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Quasiclassical theory of dielectronic recombination in plasmas
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We consider the effects of plasmas on dielectronic-recombination~DR! rates. Effects of plasmas electric
fields on DR rates are analyzed in detail in the space of parabolic quantum numbers. A quasiclassical approach
is used to obtain general analytical expressions for DR rates in the parabolic basis for arbitrary types of ions
having transitions without change of core principal quantum numbers (Dn50 transitions! responsible for the
main contribution to DR rates. The approach makes it possible to investigate scaling laws for dependences of
both total and differential DR rates on atomic parameters. Effects of electron collisions and ionization are taken
into account with the help of cutoff procedures. Numerical data are presented for Li- and Na-like ions under
typical plasma conditions. A comparison with numerical calculations for specific ions is presented.
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I. INTRODUCTION

Effects of electric fields on dielectronic recombinatio
~DR! rates are under broad investigation in last two decad
see Refs@1–5# and references there. These effects are c
nected with an evolution of highly excited atomic stat
populated in the DR capture of an electron colliding w
ions having complex cores. The main contribution to t
process comes from transitions without change of cores p
ciple quantum numbers (Dn50 transitions!. The electric
field and plasma effects can be separated into three gro
~1! An enhance of the phase-space volume contributing
the recombination due to a transformation of the ion atom
energy states from the spherical quantization to the parab
one under the action of the field;~2! a decrease of a quantit
of excited atomic states responsible for DR because of
ization and energy-mixing effects in the electric field; and~3!
kinetic effects due to electron collisions after~or during! the
core stabilization.

The effects mentioned are usually taken into account w
the help of specific numerical calculations for a particu
ion. At the same time the ion energy states responsible
DR are of an universal Rydberg type so DR effects m
follow general scaling laws. It is a goal of the present pa
to investigate general properties of plasmas electric-field
fects on DR rates. Note that we are interested here in
action of a plasma microfield, which is much more strong
compared with laboratory electric fields. So the atomic sta
mixing effects can be considered to be full, an account o
partial mixing being described by a simple cutoff recei
The first group mentioned above is taken into account in
frame of a quasiclassical approach.

To make clear the reasons for the application of quasic
sical methods, one should note that the plasma electron
sponsible for strong dielectronic capture are classical o
Really let us consider a multicharged ion with an ion cha
Z and a complex atomic core having transitions witho

*Permanent address: RRC ‘‘Kurchatov Institute,’’ Kurchat
Square, 46, Moscow 123182, Russia.
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change of its principle quantum numbern (Dn50 transi-
tions!. The energy of these transitions is of the order ofZ
atomic units~a.u.! so the energyE5mv2/2 (v is the electron
velocity! of the captured electron must be smaller thanZ. At
the same time the ionization potential of the ion is of t
order of Z2 that is much larger than the electron energyE.
These conditions are simply the conditions of a class
electron motion in the field of the multicharged ion

E,Z!Z2 or Ze2/\v@1. ~1.1!

Consequently, the electron captured in the field of
multicharged ion, which undergoes no change in princi
quantum number, can be considered on the basis of p
classical mechanics. To do so let us consider matrix elem
of the electron-electron interactione2/r 12 @r 12 is the distance
between atomic~1! and colliding~2! electrons# in the dipole
approximationr1r2 /r 2

3 presenting the wave function of th
system as a product of the core wave function and the
cited electron wave function. Then the matrix element
equal to the product of a core matrix element (r 1) i f between
the initial ~i! and finite~f! core states and the matrix eleme
of the electric fieldr2 /r 2

3 produced by the electron colliding
with the nucleus. The last one can be expressed in term
the electron accelerationd2r2 /dt2 according to the electron
motion equation in the ion field,

r2/r 2
35Z21d2r2 /dt2. ~1.2!

According to the correspondence principle@6#, the matrix
elements make a transition to the corresponding Fourier
efficients. This means that the matrix element from Eq.~1.2!
is expressed in terms of the Fourier coefficients of its acc
eration in the ion Coulomb field, as is well known in class
cal electrodynamics. The square of these Fourier coefficie
determines the intensities of the classical electron radia
emission in a Coulomb field, see@7#. Note that the classica
consideration is applicable even for strong inelastic elect
transitions when the change of the electron energy is larg
compared with its initial energy. It is due to the strong ele
©2002 The American Physical Society02-1
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tron acceleration in the attractive Coulomb potential bein
basis of the so-called Kramers electrodynamics approach
Refs.@8,9#.

