the total energy
cally up to any prescribed levefii) the processing of series py E—E + . &, is the amplitude of the electric-field vector

of energies is quick due to the analytical energy dependencg ., _ z L . )
of the matrixR; and (iii) the method benefits from all com- (S(t) £ocoset, andDg is the dipole operator. The expres

putational advances achieved within the wide domain ofions forDg in the length, velocity, and acceleration gauge
bound-state calculations. The semiclassical treatment of thH&2

system in the external region, based on the experience ac- -
quired within EWRM[19], also has very specific advan- D
tages:(i) from the computational point of view, it leads to a

conventional propagation problem that can be solved very -1
efficiently using a stable and unitary algorithm; &gl from szg
the heuristic point of view, it allows one to vizualize the

L=F1+T2, (28

— + = —) , (2b)

evolution of the wave function with the hyperspherical ra- 2 (i 7
dius R (or a related mock-timer) throughout the external Da=— 24220 (20)
region. w?\r3 13

HRM-SOW was formulated in 1999, and at this time, it
was applied to a model double-photoionization problemEquation (1) has to be complemented with the outgoing
where the electronic motion was restricted to the Wanniewave condition imposed on the wave-functidn(ry,r»).
ridger,=r, [32]. The possibility of applying this method to The implementation of this boundary condition is well
the real six-dimensional physical problem was demonstratelnown to be the main difficulty of the problem. It is note-
in 2000[33]. Here we give a detailed account oRMI-SOW  \yorthy that the wave-functior,(ry,r,) asymptotically
in its latest stage of development. In Sec. II, we establish thgontains contributions from the entire set of ionization chan-
relations between our computed wave function and the expels, which includes the single-ionization channels with and
perimentally measured cross sections. In Sec. lll, we reiteryithout excitation of the residual ion, as well as the double-
ate the basic ideas of o®-matrix approach, complemented jgnization channel.
with the semiclassical outgoing wave condition, which al- \\e consider the problem within the hyperspherical coor-

lows us to extract the wave function at the bord@% Ry, of  dinate system. The latter is composed of the hyperradius
the inner region. In Sec. IV, we give a detailed description of

the semiclassical method we use to propagate the wave func- R= m 3)

tion from Ry to the very largeR values where the cross

sections are extracted. In Sec. V, we present a wide selectiqRe hyperangle

of our results, including TDCS, angular asymmetry param-

eters () associated with doubly differential cross sections a=arctarir,/r,), 4

(DDCS), singly differential cross sectioSDCS9, and inte-

grated cross section$CS), in comparison with the experi- together with the set(l,,(},), where(); and(), stand for
the spherical angles;,¢;) and (¥,,¢,) associated with
the ejection directions of the two electrons. In the following,

!Recently differential cross sections for double photoionization ofwe will denote by()5 the set ¢,€21,(),) which collects the
He have been obtained using this methad]. five angular variables of the problem.
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The hyperspherical coordinates are known to be very conand the hyperradial component of the flux vecBg(R; (s),
venient for the description of the various decay channels ofs given by
atomic or molecular complexes. They are particularly suit-
able here sincé) their collective character is well adapted to _ 10, dPy(R; Q)
the description of a correlated motia(ii;) only one variable, Fr(RQs) = 21 P71 (Ri€s) JR
R, goes toe, which simplifies the computational task signifi-
cantly; (iii) the introduction ofR makes it easy to compute
the cross sections directly from their very definition, based
on the flux of the wave function through an hypersphere of
large hyperradiu®,,,; and(iv) the introduction of the vari- The TDCS is defined as
able « allows one to discriminate single ionization against @) )
double ionization. The ratio of double ionization to single d*a _ 1 d™N ®)
ionization being no more than 2%, disentangling the weak dE;dQ,dQ;  Fopot dE1dQ1dQ5°
double-ionization process from the much stronger single-
ionization process to which it is tightly coupled, is a real Where the incident photon flux is
challenge indeed. However, it can be faced easily within the 2
hyperspherical coordinate set. Namely, whergets large F :ﬁ
enough, single ionization becomes confined within two inter- phot™ 8 ¢’

vals of width Aa=r, /R arounda=0 and w/2, where being th locity of liaht. Substitut f Eq)—(7) and
_ 2 max . . eing the velocity of light. Substituting o —(7) an
e~ (0-7Hma) 8.U. measures the extension of the highes 9) into Eqg. (8) results in the following expression of the

Rydberg state Hﬁ;nmax that can be excited significantly in Tpcs:
the one-photon absorption considered. According to the re- 3)
cent compilation of experimental data by Bizau and Wauille- d™o _ 1 Im
mier [34], single ionization to Rydberg states with>3 ac- dE;dQ,dQ, 2EFphet
counts for less than 1% of the total single ionization cross
section in the 0—80 eV energy range, so that,~ 10 can be . aCDl)
LR
The other measurable quantities, which can be directly ob-

considered as a reasonable order of magnitude. Using this X
value, we obtainAa=0.075 rad atR=10> a.u., for in-

tained from the TDCS, are the doubly differential cross sec-
tion (DDCY9

dP7 (R;Qs)

)

(€)

lim R® sin 2«

R—o

(10

a=arcsin(,/E; 7E))

stance, andha—0 rad asR—«, when all single-ionization
channels collapse to the points=0 and a= #/2. In this
limit, any information regarding the double-ionization pro-
cess, extracted at+ 0,7/2, is free of contamination by the

dominant single-ionization channels. d@¢ d® ¢
Regarding the TDCS, it is important to realize that the —zf dQ,——— (11
two distinct configurations «,Q;,Q,) and (/2 dE,d€, dE,d0,d0,
— a,0),,4,) on the hyperspherB= Ry, correspond to the ¢ singly differential cross sectid®DC9
same experimental event: one electron with enekyy
=E(sina)? is registered in the directiof2, in coincidence dD¢g d® g
with the other electron, with enerdy,=E—E,, being reg- dE =f dﬂlf dﬂzm, (12
istered in the direction(),. Accordingly, the number of 1 S
events per second®N(E;,Q;,0Q,), when one electron is  gnq the integrated cross sectié@s)
ejected with energ¥e,(dE,) in the directionQ),(d(;) and
simultaneously the other electron flies out in the direction . E/2 d®¢
Q,(dQ),), is given by the sum of the fluxes through elemen- o= dElf dQlj dﬂzm- (13

tary surfaces surrounding these two configurations. Due to

with respect to the exchange of the two electrons, these tWihat integration has to exclude the singular paint 0 to

fluxes are equal. Hence, which all single-ionization channels collapse in the lirRit
dON(E; . 0,0,)=2 lim Fe(R:05)dSs ®) —o. The well-known relationship
R ez dWg
- A I 14
where the five-dimensional surface elemdi& aroundQs ot dE;
:(Q,Ql,Qz) iS
between the ICS and the SDCS follows from E(s2) and
dS;=R5(sina cosa)?da dQ,dQ, (19). It is noteworthy that restricting the energy integration to
RS half the total energy interval in Eq$13) and (14) avoids
= sin2adE;dQ,dQ,, 6) double counting of the same double-photoionization event.

