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Ab initio calculation of the whole set of He double-photoionization cross sections
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The double photoionization of He is investigated using the hypersphericalR matrix with semiclassical
outgoing waves method. Triply, doubly, and singly differential, as well as fully integrated, cross sections are
computed in a variety of geometrical and dynamical situations. The results are found to be in excellent
agreement with absolute measurements both in shape and, more importantly, in magnitude. This demonstrates
the robustness and accuracy of thisab initio method, which also provides a visualization of the formation of the
various cross sections during the expansion of the system. This visualization reveals that, for very asymmetric
energy sharings, the cross sections take their final form when the electrons are thousands of atomic units away
from the ionic core, a distance where no other method is able to describe the double continuum wave function
accurately.
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I. INTRODUCTION

Double photoionization of atoms by one photon has
come a ‘‘hot topic’’ in the last ten years. This is due, first,
a great increase in the intensity of highly monochroma
synchrotron radiation with well-defined polarization prope
ties, and, second, to the development of powerful detec
techniques which are capable of simultaneously collec
electrons over a wide range of angles and energies. Exp
ments performed in the last decade@1–13# have produced a
large amount of information that is challenging to theo
Despite the theoretical advances that have been made in
field over the same time scale@14–19#, attempts to calculate
accurate differential cross sections have, in our view, yiel
disappointing results, although some recent developm
seem very promising@20,22#. In this paper, we present
theory which is capable of calculating accurate values for
absolute differential cross sections associated with dou
photoionization of the helium atom.

Theoretical studies of the processes related with the t
electron continuum started with the well-known paper
Wannier@23#, which soon will celebrate its 50th anniversar
In that paper, Wannier deduced the threshold law for dou
electron escape from an ingenious analysis of the class
equations of motion of the two electrons far from t
nucleus. After Wannier’s success, the theoretical interes
the problem remained quite moderate for decades. Twe
years later, at last, his result was confirmed by the numer
calculations of Vinkalns and Gailitis@24#, and one element o
his analysis started to inspire developments in the fie
namely, the dominant contribution of symmetric back-
back emisssion to the near-threshold double escape. T
for years, investigations concentrated on the quantum
semiclassical analysis of the system within a quadratic
proximation for the potential in the vicinity of the so-calle
Wannier configurationrW1'2rW2 @25–27#.

During the 1990s, the rate of development of theoreti
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methods in the field increased very rapidly. An attempt to
beyond the above-mentioned quadratic approximation
undertaken by Kazansky and Ostrovsky. Their extend
Wannier ridge model~EWRM! @19# revealed the inconsis
tency of that approximation, at least as far as the ang
distribution of the electrons is concerned, and gave qua
tive ideas regarding the role of electron correlation in for
ing angular patterns under equal energy sharing conditio
However, EWRM could not be reliably applied to the syste
in the vicinity of the nucleus, and this put the calculation
accurate values of the cross sections beyond its reach. M
while, the 3 Coulomb waves~3C! approach@14# together
with the convergent close coupling~CCC! method@15# pro-
vided extensive sets of triply differential cross sectio
~TDCS!, which have been compared with experimental d
with varying degrees of success. 3C has a phenomenolog
character that qualifies it as a convenient and flexible too
get insights into the double-escape process, but not as
liable method to compute accurate cross sections, not
because its gauge dependence is too important. CCC im
that electron-electron correlations are neglected at large
tances from the core, an approximation that undermines
predictive power of this method, giving rise to a compl
pattern of successes and failures that is now well do
mented@28#. As a result, neither method was able to obta
accurate absolute values of the entire set of cross sec
associated with the double-photoionization process@29#. The
2 screened Coulomb waves~2SC! method @16–18# came
closer to this goal although it was later abandoned poss
due to computational difficulties. In this respect, it should
noted that this method could be implemented only in
velocity gauge, and that it relied upon the Pade´ summation of
a divergent series, which is a widely used, but rather unc
trolled, technique@30#.

More recently, two methods have appeared, which b
rely upon intense parallel computing, and seem to offer gr
potential. For the time being, however, the time-depend
©2002 The American Physical Society11-1
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close coupling~TDCC! method@20# has only produced the
ratio of double-to-single total photoionization cro
sections.1 On the other hand, the exterior complex scali
~ECS! method@22# has only been applied to electron-impa
single ionization. In this situation, the present contributi
appears as very timely. The theory proposed in this pa
actually provides the entire set of absolute cross sections
the double photoionization of He over a broad range of p
ton energies and for arbitrary sharing of the excess ene
above threshold between the two electrons. Moreover, it d
so with only moderate computational efforts, while providi
an instructive insight into the dynamics of the process.

Our method consists of merging two different approach
the hypersphericalR-matrix treatment of the two-electro
system in the vicinity of the nucleus, and the semiclass
description of the evolution of the system with the hyp
spherical radiusR throughout the external region. We call
accordingly the hypersphericalR matrix with semiclassica
outgoing waves (HRM-SOW) method. The advantages
theR-matrix approach@31# are well known:~i! it is exact, so
that the accuracy of the results can be improved system
cally up to any prescribed level;~ii ! the processing of serie
of energies is quick due to the analytical energy depende
of the matrixR; and~iii ! the method benefits from all com
putational advances achieved within the wide domain
bound-state calculations. The semiclassical treatment of
system in the external region, based on the experience
quired within EWRM @19#, also has very specific advan
tages:~i! from the computational point of view, it leads to
conventional propagation problem that can be solved v
efficiently using a stable and unitary algorithm; and~ii ! from
the heuristic point of view, it allows one to vizualize th
evolution of the wave function with the hyperspherical r
dius R ~or a related mock-timet) throughout the externa
region.

HRM-SOW was formulated in 1999, and at this time,
was applied to a model double-photoionization proble
where the electronic motion was restricted to the Wann
ridge r 15r 2 @32#. The possibility of applying this method t
the real six-dimensional physical problem was demonstra
in 2000@33#. Here we give a detailed account of HRM-SOW
in its latest stage of development. In Sec. II, we establish
relations between our computed wave function and the
perimentally measured cross sections. In Sec. III, we re
ate the basic ideas of ourR-matrix approach, complemente
with the semiclassical outgoing wave condition, which
lows us to extract the wave function at the border,R5R0, of
the inner region. In Sec. IV, we give a detailed description
the semiclassical method we use to propagate the wave f
tion from R0 to the very largeR values where the cros
sections are extracted. In Sec. V, we present a wide selec
of our results, including TDCS, angular asymmetry para
eters (b) associated with doubly differential cross sectio
~DDCS!, singly differential cross sections~SDCS!, and inte-
grated cross sections~ICS!, in comparison with the experi

1Recently differential cross sections for double photoionization
He have been obtained using this method@21#.
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mental data. We also present the evolution of selected c
sections with the hyperradiusR to illustrate the rate of redis
tribution of the total flux between the different outgoin
channels. In Sec. VI, we summarize the main results of
present paper and outline the possible developments of
method in the future. Atomic units are used hereafter unl
otherwise stated.

II. BASIC NOTIONS AND EQUATIONS

The basic formulation of the one-photon ionization pro
lem requires solving the inhomogeneous equation

~H02E!F1~rW1 ,rW2!52
1

2
EW0•DW GC0~rW1 ,rW2! ~1!

for the stationary two-electron wave functionF1(rW1 ,rW2) ob-
tained within the rotating-wave approximation. We deno
the ground-state wave function and energy of the tw
electron HamiltonianH0 by C0(rW1 ,rW2) andE0, respectively,
the frequency of the incident light byv, and the total energy
by E5E01v. EW0 is the amplitude of the electric-field vecto
EW(t)5EW0 cosvt, andDW G is the dipole operator. The expres
sions forDW G in the length, velocity, and acceleration gau
read

DW L5rW11rW2 , ~2a!

DW V5
1

v
S rW1

r 1

]

]r 1
1

rW2

r 2

]

]r 2
D , ~2b!

DW A5
Z

v2 S rW1

r 1
3

1
rW2

r 2
3D . ~2c!

Equation ~1! has to be complemented with the outgoin
wave condition imposed on the wave-functionF1(rW1 ,rW2).
The implementation of this boundary condition is we
known to be the main difficulty of the problem. It is note
worthy that the wave-functionF1(rW1 ,rW2) asymptotically
contains contributions from the entire set of ionization cha
nels, which includes the single-ionization channels with a
without excitation of the residual ion, as well as the doub
ionization channel.

