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Quasiclassical theory of dielectronic recombination in plasmas
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We consider the effects of plasmas on dielectronic-recombindB®) rates. Effects of plasmas electric
fields on DR rates are analyzed in detail in the space of parabolic quantum numbers. A quasiclassical approach
is used to obtain general analytical expressions for DR rates in the parabolic basis for arbitrary types of ions
having transitions without change of core principal quantum numhkens=0 transitiong responsible for the
main contribution to DR rates. The approach makes it possible to investigate scaling laws for dependences of
both total and differential DR rates on atomic parameters. Effects of electron collisions and ionization are taken
into account with the help of cutoff procedures. Numerical data are presented for Li- and Na-like ions under
typical plasma conditions. A comparison with numerical calculations for specific ions is presented.
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I. INTRODUCTION change of its principle quantum number(An=0 transi-
tions). The energy of these transitions is of the orderZof
Effects of electric fields on dielectronic recombination atomic units(a.u) so the energf =mv?/2 (v is the electron
(DR) rates are under broad investigation in last two decadeg/elocity) of the captured electron must be smaller tZat
see Refd1-5] and references there. These effects are conthe same time the ionization potential of the ion is of the
nected with an evolution of highly excited atomic statesorder ofZ? that is much larger than the electron enefgy
populated in the DR capture of an electron colliding with These conditions are simply the conditions of a classical
ions having complex cores. The main contribution to theelectron motion in the field of the multicharged ion
process comes from transitions without change of cores prin-
ciple quantum numbersA(=0 transition$. The electric E<z<Z? or Zelhv>1. (1.1
field and plasma effects can be separated into three groups:
(1) An enhance of the phase-space volume contributing 10 consequently, the electron captured in the field of the
the recombination due to a transformation of the ion atomicmulticharged ion, which undergoes no change in principal
energy states fron_1 the spher_ical quantization to the para!bo”&uantum number, can be considered on the basis of pure
one under the action of the fiel(®) a decrease of a quantity |assical mechanics. To do so let us consider matrix elements
of excited atomic states responsible for DR because of iongf the electron-electron interacti@?’/r 1, [ 1, is the distance
ization and energy-mixing effects in the electric field; 480 peonween atomi¢l) and colliding(2) electrond in the dipole
kinetic effe_cts_due to electron collisions after during the approximationr,r,/r3 presenting the wave function of the
core stabilization. . ..system as a product of the core wave function and the ex-
The effects mentioned are usually taken into account W'ﬂbited electron wave function. Then the matrix element is
fche help of specifi_c numer_ical calculations for a par'_[icularequal to the product of a core matrix elemeng)(; between
ion. At the same time the ion energy states responsible fotrhe initial (i) and finite(f) core states and the matrix element

DR are of an umv_ersal Rydbgrg type so DR effects musbf the electric fieldzlrg produced by the electron colliding
follow general scaling laws. It is a goal of the present paper

: . . - with the nucleus. The last one can be expressed in terms of
to investigate general properties of plasmas electric-field Effhe electron acceleratiod?r,/dt? according to the electron
fects on DR rates. Note that we are interested here in thF:notion equation in the ion2field
action of a plasma microfield, which is much more strong as '
compared with laboratory electric fields. So the atomic states 9 3 1o )
mixing effects can be considered to be full, an account of a refry=2""d7r,/dt". 1.2
partial mixing being described by a simple cutoff receipt.
The first group mentioned above is taken into account in the According to the correspondence principfd, the matrix
frame of a quasiclassical approach. elements make a transition to the corresponding Fourier co-
To make clear the reasons for the application of quasiclasefficients. This means that the matrix element from @)
sical methods, one should note that the plasma electrons res expressed in terms of the Fourier coefficients of its accel-
sponsible for strong dielectronic capture are classical onegration in the ion Coulomb field, as is well known in classi-
Really let us consider a multicharged ion with an ion chargecal electrodynamics. The square of these Fourier coefficients
Z and a complex atomic core having transitions withoutdetermines the intensities of the classical electron radiation
emission in a Coulomb field, s¢&]. Note that the classical
consideration is applicable even for strong inelastic electron
*Permanent address: RRC “Kurchatov Institute,” Kurchatov transitions when the change of the electron energy is large as

Square, 46, Moscow 123182, Russia. compared with its initial energy. It is due to the strong elec-
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tron acceleration in the attractive Coulomb potential being a The first results were obtained by Sommerfgld] for
basis of the so-called Kramers electrodynamics approach, séee-free radiative transitions in a Coulomb field. He also
Refs.[8,9]. performed a transition to the classical limit and obtained qua-
Electric-field ionization effects can be also taken into ac-siclassical formulas for matrix elements as a function of the
count by a cutoff of the sum over principal quantum numbersscattering angle. Taking into account the relationship be-
at its value corresponding to the critical valke of the tween the scattering angle and the electron orbital momen-

electric-field strengtlisee[9]) tum |, one quickly reproduces Kramers classical formulas
5 from Sommerfeld results. The same results were obtained in
Fe=ZFaln*, (1.3 Ref.[12] by the direct calculation of free-bound matrix ele-
_ ) ) ~ments with further transition to the classical limit.