Also note that the factor 2 in Eq5) compensates for the
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division by 2 of the energy interval of integration in Egs. which is obtained from Eq17) by omitting the inhomoge-

(13) and(14) so thato* " is given alternatively by

1 wl2)”
=~ im f( 2 daf dQlf dQ,RS
tholRﬁoc 0"

o T= |

X (sina cosa)?Fr(R;a,Q1,0,), (15

that is to say, by the ratio of the total outgoing flux to the

incoming photon flux, excluding the vicinity ak=0 and

a= /2. If this exclusion is relieved, then the total ionization

cross sectiomr ™+ o™ " is obtained.

Ill. EXTRACTION OF THE SOLUTION AT R,
Let us introduce the function
D(R; Q) =R?sin 2a®,(R; Qs), (16)

and rewrite Eq(1) more explicitly for this function as

102 17(Qs) 1  VQy) =\ ora
2Rz R erel R C)TROY
= DC(R; Qs). an

The inhomogeneous term is given by

®C(R;Q =—ER5’2' 2a(Ey D)V o(R: Q) 18
(R;Qs) 2 sin2a(&-Dg)Wo(R;Qs), (18)

and the angular kinetic-energy operafK£)s) is

2 |2 2
1

F 12
T(Qs)=— ——+ +
(€s) da? (sina)?

, 19
(cosar)? 19

where rl and rz are the orbital angular momenta of the two

electrons. The potential operat®X()s) is the sum of the
electron-nucleusgen and electron-electrofed interactions

W(Qs) =Ue a) + Usd O5), (209
U @)=— Zcosa— Zsina, (20b)
Ued Q5) = ! (200
od{1s)= J1—sin2acosé;,’ ¢

whereZ is the charge of the nucleuZ €2 for He), and 64,

neous term and by adding the Bloch operator to the Hamil-
tonian in order to ensure that it is Hermitian over the finite
inner regionR<R,,.

(2) Evaluating the local operatotRo(Qs) and the non-
local operatorRg ({2s,{s),

< | >
T Qs) =2 ——g P (Roi0s), (223
o1 q)k(Ro;Qs)(Dk*(Roiﬂé)
Rr,({25,{25) = 2 ; e—E '
(22b)
(3) Calculating the eigenvectorX, (Ry;{)5) and eigen-

valuesk, (Ry) of the fixedR=R, Hamiltonian by solving

(Q5) 1 WQy) o
( E Rcz) _8_F\’g+ R, —Ex(Ro) | Xx(Ro;{5)=0.
(23)

(4) Solving the set ofR-matrix equations
Fr(Ro)=2 Ran(Ro)FL(Ro)+ T, (Ry), (24
}\!
complemented with the semiclassical relation

F1(Ro)=1p\(Ro)F(Ro), (29

for the hyperradial channel functiofis (R,) defined by

@(Ro;ns,):; Fr(Ro) Xy (Ro; Q). (26)

TheZ,(R,) vector and theR,, (R,) matrix result from ex-
panding the local operat(ﬁRO(QS) and the nonlocal opera-

tor RRO(Q5,Qg) over the basi¥, (Rq;5). The semiclassi-
cal momentep, (Ry) are given by

Pr(Ro)=V2[E-E\(Ro)] for E>E\(Ry), (273
Pr(Ro)=1V2[E,(Rg)—E] for E<E,(Ry). (27b
(5) Assembling the wave functionb(Ry;{)s) at the

boundaryR, according to Eq(26).

is the angle between the ejection directions of the two elec- The scheme proposed above includes three approxima-

trons.
We obtain the wave function on the hypersph&e R,

tions, which underlie Eq(25). First, we assume that tHe
dependence of the local angular vectotqR;{5) can be

which separates the inner region from the outer region byeglected within a small interv@Ry, R+ 6Rg]. Within this

completing successively the five following tasks:
(1) Solving theR-matrix eigenvalue equation

1 42 1 d 17(95) 1
-5 S(R=Ro)-=
2 IR? 2 2 R? 8R2

V((2s)
DR

DK(R;Q5)=0, (21

adiabatic approximation, the associated hyperradial channel
functions are uncoupled, and their evolution is governed by
the adiabatic potentials, (R) [35]. Second, we replace each
channel function by itssemiclassicalapproximation using

the local momentum defined by E@®7). Third, we impose

the outgoing wave condition at RR,, by suppressing in-
coming contributions as shown by E(5). Note that our
approach requires the adiabatic and semiclassical approxima-
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08 T He' is in excellent agreement with the most recent compi-
[ ] lation of experimental results by Bizau and Wuillemjéd]

06 over the entire energy range. This proves that the channel
= [ corresponding to single ionization to the ground state of He
=) 04 is definitely decoupled from all other ionization channels at
+b|:| 02 ! R=R,. At this distance, by contrast, these other channels

remain closely coupled together. The figure also shows that
the lowest single-ionization channel can be accounted for
very accurately by imposing the outgoing wave boundary
condition atR,. On the bottom panel, the agreement between
the calculated total ionization cross section and the acknowl-
edged reference experiment of Samsoml. [4] is also very
good, although it deteriorates as energy decreases. The com
puted values are within the experimental error bars from 30
eV upwards, the computed value at 20 eV is within 2% of
experiment, and that obtained at 1 eV is still within 12% of
[ ] the experimental value. This demonstrates that imposing the
o J S I T T outgoing wave boundary condition Bj=10 a.u. remains a
0 20 40 60 80 good approximation for single ionization with excitation and
E (eV) double ionization. However, to make it very good down to

. . o the few electron volt range, an increase Rf is clearly

FIG. 1. Top panel: total cross section for single ionization of He naeded. Note that our method is designed especially to treat

without excitation, in Mb, versus the energy, in eV, measured withg|ectron-electron correlations nonperturbatively, so that its

respect to the double-ionization threshold. Dots with error barsgeant domain of application is the low-to-intermediate en-
experimental data compilation by Bizau and Wauillenfig4]. Solid

line: present calculationdength, velocity, and acceleration are su- ergy range where these correlations are important. Perturba-

ne: p utationsength, velocity, and ¢ ion are sU- +ie methods do well enough at higher energies. This is why

perimposegl Bottom panel: total photoionization cross section of we have not pushed our investiaation bevond 86 eV

He, in Mb, versus the energy, in eV, measured as on top panel. Dots The imol P tati fth gh dy ibed b

with error bars: experiment by Samsat al. [4]. Solid lines: . e 1mp emeﬂ ation o N S.C er’r;eh escri elf .aQOVG re-

present calculation@ength, velocity, and acceleration are superim- UIrés & convenient representation of the vec®reR; (1)

posed. andX, (R;Qs), the choice of which is guided by the known
1p° symmetry of the final photoabsorption state w&k: 0,

tions to be valid only in the small intervéR,,R,+ 8R,] ~ L=1, andM=0,=1, depending on the polarization of the
that has to be considered for computing the first derivativedicident light. The representation we use here is based on the
of the channel functions. This is why one expects these twéipolar spherical harmonic3} ", ;(€1,€5) [36], or, more
approximations to be nonrestrictive. By contrast, it is notPrecisely, on their geradg) and ungeradéu) combinations
obvious that imposing the outgoing wave boundary conditionﬂMllMl(Ql,Qz), which are, respectively, symmetric and an-
atR, is valid, given the small value d®, used in the present tisymmetric in the exchange of the two electrons. These
calculations, wher&®,=10 a.u. functions are complemented with trigonometric functions of
One way to check this is to compute the total outgoingmultiples of the anglex, and with a Lagrange mesi37]
flux of the resulting®,(R,;()s) through the hypersphe®  representation for the variabR. The technical details are
=R, and to divide it by the incoming photon flux to obtain documented in the Appendix. Here, we only wish to stress a

0'...