We consider the problem within the hyperspherical co
dinate system. The latter is composed of the hyperradius

R5Ar 1
21r 2

2, ~3!

the hyperangle

a5arctan~r 1 /r 2!, ~4!

together with the set (V1 ,V2), whereV1 andV2 stand for
the spherical angles (q1 ,w1) and (q2 ,w2) associated with
the ejection directions of the two electrons. In the followin
we will denote byV5 the set (a,V1 ,V2) which collects the
five angular variables of the problem.
f

1-2
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The hyperspherical coordinates are known to be very c
venient for the description of the various decay channels
atomic or molecular complexes. They are particularly su
able here since~i! their collective character is well adapted
the description of a correlated motion;~ii ! only one variable,
R, goes tò , which simplifies the computational task signifi
cantly; ~iii ! the introduction ofR makes it easy to comput
the cross sections directly from their very definition, bas
on the flux of the wave function through an hypersphere
large hyperradiusRmax; and~iv! the introduction of the vari-
able a allows one to discriminate single ionization again
double ionization. The ratio of double ionization to sing
ionization being no more than 2%, disentangling the we
double-ionization process from the much stronger sing
ionization process to which it is tightly coupled, is a re
challenge indeed. However, it can be faced easily within
hyperspherical coordinate set. Namely, whenR gets large
enough, single ionization becomes confined within two int
vals of width Da5r nmax

/R arounda50 and p/2, where

r nmax
.(0.75nmax

2 ) a.u. measures the extension of the high

Rydberg state Hen5nmax

1 that can be excited significantly i

the one-photon absorption considered. According to the
cent compilation of experimental data by Bizau and Wuil
mier @34#, single ionization to Rydberg states withn.3 ac-
counts for less than 1% of the total single ionization cro
section in the 0–80 eV energy range, so thatnmax.10 can be
considered as a reasonable order of magnitude. Using
value, we obtainDa50.075 rad atR5103 a.u., for in-
stance, andDa→0 rad asR→`, when all single-ionization
channels collapse to the pointsa50 and a5p/2. In this
limit, any information regarding the double-ionization pr
cess, extracted ataÞ0,p/2, is free of contamination by the
dominant single-ionization channels.

Regarding the TDCS, it is important to realize that t
two distinct configurations (a,V1 ,V2) and (p/2
2a,V2 ,V1) on the hypersphereR5Rmax correspond to the
same experimental event: one electron with energyE1
5E(sina)2 is registered in the directionV1 in coincidence
with the other electron, with energyE25E2E1, being reg-
istered in the directionV2. Accordingly, the number of
events per secondd(3)N(E1 ,V1 ,V2), when one electron is
ejected with energyE1(dE1) in the directionV1(dV1) and
simultaneously the other electron flies out in the direct
V2(dV2), is given by the sum of the fluxes through eleme
tary surfaces surrounding these two configurations. Due
the invariance of the orbital part of the singlet wave functi
with respect to the exchange of the two electrons, these
fluxes are equal. Hence,

d(3)N~E1 ,V1 ,V2!52 lim
R→`

FR~R;V5!dS5 , ~5!

where the five-dimensional surface elementdS5 aroundV5
5(a,V1 ,V2) is

dS55R5~sina cosa!2da dV1dV2

5
R5

4E
sin 2adE1dV1dV2 , ~6!
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and the hyperradial component of the flux vector,FR(R;V5),
is given by

FR~R;V5!5
1

2ı S F1* ~R;V5!
]F1~R;V5!

]R

2F1~R;V5!
]F1* ~R;V5!

]R D . ~7!

The TDCS is defined as

d(3)s

dE1dV1dV2
5

1

Fphot

d(3)N

dE1dV1dV2
, ~8!

where the incident photon flux is

Fphot5
cE 0

2

8pv
, ~9!

c being the velocity of light. Substituting of Eqs.~5!–~7! and
~9! into Eq. ~8! results in the following expression of th
TDCS:

d(3)s

dE1dV1dV2
5

1

2EFphot
ImS lim

R→`

R5 sin 2a

3S F1*
]F1

]R D U
a5arcsin(AE1 /E)

D . ~10!

The other measurable quantities, which can be directly
tained from the TDCS, are the doubly differential cross s
tion ~DDCS!

d(2)s

dE1dV1
5E dV2

d(3)s

dE1dV1dV2
, ~11!

the singly differential cross section~SDCS!

d(1)s

dE1
5E dV1E dV2

d(3)s

dE1dV1dV2
, ~12!

and the integrated cross section~ICS!

s115E
01

E/2

dE1E dV1E dV2

d(3)s

dE1dV1dV2
. ~13!

The symbol 01 at the lower energy-integration limit recall
that integration has to exclude the singular pointa50 to
which all single-ionization channels collapse in the limitR
→`. The well-known relationship

s115E
01

E/2

dE1

d(1)s

dE1
~14!

between the ICS and the SDCS follows from Eqs.~12! and
~13!. It is noteworthy that restricting the energy integration
half the total energy interval in Eqs.~13! and ~14! avoids
double counting of the same double-photoionization eve
Also note that the factor 2 in Eq.~5! compensates for the
1-3
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division by 2 of the energy interval of integration in Eq
~13! and ~14! so thats11 is given alternatively by

s115
1

Fphot
lim

R→`
E

01

(p/2)2

daE dV1E dV2R5

3~sina cosa!2FR~R;a,V1 ,V2!, ~15!

that is to say, by the ratio of the total outgoing flux to t
incoming photon flux, excluding the vicinity ofa50 and
a5p/2. If this exclusion is relieved, then the total ionizatio
cross sections11s11 is obtained.

III. EXTRACTION OF THE SOLUTION AT R0

Let us introduce the function

F~R;V5!5R5/2sin 2aF1~R;V5!, ~16!

and rewrite Eq.~1! more explicitly for this function as

S 2
1

2

]2

]R21
1

2

T ~V5!

R2
2

1

8R2
1

V~V5!

R
2ED F~R;V5!

5FG~R;V5!. ~17!

The inhomogeneous term is given by

FG~R;V5!52
1

2
R5/2sin 2a~EW0•DW G!C0~R;V5!, ~18!

and the angular kinetic-energy operatorT(V5) is

T ~V5!52
]2

]a2 1
l 1
2

~sina!2
1

l 2
2

~cosa!2
, ~19!

where lW1 and lW2 are the orbital angular momenta of the tw
electrons. The potential operatorV(V5) is the sum of the
electron-nucleus~en! and electron-electron~ee! interactions

V~V5!5Uen~a!1Uee~V5!, ~20a!

Uen~a!52 Z cosa2 Z sina, ~20b!

Uee~V5!5
1

A12sin 2a cosu12

, ~20c!

whereZ is the charge of the nucleus (Z52 for He!, andu12
is the angle between the ejection directions of the two e
trons.

We obtain the wave function on the hypersphereR5R0
which separates the inner region from the outer region
completing successively the five following tasks:

~1! Solving theR-matrix eigenvalue equation

S 2
1

2

]2

]R21
1

2
d~R2R0!

]

]R
1

1

2

T ~V5!

R2
2

1

8R2

1
V~V5!

2ekD Fk~R;V5!50, ~21!

R

03271
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which is obtained from Eq.~17! by omitting the inhomoge-
neous term and by adding the Bloch operator to the Ham
tonian in order to ensure that it is Hermitian over the fin
inner regionR<R0.

~2! Evaluating the local operatorIR0
(V5) and the non-

local operatorRR0
(V5 ,V58),

IR0
~V5!5(

k

^FkuFG&
ek2E

Fk~R0 ;V5!, ~22a!

RR0
~V5 ,V58!5

1

2 (
k

Fk~R0 ;V5!Fk* ~R0 ;V58!

ek2E
.

~22b!

~3! Calculating the eigenvectorsXl(R0 ;V5) and eigen-
valuesEl(R0) of the fixedR5R0 Hamiltonian by solving

S 1
1

2

T ~V5!

R0
2

2
1

8R0
2

1
V~V5!

R0
2El~R0!D Xl~R0 ;V5!50.

~23!

~4! Solving the set ofR-matrix equations

Fl~R0!5(
l8

R̄ll8~R0!Fl8
8 ~R0!1Īl~R0!, ~24!

complemented with the semiclassical relation

Fl8~R0!5ıpl~R0!Fl~R0!, ~25!

for the hyperradial channel functionsFl(R0) defined by

F~R0 ;V5!5(
l

Fl~R0!Xl~R0 ;V5!. ~26!