whereZ; is the ion chargef-,=6.8x 10° V/cm is the typi- The second way is connected with the relationship be-

cal value of the atomic-field strength responsible for the ion+yeen the rateW, and a partial electron excitation cross

Ization. o ~ sectionoeydl) near threshold10],

Contributions of kinetic effects due to electron collisions
are taken into account in the present paper as well with the (214 1)gWa(n) = Z2n 3w g o)/ 722, (2.3

help of a cutoff procedure.

where g; ¢, are statistical weights and a transition fre-

IIl. QUASICLASSICAL THEORY FOR AUTOIONIZATION quency equal to the difference between the initial and final
DECAY RATES energies of the core energy levels.
The general formula for DR recombination rates takes the, 1N€ €lectron-excitation cross section fAn=0 transi-
form [1-5,1( ftlons can bg calculated in the frame of pure classical mechan—
ics. To do it let us use a classical version of the equivalent
47Ry\¥2g, photons method proposed by Ferjh#].
QDR(n):( - ) —(a9)°Wg According to the Fermi conceptiofil4] of equivalent
9 photons(EP) the electromagnetic field produced by an exter-
o 72 W, (n,k,m) nal particle(e.g., an electronat a multichargefd-ior(MCI)
Xexp —=+_—— K location may be interpreted as a flux of equivalent photons
T 2n°T)km Wr+Wa(n.k,m) incident on the MCI. It may be shown that such a description

(2.1) is applicable provided the dipole approximation for the inter-
action between the bound electron of the MCI and the inci-

where T is an electron temperaturey; ; are statistical —dent electron of the plasma. The latter approximation univer-
weights on an initial and a finitef atomic core stated\z is  sally treats all the processes of an energy loss by the incident
a radiative transition probability inside an ion cowd, is an  electron(either due to the radiation emission during a colli-
autoionization decay rate of an excited atomic energy levesion with an ion or due to an inelastic nonradiative collision
with a principal quantum numberand parabolic electricdl ~ with an ion as the processes of the emission (t#al or
and magnetian quantum numbersy is a frequency for a €equivalent, respectivelyphotons. The probability of both
transition withAn=0 inside the coreq, is the Bohr radius. Pprocesses is determined by the dipole matrix element for the

Atomic units (a.u) will be used below. corresponding inelastiradiative or nonradiativetransition
The radiative decay rate is expressed simply in terms o@f the incident electron.
an oscillator strengtti;; for the transition in the corec(is The spectral intensity distribution of the EP may be de-
the speed of light scribed on the basis of the classical radiation thegdoy a
detailed discussion of the applicability of the classical ap-
Wr=2w?f;; /c2. (2.2)  proach for real photons, s¢g]). In this case the intensity of

the EP flux is simply determined by the Fourier transforma-

The autoionization decay ra/,(n,l) is calculated usu- tion of the electron coordinates determined in their turn by
ally in terms of spherical quantum numbers and the transitiothe classical trajectory. Such an approach makes it possible
to parabolic ones is performed numerically with the help ofto treat collisional processes as radiative ones, in particular,
Clebsh-Gordan coefficients, see Ref&-5]. To obtain a the excitation of an ion by an electron impact as an absorp-
general expression for DR rates we will use a quasiclassicalon of the EP by the ion.
representation both for DR rates in the spherical coordinates An essential advantage of this method comes from the
and for the Clebsh-Gordan coefficients. application of available results for purely radiative processes

A quasiclassical expression for an autoionization decayo the description of nonradiative processes both collisional
rate W, may be obtained by different ways, which result in and radiative-collisional ones. The processes discussed are of
the same formulas. The first way is a direct transition to thea resonant nature with respect to the absorption of the EP by
classical limit in a general formula for the matrix elements ofthe ion. In order that the Fermi method be applicable to the
the radius vector taken with Coulomb wave functions. Noteprocesses involving MCI, the effective distances, which
that in the case of Rydberg statesx{1) there is no differ- are responsible for the main contribution to the cross section
ence as to which types of electron transitidfree-bound, of the inelastic collision of an incident electron with MCI,
bound-bound, or free-fr¢are considered. should be much larger than the size of the bound electron
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orbit in MCI. This requirement is fulfilled especially well for distant from the field center,o&>a=Z/2E), which are
MCI. Let us illustrate this point for the process of excitation nearly rectilinear, with eccentricitg>1. In this case, Eqg.
of An=0 transitions. The electron-orbit size is of the order(2.8) is transformed to

of 1/Z (in atomic unitg, the transition energAE for An

=0 transitions in MCI is typically of the order aZ. The | o= (col2m?v){KE(wplv)+Ki(wplvp)}, (2.10
values ofrq¢; for the corresponding cross section can be

estimated from the condition that the electron angular rotawhereKy(x) andK;(x) are McDonald functions. Fermi used
tion velocity wg~(Z/r3)*? near its turning point on the just Eq.(2.10 for the description of atomic states ionization

trajectory is equal to the transition enerd¥, see[8,9], by a rectilinearly moving particlg14].
913 13 o1 For the description of the processes resulting in a loss of a
Fett~T,~(ZIAE®)™>~Z7"">Z7 " (24 considerable part of the incident-electron energy, it is neces-

sary to consider the EP with high frequencies, namely,
>1. The main contribution to the emission of such EP comes
rom the strongly curved electron trajectories;-1<1,