™ (Mb)

G +0

+

the total ionization cross section few important properties of this representation.
First, it leads to a numerical task light enough to be com-
27w pleted on a plain PQPentium 11l 450 MHz, 768 Mb RAM.
o tot T =—0 O NGHINGHIE (28 Second, it is accurate enough numerically to ensure the
CEy Br=E gauge invariance of our results. Namely, each solid line on

Fig. 1 is threefold: it results from the superposition of the
results we obtain in the length, velocity, and acceleration
gauges, which cannot be distinguished at the scale of the
figure.
J Third, it provides an accurate representation of the dy-
namics that takes place within the inner regR&Ry. This
is demonstrated by the very good values that we obtain for
a;:1=2m: Po(Ro)|Fo(Ro)|2. (29  the energies of well knownP° excited bound states of He.
Namely, at energies below the lowest adiabatic energy
E,-o(Ro), Egs.(25) and(27b) impose an exponentially de-
The results are shown in Fig. 1. On the top panel, the comeaying behavior in all channels. This is the appropriate
puted single-ionization cross section to the ground state dfoundary condition for bound states. The bound-state ener-

The lowest adiabatic enerdy, —o(Ry) being very close to
that of one free electron a distanBg away from the Hé

ion in its ground-staten=1, we identify the corresponding
adiabatic state to the lowest single-ionization channel, an
obtain the associated cross section accordingly as

0
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gies then appear as sharp resonances in the energy depdie effective charge aR, is obtained from the boundary
dence of any componem, (R,) of the solution of the sys- condition

tem formed by Egs.(24) and (25. Given E,_q(Rp)

=—2.083 a.u., the bound-state boundary condition is ful- _

filled in the energy region of the first singly excité®° state P(Ro:€2s)= ErogEsE
of He, which is known to lie at-2.124 a.u[38]. Our cal- -

culated value is-2.122 a.u. The second singly excitéB°  py identifying the norms and fluxes of the two expressions of

state lies around-2.055 a.u[38], that is to say above the the wave function given by Eq$30) and(33). This yields
first adiabatic energy, and therefore we cannot obtain it by

the simple procedure outlined above. By contrast, the bound-

FA(Ro)X\(Ro:€s5) (33

ary condition is fulfilled for the first doubly excitedP® . ZE . Pr(Ro)[FA(Ro)[?

state, although it also lies above the first adiabatic energy, P(Ry) = ———— _ (34)
because it is orthogonal to the corresponding adiabatic state. INGNE

We obtain for its position—0.693 a.u., in excellent agree- Ex—o<E\<E

ment with the tabulated value 6f0.694 a.u[38].
The value ofZ.4(Ry), which follows from Egs.(31) and
IV. SEMICLASSICAL PROPAGATION OF THE WAVE (34), varies from 5.08 au. &=1 eV t0 3.77 a.u. aE
FUNCTION IN THE EXTERNAL REGION =86 _eV with a maximum o_f 5.22 a.u. &=20 eV. It thus
remains close to the Wannier value of 4.95 a.u. throughout
We now consider solving E@17) in the outer region. Our the energy domain investigated. This is why our final results
previous computation of the wave function R§ will pro-  vary by less than 1% when the parametgrin Eq. (32
vide us with the required boundary condition. The inhomo-varies from 16 to 10 # a.u., enforcing the matching to the
geneous term is proportional to the short-range ground-stat/annier limit at 1 to 18 a.u. fromR,. Accordingly, we may
wave function of He[see Eq.(18)], and so it can be ne- consider our method as parameter free. The removal of the
glected. It follows that no gauge dependence can appear =0 component in Eq(33), which was made possible by
the outer region, so that the results obtainedRatR, will the already mentioned early decoupling of the channel asso-
keep their gauge-invariance property throughout the externaliated to single ionization without excitation, definitely fa-
region. We consider the problem within a semiclassical outgilitates the definition of the unique local momenty{R).
going wave approximation consistent with that used in theThe neglect of the closed channels, which cannot be properly
calculation of®(Ry;()s). It takes the form accomodated by the expression of E8Q), was required to
avoid superfluous numerical noise.

1 R g Given the semiclassical ansatz of E§0) and neglecting
D(R;Q5)= \/_exp(|f p(R’)dR’)CD(R;QS), the inhomogeneous term, one can recast @d) into the
P(R) Ro form of a differential equation of first order with respectRo

B0 Lith the substitutions®(R; Q) — P (R; Qs) and 9%/ JR?

—21p(R)d/dR—p?(R). This implies that the term

The above ansatz presupposes that the hyper-radial motid#lz(R)‘?z(p 1/2(R)CD(R;Q5))_/’9R2 has beer_1 neglectgd. 'I_'he :

can be described approximately in terms of a unique |Ocar|esults _pr_esented below evidence that fchls approximation is
momentump(R). This contrasts with the semiclassical out- (.)f negI|g|bIe consequence. Next, we introduce the mock
going wave approximation we used to extrafR,:(s), M€ 7 with the relation

which relay upon channel-dependent local momeneR).
The local momentum we use here is given by

suggested by the experience acquired within EWRI].

Rp(R)dr=dR. (35

The substitutiorR p(R) 9/ I0R— d/ 7 allows us to rewrite the
Ze(R) semiclassical equation of first order with respectR@s a
p(R)=\/2|E+ , (3D X : e > :
R conventional nonstationary Sclidioger equation with re-
spect to the mock time. It is noteworthy that any term which
where the effective charg&.«(R) is a rational interpolation, does not depend ofds can be completely eliminated from
involving a single parameter;, between the asymptotic this equation by a straightforward phase transformation. We
value, which is taken equal to the Wannier chaigg  then obtain the basic equation of our approach in the external