The Īl(R0) vector and theR̄ll8(R0) matrix result from ex-
panding the local operatorIR0

(V5) and the nonlocal opera

tor RR0
(V5 ,V58) over the basisXl(R0 ;V5). The semiclassi-

cal momentapl(R0) are given by

pl~R0!5A2@E2El~R0!# for E.El~R0!, ~27a!

pl~R0!5ıA2@El~R0!2E# for E<El~R0!. ~27b!

~5! Assembling the wave functionF(R0 ;V5) at the
boundaryR0 according to Eq.~26!.

The scheme proposed above includes three approx
tions, which underlie Eq.~25!. First, we assume that theR
dependence of the local angular vectorsXl(R;V5) can be
neglected within a small interval@R0 ,R01dR0#. Within this
adiabaticapproximation, the associated hyperradial chan
functions are uncoupled, and their evolution is governed
the adiabatic potentialsEl(R) @35#. Second, we replace eac
channel function by itssemiclassicalapproximation using
the local momentum defined by Eq.~27!. Third, we impose
the outgoing wave condition at R5R0, by suppressing in-
coming contributions as shown by Eq.~25!. Note that our
approach requires the adiabatic and semiclassical approx
1-4
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tions to be valid only in the small interval@R0 ,R01dR0#
that has to be considered for computing the first derivati
of the channel functions. This is why one expects these
approximations to be nonrestrictive. By contrast, it is n
obvious that imposing the outgoing wave boundary condit
at R0 is valid, given the small value ofR0 used in the presen
calculations, whereR0510 a.u.

One way to check this is to compute the total outgo
flux of the resultingF1(R0 ;V5) through the hypersphereR
5R0 and to divide it by the incoming photon flux to obta
the total ionization cross section

s11s115
2pv

cE 0
2 (

El<E
pl~R0!uFl~R0!u2. ~28!

The lowest adiabatic energyEl50(R0) being very close to
that of one free electron a distanceR0 away from the He1

ion in its ground-staten51, we identify the corresponding
adiabatic state to the lowest single-ionization channel,
obtain the associated cross section accordingly as

sn51
1 5

2pv

cE 0
2

p0~R0!uF0~R0!u2. ~29!

The results are shown in Fig. 1. On the top panel, the co
puted single-ionization cross section to the ground state

FIG. 1. Top panel: total cross section for single ionization of
without excitation, in Mb, versus the energy, in eV, measured w
respect to the double-ionization threshold. Dots with error ba
experimental data compilation by Bizau and Wuillemier@34#. Solid
line: present calculations~length, velocity, and acceleration are s
perimposed!. Bottom panel: total photoionization cross section
He, in Mb, versus the energy, in eV, measured as on top panel.
with error bars: experiment by Samsonet al. @4#. Solid lines:
present calculations~length, velocity, and acceleration are superi
posed!.
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He1 is in excellent agreement with the most recent com
lation of experimental results by Bizau and Wuillemier@34#
over the entire energy range. This proves that the chan
corresponding to single ionization to the ground state of H1

is definitely decoupled from all other ionization channels
R5R0. At this distance, by contrast, these other chann
remain closely coupled together. The figure also shows
the lowest single-ionization channel can be accounted
very accurately by imposing the outgoing wave bound
condition atR0. On the bottom panel, the agreement betwe
the calculated total ionization cross section and the ackno
edged reference experiment of Samsonet al. @4# is also very
good, although it deteriorates as energy decreases. The
puted values are within the experimental error bars from
eV upwards, the computed value at 20 eV is within 2%
experiment, and that obtained at 1 eV is still within 12%
the experimental value. This demonstrates that imposing
outgoing wave boundary condition atR0510 a.u. remains a
good approximation for single ionization with excitation an
double ionization. However, to make it very good down
the few electron volt range, an increase ofR0 is clearly
needed. Note that our method is designed especially to t
electron-electron correlations nonperturbatively, so that
relevant domain of application is the low-to-intermediate e
ergy range where these correlations are important. Pertu
tive methods do well enough at higher energies. This is w
we have not pushed our investigation beyond 86 eV.

The implementation of the scheme described above
quires a convenient representation of the vectorsFk(R;V5)
andXl(R;V5), the choice of which is guided by the know
1Po symmetry of the final photoabsorption state withS50,
L51, andM50,61, depending on the polarization of th
incident light. The representation we use here is based on
bipolar spherical harmonicsYl ,l 11

1M (V1 ,V2) @36#, or, more
precisely, on their gerade~g! and ungerade~u! combinations

u
gYl ,l 11

1M (V1 ,V2), which are, respectively, symmetric and a
tisymmetric in the exchange of the two electrons. The
functions are complemented with trigonometric functions
multiples of the anglea, and with a Lagrange mesh@37#
representation for the variableR. The technical details are
documented in the Appendix. Here, we only wish to stres
few important properties of this representation.

First, it leads to a numerical task light enough to be co
pleted on a plain PC~Pentium III 450 MHz, 768 Mb RAM!.

Second, it is accurate enough numerically to ensure
gauge invariance of our results. Namely, each solid line
Fig. 1 is threefold: it results from the superposition of t
results we obtain in the length, velocity, and accelerat
gauges, which cannot be distinguished at the scale of
figure.

Third, it provides an accurate representation of the
namics that takes place within the inner regionR<R0. This
is demonstrated by the very good values that we obtain
the energies of well known1Po excited bound states of He
Namely, at energies below the lowest adiabatic ene
El50(R0), Eqs.~25! and ~27b! impose an exponentially de
caying behavior in all channels. This is the appropria
boundary condition for bound states. The bound-state e

h
:

ts
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gies then appear as sharp resonances in the energy d
dence of any componentFl(R0) of the solution of the sys-
tem formed by Eqs.~24! and ~25!. Given El50(R0)
522.083 a.u., the bound-state boundary condition is
filled in the energy region of the first singly excited1Po state
of He, which is known to lie at22.124 a.u.@38#. Our cal-
culated value is22.122 a.u. The second singly excited1Po

state lies around22.055 a.u.@38#, that is to say above the
first adiabatic energy, and therefore we cannot obtain it
the simple procedure outlined above. By contrast, the bou
ary condition is fulfilled for the first doubly excited1Po

state, although it also lies above the first adiabatic ene
because it is orthogonal to the corresponding adiabatic s
We obtain for its position20.693 a.u., in excellent agree
ment with the tabulated value of20.694 a.u.@38#.

IV. SEMICLASSICAL PROPAGATION OF THE WAVE
FUNCTION IN THE EXTERNAL REGION

We now consider solving Eq.~17! in the outer region. Our
previous computation of the wave function atR0 will pro-
vide us with the required boundary condition. The inhom
geneous term is proportional to the short-range ground-s
wave function of He@see Eq.~18!#, and so it can be ne
glected. It follows that no gauge dependence can appea
the outer region, so that the results obtained atR5R0 will
keep their gauge-invariance property throughout the exte
region. We consider the problem within a semiclassical o
going wave approximation consistent with that used in
calculation ofF(R0 ;V5). It takes the form

F~R;V5!5
1

Ap~R!
expS ıE

R0

R

p~R8!dR8D F̃~R;V5!,

~30!

suggested by the experience acquired within EWRM@19#.
The above ansatz presupposes that the hyper-radial m
can be described approximately in terms of a unique lo
momentump(R). This contrasts with the semiclassical ou
going wave approximation we used to extractF(R0 ;V5),
which relay upon channel-dependent local momentapl(R).
The local momentum we use here is given by

p~R!5A2S E1
Zeff~R!

R D , ~31!

where the effective chargeZeff(R) is a rational interpolation,
involving a single parameterh, between the asymptoti
value, which is taken equal to the Wannier chargeZW

5(4Z21)/A2, and the value atR0,

Zeff~R!5ZW

h~R2R0!2

11h~R2R0!2
1Zeff~R0!

3S 12
h~R2R0!2

11h~R2R0!2D . ~32!
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The effective charge atR0 is obtained from the boundar
condition

F~R0 ;V5!5 (
El50,El<E

Fl~R0!Xl~R0 ;V5! ~33!

by identifying the norms and fluxes of the two expressions
the wave function given by Eqs.~30! and ~33!. This yields

p~R0!5

(
El50,El<E

pl~R0!uFl~R0!u2

(
El50,El<E

uFl~R0!u2

. ~34!