This inequality justifies the application of the dipole approxi-
mation for the potential of the interaction between the boun

and mmdent(wnh space coordinate vec_tor$ andre, re- which are close to the field centep,<a. In this Kramers
spectively electronsV=e’r;- re/rg. In this framework the domain we arrive at the resuléee Refs[7—9))

static Coulomb interaction between the bound and incident '
electrons transforms to processes of the emission and the |, =7 22 2cMG(wM?3/322) (2.11
absorption of the EP by electrons, and corresponding prob- ¢ ’

abilities are determined by conventional dipole matrix ele-,herem =muo is the electron-orbital momentum and
ments. The electric field produced by the incident electron at

the locationr;=0 of the ion is equal to G=u(K§,3(u)+K§,3(u)), (2.12

__ 3
04 re(D/re(t), @9 whereK 3 53are McDonald functions.

where the dependencg(t) describes the classical trajectory ~_The equivalent photons method makes it possible to ob-
of the incident electron. Using the equation of the motion oft@in & simple analytical description of collisional processes
the incident electron in the field of the MCHF = and treat them as pure radiative ones. Within this framework
—Z€?r Ir3, it is convenient to transform E@2.5) into the the excitation of MCI by an electron Impact may be clearly
form considered as an absorption o_f the_EP with a resonant.fre-
qguency wo=AE;; /. The relationship between the colli-
F(t)=fo(1)/Z 2.6 sional cross sectiowrg,. and the cross secti_oarabS of the
© ' ' absorption of the EP can be obtained equating the number of

The spectral distribution of the EP fluy, produced by the €Xxcitation events, during the time interwdd, caused by the
incident-electron electric field, can be expressed in terms ofollisions of the MCI with the electron flux with a space
Fourier transforms of the field densityn, and a particle velocity

cw® dNgyc= Nl o0 exdt

e AR | .
to the corresponding number of transitions caused by the
2.7 absorption of the EP produced by a single electron. This last
wherex andy are coordinates of the incident electron in the "€Sult is multiplied by the total number of electrons in the
plane of its motion. The Fourier transformations of thevolume dV corresponding to the time intervat, dV
electron-space coordinates in the Coulomb field are welfFF 27edev.dt,
known[7,15]. Thus we obtain

1
Z‘“ Fx,w|2+ | Fy,w|2}:

0w- - 5
872

cu? / 21 dNabS=J 2deQnevedtJ do(CF2/4m?hw)oapd o),
lo=—— | [H() (ive)]?— ——[H{ive) 7, (213

8v* g?
(2.8 \where the expression in parentheses corresponds to the spec-
tral distribution of the EP flux2.7) produced by a single
electron with a fixed value of the impact paramegerAs-
suming the following relation between the total and the par-

e=1+2EM%Z% v=wZ/v* E=v%2; (2.9 tial (with respect to the quantum orbital numbgr cross
sections
E and M are the energy and the angular momentum of the
incident electron, respectively. _ |
In the limit of low EP frequenciesy<1, the main contri- UEXC_J Texddl,

bution to the spectral distribution of the EP flux integrated
over the electron-impact paramete@rsis due to trajectories we arrive at the result

wherew is the electron-initial velocityH(" is Hankel func-
tion, ¢ is the eccentricity
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| ) A The classical resulf2.15 for the excitation cross section
Texe= 2 (filmue) (1 +1/2)J Tapd 0)(CF /AT hw)dw. must be used in Eq2.3) for the determination of the auto-
(2.14  lonization decay rate.
The most interesting case corresponds to the large value
Furthermore, the expression for the EP flux can be taken oudf the parametew>1. For large values o¥, one finally
of the integral at the frequenay, of the radiative transition obtains
in the MCI core under consideration because of its slow fre-

guency dependence in comparison with that of the absorp- fiq M3

tion cross section. The resulting integral overgives the Wy=—11G| ——|, (2.18
. A 3 2

well-known expression mn 3z

where f;; is the oscillator strength for the core transition,
M=mv o is the electron-orbital momentum.

The result(2.15 presents the autoionization decay rate
whered;; is the dipole moment matrix element of the tran-y,(n,1) in the classical approximation. It coincides with the
sition considered angf is the statistical W6|ght of the upper ||m|t|ng case of the quantum-mechanica| Consideraﬁ_‘bﬁl
level. after the standard substitutida-|+1/2. One can see the

Substituting the spectral distributid@.8) of the EP flux,  sharp decrease in the autoionization decay rate with the in-
produced by the electron in the Coulomb field of the MCl crease of the electron-orbital momentuirdescribed by the

j Oapd ®w)dw= WZ(C/w)zgf4w(2)|dif|2/3ﬁ03,

into Eq. (2.14), we finally obtain function G. Taking into account that the essential values of
3 the argument of thé& function is never close to zero it is
ULXCZSL(h/mU)Z(Dadif|ngl)_4(| +1/2) possible,_for practipal use, to change the funct®rby its
3 asymptotic expansion
XAIHE (ive) 12— (62 1) 2 THE i ve) 12 G(U)~ 7 exa( — 2u). (219
(2.15