=(4Z-1)/\2, and the value &R, region in the form
J . 17(Q0) -
R—Rg)? —O(7,Q5)=| = +V(Qs) | D(7;Q5).
2R =27 (Ry) R PR R R
1+ 7(R—Rg)?
(R—Ry)? The latter deserves several comments. First, the dependence

x ( P ASAN T 1. (32  of ®(R;Qs) on the choice op(R) is only implicit. Second,

1+ 7(R=Rp) the evolution of the system at lardR(7) consists in trivial

032711-6



AB INITIO CALCULATION OF THE WHOLE SET . .. PHYSICAL REVIEW A 65032711

multiplication of the wave function by the phase factor gen-Regardinga, H turns out to be tridiagonal, as we evaluate
erated by the potenﬂalpperatﬁ(ﬂ's). _ the second order derivative with respectdadhat occurs in
~ We solve Eq(36) using the split-operator method which 7(Qs) using the three-point differentiation formula. These
is well known in contemporary nonstationary quantum me-ery different structures of the representations-oandi/ee

chanics[39]. It allows us to associate different types of confirm the relevance of the particular spliting we have
propagators to different parts of the relevant Hamiltoniansposen.

depending on their specifics. Here, we sepaait(ls) [see Let us now summarize the main advantages of our propa-
Eq. (200], which has a unique singular pointe€ /4,61, gation scheme.
=0), from the rest of the Hamiltonian The first one is that this propagation scheme is computa-
17(Q0) tionaly fast This is because the propagator associated with
H(T,Qs)= = —5+Uen(01), (37)  the 7-independent—e repulsion operatot/.{{1s) can be _
2 R(7) computed once and for all. And, also, because the evaluation

of the 7-dependent Crank-Nicholson propagator amounts to

V.Vh'Ch has two lines of §|ngular|t|es at:O_andqr/Z, FeSPEC™  the inversion of a tridiagonal matrix, a task which can be
tively. Then, we associate an exponential propagator to the

. N completed using a fast algorithm involving ord)(N) mul-
Oﬁjerzto;t(t)r;agstthh: ;?r?sblfrgﬂ%gtaggea (,:A?cnolj dl\ilrllcTo[Qg]; el_tiplications, withN the dimension of the matrii30]. In ad-
propag '9 C gy, dition, the uniform mesh we use in the mock time corre-
ementaryST propagation step consists of propagation over,

; . sponds to a quasiexponential mesh for the hyper-radius at
ot/2 with the Crank-Nicholson propagator related to S — . )
H(7;Q5), followed by propagation ovesr with the expo- largeR, Wherep(R)— 2E.’ so thatR(r) ~exp(ry2E). This
nential of the operataif.{()s), and finally overd7/2 again allows a quick propagation of the system up to very large

with the Crank-Nicholson propagator associated Withvalues of the hyper-radius, typically up Ring,=10> a.u. in

: what follows.
H(7;Q5). The propagation operator over the elementary step The second advantage is that it éplicitly unitary

ot thus reads Namely, the Crank-Nicholson propagator is unitary by con-

Ps(7:Q5) =Py o 7+ 5712;Q5) ex] — 1 87Ued Q5) ] struction. Moreover, we calculate the representation of the
! i exponential propagator as a series expansion in powers of the
X Pna 7Q5) +O(57°), (38)  representation otf.,, a procedure which yields a unitary

matrix to all orders. The unitarity of the full propagator fol-
lows. It guarantees thexplicit conservation of the total flux
Sr Sr 1 throughout the external region. Accordingly, the total ioniza-
1+|—H( + _;95” tion cross section determined in the preceding section from
4 4 the total flux at the border of the internal regifsee Eq.

where

Psra 7,85) =

St (28)], is conserved by propagation.
T+ —;95”_ (39 Another advantage of our propagation scheme is that it

X
4 allows one to visualize the evolution of the wave function

1 or
_IZH

Applying this operator step by step, one can, startin fronj’om the boundaryRy=10 a.u., wh_ere it is formed, to .
PR1YING b e P g =10 a.u., where the cross sections are extracted. This

the initial wave function, evaluate the wave function at arbi-'"max— D . .
trary larger andR(7) provides valuable physical information regarding the dynam-

The implementation of this scheme requires us to choosl¢S qf the complex mglt[channel photoionizatiqn Process
a convenient representation of the various operators actin%o?s('jd.er?ﬁ' IhI:S pecullarltt'y of our approach will be illus-
on the angular variablesa({),,()5,). In this respect, it is ated In the foflowing section.
important to recall that the singular regions surrounding
=0 and#/2, which correspond to single ionization with ex- V. RESULTS
citation, scale assnmaX/R, . being the extension of the _
highest Rydberg state excited. This makes these singularities The absolute TDCS recorded by Brang et al.[8] at 20
much more difficult to handle in the outer region than in the€V above threshold are arguably the best measurements with
inner region. Accordingly, the basis set representation of thé/hich the results of any emerging theory should be com-
variable a used in the inner region has to be abandoned ifPared. This is due primarily to the absolute character of these
favor of a nonuniform grid representation with a high densitymeasurements, which, additionally, cover a wide range of
of points in the vicinity of the singularities. On the other €Nergy sharings and detection geometries. Yet the statistics of
hand, the representation of th@{,(),) variables based on (hese measurements are rather poor. _
the bipolar spherical harmonic;)szﬁ'fﬂl(ﬂl,ﬂz) used in the Th(_ase experiments were performgd using a.syr'lchrotron
inner region is retained in the outer region. Details are giveriadiation that was very close to full linear polarizatio8, (
in the Appendix. Here, we only wish to point out the con- =0.98). We presen_t the|r.results in comparison vy|th our
trasted properties of the resulting representationg{aind ~ H*M-SOW calculations using a reference system withzhe
Uge. Namely, the local potentidl, is diagonal ina and in XIS along the direction of the photon beam, andxais
(g,u), whereas it couples different angular momeh#d . along the main axis of polarization. The ejection directign
By contrast;H is diagonal in the basis of bipolar harmonics. of electron 1 is then located by the angle= (x,k,), ranging
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j 1%, 3 FIG. 2. TDCS at 20 eV above
0 . . . 0 Y N 0 1 1 . 1 _2
30 120 210 300 390 30 120 210 300 390 30 120 210 300 39 threshold in b(eV)“(sr) = ver-
40 0 40 susé, in degrees for the geometry
' ' ' ' ' + ' i IV ' ' defined by 20%6,<40° and
30 30 | 10V } © 0 °< ¢1,<20°. The energf, of
? : the first electron is noted on each
e 20 panel. Filled circles with error
10 bars: measurements by Bring
et al.[8]. Thick solid line: present
o Le " .
30 120 210 300 390 30 120 210 300 390 30 120 210 300 39 calculation for the energyg,.
Thin dotted lines: present calcula-
30 15 V ' ' 40 ' ' ' 50 ' ' ' ] tions for the neighboring energies
e a0 [ 17V + 1 a0f 19ev | : E,+AE;2 and E,—AE,/2, as
? 20 » * 30 F + 3 discussed in the text.
0r L. 7 ]
P 10 20F ;
10 C 4 y 7] 10 L _:
0 o1 N 0 LY + 1 1 0 A ‘ t :
30 120 210 300 390 30 120 210 300 390 210 300 390
9, 0, 0,