Electric-field ionization effects can be also taken into a
count by a cutoff of the sum over principal quantum numb
at its value corresponding to the critical valueFc of the
electric-field strength~see@9#!

Fc5Zi
3FA /n4, ~1.3!

whereZi is the ion charge,FA56.83108 V/cm is the typi-
cal value of the atomic-field strength responsible for the i
ization.

Contributions of kinetic effects due to electron collisio
are taken into account in the present paper as well with
help of a cutoff procedure.

II. QUASICLASSICAL THEORY FOR AUTOIONIZATION
DECAY RATES

The general formula for DR recombination rates takes
form @1–5,10#

QDR~n!5S 4pRy

T D 3/2gf

gi
~a0!3WR

3expS 2
v

T
1

Z2

2n2T
D(

k,m

WA~n,k,m!

WR1WA~n,k,m!
,

~2.1!

where T is an electron temperature,gi , f are statistical
weights on an initiali and a finitef atomic core states,WR is
a radiative transition probability inside an ion core,WA is an
autoionization decay rate of an excited atomic energy le
with a principal quantum numbern and parabolic electricalk
and magneticm quantum numbers,v is a frequency for a
transition withDn50 inside the core,a0 is the Bohr radius.
Atomic units ~a.u.! will be used below.

The radiative decay rate is expressed simply in terms
an oscillator strengthf i f for the transition in the core (c is
the speed of light!

WR52v2f i f /c3. ~2.2!

The autoionization decay rateWA(n,l ) is calculated usu-
ally in terms of spherical quantum numbers and the transi
to parabolic ones is performed numerically with the help
Clebsh-Gordan coefficients, see Refs.@1–5#. To obtain a
general expression for DR rates we will use a quasiclass
representation both for DR rates in the spherical coordin
and for the Clebsh-Gordan coefficients.

A quasiclassical expression for an autoionization de
rateWA may be obtained by different ways, which result
the same formulas. The first way is a direct transition to
classical limit in a general formula for the matrix elements
the radius vector taken with Coulomb wave functions. N
that in the case of Rydberg states (n@1) there is no differ-
ence as to which types of electron transitions~free-bound,
bound-bound, or free-free! are considered.
03270
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The first results were obtained by Sommerfeld@11# for
free-free radiative transitions in a Coulomb field. He al
performed a transition to the classical limit and obtained q
siclassical formulas for matrix elements as a function of
scattering angle. Taking into account the relationship
tween the scattering angle and the electron orbital mom
tum l, one quickly reproduces Kramers classical formu
from Sommerfeld results. The same results were obtaine
Ref. @12# by the direct calculation of free-bound matrix el
ments with further transition to the classical limit.

The second way is connected with the relationship
tween the rateWA and a partial electron excitation cros
sectionsexc( l ) near threshold@10#,

~2l 11!gfWA~nl !5Z2n23vgisexc~ l !/p2a0
2 , ~2.3!

where gi , f ,v are statistical weights and a transition fr
quency equal to the difference between the initial and fi
energies of the core energy levels.

The electron-excitation cross section forDn50 transi-
tions can be calculated in the frame of pure classical mech
ics. To do it let us use a classical version of the equival
photons method proposed by Fermi@14#.

According to the Fermi conception@14# of equivalent
photons~EP! the electromagnetic field produced by an ext
nal particle~e.g., an electron! at a multicharged-ion~MCI!
location may be interpreted as a flux of equivalent photo
incident on the MCI. It may be shown that such a descript
is applicable provided the dipole approximation for the int
action between the bound electron of the MCI and the in
dent electron of the plasma. The latter approximation univ
sally treats all the processes of an energy loss by the inci
electron~either due to the radiation emission during a co
sion with an ion or due to an inelastic nonradiative collisi
with an ion! as the processes of the emission of~real or
equivalent, respectively! photons. The probability of both
processes is determined by the dipole matrix element for
corresponding inelastic~radiative or nonradiative! transition
of the incident electron.