To obtain the total autoionization decay rate, it is neces-
Thg transitiqn to the Kramers electrodynam(di(qE_D_) do- sary to multiply Eq.(2.18 by (21 +1) and to suntor inte-
main (v>1) in Eq.(2.19 corresponds to the transition from gratg over|. It is more convenient to use the relationships
Eqg. (2.8 to Eq.(2.1D. . . (2.3), (2.19, and(2.17) and to express the total autoioniza-
Thus, we obtain the result in the KED domain tion decay rate in terms of the total excitation cross section

Thxe= (87/3)(IMue)X(9s /9 F1¢Z 2
X (1+1/2)°G(w(1 + 1/2)%1322), (2.16

Wi(n)=4Z%f:9(Zwl (2E)¥)37 Y0372 (2.20

whereg(v) is the classical Gaunt factor for bremsstruhlung
wheref;; is the oscillator strength for the transition consid- (H are standard Hankel functions
ered, andg; is the statistical weight of the lower level, the
function G(u) is equal to Eq(2.12. 3 ,
The total excitation cross section is obtained by summing g(v)=m7—ivH (i ve)HY (ive). (2.2
of the partial cross sectiof2.14) overl, yielding the expres- 4
sion in terms of the well-known spectral distribution for the

Coulomb bremsstrahlung Gaunt factgfv) [13,19 Equations(2.20 and (2.21) can be used for calculations
of total autoionization decay rates of the atomic state with

, 872 principal quantum numben. The precision of the result

a'efxc=T|dif|zgi_1v‘zg(ZwOI(ZE)3’2). (217 (2.2 is the same as the precision of the general relationship
3 (2.9, the precision of quasiclassical cross sections being

. . . . very high up to the threshold, s¢&3].

Remember that a simple analytic approximatjéif is pos- To obtain the final result for the total autoionization decay

SIb?hgozégﬁltf(gnlc%ovr\?a(svzj.erive d earlief13] in a somewhat rate, one must subs%itute the value of the electron energy near
different way. It should be noted that E@.17) is valid up to the threshold==my /2= w into Eq. (2.2 that gives
the excitation threshold where Kramers EP spectf@ri6)
does not depend on the incident electron energy at all. In the
opposite limit of a fast incident particle, the cross section
(2.17) exhibits a logarithmigBorn-type structure. It is just The dependence ol on Z is practically absent if one
the same result that was derived by Fermi for the atomidakes into account thatﬁocZ*Z, the argument of the Gaunt
excitation and ionization by fast particles. Equati@l?) is  factor is large if one scalas>Z, which means that the value
in a good agreement with quantum-numerical calculations asf g is close to 1(practically, however, the argument is not
well as with experimental dafd 3]. so large.

Wu(n)=422|di;|?g((Z%18w)¥)3 " Yn~3.  (2.22
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I1l. TRANSFORMATION TO A PARABOLIC BASIS IN
QUASICLASSICAL THEORY P( .k,n)=J J f f - 0J33,dJ1,d35,dJ,
—j i

The transformation to a parabolic basis may also be per-
formed in two waysi(1) a calculation of the probabilities of X 8171 J22) 6(J127 J2,~K)
an appearance of a specific value _of 'Fhe _parabohc quantum % 5((‘J§x+‘]§z)1/2_j)5(l _2(‘]2_3%2)1/2)_
number in the anglular-momenta distribution in a Coulomb
field, and(2) an application of the asymptotic representation (3.9

of Clebsh-Gordan coefficienfsl6]. Both methods use the . L .

specific four-dimensional symmetry properties of the Cou- . The integration 1S performed with the help_?f the proper-
lomb field. These properties are connected, as it is weli€S ©Of ¢ functions: 5(f(x))=[df(x)/dx] ~5(Xx—=Xo)
known, with the additional integral of motion in a Coulomb Lf(*0) =0] and proper limitations on the domains of variable
field, namely, the Runge-Lentz vectdr=—2e%(r)/3a (a  Change. _ o g
—e2/2E) where( ) means average over the electron motion. When one takes into account normalization conditions the

The properties of the vector are as follows: result takes the simple form
L-A=0, A2+2EL2=1, or n%2+12=n? (3.1 P(Lknm=0)=2[(n-1)*~K]™ =, (36

that is the probability of the appearance of the parabolic

wheree is the eccentricity of the electron orbit and we havequantum numbek does not depend onat all under condi-

substituted quantum numbers instead of the orbital mo- 55" o smalll<n. The probability distributior(3.5) coin-

mentum and the energy. . . cides with the probability of the oscillating variable—J,
in d-g?fenzlggirgpbig?nrr?gmcea:\%bﬁ described in terms of tWoto take a definite \{alul;. It correspon_ds toa pigture of elec-
2 tron motion resulting in the oscillation of orbital momenta

1 m\ /2 Jio alor_lg thez axis with small(neglecting projections on

- Li(—) Al (3.2 thexaxis.