from 0 to 27, in the (x,k;) plane, and by the angle,,  appreciated keeping in mind that our approach does not |n
ranging from O torr, between theX,y) and &,k,) planes. volve any ad;ustable parameter, and that we have not applied
The same conventions are used for electron 2.”Eirey anyaposter_lorlrescallng f_actor to the raw results 'Fhat come
et al’s results were found to be rotationally invariant with OUt Of it. This contrasts with the CCC results, which had to
respect to the main axis of polarization within experimentalP€ rescaled by the ratios of the SDCS expected on the basis
accuracy. The TDCS accordingly are considered as depen@f current experimental and theoretical knowledge to the raw
ing only on the difference, notedl;,, between the angles, SDCS obtained using CCC, before they could compare with
and ¢,, but not on the absolute values of these angles thenexperiment favorably as shown in Fig. 4[@]. These factors
selves. We have averaged our calculations over the finitarere 1.3, 0.75, 1.0, 1.5, and 2.3 for the energy péir$9,
angular sectors used by Brang et al. in sorting their data, (3,17, (5,15, (7,13, and (10,10, respectively{8]. Interest-
that is to sayA ,=20°, andA ¢,,=20°. We have also il- ingly, Fig. 2 also shows that the sensitivity of the results to
lustrated the sensitivity of the results to the sharing of thehe energy ratio of the two electrons becomes more impor-
energy between the two electrons by plotting together théant with increasing asymmetry in the energy sharing.
TDCS corresponding to the three energies E;—AE;/2, Figure 3, which illustrates the evolution of the TDCS with
and E;+AE;/2, which span the energy interval used by the ejection direction of the first electron for three different
Bralning et al.to sort their data. The latter SE;=2 eV at  energy ratios, can be compared directly with Figs. 3 and 5 of
unequal energy sharing, atdde; =4 eV at equal sharing. A [8]. This comparison calls for the same remarks as those
special situation occurs whéh =1 eV andE;=19 eV.At inspired by Fig. 2. Additionally, one can note that the sensi-
E.:=1 eV, we have not displayed the result for 0 eV, wheretivity to the energy sharing is maximal when the first electron
single and double ionization cannot be disentangled, but fois emitted along the main axis of polarization, which makes
0.1 eV. AtE;=19 eV, similarly, we have displayed the re- this ;=0 ° geometry the most challenging for both theore-
sult for 19.9 eV instead of 20 eV. ticians and experimentalists. It is worth noting that the TDCS
Figure 2 illustrates the evolution of the TDCS with the obtained at§;=0 ° and §;=90° must be symmetric with
energy ratio for a fixed geometry. It can be compared directlyespect tod,; =180 ° andd, =270 °, respectively. The defect
with Fig. 4 in Braining et al, where the measurements are of symmetry in the angular pattern measuredat 90 ° and
displayed together with the associated CCC calculations. R&=;=10 eV, where the maximum of the right-hand-side lobe
garding the shape of the TDCS, the overall agreement béias no overlap with its left-hand-side counterpart, provides
tween our theory and experiment is good, as is good than interesting visualization of the statistical nature of the
agreement between CCC and experiment. In fact, the expenneasurements. In the most challengifg=0 ° geometry,
ment is not accurate enough to allow the shape of the TDC8nfortunately, Braning et al. have chosen to improve the
to decide between these two theories. However, the situatiostatistics by adding together the counts obtained at symmet-
is quite different if one is interested in the absolute magni—ic points with the counterpart that data are displayed in only
tude of the TDCS. In this respect, the very good agreementne half plane. This makes the visual appreciation of the
between the RM-SOW results and experiment should be quality of the experiment more difficult. Our calculations for
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FIG. 3. TDCS at 20 eV above threshold in b(eVsr) 2 versusé, in degrees. The geometrical arrangment is defined by &;,
<20°, for all panels, and by 356<6,<10°, 20 °<#,<40°, 50 °<#,<70°, and 80 ¥ ;<100 °, for the panels in each column of the
array of graphs, starting from the left, as indicated on the figure. Each line in the array of graphs corresponds to a given energy of the first
electron: from top to bottont;=10, 17, and 3 eV, as indicated on the figure. The other conventions are as in Fig. 2.

that case are given in the left column of Fig? Bheir agree- larization are compared with the measurements by Wehlitz
ment with experiment, which is very goodlaf=10 eV and et al. [40], on top of Fig. 4. The agreement between theory
E,;=17 eV, is surprisingly poor aE;=3 eV. The CCC and experiment, which is very good at 5, 10, and 21 eV
results for this geometrisee Fig. 5 of8]), in contrast, agree excess energy, deteriorates at higher energies, where slight
well with experiment atE;=10 eV andE;=3 eV, but opposite-phase oscillations appear on the calculated and
poorly atE; =17 eV, despite the rescaling factor applied. measured parameters, respectively. Surprisingly, only little
Integrating the TDCS over the direction of the secondattention has been paid ® by experimentalists up to now:
electron yields the DDCS defined by E(1) above. The pamely, the dependence gfon the energy sharing has only
DD_CS has a v_ery_5|mple angular structure which is describefeean studied by Wehlitet al. [40]. We hope that the struc-
in linear polarization by tures that theory predicts in the dependenceBobn the
energy sharing will renew the interest of experimentalists in
- [1+ BP,(cosdy)]. (40) quantlty. Namely, more extensive experimental data are
dE,dQ; 47 dE; needed in order to ascertain the accuracy of the present cal-
culations regardingg.
This expression is very similar to that of the differential cross Integrating the DDCS with respect to the direction of the
section for single photoionization. However, in the abovefirst electron yields the SDCS, also referred to as the energy-
expression, theg8 parameter depends on the sharing of thesharing cross section, a quantity that is well known to be
energy between the two electrons, and not only on the totdhvariant if the energies of the two electrons are inter-
energy available above threshold. This parameter has no spehanged. At the bottom of Fig. 4, we compare our SDCS
cial behavior in the exchange of the energies of the twawith the absolute measurements by Wehétzal. [1]. The
electrons: it is neither symmetric, nor antisymmetric. The agreement between theory and experiment is excellent as far
parameters computed under the assumption of full linear paas the shape is concerned. The curves, which are very flat on
the low-energy side, become more down convex at the high-
est excess energies, a trend that could already be observed on
2They differ from the ones shown in Figs(dl, 1(e), and 1f) of ~ the 2SC calculations by Proulx and Shakeshaf]. It is
[33] due to a missing factor 2 in Eg8) of [32], and to the physi- worth to recall also that the equiprobability of all energy
cally inappropriate averaged momentum defined by(Bgof [33]. sharings was one conclusion of Wannier’s threshold theory
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0 0 0_'25 0i5 0_'75 1 FIG. 5. Top panel: equal-energy sharing SDCS in kb/eV versus
E,/E the total excess energy above threshold in eV. Filled circles: present

calculation. Full line: 2SC calculation by Pont and ShakedHaft
FIG. 4. Top panel: asymmetry paramej@rversus the energy Dashed line: CCC calculation by Kheifets and Bif@g]. Bottom