The value ofZeff(R0), which follows from Eqs.~31! and
~34!, varies from 5.08 a.u. atE51 eV to 3.77 a.u. atE
586 eV with a maximum of 5.22 a.u. atE520 eV. It thus
remains close to the Wannier value of 4.95 a.u. through
the energy domain investigated. This is why our final resu
vary by less than 1% when the parameterh in Eq. ~32!
varies from 102 to 1024 a.u., enforcing the matching to th
Wannier limit at 1 to 103 a.u. fromR0. Accordingly, we may
consider our method as parameter free. The removal of
l50 component in Eq.~33!, which was made possible b
the already mentioned early decoupling of the channel a
ciated to single ionization without excitation, definitely fa
cilitates the definition of the unique local momentump(R).
The neglect of the closed channels, which cannot be prop
accomodated by the expression of Eq.~30!, was required to
avoid superfluous numerical noise.

Given the semiclassical ansatz of Eq.~30! and neglecting
the inhomogeneous term, one can recast Eq.~17! into the
form of a differential equation of first order with respect toR

with the substitutionsF(R;V5)→F̃(R;V5) and ]2/]R2

→2ıp(R)]/]R2p2(R). This implies that the term
p1/2(R)]2(p21/2(R)F̃(R;V5))/]R2 has been neglected. Th
results presented below evidence that this approximatio
of negligible consequence. Next, we introduce the mo
time t with the relation

Rp~R!dt5dR. ~35!

The substitutionRp(R)]/]R→]/]t allows us to rewrite the
semiclassical equation of first order with respect toR as a
conventional nonstationary Schro¨dinger equation with re-
spect to the mock time. It is noteworthy that any term whi
does not depend onV5 can be completely eliminated from
this equation by a straightforward phase transformation.
then obtain the basic equation of our approach in the exte
region in the form

ı
]

]t
F̃~t;V5!5F1

2

T ~V5!

R~t!
1V~V5!GF̃~t;V5!. ~36!

The latter deserves several comments. First, the depend
of F̃(R;V5) on the choice ofp(R) is only implicit. Second,
the evolution of the system at largeR(t) consists in trivial
1-6
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AB INITIO CALCULATION OF THE WHOLE SET . . . PHYSICAL REVIEW A 65 032711
multiplication of the wave function by the phase factor ge
erated by the potential operatorV(V5).

We solve Eq.~36! using the split-operator method whic
is well known in contemporary nonstationary quantum m
chanics @39#. It allows us to associate different types
propagators to different parts of the relevant Hamilton
depending on their specifics. Here, we separateUee(V5) @see
Eq. ~20c!#, which has a unique singular point (a5p/4,u12
50), from the rest of the Hamiltonian

H~t;V5!5
1

2

T ~V5!

R~t!
1Uen~a!, ~37!

which has two lines of singularities ata50 andp/2, respec-
tively. Then, we associate an exponential propagator to
operator that is the most regular, and a Crank-Nicholson@30#
propagator to the singular most one. Accordingly, the
ementarydt propagation step consists of propagation o
dt/2 with the Crank-Nicholson propagator related
H(t;V5), followed by propagation overdt with the expo-
nential of the operatorUee(V5), and finally overdt/2 again
with the Crank-Nicholson propagator associated w
H(t;V5). The propagation operator over the elementary s
dt thus reads

Pdt~t;V5!5Pdt/2~t1dt/2;V5!exp@2ıdtUee~V5!#

3Pdt/2~t;V5!1O~dt3!, ~38!

where

Pdt/2~t;V5!5F11ı
dt

4
HS t1

dt

4
;V5D G21

3F12ı
dt

4
HS t1

dt

4
;V5D G . ~39!

Applying this operator step by step, one can, starting fr
the initial wave function, evaluate the wave function at ar
trary larget andR(t).

The implementation of this scheme requires us to cho
a convenient representation of the various operators ac
on the angular variables (a,V1 ,V2). In this respect, it is
important to recall that the singular regions surroundinga
50 andp/2, which correspond to single ionization with e
citation, scale asr nmax

/R, r nmax
being the extension of the

highest Rydberg state excited. This makes these singular
much more difficult to handle in the outer region than in t
inner region. Accordingly, the basis set representation of
variablea used in the inner region has to be abandoned
favor of a nonuniform grid representation with a high dens
of points in the vicinity of the singularities. On the oth
hand, the representation of the (V1 ,V2) variables based on
the bipolar spherical harmonicsY l l 11

1M (V1 ,V2) used in the
inner region is retained in the outer region. Details are giv
in the Appendix. Here, we only wish to point out the co
trasted properties of the resulting representations ofH and
Uee. Namely, the local potentialUee is diagonal ina and in
(g,u), whereas it couples different angular momental 5” l 8.
By contrast,H is diagonal in the basis of bipolar harmonic
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Regardinga, H turns out to be tridiagonal, as we evalua
the second order derivative with respect toa that occurs in
T(V5) using the three-point differentiation formula. The
very different structures of the representations ofH andUee
confirm the relevance of the particular splitting we ha
chosen.

Let us now summarize the main advantages of our pro
gation scheme.

The first one is that this propagation scheme is compu
tionaly fast. This is because the propagator associated w
the t-independente2e repulsion operatorUee(V5) can be
computed once and for all. And, also, because the evalua
of the t-dependent Crank-Nicholson propagator amounts
the inversion of a tridiagonal matrix, a task which can
completed using a fast algorithm involving onlyO(N) mul-
tiplications, withN the dimension of the matrix@30#. In ad-
dition, the uniform mesh we use in the mock time corr
sponds to a quasiexponential mesh for the hyper-radiu
largeR, wherep(R).A2E, so thatR(t).exp(tA2E). This
allows a quick propagation of the system up to very lar
values of the hyper-radius, typically up toRmax5105 a.u. in
what follows.

The second advantage is that it isexplicitly unitary.
Namely, the Crank-Nicholson propagator is unitary by co
struction. Moreover, we calculate the representation of
exponential propagator as a series expansion in powers o
representation ofUee, a procedure which yields a unitar
matrix to all orders. The unitarity of the full propagator fo
lows. It guarantees theexplicit conservation of the total flux
throughout the external region. Accordingly, the total ioniz
tion cross section determined in the preceding section fr
the total flux at the border of the internal region@see Eq.
~28!#, is conserved by propagation.

Another advantage of our propagation scheme is tha
allows one to visualize the evolution of the wave functi
from the boundaryR0510 a.u., where it is formed, to
Rmax5105 a.u., where the cross sections are extracted. T
provides valuable physical information regarding the dyna
ics of the complex multichannel photoionization proce
considered. This peculiarity of our approach will be illu
trated in the following section.

V. RESULTS

The absolute TDCS recorded by Brau¨ning et al. @8# at 20
eV above threshold are arguably the best measurements
which the results of any emerging theory should be co
pared. This is due primarily to the absolute character of th
measurements, which, additionally, cover a wide range
energy sharings and detection geometries. Yet the statistic
these measurements are rather poor.

These experiments were performed using a synchro
radiation that was very close to full linear polarization (S1
50.98). We present their results in comparison with o
HRM-SOW calculations using a reference system with thz
axis along the direction of the photon beam, and thex axis
along the main axis of polarization. The ejection directionk̂1

of electron 1 is then located by the angleu15( x̂,k̂1), ranging
1-7
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FIG. 2. TDCS at 20 eV above
threshold in b(eV)21(sr)22 ver-
susu2 in degrees for the geometr
defined by 20 °,u1,40 ° and
0 °,f12,20 °. The energyE1 of
the first electron is noted on eac
panel. Filled circles with error
bars: measurements by Brau¨ning
et al. @8#. Thick solid line: present
calculation for the energyE1.
Thin dotted lines: present calcula
tions for the neighboring energie
E11DE1/2 and E12DE1/2, as
discussed in the text.
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from 0 to 2p, in the (x̂,k̂1) plane, and by the anglef1,
ranging from 0 top, between the (x̂,ŷ) and (x̂,k̂1) planes.
The same conventions are used for electron 2. Brau¨ning
et al.’s results were found to be rotationally invariant wi
respect to the main axis of polarization within experimen
accuracy. The TDCS accordingly are considered as dep
ing only on the difference, notedf12, between the anglesf1
andf2, but not on the absolute values of these angles th
selves. We have averaged our calculations over the fi
angular sectors used by Brau¨ning et al. in sorting their data,
that is to sayDu1520 °, andDf12520 °. We have also il-
lustrated the sensitivity of the results to the sharing of
energy between the two electrons by plotting together
TDCS corresponding to the three energiesE1 , E12DE1/2,
and E11DE1/2, which span the energy interval used
Braüning et al. to sort their data. The latter isDE152 eV at
unequal energy sharing, andDE154 eV at equal sharing. A
special situation occurs whenE151 eV andE1519 eV. At
E151 eV, we have not displayed the result for 0 eV, whe
single and double ionization cannot be disentangled, but
0.1 eV. At E1519 eV, similarly, we have displayed the re
sult for 19.9 eV instead of 20 eV.