2 a A close result for the case# 0 can be obtained from a

consideration of quasiclassical limit of Clebsh-Gordan coef-

ficients. Really the parabolic and spherical quantum numbers

are connected by the sum with Clebsh-Gordan coefficients

Cli1s2,0imq,my,m]

\]1,2:

The main properties of the momenta are as follows:

B=3=j(j+1),

m+n,—n; m+n;—n, [(nynym|nim’)|?
(J1)p=My=————, (J)y=My=————, (nane
_ 2 n-1 n-1 m+n;—n; m+tn;—n,
1/2 2 2 2 ' 2 '
LZ:m, (E) Az=n2—n1. (33) (37)
The last equation together with E€@.1) describes the con- __1he square of the coefficients may be considered as a

nection between projections of vectots )y , (J,), and para- Joint probability P(n,I,k,m) of the presence of specific
bolic (n;,n,,k=ne=n;—n,) and sphericall(m) quantum quantum numbers. Making a transition to large values of all
numbers. The following conditions are fulfilled in our case of dU@ntum numbergl6] and using the conditions3.4) deter-
strongly curved classical trajectories corresponding to th&nining the domain of present interest, one arrives at the fol-
formula (2.189 lowing approximation:

m<l<noj. (3.4) P(n,l,k,m)

_ o o =C?[(n—1)/2(n—1)/2);(m—Kk)/2,(m+k)/2,m]
Equation(3.3) expresses some limitations on the distribu-

tion of projections of these vectors in space. Under condi-  =21[(12—12,) (12— 1?1 Y% m, (3.9

tions (3.4) one can consider the simplest model wimes 0.

Putting thez axis along the vectoA and thex axis along the where

vectorL, we can consider a two-dimensional model for the 2 T 5 5 o

evolution of projections), andJ, of both vectorsl; ,J,. Iin=[(n—1)*+m—k“}/2—{[(n—1)"+ m*—k*]
From a general point of view, the joint probability —4(n—1)2m2}¥212, 3.9

P(l,k,n) of the appearance of spherical and parabolic quan-

tum numbersl k is equal to the ratio of the phase-space |2 _r3_1)24+m2—Kk2 124+ 17 (N=1)24 m2— k212
volume where conditiong3.3) are satisfied to the total max= L( ) st ) ]
phase-space voluma?). To determineP(l,k,n) let us per- —4(n—1)2m?}Y22,

form an integration over all phase space of vectdys),

accounting for limitationg3.3). The integrals take the form or, whenm<n
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= (n=1)?m’[(n—1)%+m?—k?] ",
(3.10

1= [(N= 12+ m?—K2]=(n—1)2m?/1 7.

One can see that whan=0 the Eq.(3.8) reduces to the
classical Eq(3.6). The difference between both probability
distributions is inside a small domajiin—1)—k]~m<n.

The normalization oP(n,l,k,m) Eq. (3.8) is equal to 1.
Really, the integratiorf3.8) over|? gives the expression

|2
max

=1.

—212412_ +1?

max ' ''min

2 2
l max+ l min

— qrarcsi
12
min
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0.4 I I ! 1

03 |- -]

02~ —]

(%)

0.1 —]

05 1

The parabolic representation of an autoionization decay X

rate is obtained by the multiplication of the rate in the spheri-

cal basig2.18 by the probability(3.8) and integratindsum-
ming) overl,

WA(n,k,m)=jlmaXdIP(n,l,k,m)WA(n,I), (3.12)

min

wherel in,Imax are defined by Eq3.9) or Eq.(3.10.

Substituting the expressiofi3.18 and(3.8) for functions
Wy (n,l) and P(n,l,k,m) and making a transformation to
dimensionless variables=1/1¢,los=(3Z% w)*?, it is pos-
sible to obtain

Wi(n,k,m)=7"1n"3f:1(n,k,m), (3.12
where the universal function(n,k,m) is
L(n,K,m) =1 (tmin  tmax)
:2|ef/wﬁtmxdttze(ﬁ)(t2—tﬁqm)‘”2

(3.13

where G was defined by Eq(2.12), tmin<(n—1)m((n—1)>?
+m?—k?) "2 t = (N— LMVt inocn.

Below we will use the approximatio(®.19 for our par-
ticular calculations.

One can see that for the casg,~n>1 Eq.(3.13 may be
transformed into

X (tzmax_ t2)*1/2,

tmax
I (tmin vtmax)~2| ef/ﬂ'tmaxf dttzG(ts)(tz_tfnin)_ll2

tmin
t
~2l ef/tmaxf maxdttzexq - 2t3)(t2_ t2min) i

trmin

=1 (tmin) 2l et/ tmax- (3.14

The universal function(x) is presented in Fig. 1.
Limiting cases of the functioh(x) are as follows:

I'(2/3)3712723~0.284 for x<1,
X)~ (3.15

(m/12) Y% Y2%exp —2x3) for x>1.

FIG. 1. Universal function (x) describing the dependence of
autoionization decay rates on parabolic quantum numbers, see Eqs.

(3.12—(3.14.