ratio E, /E for five different excess energies above threshold: frompanel: integrated cross section for double photoionization, in kb,
top to bottomE=5, 10, 21, 31, and 41 eV. The thin horizontal lines versus the total excess energy above threshold, in eV. Dots with
give the zero of eacl axis. The unique scale used can be readerror bars: experiment by Samsenal. [10]. Triangles down with
from the B8 axis above the highest zero line. Full circles with error error bars: experimental data compilation by Bizau and Wuillemier
bars: measurements by Wehlit al. [40]. Solid lines: present cal- [34]. Dashed line: calculation by Pont and Shakesh&f{. Solid
culations. Bottom panel: SDCS in kb/eV versus the energy ratidine: present calculations.
E, /E for the same excess energies as on the top panel. Full circles:
measurements by Wehlitet al. [1]. Solid lines: present calcula- despite persevering efforts, the unphysical asymmetric and
tions. oscillating character of the SDCS obtained from CCC has

not been remedied yet. The only improvement achieved con-
[23]. The SDCS computed using®M-SOW have huge cerns the value of the SDCS at equal energy sharing, which
structures arountt; /E=0 and 1, so narrow that they cannot could be obtained, if one follows Stelbovig42], by multi-
be distinguished from the vertical axis at the scale of thepying the raw CCC value by a factor 4. The equal energy
figure, nor can they be resolved despite the very denged  sharing SDCS obtained using this procedi#8] are com-
used in these calculations. These structures correspond pared on top of Fig. 5 with the presenfd1-SOW and 2SC
single ionization to the excited ionic states. Turning now tocalculations, respectively. These two latter theories agree
the magnitude of the SDCS, we notice that the position overy well with each other, whereas the CCC results lie
the computed curve relative to the experimental data evolveslightly lower, the more so the lower the energy. This factor
continuously with energy, being 30% too high at 5 eV, and & thus seems to allow one to extract reasonable values of the
few percent too low at 41 eV. In this respect, it is importantequal-energy sharing SDCS from CCC calculations.
to recall that Wehlitzet al’s data[1] were calibrated using The natural way to compute the ICS for double photoion-
the values of the total photoionization cross section compiledzation is to substract the cross sections for single ionization
by Marr and Wes{41], which are now known to be overes- to the ground and excited ionic states from the total ioniza-
timated by 9 to 16 % in the 5—41 eV rangg. Recalibrating tion cross section given by E8). As this procedure does
Wehlitz et al’s data using Samsoet al.'s more recent work not require any explicit description of the double continuum,
would affect the comparison between these data and our cail-is simple and accurate. Yet we prefer to compute the ICS
culations: the discrepancy would increase at low energy, buby integrating the SDCS over the energy of the first electron,
disappear at high energy, a situation that can be understodzbcause our purpose here is to provide a complete check of
from Fig. 1 of the present paper and the associated conthe consistency of our method, the object of which is to cope
ments. with the double continuum. Performing this integration,

We cannot abandon the subject of energy-sharing crosshich is defined by Eq(14), requires to suppress the contri-

sections without contrasting the natural obtention of SDC3utions of single ionization in some approximate way. To do
using HRM-SOW with the intrinsic inability of CCC to pro- that, we have found it convenient to replace the raw SDCS
duce reasonable approximations of these quantities. Namelghat comes out of our calculations by an even sixth-order
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are determined by matching to the original SDCS at four 3 T C o~ ]
points. One of these points 5, =E/2, and the three others 200 3 A
are chosen to span the intervalgg[ in such a way thatthe ¢ 3 E : P 132
resulting polynomial can only be distinguished from the raw a 150 ‘ ," '\\ } \i
SDCS in the narrow singular regions arouig=0 andE, =100 A i a5¢ IR W
=E. The ICS we present are obtained by integrating these %0 F % |/ /aidel 1 M N

. . . 0 Eesadiset » 0 % | =
polynomial approximations from O /2. They are stable to 30 120 210 300 390 30 120 210 300 390
within a few percent with respect to any reasonable change
in the location of the matching points. Our results are com- 80 PR
pared at the bottom of Fig. 5 with the data compilation by 60 [ ; ‘ ] 1s
Bizau and Wuillemief34], and with the latest measurements  $ 40 1 ] 18
by Samsoret al. [10], which are systematically lower than £ "~ | ﬁ\ Vol I
the former. The discrepancy between these two sets of date 20 | ‘le\\ 4 4
which reaches a maximum of the order of 15% around 50 eV o bl
excess energy, has not been fully explained yet. The 30 120 210 300 390 30 120 210 300 390
HRM-SOW calculations lie at the bottom of the error bars 554 :
associated with the first set of data. The 2SC calculations by . f s
Pont and ShakeshdfL7], in contrast, are located at the top b, 50 DN 1>
of the error bars associated with the second set of measur€3 %0 f / +‘\ @
ments. These two sets of experimental data will have to be= 100 f 25 | JOERY ;7_"_
reconciled somehow, and our approximate calculation of the 50 J \\
ICS replaced by an explicit subtraction of the single- 0 Eem 0 il Nt

30 120 210 300 390 30 120 210 300 390

ionization channels, before this puzzling situation can be
commented on any further. 9

As already noted, one advantgge of our method is that it FIG. 6. TDCS at 20 eV above threshold, in b(eVjsr) 2,
allows one to follow the eyolunon of the ‘wave function versusf, in degrees. The geometry is defined by 206,<40°
throughout the_ external region. Th_e following figures thusg,q g o< $1,<20°. Each line in the array of graphs corresponds to
display, for variousR values in the intervalRy,Rmay, the 3 fixed energy of the first electron: from top to bottdfy =1, 10,
renormalized fluxes that converge at infinity to the TDCS,and 19 eV, as indicated on the figure. The left and right columns in
the DDCS, and the SDCS, respectively, according to Eqshe array display the same results but on different vertical scales.
(10)—(12). We give them the same name as their respectivéull circles with error bars: measurements by Briag et al. [8].
asymptotic limits, although it is clearly an abuse of languageDotted lines: present calculationsRé10 a.u. Dashed lines: same
Note that the approximate procedure we use to compute th&s R=100 a.u. Long-dashed lines: sameR=1000 a.u. Thick
ICS becomes meaningless Bsdecreases, because the sizesolid lines: same @&=10° a.u. where convergence is reached. The
Aa:(0'75qr2na>JR) rad of the singular regions associated angular range between the two vertical linegat 120 ° and 300 °
with Sing'e jonization increases’ untill it covers the entire Corresponds to emission of the two electrons in OppOSite half
range fromR=100 a.u. downwards. Accordingly, we do not Planes.
present anyR evolution of the ICS.