The spectral intensity distribution of the EP may be d
scribed on the basis of the classical radiation theory~for a
detailed discussion of the applicability of the classical a
proach for real photons, see@8#!. In this case the intensity o
the EP flux is simply determined by the Fourier transform
tion of the electron coordinates determined in their turn
the classical trajectory. Such an approach makes it poss
to treat collisional processes as radiative ones, in particu
the excitation of an ion by an electron impact as an abso
tion of the EP by the ion.

An essential advantage of this method comes from
application of available results for purely radiative proces
to the description of nonradiative processes both collisio
and radiative-collisional ones. The processes discussed a
a resonant nature with respect to the absorption of the EP
the ion. In order that the Fermi method be applicable to
processes involving MCI, the effective distancesre f f , which
are responsible for the main contribution to the cross sec
of the inelastic collision of an incident electron with MC
should be much larger than the size of the bound elec
2-2



r
n
e

be
ta

xi-
n

e
t

ro
le

ry
o

s

he
he
e

th

ed

d
n

of a
es-
,
es

ob-
es
ork
rly
fre-

i-

r of

e

the
last
he

spec-

ar-
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orbit in MCI. This requirement is fulfilled especially well fo
MCI. Let us illustrate this point for the process of excitatio
of Dn50 transitions. The electron-orbit size is of the ord
of 1/Z ~in atomic units!, the transition energyDE for Dn
50 transitions in MCI is typically of the order ofZ. The
values of re f f for the corresponding cross section can
estimated from the condition that the electron angular ro
tion velocity vR;(Z/r e f f

3 )1/2 near its turning point on the
trajectory is equal to the transition energyDE, see@8,9#,

re f f;rv;~Z/DE2!1/3;Z21/3@Z21. ~2.4!

This inequality justifies the application of the dipole appro
mation for the potential of the interaction between the bou
and incident~with space coordinate vectorsr i and re , re-
spectively! electrons,V5e2r i•re /r e

3 . In this framework the
static Coulomb interaction between the bound and incid
electrons transforms to processes of the emission and
absorption of the EP by electrons, and corresponding p
abilities are determined by conventional dipole matrix e
ments. The electric field produced by the incident electron
the locationr i50 of the ion is equal to

F~0,t !52re~ t !/r e
3~ t !, ~2.5!

where the dependencere(t) describes the classical trajecto
of the incident electron. Using the equation of the motion
the incident electron in the field of the MCImr̈e5
2Ze2re /r e

3 , it is convenient to transform Eq.~2.5! into the
form

F~ t !5 r̈e~ t !/Z. ~2.6!

The spectral distribution of the EP fluxI v produced by the
incident-electron electric field, can be expressed in term
Fourier transforms of the field

I v5
c

8p2

1

v
$uFx,vu21uFy,vu2%5

cv3

8p2Z2
$uxvu21uyvu2%,

~2.7!

wherex andy are coordinates of the incident electron in t
plane of its motion. The Fourier transformations of t
electron-space coordinates in the Coulomb field are w
known @7,15#. Thus we obtain

I v5
cv2

8y4 H @Hin
(1)8~ in«!#22

«221

«2
@Hin

(1)~ in«!#2J ,

~2.8!

wherey is the electron-initial velocity,Hin
(1) is Hankel func-

tion, « is the eccentricity

«5112EM2/Z2; n5vZ/y3; E5y2/2; ~2.9!

E and M are the energy and the angular momentum of
incident electron, respectively.

In the limit of low EP frequencies,n!1, the main contri-
bution to the spectral distribution of the EP flux integrat
over the electron-impact parameters% is due to trajectories
03270
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distant from the field center, (%@a[Z/2E), which are
nearly rectilinear, with eccentricity«@1. In this case, Eq.
~2.8! is transformed to

I v5~cv/2p2y0
4!$K0

2~vr/y!1K1
2~vr/y0!%, ~2.10!

whereK0(x) andK1(x) are McDonald functions. Fermi use
just Eq.~2.10! for the description of atomic states ionizatio
by a rectilinearly moving particle@14#.