The functionl (x) can be approximated with a good pre-
cision by the simple exponent

(3.19

We will use below the asymptotic expression for the func-
tion I (x) for particular calculations.

The dependences of dimensionless autoionization decay
ratel (n,k,m)(7) ! from Eq.(3.13 on the “electric” quan-
tum numbelk for different values of magnetic quantum num-
ber m are presented in Fig. 2 for the Li-like ion Zxvii
(Z=30). One can see that the greatest contribution tdthe
phase space comes from smallvalues.

[(x)=0.284 exp—2x3).

IV. DIFFERENTIAL DR RATES

To obtain differential(as regard to principal quantum
numbersn) and total DR decay rates it is necessary to per-

z T T T

1(100,k,m)

FIG. 2. Distribution of autoionization decay rates over “elec-
tric” quantum numbersk at different values of magnetic quantum
numbersm for the Li-like ion Zn xxvii at the principal quantum
numbern=100. Here the scale fd(100k,10) equals the scale for
[(100k,0) multiplied by 18.
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form two (or threg@ summations in the Eq2.1). It is more 12 2
convenient to deal with a reduced DR ragg,(n) equals to Jn, 12,12 )= m'“—maxz
the term with the sum in the E@2.1), that is, A il max(n—1)
-1/2
WA(n,k,m) Iﬁqinl rznax Irznin_Hﬁwax
*(n,Z2)= n)/B(Z,T,o,n)=2, — 77—, x| 1+ —
g*(n,Z)=Qpr(N)/B( )= 2 W Waln k) -1 (n-1)?
4.9 4.2
where
Extracting in the sunt4.1) the dependence on the princi-
4mRy|\%%g; o 22 pal quantum numbem, we arrive at the expression
B(Z,T,w,n)= - g—(ao) Wgrexp — ?+ o2t
i n

2 2 2 . 2

The sum in Eq(4.1 accounts for a conversion from the q*(n,Z)=2f(n Y dlﬁqalema‘dlﬁqin I Vi 1) 3
spherical basis to parabolic one. The detailed consideration 0 1+[n/0* (I max: I min) ]
of the atomic basis transformation under the action of pertur- (4.3
bations is presented in Rfl7]. Our treatment deals with a
particular case of perturbations constant in time. So it is sufwhere the effective value of the principle quantum number
ficient for our consideration to restrict ourselves by the transn* is introduced with the account of Eq¢2.2), (3.12,
formation coefficients presented by E¢3.8) and (3.11). (3.14), and(3.16),

The quantityq*(n,Z) is equal to a number of atomic

states with a given energw) contributing to DR rates. When C3|2f
Wg=0, the number is equal to the statistical weight of the n*%=0.284—"—exp(—213,/13)
energy level, that is, equal t’. If Wg#0 the number de- T® T max
pends on t_he type of the atomic quantization being spherical —L(n—-1)"1z Y2exp — Ay*?),
or parabolic.
Let us take into account that the autoionization decay
rates in the Eq(4.1) are expressed in terms of the universal L=0.284%5m 02, A;=2(n-1)3.7>1.
function (3.16 with the argument depending on parameters (4.9

12, andlZ, in accordance with Eq3.11). To do this let us
change the sum in E@4.1) by the integral over correspond- Here the dimensionless variablgs=12,/(n—1)> and z
ing quantum numbers and then make a transformation to the12_ /(n—1)? and parameterk,A, are also introduced.

variablesl %, |2.,,. The Jacobiard of the transformation is Further making the transformation to the variabtesdz
obtained by a direct calculation in Eq. (4.3), we obtain
1 1dz (z dy(z—vy)
*n,Z=—n—1zf— : 4.
T2z, VzJo[y(1+zy—z-y) "4 1+ n%(n—1)Vzexp Ay*?)/L] @9

One can check that falVg (that is,L — ) the quantity of One can see that the dependence of DR rates o
g*(n,Z) is equal to o—1)?, which is just the statistical described by the universal functidifa) such that
weight (with small correctionsof the energy leveh.

The Eq.(4.5) solves the problem of the distribution of DR Qor(M)=B(Z,T,0,n)q*(n,2), (4.7)
rates over principal quantum numbers

To make clear the dependence, let us take into accoutfnere
that under conditiol\,> 1 effective values of the variable
are small as compared with being of the order of unity.
Neglecting, where it is possible, the magnitudeyafs com-
pared withz, expanding the integration ovgito infinity, and
changing variables, one arrives at the expression

g*(n,2)=1.29,nJI(n*7w?(0.284°%2)) (4.9
and

INnY3(1la) if a<1,

0.8~ 1 if a>1.
(4.9

J(a)= af:dx INY3(x)/(1+ ax)?~

3-14ef =du
n| —=(1+n%YL)"t (4.6
YLl N ( ) (4.6

q*(n,2)= T

The functionJd(«) is presented in Fig. 3.
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FIG. 3. Universal function)(«) describing the distribution of
DR rates over principle quantum numbetssee Eqgs(4.8) and FIG. 5. The same as in Fig. 4 but for the Mgion: solid
(4.9. curve, quasiclassical formulgt.7)—(4.9); dotted line, calculation

[1] (multiplied by the factor 2

Let us apply general resultd.7)—(4.9) to the case of the
Li-like carbon ion G* and make a comparison with the V. TOTAL DR RATES
particular calculation$2,3]. Substituting all numerical con-
stants into Eqs(4.7)—(4.9) one obtains the distribution of
DR rates(in units 1012 cm’/s for the electron temperature
T.=10° K) over principle quantum numbers presented in
Fig. 4 (solid curve. The specific dat@3] are represented by
the dotted line. Our data, at their maximum in Fig. 4, are
closer to datd2] and near two times lager than the df3a
(see comments in3]). The difference may be due to the
proper account of the normalization conditions in E45)
[see comments below E@.5)].