The left column and the right one in Fig. 6 display the demonstrates the need to propagate at least ugRto
same TDCS on different vertical scales. The scale used in the 10° a.u. in these particular dynamical situations.
left column is appropriate for visualizing the patterns ob- Figure 7 illustrates th&® evolution of the asymmetry pa-
tained atR=R,. As they are still entangled with the domi- rameterg at 21 eV excess energy. The curve obtaine® at
nant single-ionization channels, their absolute values are=10? a.u. still misses 5 experimental points in 14, whereas
much higher than those of the TDCS to which they convergghat extracted atR=10> a.u. misses only one, and so
at largeR. Their shapes result from the incomplete develop-achieves an excellent agreement with experiment. This con-
ment of the electron-electron correlations, which makes ifirms the need to propagate up to thousands of atomic units
very likely for the two electrons to be observed in the sameaway from the core, as already noted above.
half plane, for instance. The scale used in the right column Figure 8 shows th& evolution of the SDCS obtained at
focuses on the evolution of the angular patterns frBm 21 eV excess energy. The vertical scale on the left panel is
=10 a.u. onwards. At equal energy sharifgpe Fig. 6, chosen to provide a full view of the pattern obtainedRgt
middle ling, the angular pattern extractedR&10° a.u. is  As R increases, the middle part of this pattern widens, flat-
already in excellent agreement with the measured TDCS. Itens, and goes down, while the two side peaks get much
contrast, for the very asymmetric energy sharitege Fig. 6, narrower and higher, so that the total outgoing flux, repre-
top and bottom lines it is still very different from the ex- sented by the area under the curve, remains constarR. At
perimental TDCS in shape as well as in magnitude: the rela=100 a.u., the side peaks are already so narrow that they
tive heights of the two observed structures are wrong, andan hardly be distinguished from the vertical axis, and so
the absolute value is too high by as much as a factor 2. Thikigh that their maxima are located far above the figure. In

0
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ionization processes. The overall agreement between these
data and the corresponding absolute measurements is very
good, not only in shape, but also, more importantly, in mag-
nitude. This demonstrates that the approximations entering
the method, which is not formally exact, are well founded.
HRM-SOW thus emerges as a robust and reliable method.
The present calculations have been performed on a plain
o PC with 763 Mo RAM. This limited memory has prevented
5 10 15 20 us from testing the convergence of our results as fully as we
wished, namely, by increasing the dimensions of all repre-
E, (eV) sentations involved in this six-dimensional problsimulta-
neously and by taking a matching hyper-radity, larger
than 10 a.u. The very next step in the development of
HRM-SOW will therefore consist of implementing the codes
on a powerful computer center, in order to get rid of
memory-shortage problems, and to definitely assess the ac-
curacy of the method in the various energy domains of inter-
est. At this stage, the comparison with accurate relative
TDCS measurements performed at intermediate energies un-
fer various well-defined conditions of polarizatipti, 12,
as well as with absolute TDCS measurements at very low

FIG. 7. Asymmetry paramete® at 21 eV above threshold ver-
sus the energy of one electron, in eV. Full circles with error bars
measurements by Wehligt al. [40]. The conventions for the lines
are the same as in Fig. 6.

other words, with increasing, flux is leaking out of the
Wannier ridgea= /4 into the potential wells att=0 and
/2, thus ending in the single-ionization instead of in the
double-ionization channel. The right panel concentrates o
the evolution betweeR=100 a.u. andR=1000 a.u. The . . ;
result obtained aR=10? a.u. is within 20% of the experi- energied 13], W.'” be part|cula_rly relevant. . .
mental value throughout most of the energy range available, A.S soon as Its accuracy will havg been character!zed with
excluding the neighborhood of the boundarieg=0 eV conﬁ_dgnce, RM-SOW wiill reveal its whole potential by
and E;=21 eV. So, if one is interested in significantly prowdlng, beyo.nd the yalues of the mea;urable Cross sec-
asymmetric energy sharings or in a few percent accurac ions, valuable informations on the dynamics of the process

propagation up tR=10° a.u. is clearly required. The same hat neither experiment nor other theories can reach directly

conclusion was drawn before from the inspection of the®© date. This gives RM-SOW a significant and distinctive

TDCS and DDCS evolutions on Figs. 6 and 7. advantage over other methods. .
The gerade and ungerade complex amplitudes

MOY(Rpax: @, 012) and MY(Ryax; @, 012), for instance, are
VI. CONCLUSION the elementary dynamical constituents of any double-
i . . photoionization cross section, and so, they contain complete
centralidea, whih is o Somibine-malrx and semioiassical IMOTAI0N 0n he asymptofics of the procdss 12, et
techniques ’Within a hyperspherical coordinate system ithese quantities have never been computed usirghanitio
9 ypersp y ' ggeory, and experiment can only provide indirect, partial, and

most likely open to other applications than the one reporte oderatly accurate information about them. Therefore, it is

on here. The method does not mvolve_ any adj_ustable ParaAMiorth to note that these amplitudes occur naturally in
eter and so can be characterizedahsinitio. It is accurate

X ) . HRM-SOW, which puts us in a position to obtain accurate
enough numerically to provide results that are gauge invari-

ant to an excellent approximation representations of them in the near future, and so, to contrib-
: pproxi . .. _ute to the current debate regarding their parametrization in a
We have displayed a wide selection of computed |on|za—deciding way[45]
tion cross sections, ranging from the fully differential to the The R evolution of the structure of the total outgoing flux

fully integrated type, and regarding single- as well as doubleiS a quantity that can hardly be an object of experimental

study. Nevertheless, our knowledge of the dynamics of the

12 2 g process will remain incomplete as long as we will not have
=3 10 “ “ 15 -';\ /'- any reasonable idea of the way the total outgoing flux is
) 8 R redistributed over the final outgoing channels in the course of
o 8F / L AN - 5 the system expansion. Yet such an idea can be obtained from
3

i 05 L ] HRM-SOW, since this method allows one to follow the evo-
2. N ] lution of the photoabsorption wave function from the border
o ESessmamnenanst b . . o
0 s 10 15 20 TR T of the inner region, where it is formed initially, up to the
E, (eV) E, (V) asymptotic region, where the measurements are performed.

In this respect, the present paper already suggests that the

FIG. 8. SDCS at 21 eV above threshold, in kb/eV, versus the/€ry asymmetric energy sharing situations can only be
energy of one electron, in eV. The left and right panels display thdandled if an accurate description of the system is available
same results but on different vertical scales. Full circles: measurdrom the origin to thousands of atomic units from the core. It
ments by Wehlitzet al. [1]. The conventions for the lines are the is worth to note that to date, our method is the only one that
same as in Fig. 6. offers such a description.
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ACKNOWLEDGMENTS is among the simplest possible choices. The ceg<in 4nq)
factors are the basis vectors of the Fourier expansion of a

We are very grateful to T. Reddish for his comments on .~ © . ; ) !
the manuscript and we thank R. Wehlitz for communicatingperIOdIC function built from an evetodd function defined
: on the interval[0,7/2]. The 3wL a) are orthonormalized

his detailed data regardi arameters to us. - . :
garding p within each subspace of given orbital angular momentum
and symmetry g,u) to yield the finala basis set. Our cal-
APPENDIX: COMPUTATIONAL DETAILS culations were found to converge witly=40 basis vectors.