Figure 2 illustrates the evolution of the TDCS with th
energy ratio for a fixed geometry. It can be compared dire
with Fig. 4 in Braüning et al., where the measurements a
displayed together with the associated CCC calculations.
garding the shape of the TDCS, the overall agreement
tween our theory and experiment is good, as is good
agreement between CCC and experiment. In fact, the exp
ment is not accurate enough to allow the shape of the TD
to decide between these two theories. However, the situa
is quite different if one is interested in the absolute mag
tude of the TDCS. In this respect, the very good agreem
between the HRM-SOW results and experiment should b
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appreciated keeping in mind that our approach does not
volve any adjustable parameter, and that we have not app
anya posteriorirescaling factor to the raw results that com
out of it. This contrasts with the CCC results, which had
be rescaled by the ratios of the SDCS expected on the b
of current experimental and theoretical knowledge to the r
SDCS obtained using CCC, before they could compare w
experiment favorably as shown in Fig. 4 of@8#. These factors
were 1.3, 0.75, 1.0, 1.5, and 2.3 for the energy pairs~1,19!,
~3,17!, ~5,15!, ~7,13!, and~10,10!, respectively@8#. Interest-
ingly, Fig. 2 also shows that the sensitivity of the results
the energy ratio of the two electrons becomes more imp
tant with increasing asymmetry in the energy sharing.

Figure 3, which illustrates the evolution of the TDCS wi
the ejection direction of the first electron for three differe
energy ratios, can be compared directly with Figs. 3 and 5
@8#. This comparison calls for the same remarks as th
inspired by Fig. 2. Additionally, one can note that the sen
tivity to the energy sharing is maximal when the first electr
is emitted along the main axis of polarization, which mak
this u150 ° geometry the most challenging for both theor
ticians and experimentalists. It is worth noting that the TDC
obtained atu150 ° and u1590 ° must be symmetric with
respect tou15180 ° andu15270 °, respectively. The defec
of symmetry in the angular pattern measured atu1590 ° and
E1510 eV, where the maximum of the right-hand-side lo
has no overlap with its left-hand-side counterpart, provid
an interesting visualization of the statistical nature of t
measurements. In the most challengingu150 ° geometry,
unfortunately, Brau¨ning et al. have chosen to improve th
statistics by adding together the counts obtained at symm
ric points with the counterpart that data are displayed in o
one half plane. This makes the visual appreciation of
quality of the experiment more difficult. Our calculations f
1-8
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FIG. 3. TDCS at 20 eV above threshold in b(eV)21(sr)22 versusu2 in degrees. The geometrical arrangment is defined by 0 °,f12

,20 °, for all panels, and by 350 °,u1,10 °, 20 °,u1,40 °, 50 °,u1,70 °, and 80 °,u1,100 °, for the panels in each column of th
array of graphs, starting from the left, as indicated on the figure. Each line in the array of graphs corresponds to a given energy o
electron: from top to bottom,E1510, 17, and 3 eV, as indicated on the figure. The other conventions are as in Fig. 2.
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that case are given in the left column of Fig. 3.2 Their agree-
ment with experiment, which is very good atE1510 eV and
E1517 eV, is surprisingly poor atE153 eV. The CCC
results for this geometry~see Fig. 5 of@8#!, in contrast, agree
well with experiment atE1510 eV and E153 eV, but
poorly atE1517 eV, despite the rescaling factor applied

Integrating the TDCS over the direction of the seco
electron yields the DDCS defined by Eq.~11! above. The
DDCS has a very simple angular structure which is descri
in linear polarization by

d(2)s

dE1dV1
5

1

4p

d(1)s

dE1
@11bP2~cosq1!#. ~40!

This expression is very similar to that of the differential cro
section for single photoionization. However, in the abo
expression, theb parameter depends on the sharing of
energy between the two electrons, and not only on the t
energy available above threshold. This parameter has no
cial behavior in the exchange of the energies of the t
electrons: it is neither symmetric, nor antisymmetric. Theb
parameters computed under the assumption of full linear

2They differ from the ones shown in Figs. 1~d!, 1~e!, and 1~f! of
@33# due to a missing factor 2 in Eq.~8! of @32#, and to the physi-
cally inappropriate averaged momentum defined by Eq.~4! of @33#.
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larization are compared with the measurements by Weh
et al. @40#, on top of Fig. 4. The agreement between theo
and experiment, which is very good at 5, 10, and 21
excess energy, deteriorates at higher energies, where s
opposite-phase oscillations appear on the calculated
measured parameters, respectively. Surprisingly, only li
attention has been paid tob by experimentalists up to now
namely, the dependence ofb on the energy sharing has on
been studied by Wehlitzet al. @40#. We hope that the struc
tures that theory predicts in the dependence ofb on the
energy sharing will renew the interest of experimentalists
this quantity. Namely, more extensive experimental data
needed in order to ascertain the accuracy of the present
culations regardingb.

Integrating the DDCS with respect to the direction of t
first electron yields the SDCS, also referred to as the ene
sharing cross section, a quantity that is well known to
invariant if the energies of the two electrons are int
changed. At the bottom of Fig. 4, we compare our SD
with the absolute measurements by Wehlitzet al. @1#. The
agreement between theory and experiment is excellent a
as the shape is concerned. The curves, which are very fla
the low-energy side, become more down convex at the h
est excess energies, a trend that could already be observ
the 2SC calculations by Proulx and Shakeshaft@16#. It is
worth to recall also that the equiprobability of all energ
sharings was one conclusion of Wannier’s threshold the
1-9
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@23#. The SDCS computed using HRM-SOW have huge
structures aroundE1 /E50 and 1, so narrow that they cann
be distinguished from the vertical axis at the scale of
figure, nor can they be resolved despite the very densea grid
used in these calculations. These structures correspon
single ionization to the excited ionic states. Turning now
the magnitude of the SDCS, we notice that the position
the computed curve relative to the experimental data evo
continuously with energy, being 30% too high at 5 eV, an
few percent too low at 41 eV. In this respect, it is importa
to recall that Wehlitzet al.’s data @1# were calibrated using
the values of the total photoionization cross section comp
by Marr and West@41#, which are now known to be overes
timated by 9 to 16 % in the 5–41 eV range@4#. Recalibrating
Wehlitz et al.’s data using Samsonet al.’s more recent work
would affect the comparison between these data and our
culations: the discrepancy would increase at low energy,
disappear at high energy, a situation that can be unders
from Fig. 1 of the present paper and the associated c
ments.

We cannot abandon the subject of energy-sharing c
sections without contrasting the natural obtention of SD
using HRM-SOW with the intrinsic inability of CCC to pro-
duce reasonable approximations of these quantities. Nam

FIG. 4. Top panel: asymmetry parameterb versus the energy
ratio E1 /E for five different excess energies above threshold: fr
top to bottomE55, 10, 21, 31, and 41 eV. The thin horizontal line
give the zero of eachb axis. The unique scale used can be re
from theb axis above the highest zero line. Full circles with err
bars: measurements by Wehlitzet al. @40#. Solid lines: present cal-
culations. Bottom panel: SDCS in kb/eV versus the energy r
E1 /E for the same excess energies as on the top panel. Full cir
measurements by Wehlitzet al. @1#. Solid lines: present calcula
tions.
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despite persevering efforts, the unphysical asymmetric
oscillating character of the SDCS obtained from CCC h
not been remedied yet. The only improvement achieved c
cerns the value of the SDCS at equal energy sharing, wh
could be obtained, if one follows Stelbovics@42#, by multi-
pying the raw CCC value by a factor 4. The equal ene
sharing SDCS obtained using this procedure@43# are com-
pared on top of Fig. 5 with the present HRM-SOW and 2SC
calculations, respectively. These two latter theories ag
very well with each other, whereas the CCC results
slightly lower, the more so the lower the energy. This fac
4 thus seems to allow one to extract reasonable values o
equal-energy sharing SDCS from CCC calculations.