For the description of the processes resulting in a loss
considerable part of the incident-electron energy, it is nec
sary to consider the EP with high frequencies, namelyn
@1. The main contribution to the emission of such EP com
from the strongly curved electron trajectories,«21!1,
which are close to the field center,%!a. In this Kramers
domain we arrive at the result~see Refs.@7–9#!.

I v5p22Z22cMG~vM3/3Z2!, ~2.11!

whereM5mv% is the electron-orbital momentum and

G5u~K1/3
2 ~u!1K2/3

2 ~u!!, ~2.12!

whereK1/3,2/3 are McDonald functions.
The equivalent photons method makes it possible to

tain a simple analytical description of collisional process
and treat them as pure radiative ones. Within this framew
the excitation of MCI by an electron impact may be clea
considered as an absorption of the EP with a resonant
quency v05DEi f /\. The relationship between the coll
sional cross sectionsexc and the cross sectionsabs of the
absorption of the EP can be obtained equating the numbe
excitation events, during the time intervaldt, caused by the
collisions of the MCI with the electron flux with a spac
densityne and a particle velocityve

dNexc5nevesexcdt

to the corresponding number of transitions caused by
absorption of the EP produced by a single electron. This
result is multiplied by the total number of electrons in t
volume dV corresponding to the time intervaldt, dV
52p%d%vedt,

dNabs5E 2p%d%nevedtE dv~cFv
2 /4p2\v!sabs~v!,

~2.13!

where the expression in parentheses corresponds to the
tral distribution of the EP flux~2.7! produced by a single
electron with a fixed value of the impact parameter%. As-
suming the following relation between the total and the p
tial ~with respect to the quantum orbital numberl ) cross
sections

sexc5E sexc
l dl,

we arrive at the result
2-3
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sexc
l 52p~\/mve!

2~ l 11/2!E sabs~v!~cFv
2 /4p2\v!dv.

~2.14!

Furthermore, the expression for the EP flux can be taken
of the integral at the frequencyv0 of the radiative transition
in the MCI core under consideration because of its slow
quency dependence in comparison with that of the abs
tion cross section. The resulting integral overv gives the
well-known expression

E sabs~v!dv5p2~c/v!2gf4v0
2udi f u2/3\c3,

wheredi f is the dipole moment matrix element of the tra
sition considered andgf is the statistical weight of the uppe
level.

Substituting the spectral distribution~2.8! of the EP flux,
produced by the electron in the Coulomb field of the M
into Eq. ~2.14!, we finally obtain

sexc
l 5

8p3

3
~\/mv !2v0

2udi f u2gfv
24~ l 11/2!

3$@Hin
(1)8~ in«!#22~«221!«22@Hin

(1)~ in«!#2%.

~2.15!

The transition to the Kramers electrodynamics~KED! do-
main (n@1) in Eq.~2.15! corresponds to the transition from
Eq. ~2.8! to Eq. ~2.11!.

Thus, we obtain the result in the KED domain

sexc
l 5~8p/3!~\/mve!

2~gf /gi ! f i f Z
22

3~ l 11/2!2G„v~ l 11/2!3/3Z2
…, ~2.16!

where f i f is the oscillator strength for the transition consi
ered, andgi is the statistical weight of the lower level, th
function G(u) is equal to Eq.~2.12!.

The total excitation cross section is obtained by summ
of the partial cross section~2.14! over l, yielding the expres-
sion in terms of the well-known spectral distribution for th
Coulomb bremsstrahlung Gaunt factorg(n) @13,12#

sexc
i f 5

8p2

A3
udi f u2gi

21v22g„Zv0 /~2E!3/2
…. ~2.17!

Remember that a simple analytic approximation@8# is pos-
sible for the functiong(n).

The result~2.17! was derived earlier@13# in a somewhat
different way. It should be noted that Eq.~2.17! is valid up to
the excitation threshold where Kramers EP spectrum~2.16!
does not depend on the incident electron energy at all. In
opposite limit of a fast incident particle, the cross sect
~2.17! exhibits a logarithmic~Born-type! structure. It is just
the same result that was derived by Fermi for the ato
excitation and ionization by fast particles. Equation~2.17! is
in a good agreement with quantum-numerical calculation
well as with experimental data@13#.
03270
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The classical result~2.15! for the excitation cross sectio
must be used in Eq.~2.3! for the determination of the auto
ionization decay rate.