The numerical implementation of our approach relies In the outer region, we use the nonuniform grid represen-

upon specific representations of the relevant wave functiontton defined by
and operators. Below, we define these representations, and

point out the dimensions they must be given in order to m B 7k 3 ,
converge the calculation in the illustrative case of 20 ev k=7 (17C0S2), Xk_Z(n’+1)' =L...n,.
above the He double-photoionization threshold. a (A3)

Whatever the region considered, we use the same basis set

representation of the dependence on the varialssQ,), The high density of points in the vicinity ak=0 and 7/2

it()gsed on the gerade and ungerade bipolar spherical harmoé“ows us to describe accurately the behavior of the wave

function in these regions, which correspond to one-electron
ionization with excitation of the residual ion. The accuracy
M M of the propagation scheme is guaranteed as long as the mini-
[V 2(Q1,Q2) 2 W1 1(Q2, Q)] mum « step, 73/[8(n,+1)?], remains significantly smaller
(A1) thanthe extensionnmaX/R of the singular regions mentioned

above. Hence, a grid of dimensiarj allows one to propa-
These functions, which are, respectively, symmegerad¢ gate up to Rp,<8r, (ni+ 1)?/7% that is to say
and antisymmetriéungeradgin the exchange of2; and(),, Rype=n’2, accordingly,m?ﬁe current paper was performed
occur naturally in the construction of théP, two-electron with n’iloo andR...=10* and we usedh’=1000 and
orbital wave function produced by one-photon absorptiorhmaxz 165 for the finr;TXhigh—;')recision calculations.

from the He ground state. In EgAL), | and|+1 are the The treatment of the hyper-radiiss very different in the
angular momentum of the two electrons, and the blpolagnner and outer regions.

. . lM .
spherical harmonicg %, 1(Q2,,{2,) agree with the conven- | yhe guter region, the propagation over the mock-time
is based on a constant mock-time st&p which is taken

tions used by Varshalovicét al.[36]. Our calculations were
equal to 102 a.u. in all the present calculations. TReyrid

1

V2

W 101,05 =

converged withn;=5 harmonics in the inner region, and

n/ .=25 harmonics in the outer region. This reflects the eVOproduced in propagation appears to be quasiexponential, as
lution of the two-electron wave function toward a product of 3jready noted in the text, which allows fast propagation to
two uncorrelated Coulomb waves, the partial-wave expanthe very large distances where the two electrons correlation
sions of which are dominated at large distances by high anyanishes.

gular momenta. . ) In the inner region, we use a Lagrange mesh representa-
The representation of the dependence on the variable tjgn of the reduced hyper-radiup=R/R,, defined on the

has to meet higher requirements in the outer region COMnterval[0,1]. This representation, which amounts to a par-

pared to the inner region. _ ~ticular case of DVR(discrete variable representatjo#6],
In the inner region, we use a basis set representatiofjses two related objecté) a grid of points, which consists
which is designed to comply with the requirements(©f i the zerog; , =0, . .. n, of the Gegenbauer polynomials

being composed of basis vectors that are either symmetrig
(gerade or antisymmetriqungeradg with respect to the ex-
change of the radial coordinates of the two electrons, that ions

to say with respect to the transformation— 7/2— «; and 66

(i) being able to reproduce the behavior of the solution of 5/2Gn’ (p)
Egs. (21) and (23) at the boundaries of the interval of hi(p)=aip —p
variation. The analysis of the singularities of the kinetic- '

energy operatoff({)s) shows that this behavior scales as

ﬁf’(p) [47]; and(ii) the basis of normalized Lagrange func-

't and (m/2—a)' " arounda=0 and /2, respectively. i (2n,+5)! L
The Set CYI ( l) pl(l pl) np|(np+5)| ’ | 11"'1np1
(Ad)
9ol (a)=(sina cosa)'*1cosha, n=0,...n,—1, , L o
(A2a)  Which obey the orthonormalization condition
Uyl (a)=(sina cosa)'sindna, n=1,...n, flh,* h.(p)dp=&:: A5
n (A2b) oM (p)hj(p)dp=d;j, (A5)
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as well as the characteristic relation of Lagrange interpolathe residues theorem; andi) the integrations ovep are
tion functions performed exactly using the Gaussian quadrature associated
with the mesh. Indeed the latter leads to compact exact ana-
hi(p)) =N, Y2855 . (A6) Iytical expressions of the potential- and kinetic-energy opera-
tors, following the distinctive property of Lagrange meshes
The\; are the weights of the Gaussian quadrature associatgdg].

with the grid pointsp; . The choice of this specific Lagrange- ~ We can thus state that, within the representation described
Gegenbauer mesh has been dictated by the physical boungbove, the computation of thH&8-matrix eigenvectors from
ary conditions ap=0 and 1. Atp=1, the basis functions, or Eq. (21) is exact. A consequence of this exactness is the
part of them at least, have to be nonzero to allow for somexcellent accuracy of our calculation of the energies of se-
flux leaving the inner region. Ab=0, they must be able to lected*P° bound states of He, already mentioned in the text.
reproduce the behavior of the solutions of EZ1), which In the outer region, the accuracy of the grid representation
vanish at least as rapidly &2 In fact, the practical reso- used for the variabler could be questioned given the strong
lution of Eq. (21) on the Lagrange mesh implies premulti- singularities of the potential at=0 and=/2, and the limited
plying this equation byR and introducing the reduced func- precision of the three-point differentiation formula used to
tion ®X(R,0:s)/R [48]: therefore, thep®? behavior of the evaluate the second-order derivative with respect.tblow-
basis functions given by E¢A4) is adapted to the descrip- ever, test calculations with,=3000 mesh points have con-
tion of the reduced function. GiveR,=10 a.u., a 15 point firmed that the results presented in this paper, which have
mesh has proved sufficient to converge our calculations. been obtained witim’=1000 mesh points, are converged to
It is instructive to present a few orders of magnitude topetter than 1% with respect tw,. This illustrates well the
help the reader appreciate the weight of the computationgldyantages of using a nonuniform grid adapted to the local
task. The dimension of the representation used to solve Eqate of variation of the wave function considered.
(21 is 2Xn;XnaXn,, so that, at convergence, a 6000 |n the present version of our codes, we have described the
X 6000 matrix has to be stored and diagonalized. The dimerbround state of He by the 20 terms Hylleraas-type wave
sion of the vector to propagate in the outer region¥sr#  function of Hart and Herzberfs0]. It follows that the pro-
X ng, which reaches 50000 for high-precision calculationsjections of the inhomogeneous terd®(R;Qs) on the
Finally, about 7000 elementary mock-time step®  R-matrix eigenvector®*(R;Qs) can only be obtained by a
=102 a.u. are needed to propagate the wave function fronthreefold numerical integration, which turns out to be very
Ro=10 a.u. toR =10 a.u. accurate although not formally exact. In the future, we plan
The computation of the matrix elements of the variousto use the He ground-state wave function obtained by solving
operators within the representations given above is straigh&gs.(24) and(25), with the inhomogeneous term suppressed,
forward. Nevertheless, it is worth mentioning ttigtthe in-  within a 1S® representation akin to th&P° one used pres-
tegrations ovef); and(}, are performed exactly using stan- ently for computing the wave function of the photoabsorp-
dard Racah algebrafii) the integrations overa are tion state. The computation of the projections will then be
performed exactly using either exact Gaussian quadratures quick and exact.
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