The natural way to compute the ICS for double photoio
ization is to substract the cross sections for single ioniza
to the ground and excited ionic states from the total ioni
tion cross section given by Eq.~28!. As this procedure does
not require any explicit description of the double continuu
it is simple and accurate. Yet we prefer to compute the I
by integrating the SDCS over the energy of the first electr
because our purpose here is to provide a complete chec
the consistency of our method, the object of which is to co
with the double continuum. Performing this integratio
which is defined by Eq.~14!, requires to suppress the contr
butions of single ionization in some approximate way. To
that, we have found it convenient to replace the raw SD
that comes out of our calculations by an even sixth-or

o
s:

FIG. 5. Top panel: equal-energy sharing SDCS in kb/eV ver
the total excess energy above threshold in eV. Filled circles: pre
calculation. Full line: 2SC calculation by Pont and Shakeshaft@17#.
Dashed line: CCC calculation by Kheifets and Bray@43#. Bottom
panel: integrated cross section for double photoionization, in
versus the total excess energy above threshold, in eV. Dots
error bars: experiment by Samsonet al. @10#. Triangles down with
error bars: experimental data compilation by Bizau and Wuillem
@34#. Dashed line: calculation by Pont and Shakeshaft@17#. Solid
line: present calculations.
1-10
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polynomial in the variableE12E, the coefficients of which
are determined by matching to the original SDCS at fo
points. One of these points isE15E/2, and the three other
are chosen to span the interval ]0,E/2@ in such a way that the
resulting polynomial can only be distinguished from the r
SDCS in the narrow singular regions aroundE150 andE1

5E. The ICS we present are obtained by integrating th
polynomial approximations from 0 toE/2. They are stable to
within a few percent with respect to any reasonable cha
in the location of the matching points. Our results are co
pared at the bottom of Fig. 5 with the data compilation
Bizau and Wuillemier@34#, and with the latest measuremen
by Samsonet al. @10#, which are systematically lower tha
the former. The discrepancy between these two sets of d
which reaches a maximum of the order of 15% around 50
excess energy, has not been fully explained yet. T
HRM-SOW calculations lie at the bottom of the error ba
associated with the first set of data. The 2SC calculations
Pont and Shakeshaft@17#, in contrast, are located at the to
of the error bars associated with the second set of meas
ments. These two sets of experimental data will have to
reconciled somehow, and our approximate calculation of
ICS replaced by an explicit subtraction of the sing
ionization channels, before this puzzling situation can
commented on any further.

As already noted, one advantage of our method is tha
allows one to follow the evolution of the wave functio
throughout the external region. The following figures th
display, for variousR values in the interval@R0 ,Rmax#, the
renormalized fluxes that converge at infinity to the TDC
the DDCS, and the SDCS, respectively, according to E
~10!–~12!. We give them the same name as their respec
asymptotic limits, although it is clearly an abuse of langua
Note that the approximate procedure we use to compute
ICS becomes meaningless asR decreases, because the s
Da.(0.75nmax

2 /R) rad of the singular regions associat
with single ionization increases, untill it covers the entirea
range fromR5100 a.u. downwards. Accordingly, we do n
present anyR evolution of the ICS.

The left column and the right one in Fig. 6 display th
same TDCS on different vertical scales. The scale used in
left column is appropriate for visualizing the patterns o
tained atR5R0. As they are still entangled with the dom
nant single-ionization channels, their absolute values
much higher than those of the TDCS to which they conve
at largeR. Their shapes result from the incomplete develo
ment of the electron-electron correlations, which make
very likely for the two electrons to be observed in the sa
half plane, for instance. The scale used in the right colu
focuses on the evolution of the angular patterns fromR
5102 a.u. onwards. At equal energy sharing~see Fig. 6,
middle line!, the angular pattern extracted atR5102 a.u. is
already in excellent agreement with the measured TDCS
contrast, for the very asymmetric energy sharings~see Fig. 6,
top and bottom lines!, it is still very different from the ex-
perimental TDCS in shape as well as in magnitude: the r
tive heights of the two observed structures are wrong,
the absolute value is too high by as much as a factor 2. T
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demonstrates the need to propagate at least up toR
5103 a.u. in these particular dynamical situations.

Figure 7 illustrates theR evolution of the asymmetry pa
rameterb at 21 eV excess energy. The curve obtained aR
5102 a.u. still misses 5 experimental points in 14, where
that extracted atR5103 a.u. misses only one, and s
achieves an excellent agreement with experiment. This c
firms the need to propagate up to thousands of atomic u
away from the core, as already noted above.

Figure 8 shows theR evolution of the SDCS obtained a
21 eV excess energy. The vertical scale on the left pane
chosen to provide a full view of the pattern obtained atR0.
As R increases, the middle part of this pattern widens, fl
tens, and goes down, while the two side peaks get m
narrower and higher, so that the total outgoing flux, rep
sented by the area under the curve, remains constant. AR
5100 a.u., the side peaks are already so narrow that
can hardly be distinguished from the vertical axis, and
high that their maxima are located far above the figure.

FIG. 6. TDCS at 20 eV above threshold, in b(eV)21(sr)22,
versusu2 in degrees. The geometry is defined by 20 °,u1,40 °
and 0 °,f12,20 °. Each line in the array of graphs corresponds
a fixed energy of the first electron: from top to bottom,E151, 10,
and 19 eV, as indicated on the figure. The left and right column
the array display the same results but on different vertical sca
Full circles with error bars: measurements by Brau¨ning et al. @8#.
Dotted lines: present calculations atR510 a.u. Dashed lines: sam
at R5100 a.u. Long-dashed lines: same atR51000 a.u. Thick
solid lines: same atR5105 a.u. where convergence is reached. T
angular range between the two vertical lines atu25120 ° and 300 °
corresponds to emission of the two electrons in opposite
planes.
1-11
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other words, with increasingR, flux is leaking out of the
Wannier ridgea5p/4 into the potential wells ata50 and
p/2, thus ending in the single-ionization instead of in t
double-ionization channel. The right panel concentrates
the evolution betweenR5100 a.u. andR51000 a.u. The
result obtained atR5102 a.u. is within 20% of the experi
mental value throughout most of the energy range availa
excluding the neighborhood of the boundariesE150 eV
and E1521 eV. So, if one is interested in significant
asymmetric energy sharings or in a few percent accur
propagation up toR5103 a.u. is clearly required. The sam
conclusion was drawn before from the inspection of
TDCS and DDCS evolutions on Figs. 6 and 7.

VI. CONCLUSION

We have presented the HRM-SOW method in detail. The
central idea, which is to combineR-matrix and semiclassica
techniques within a hyperspherical coordinate system
most likely open to other applications than the one repor
on here. The method does not involve any adjustable par
eter and so can be characterized asab initio. It is accurate
enough numerically to provide results that are gauge inv
ant to an excellent approximation.

We have displayed a wide selection of computed ioni
tion cross sections, ranging from the fully differential to t
fully integrated type, and regarding single- as well as doub

FIG. 7. Asymmetry parameterb at 21 eV above threshold ver
sus the energy of one electron, in eV. Full circles with error ba
measurements by Wehlitzet al. @40#. The conventions for the lines
are the same as in Fig. 6.

FIG. 8. SDCS at 21 eV above threshold, in kb/eV, versus
energy of one electron, in eV. The left and right panels display
same results but on different vertical scales. Full circles: meas
ments by Wehlitzet al. @1#. The conventions for the lines are th
same as in Fig. 6.
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ionization processes. The overall agreement between t
data and the corresponding absolute measurements is
good, not only in shape, but also, more importantly, in ma
nitude. This demonstrates that the approximations ente
the method, which is not formally exact, are well founde
HRM-SOW thus emerges as a robust and reliable metho

The present calculations have been performed on a p
PC with 768 Mo RAM. This limited memory has prevente
us from testing the convergence of our results as fully as
wished, namely, by increasing the dimensions of all rep
sentations involved in this six-dimensional problemsimulta-
neously, and by taking a matching hyper-radiusR0 larger
than 10 a.u. The very next step in the development
HRM-SOW will therefore consist of implementing the cod
on a powerful computer center, in order to get rid
memory-shortage problems, and to definitely assess the
curacy of the method in the various energy domains of in
est. At this stage, the comparison with accurate rela
TDCS measurements performed at intermediate energies
der various well-defined conditions of polarization@11,12#,
as well as with absolute TDCS measurements at very
energies@13#, will be particularly relevant.

As soon as its accuracy will have been characterized w
confidence, HRM-SOW will reveal its whole potential by
providing, beyond the values of the measurable cross
tions, valuable informations on the dynamics of the proc
that neither experiment nor other theories can reach dire
to date. This gives HRM-SOW a significant and distinctive
advantage over other methods.