It follows from the quasiclassical consideration that the
conditions for the C2 ion are very close to the conditions 12
for the Mg"! presented irf1]. Really one can check that q*“"zo_oay"/zif P(”ﬁwax‘ﬂ\/;/(o-53333/2|ef)) (5.2
both ions mentioned above have the same radiation decay w
rates and the arguments of théunction in Eq.(4.8) are also
very close for them. The only difference is the value of theand
parametello; equal to 4.6 for C3 and 2.7 for Mg. The
corresponding results are presented in Fig. 5. The close cor- 1 dz X ZF(1/3)%4.2 if x>1
respondence of both data in Figs. 4 and 5 is a confirmation ofP(X) = f —n ... arctan; ~ 2
the classical scaling low following from the general result 0In“™(1/z)

To obtain total recombination rates, in the parabolic basis
one must integrate a differential distribution over all values
of principle quantum numbers from a small valgpait to be
zero below up to a particular valua,,,, depending on the
cutoff conditions in plasmas. Corresponding results can be
also expressed in term of a universal function

PL=B(Z,T,w,n)g* ', (5.2

where

3axInY¥(1x) if x<1.

(4.8). (5.3
6 I I I I I The universal functiorP(x) is presented in Fig. 6.
5: - ] Using the data5.1)—(5.3) it is possible to investigate a
B , 1 | dependence of DR rates on electric-field strengths expressing
ne ,, _ the value ofn,a @s a function of an electric-field strendth
= | ‘ _ from Eq. (1.3). Below we will pick up the value of, in
E 3L accordance witH3] to make clearer the comparison with
o | numerical data, that is,
2 -
n Nimax= (6.8X 10PZ3/F )14, (5.9
1k
| Figure 7 presents the dependence of DR rates on the field
0 strength (V/cm). The datg2] are also presented in the Fig.
0

7. These data demonstrate the typical maximum in the in-
crease of the DR rates, which corresponds to an essential
FIG. 4. Distribution of DR ratesin units 10 12 cm?/s) overn increase of the phase space due to the action of the field. The
for the G* ion at the electron temperatufe=10° K: solid curve,  field ionization results in a decrease of DR rates with the
universal quasiclassical formuld.7)—(4.9); dotted line, calculation increase of field strengths. Our model corresponds to rela-
[3]; long dashed line, calculatidi2]. tively large values of electric-field strengths, that is, to the

032702-8



QUASICLASSICAL THEORY OF DIELECTRONC.. . . PHYSICAL REVIEW A 65 032702

6 Lo
I I I T -
5 "‘; = !
; -10 -
e . g
% % -11
x Q =
3 -
A o
5 N < 2|
&0
1 — L 13 ]
0 | | | | 8 R e
0 3 6 9 12 15 0g10 (N )(cm™)

FIG. 8. Effect of plasma electron densit on the DR rate for

FIG. 6. Universal functionP(x) (5.3 describing the depen- the C ion for the electron temperaturdg=10" K (solid line,
dence of total DR rates on cutoff parameters. quasiclassical formulés.1); dotted line, calculationf3]).

full mixing of atomic states, so the only decrease due tcability for the electron captured to reach a ground atomic
ionization is seen in the Fig. 7. state. The probability can be estimated as the ratio of the

The simple way to take into account plasma density efradiative decay raté, from the captured atomic state and
fects is to connect the value of,,, with the electron plasma the ionization frequenciN(v o) from the state due to elec-
density. It can be done easily by the substitution into Eqtron collisions. Both these rates are estimated for Rydberg
(5.4) of the Holsmark field strength given by the formula  atomic states as followsl8]:

F(V/cm)=1.3x10 %Z;N¥® c¢m™3, An(s™1)=2.4x10'Z%/nd,

_ 452 n\12/3\1/4
Nimax= (5.23X 10VZF/NFH) M (5.9 (vo)=10""n?Z7%(1 Ry/T)'2 (5.6)

where one can take into account the relationdkys Z;N; . o :
for one-component plasmas or substitute an independent Using these approximations one obtains for the attenua-
value N; for many-component plasmagor example, Ng tion factor
=Ny~ for hydrogen plasmas considered[®3]) The com-

parison between our data and data of R&f.(multiplied by

the factor 2, see comments at the end of Seg¢id\presented ; o IS
in Fig. 8. One can see a good correspondence between uni- No=Zi[2.4X 10"(Te/RY)YAZiNe(em %)Y (5.7)
versal formulag5.1)—(5.3) and the specific calculation.