The most interesting case corresponds to the large v
of the parametern@1. For large values ofn, one finally
obtains

WA5
f i f

pn3
lGS v0M3

3Z2 D , ~2.18!

where f i f is the oscillator strength for the core transitio
M5mv% is the electron-orbital momentum.

The result~2.15! presents the autoionization decay ra
WA(n,l ) in the classical approximation. It coincides with th
limiting case of the quantum-mechanical consideration@12#
after the standard substitutionl→ l 11/2. One can see the
sharp decrease in the autoionization decay rate with the
crease of the electron-orbital momentuml described by the
function G. Taking into account that the essential values
the argument of theG function is never close to zero it i
possible, for practical use, to change the functionG by its
asymptotic expansion

G~u!'p exp~22u!. ~2.19!

To obtain the total autoionization decay rate, it is nec
sary to multiply Eq.~2.18! by (2l 11) and to sum~or inte-
grate! over l. It is more convenient to use the relationshi
~2.3!, ~2.15!, and ~2.17! and to express the total autoioniz
tion decay rate in terms of the total excitation cross sect

WA~n!54Z2f i f g„Zv/~2E!3/2
…321/2n23v22, ~2.20!

whereg(n) is the classical Gaunt factor for bremsstruhlu
(H are standard Hankel functions!

g~n!5p
A3

4
inHin

(1)~ in«!Hin
(1)8~ in«!. ~2.21!

Equations~2.20! and ~2.21! can be used for calculation
of total autoionization decay rates of the atomic state w
principal quantum numbern. The precision of the resul
~2.21! is the same as the precision of the general relations
~2.3!, the precision of quasiclassical cross sections be
very high up to the threshold, see@13#.

To obtain the final result for the total autoionization dec
rate, one must substitute the value of the electron energy
the thresholdE5mv2/25v into Eq. ~2.20! that gives

WA~n!54Z2udi f u2g„~Z2/8v!1/2
…321/2n23. ~2.22!

The dependence ofWA on Z is practically absent if one
takes into account thatdi j

2 }Z22, the argument of the Gaun
factor is large if one scalesv}Z, which means that the valu
of g is close to 1~practically, however, the argument is n
so large!.
2-4
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III. TRANSFORMATION TO A PARABOLIC BASIS IN
QUASICLASSICAL THEORY

The transformation to a parabolic basis may also be p
formed in two ways:~1! a calculation of the probabilities o
an appearance of a specific value of the parabolic quan
number in the anglular-momenta distribution in a Coulom
field, and~2! an application of the asymptotic representati
of Clebsh-Gordan coefficients@16#. Both methods use the
specific four-dimensional symmetry properties of the Co
lomb field. These properties are connected, as it is w
known, with the additional integral of motion in a Coulom
field, namely, the Runge-Lentz vectorA522e2^r &/3a (a
5e2/2E) where^ & means average over the electron motio
The properties of the vector are as follows:

L•A50, A212EL251, or n2«21 l 25n2, ~3.1!

where« is the eccentricity of the electron orbit and we ha
substituted quantum numbersl ,n instead of the orbital mo-
mentum and the energy.

The electron motion can be described in terms of t
independent orbital momentaJ1 ,J2

J1,25
1

2 FL6S m

a D 1/2

AG . ~3.2!

The main properties of the momenta are as follows:

J1
25J2

25 j ~ j 11!,

~J1!z5m15
m1n22n1

2
, ~J2!z5m25

m1n12n2

2
,

Lz5m, S m

a D 1/2

Az5n22n1 . ~3.3!

The last equation together with Eq.~3.1! describes the con
nection between projections of vectors (J1)Z ,(J2)Z and para-
bolic (n1 ,n2 ,k5n«5n12n2) and spherical (l ,m) quantum
numbers. The following conditions are fulfilled in our case
strongly curved classical trajectories corresponding to
formula ~2.18!

m, l !n} j . ~3.4!