The gerade and ungerade complex amplitud
M g(Rmax;a,u12) and M u(Rmax;a,u12), for instance, are
the elementary dynamical constituents of any doub
photoionization cross section, and so, they contain comp
information on the asymptotics of the process@44,12#. Yet
these quantities have never been computed using anab initio
theory, and experiment can only provide indirect, partial, a
moderatly accurate information about them. Therefore, i
worth to note that these amplitudes occur naturally
HRM-SOW, which puts us in a position to obtain accura
representations of them in the near future, and so, to con
ute to the current debate regarding their parametrization
deciding way@45#.

TheR evolution of the structure of the total outgoing flu
is a quantity that can hardly be an object of experimen
study. Nevertheless, our knowledge of the dynamics of
process will remain incomplete as long as we will not ha
any reasonable idea of the way the total outgoing flux
redistributed over the final outgoing channels in the course
the system expansion. Yet such an idea can be obtained
HRM-SOW, since this method allows one to follow the ev
lution of the photoabsorption wave function from the bord
of the inner region, where it is formed initially, up to th
asymptotic region, where the measurements are perform
In this respect, the present paper already suggests tha
very asymmetric energy sharing situations can only
handled if an accurate description of the system is availa
from the origin to thousands of atomic units from the core
is worth to note that to date, our method is the only one t
offers such a description.
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APPENDIX: COMPUTATIONAL DETAILS

The numerical implementation of our approach rel
upon specific representations of the relevant wave funct
and operators. Below, we define these representations,
point out the dimensions they must be given in order
converge the calculation in the illustrative case of 20
above the He double-photoionization threshold.

Whatever the region considered, we use the same bas
representation of the dependence on the variables (V1 ,V2),
based on the gerade and ungerade bipolar spherical har
ics,

u
gYl ,l 11

1M ~V1 ,V2!5
1

A2
@Yl ,l 11

1M ~V1 ,V2!6Yl ,l 11
1M ~V2 ,V1!#.

~A1!

These functions, which are, respectively, symmetric~gerade!
and antisymmetric~ungerade! in the exchange ofV1 andV2,
occur naturally in the construction of the1PM

o two-electron
orbital wave function produced by one-photon absorpt
from the He ground state. In Eq.~A1!, l and l 11 are the
angular momentum of the two electrons, and the bipo
spherical harmonicsYl ,l 11

1M (V1 ,V2) agree with the conven
tions used by Varshalovichet al. @36#. Our calculations were
converged withnl55 harmonics in the inner region, an
nl8525 harmonics in the outer region. This reflects the e
lution of the two-electron wave function toward a product
two uncorrelated Coulomb waves, the partial-wave exp
sions of which are dominated at large distances by high
gular momenta.

The representation of the dependence on the variaba
has to meet higher requirements in the outer region c
pared to the inner region.

In the inner region, we use a basis set representa
which is designed to comply with the requirements of~i!
being composed of basis vectors that are either symm
~gerade! or antisymmetric~ungerade! with respect to the ex-
change of the radial coordinates of the two electrons, tha
to say with respect to the transformationa→p/22a; and
~ii ! being able to reproduce the behavior of the solution
Eqs. ~21! and ~23! at the boundaries of thea interval of
variation. The analysis of the singularities of the kinet
energy operatorT(V5) shows that this behavior scales
a l 11 and (p/22a) l 11 arounda50 andp/2, respectively.
The set

gvn
l ~a!5~sina cosa! l 11 cos 4na, n50, . . . ,na21,

~A2a!

uvn
l ~a!5~sina cosa! l sin 4na, n51, . . . ,na

~A2b!
03271
n
g

s
s
nd

o

set

on-

n

r

-
f
-

n-

-

n

ric

is

f

-

is among the simplest possible choices. The cos 4na(sin 4na)
factors are the basis vectors of the Fourier expansion o
periodic function built from an even~odd! function defined
on the interval@0,p/2#. The u

gvn
l (a) are orthonormalized

within each subspace of given orbital angular momentul
and symmetry (g,u) to yield the finala basis set. Our cal-
culations were found to converge withna540 basis vectors.

In the outer region, we use the nonuniform grid repres
tation defined by

ak5
p

4
~12cos 2xk!, xk5

pk

2~na811!
, k51, . . . ,na8 .

~A3!

The high density of points in the vicinity ofa50 andp/2
allows us to describe accurately the behavior of the w
function in these regions, which correspond to one-elect
ionization with excitation of the residual ion. The accura
of the propagation scheme is guaranteed as long as the m
mum a step,p3/@8(na811)2#, remains significantly smalle
than the extensionr nmax

/R of the singular regions mentione

above. Hence, a grid of dimensionna8 allows one to propa-
gate up to Rmax!8r nmax

(na811)2/p3 that is to say

Rmax.na8
2 , accordingly, the current paper was perform

with na85100 andRmax5104, and we usedna851000 and
Rmax5105 for the final high-precision calculations.

The treatment of the hyper-radiusR is very different in the
inner and outer regions.

In the outer region, the propagation over the mock-timt
is based on a constant mock-time stepdt which is taken
equal to 1023 a.u. in all the present calculations. TheR grid
produced in propagation appears to be quasiexponentia
already noted in the text, which allows fast propagation
the very large distances where the two electrons correla
vanishes.

In the inner region, we use a Lagrange mesh represe
tion of the reduced hyper-radius,r5R/R0, defined on the
interval @0,1#. This representation, which amounts to a p
ticular case of DVR~discrete variable representation! @46#,
uses two related objects:~i! a grid of points, which consists
in the zerosr i , i 50, . . . ,nr of the Gegenbauer polynomial
Gnr

6,6(r) @47#; and~ii ! the basis of normalized Lagrange fun

tions

hi~r!5a ir
5/2

Gnr

6,6~r!

r2r i
,

a i5~21! iAr i~12r i !
~2nr15!!

nr! ~nr15!!
, i 51, . . . ,nr ,

~A4!

which obey the orthonormalization condition

E
0

1

hi* ~r!hj~r!dr5d i j , ~A5!
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as well as the characteristic relation of Lagrange interpo
tion functions

hi~r j !5l i
21/2d i j . ~A6!

Thel i are the weights of the Gaussian quadrature associ
with the grid pointsr i . The choice of this specific Lagrange
Gegenbauer mesh has been dictated by the physical bo
ary conditions atr50 and 1. Atr51, the basis functions, o
part of them at least, have to be nonzero to allow for so
flux leaving the inner region. Atr50, they must be able to
reproduce the behavior of the solutions of Eq.~21!, which
vanish at least as rapidly asR7/2. In fact, the practical reso
lution of Eq. ~21! on the Lagrange mesh implies premul
plying this equation byR and introducing the reduced func
tion Fk(R,V5)/R @48#: therefore, ther5/2 behavior of the
basis functions given by Eq.~A4! is adapted to the descrip
tion of the reduced function. GivenR0510 a.u., a 15 point
mesh has proved sufficient to converge our calculations.

It is instructive to present a few orders of magnitude
help the reader appreciate the weight of the computatio
task. The dimension of the representation used to solve
~21! is 23nl3na3nr , so that, at convergence, a 600
36000 matrix has to be stored and diagonalized. The dim
sion of the vector to propagate in the outer region is 23nl8
3na8 , which reaches 50 000 for high-precision calculatio
Finally, about 7000 elementary mock-time stepsdt
51023 a.u. are needed to propagate the wave function fr
R0510 a.u. toRmax5105 a.u.

The computation of the matrix elements of the vario
operators within the representations given above is strai
forward. Nevertheless, it is worth mentioning that~i! the in-
tegrations overV1 andV2 are performed exactly using stan
dard Racah algebra;~ii ! the integrations overa are
performed exactly using either exact Gaussian quadrature
nd

s.

,

ys

tz

-

.
t-

.
,
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the residues theorem; and~iii ! the integrations overr are
performed exactly using the Gaussian quadrature assoc
with the mesh. Indeed the latter leads to compact exact a
lytical expressions of the potential- and kinetic-energy ope
tors, following the distinctive property of Lagrange mesh
@49#.