The kinetic effects due to electron collisions can be also It is seen that there is a sharp dependence of the factor on
taken into account in the following approximate manner. Thethe value of the principle quantum number that means that
main effect of electron collisions is a decrease of recombithe electron secondary ionization effects can be also taken
nation effects due to the secondary ionization of the capturetiito account with the help of a cutoff procedure. So the value
electron by other plasma electrons. These effects are délo can be used as the cutoff parameter together witimthe

scribed by an attenuation factpm,N,,T.) equal to a prob- accounting for ion field ionization effects described by Eq.
(5.5 because both effects result in the ionization of the cap-

tured electron. So the specific valuemf,,in Eq. (5.2 must
be put to be the minimum of two magnitudés5) and(5.7).
The effects of both plasma ion microfields and electron
collisions on DR rates for the®t ions are presented in Fig.
9 as a function of electron densities for the electron tempera-
tureT,=10" K. One can see that the ionization by electrons
produces larger effect on DR rates than does the ionization
by the electric field. The results of the present simplified
consideration are also in a reasonable correspondence with
numerical datd3].
) 4 N_ote that Refs[2] and [3]_ deal with plasma effects by
logio(F) (V/cm) solving a set of rate equations, whereas the present paper
uses the cutoff procedure. The procedure takes into account
FIG. 7. Dependence of total DR raté& 1) for the G* ion on  diagonal elements of the relaxation matrix only. This is the
the electric-field strength: solid line, quasiclassical formuy&ad) reason for the discrepancy between data in Fig. 9. It is nec-
and(5.2); dotted line, calculationg2]. essary to note, however, that the discrepancy is not so large

j(n,Ne, Te)=[1+(n/ng)’] "4,
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-8 T T T help of Eq.(2.18. The general expression for the effective
B DR rate q’s*ph(n,l) into particular values,l in a spherical
mé’ basis takes the forrfil0,11]
-10 |
= Wpn D=+ DL(/**+1]7% (62
b4
=) where
% 12
&5 n*(1)={3c3(21 + 1)G(w(l + 1/2)%/32%)/ (2 mw ;) }*>.
© ‘\ (6.3
14
h 5' 1'0 ' - Using the asymptotic expression for the functiGifu),

one can present Eq6.3) in the form[see the valuédy in

5
1 N. '
0g10 (N¢) (cm™) Egs.(3.1)—(3.13]

FIG. 9. Effects of ion electric fieldupper curves: 1, quasiclas-

sical formula(5.1); 2, calculation{3]) and electron collisionfower n* () =n*(0)exfd —(1/1¢)?], (6.4
curves: 3, quasiclassical formu(&a.1); 4, calculation[3]) on DR . o123
rates for * in a hydrogen plasma witfi,=10° K. n*(0)=c[3ler/(20°)]7>1. (6.5

as to be of a great importance because the matrix elements of "When integrating Eq(6.2) overl, it is natural to change

the relaxation matrix can be also modified by the plasma/@1iables ton*(l) according Eqs(6.3 and (6.4). One can
microfield. obtain the following simple estimation for the total effective

DR rateqg,,(n):
VI. CONCLUSION q:ph(n)~|gf|n2/3[n*(o)/n], (6.6)

The above consideration results in the general quasicla
sical formulas(3.12), (4.8—(5.3) for differential and total
DR rates as functions of the atomic and cutoff parameters.
describes effects of relatively strong electric fie(tldl mix-
ing of atomic stateison DR rates accompanied by transitions
in atomic cores without change in their principle quantum Oar(M/GEHN) ~N* (0)/l ey, (6.7)
numbers An=0 transition$. These transitions are respon-
sible for the most of the contribution to atomic processes irwhere we have introduced the designation “par” for the re-
collisions of plasma electrons with complex ions. Thesult (4.8 obtained above in the parabolic basis. The same
present results make it possible to calculate DR rates in astimation is approximately true for the total DR recombina-
simple way for every ion havinghn=0 transitions in the tion rates.
core. It is seen from the estimations that the enhanced factor for

The above results can be generalized to the case of parti@R in an electric field is approximately equal to the ratio of
I mixing in the following way. Let us write down the condi- the effective volume in tha space to the effective volume in
tion of the total mixing comparing the energy shift due to athe | space for the spherical basis. This ratio depends on a
guantum defects, and the matrix elements of the atom specific atomic structure of a recombining ion determining

That is, it practically does not depend on valuesnofThis
IYalue must be compared with the one in the parabolic basis
given by Eq. (4.8). Neglecting slow logarithmic depen-
dences, we arrive at the simple estimation

electric-field interaction effective values of parameters in E@.7). Practically for
o1 5 5 most ions the value df,; changes from 3 up to 10 whereas
3n(n"=19)"F>2Z°6In”. (6.1 n*(0) is of order of 16 that means the enhanced factor is

near 20—30, which is in a reasonable correspondence with

The condition(6.1) determines a minimum value of the numerical calculation§l—5].

orbital momentum consistent with full mixing conditions.
The value must be substituted instead of the paranhgtein
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