Equation~3.3! expresses some limitations on the distrib
tion of projections of these vectors in space. Under con
tions ~3.4! one can consider the simplest model whenm50.
Putting thez axis along the vectorA and thex axis along the
vectorL , we can consider a two-dimensional model for t
evolution of projectionsJz andJx of both vectorsJ1 ,J2.

From a general point of view, the joint probabilit
P( l ,k,n) of the appearance of spherical and parabolic qu
tum numbersl ,k is equal to the ratio of the phase-spa
volume where conditions~3.3! are satisfied to the tota
phase-space volume (n2). To determineP( l ,k,n) let us per-
form an integration over all phase space of vectorsJ1 ,J2
accounting for limitations~3.3!. The integrals take the form
03270
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P~ l ,k,n!5E E E E
2 j ,1 j

dJ1xdJ1zdJ2xdJ2z

3d~J1z1J2z!d~J1z2J2z2k!

3d„~J1x
2 1J1z

2 !1/22 j …d„l 22~J22J1z
2 !1/2

….

~3.5!

The integration is performed with the help of the prope
ties of d functions: d( f (x))5@d f(x)/dx#21d(x2x0)
@ f (x0)50# and proper limitations on the domains of variab
change.

When one takes into account normalization conditions
result takes the simple form

P~ l ,k,n,m50!52@~n21!22k2#21/2/p, ~3.6!

that is the probability of the appearance of the parabo
quantum numberk does not depend onl at all under condi-
tions of smalll !n. The probability distribution~3.5! coin-
cides with the probability of the oscillating variableJ12J2
to take a definite valuek. It corresponds to a picture of elec
tron motion resulting in the oscillation of orbital momen
J1,2 along thez axis with small~neglecting! projections on
the x axis.

A close result for the casemÞ0 can be obtained from a
consideration of quasiclassical limit of Clebsh-Gordan co
ficients. Really the parabolic and spherical quantum numb
are connected by the sum with Clebsh-Gordan coefficie
C@ j 1 , j 2 , j ;m1 ,m2 ,m#

u^n1n2munlm8&u2

5C2Fn21

2
,
n21

2
,l ;

m1n22n1

2
,
m1n12n2

2
,m8G .

~3.7!

The square of the coefficients may be considered a
joint probability P(n,l ,k,m) of the presence of specifi
quantum numbers. Making a transition to large values of
quantum numbers@16# and using the conditions~3.4! deter-
mining the domain of present interest, one arrives at the
lowing approximation:

P~n,l ,k,m!

5C2@~n21!/2,~n21!/2,l ;~m2k!/2,~m1k!/2,m#

52l @~ l 22 l min
2 !~ l max

2 2 l 2!#21/2/p, ~3.8!

where

l min
2 5@~n21!21m22k2#/22$@~n21!21m22k2#2

24~n21!2m2%1/2/2, ~3.9!

l max
2 5@~n21!21m22k2#/21$@~n21!21m22k2#2

24~n21!2m2%1/2/2,

or, whenm!n
2-5
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l min
2 '~n21!2m2@~n21!21m22k2#21,

~3.10!
l max
2 '@~n21!21m22k2#5~n21!2m2/ l min

2 .

One can see that whenm50 the Eq.~3.8! reduces to the
classical Eq.~3.6!. The difference between both probabili
distributions is inside a small domain@(n21)2k#'m!n.

The normalization ofP(n,l ,k,m) Eq. ~3.8! is equal to 1.
Really, the integration~3.8! over l 2 gives the expression

2parcsin
22l 21 l max

2 1 l min
2

l max
2 1 l min

2 U
l
min
2

l max
2

51.

The parabolic representation of an autoionization de
rate is obtained by the multiplication of the rate in the sphe
cal basis~2.18! by the probability~3.8! and integrating~sum-
ming! over l,

WA~n,k,m!5E
l min

l max
dlP~n,l ,k,m!WA~n,l !, ~3.11!

wherel min ,lmax are defined by Eq.~3.9! or Eq. ~3.10!.
Substituting the expressions~2.18! and~3.8! for functions

WA(n,l ) and P(n,l ,k,m) and making a transformation t
dimensionless variablest5 l / l e f ,l e f5(3Z2/v)1/3, it is pos-
sible to obtain

WA~n,k,m!5p21n23f i f I ~n,k,m!, ~3.12!

where the universal functionI (n,k,m) is

I ~n,k,m!5I ~ tmin ,tmax!