We can thus state that, within the representation descr
above, the computation of theR-matrix eigenvectors from
Eq. ~21! is exact. A consequence of this exactness is
excellent accuracy of our calculation of the energies of
lected1Po bound states of He, already mentioned in the te

In the outer region, the accuracy of the grid representa
used for the variablea could be questioned given the stron
singularities of the potential ata50 andp/2, and the limited
precision of the three-point differentiation formula used
evaluate the second-order derivative with respect toa. How-
ever, test calculations withna853000 mesh points have con
firmed that the results presented in this paper, which h
been obtained withna851000 mesh points, are converged
better than 1% with respect tona8 . This illustrates well the
advantages of using a nonuniform grid adapted to the lo
rate of variation of the wave function considered.

In the present version of our codes, we have described
ground state of He by the 20 terms Hylleraas-type wa
function of Hart and Herzberg@50#. It follows that the pro-
jections of the inhomogeneous termFG(R;V5) on the
R-matrix eigenvectorsFk(R;V5) can only be obtained by a
threefold numerical integration, which turns out to be ve
accurate although not formally exact. In the future, we p
to use the He ground-state wave function obtained by solv
Eqs.~24! and~25!, with the inhomogeneous term suppress
within a 1Se representation akin to the1Po one used pres-
ently for computing the wave function of the photoabso
tion state. The computation of the projections will then
quick and exact.
Y.

v.

hys.
@1# R. Wehlitz, F. Heiser, O. Hemmers, B. Langer, A. Menzel, a
U. Becker, Phys. Rev. Lett.67, 3764~1991!.

@2# O. Schwarzkopf, B. Kra¨ssig, J. Elmiger, and V. Schmidt, Phy
Rev. Lett.70, 3008~1993!.

@3# A. Huetz, P. Lablanquie, L. Andric, P. Selles, and J. Mazeau
Phys. B27, L13 ~1994!.

@4# J. A. R. Samson, Z. X. He, L. Yin, and G. N. Haddad, J. Ph
B 27, 887 ~1994!.

@5# O. Schwarzkopf and V. Schmidt, J. Phys. B28, 2847~1995!.
@6# P. Lablanquie, J. Mazeau, L. Andric, P. Selles, and A. Hue

Phys. Rev. Lett.74, 2192~1995!.
@7# G. Dawber, L. Avaldi, A. G. McConkey, H. Rojas, M. A. Mc

Donald, and G. C. King, J. Phys. B28, L271 ~1995!.
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Böcking, J. Phys. B31, 5149~1998!.

@9# V. Mergel, M. Achler, R. Do¨rner, Kh. Khayyat, T. Kambara, Y
Awaya, V. Zoran, B. Nystro¨m, L. Spielberger, J. H. McGuire
J. Feagin, J. Berakdar, Y. Azuma, and H. Schmidt-Bo¨cking,
J.

.

,

Phys. Rev. Lett.80, 5301~1998!.
@10# J. A. R. Samson, W. C. Stolte, Z. X. He, J. N. Cutler, and

Lu, Phys. Rev. A57, 1906~1998!.
@11# J. P. Wightman, S. Cvejanovic´, and T. J. Reddish, J. Phys. B

31, 1753~1998!.
@12# K. Soejima, A. Danjo, K. Okuno, and A. Yagishita, Phys. Re

Lett. 83, 1546~1999!.
@13# A. Huetz and J. Mazeau, Phys. Rev. Lett.85, 530 ~2000!.
@14# M. Brauner, J. S. Briggs, and H. Klar, J. Phys. B22, 2265

~1989!; F. Maulbetsch and J. S. Briggs,ibid. 26, 1679~1993!;
J. Berakdar and J. S. Briggs, Phys. Rev. Lett.72, 3799~1994!.

@15# I. Bray and A. T. Stelbovics, Phys. Rev. A46, 6995~1992!; I.
Bray and D. V. Fursa,ibid. 54, 2991 ~1996!; I. Bray, Phys.
Rev. Lett.78, 4721~1997!; A. Kheifets and I. Bray, J. Phys. B
31, L447 ~1998!.

@16# D. Proulx and R. Shakeshaft, Phys. Rev. A48, R875~1993!.
@17# M. Pont and R. Shakeshaft, J. Phys. B28, L571 ~1995!.
@18# M. Pont, R. Shakeshaft, F. Maulbetsch, and J. S. Briggs, P

Rev. A53, 3671~1996!.
@19# A. K. Kazansky and V. N. Ostrovsky, J. Phys. B27, 447
1-14



c

-
lli-

.

n-
-

la

i,

-

.

-
B.

etz,

l

AB INITIO CALCULATION OF THE WHOLE SET . . . PHYSICAL REVIEW A 65 032711
~1994!; 28, 1453 ~1995!; Phys. Rev. A51, 3712 ~1995!; 52,
1775 ~1995!; J. Phys. B30, 921 ~1997!.

@20# M. S. Pindzola and F. Robicheaux, Phys. Rev. A57, 318
~1998!.

@21# J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B34,
L457 ~2001!.

@22# T. N. Rescigno, M. Baertschy, W. A. Isaacs, and C. W. M
Curdy, Science286, 2474~1999!.

@23# G. H. Wannier, Phys. Rev.90, 817 ~1953!.
@24# I. Vinkalns and M. Gailitis, inProceedings of the 5th Interna

tional Conference on Physics of Electronic and Atomic Co
sions~Nauka, Leningrad, 1967!, Abstracts pp. 648–650;Scat-
tering of Electrons on Atoms~Zinatne, Riga, 1967!, pp. 17–34.

@25# R. Peterkop, J. Phys. B4, 513 ~1971!; 16, L587 ~1983!.
@26# A. R. P. Rau, Phys. Rev. A4, 207 ~1971!; J. Phys. B9, L283

~1976!.
@27# J. M. Feagin, J. Phys. B17, 2433~1984!; 29, L551 ~1996!.
@28# T. N. Rescigno, C. W. McCurdy, W. A. Isaacs, and M

Baertschy, Phys. Rev. A60, 3740~1999!.
@29# J. S. Briggs and V. Schmidt, J. Phys. B33, R1 ~2000!.
@30# W. H. Press, S. A. Teulkolsky, W. T. Vetterling, and B. P. Fla

nery,Numerical Recipes in Fortran (The Art of Scientific Com
puting) ~Cambridge University Press, Cambridge, 1994!.

@31# P. G. Burke and W. D. Robb, Adv. At. Mol. Phys.11, 143
~1975!.

@32# L. Malegat, P. Selles, and A. Kazansky, Phys. Rev. A60, 3667
~1999!.

@33# L. Malegat, P. Selles, and A. Kazansky, Phys. Rev. Lett.85,
4450 ~2000!.

@34# J. M. Bizau and F. J. Wuillemier, J. Electron Spectrosc. Re
Phenom.71, 205 ~1995!.
03271
-

t.

@35# M. Le Dourneuf, Vo Ky Lan, and J. M. Launay, J. Phys. B15,
L685 ~1982!.

@36# D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonski
Quantum Theory of Angular Momentum~World Scientific,
Singapore, 1988!.

@37# D. Baye and P. H. Heenen, J. Phys. A19, 2041~1986!.
@38# S. Bashkin and J. O. Stoner,Atomic Energy Levels and Grot

rian Diagrams~North-Holland, Amsterdam, 1975!.
@39# M. D. Feit and J. A. Fleck, J. Chem. Phys.78, 301~1982!; 80,

2578~1984!; M. D. Feit, J. A. Fleck, and A. Steiger, J. Comp
Physiol.47, 412 ~1982!.

@40# R. Wehlitz ~private communication! based on the measure
ments reported in R. Wehlitz, F. Heiser, O. Hemmers,
Langer, A. Menzel, and U. Becker, Phys. Rev. Lett.67, 3764
~1991!.

@41# G. V. Marr and J. B. West, At. Data Nucl. Data Tables18, 497
~1976!.

@42# A. T. Stelbovics, Phys. Rev. Lett.83, 1570~1999!.
@43# A. S. Kheifets and I. Bray, Phys. Rev. A62, 065402~2000!.
@44# L. Malegat, P. Selles, and A. Huetz, J. Phys. B30, 251~1997!;

L. Malegat, P. Selles, P. Lablanquie, J. Mazeau, and A. Hu
ibid. 30, 263 ~1997!.

@45# S. Cvejanovic´ and T. J. Reddish, J. Phys. B33, 4691~2000!.
@46# J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys.82,

1400 ~1985!.
@47# M. Abramowitz and I. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1972!.
@48# M. Vincke, L. Malegat, and D. Baye, J. Phys. B26, 811

~1993!.
@49# L. Malegat and M. Vincke, J. Phys. B27, 645 ~1994!.
@50# J. F. Hart and G. Herzberg, Phys. Rev.106, 79 ~1957!.
1-15