52l e f /pE
tmin

tmax
dtt2G~ t3!~ t22tmin

2 !21/2

3~ tmax
2 2t2!21/2, ~3.13!

whereG was defined by Eq.~2.12!, tmin}(n21)m„(n21)2

1m22k2
…

21/2,tmax5(n21)m/tmin}n.
Below we will use the approximation~2.19! for our par-

ticular calculations.
One can see that for the casetmax'n@1 Eq.~3.13! may be

transformed into

I ~ tmin ,tmax!'2l e f /ptmaxE
tmin

tmax
dtt2G~ t3!~ t22tmin

2 !21/2

'2l e f /tmaxE
tmin

tmax
dtt2exp~22t3!~ t22tmin

2 !21/2

5I ~ tmin!2l e f /tmax. ~3.14!

The universal functionI (x) is presented in Fig. 1.
Limiting cases of the functionI (x) are as follows:

I ~x!'H G~2/3!321222/3'0.284 for x!1,

~p/12!1/2x1/2exp~22x3! for x@1.
~3.15!
03270
y
i-

The functionI (x) can be approximated with a good pr
cision by the simple exponent

I ~x!50.284 exp~22x3!. ~3.16!

We will use below the asymptotic expression for the fun
tion I (x) for particular calculations.

The dependences of dimensionless autoionization de
rateI (n,k,m)(p)21 from Eq. ~3.13! on the ‘‘electric’’ quan-
tum numberk for different values of magnetic quantum num
ber m are presented in Fig. 2 for the Li-like ion ZnXXVIII

(Z530). One can see that the greatest contribution to thk
phase space comes from smallm values.

IV. DIFFERENTIAL DR RATES

To obtain differential ~as regard to principal quantum
numbersn) and total DR decay rates it is necessary to p

FIG. 1. Universal functionI (x) describing the dependence o
autoionization decay rates on parabolic quantum numbers, see
~3.12!–~3.14!.

FIG. 2. Distribution of autoionization decay rates over ‘‘ele
tric’’ quantum numbersk at different values of magnetic quantum
numbersm for the Li-like ion Zn XXVIII at the principal quantum
numbern5100. Here the scale forI (100,k,10) equals the scale fo
I (100,k,0) multiplied by 101.
2-6
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QUASICLASSICAL THEORY OF DIELECTRONIC . . . PHYSICAL REVIEW A 65 032702
form two ~or three! summations in the Eq.~2.1!. It is more
convenient to deal with a reduced DR rate,q* (n) equals to
the term with the sum in the Eq.~2.1!, that is,

q* ~n,Z!5QDR~n!/B~Z,T,v,n!5(
k,m

WA~n,k,m!

WR1WA~n,k,m!
,

~4.1!

where

B~Z,T,v,n!5S 4pRy

T D 3/2gf

gi
~a0!3WR expS 2

v

T
1

Z2

2n2T
D .

The sum in Eq.~4.1! accounts for a conversion from th
spherical basis to parabolic one. The detailed considera
of the atomic basis transformation under the action of per
bations is presented in Ref.@17#. Our treatment deals with a
particular case of perturbations constant in time. So it is s
ficient for our consideration to restrict ourselves by the tra
formation coefficients presented by Eqs.~3.8! and ~3.11!.

The quantityq* (n,Z) is equal to a number of atomi
states with a given energy~n! contributing to DR rates. When
WR50, the number is equal to the statistical weight of t
energy level, that is, equal ton2. If WRÞ0 the number de-
pends on the type of the atomic quantization being spher
or parabolic.

Let us take into account that the autoionization dec
rates in the Eq.~4.1! are expressed in terms of the univers
function ~3.16! with the argument depending on paramet
l min
2 and l max

2 in accordance with Eq.~3.11!. To do this let us
change the sum in Eq.~4.1! by the integral over correspond
ing quantum numbers and then make a transformation to
variablesl min

2 ,lmax
2 . The JacobianJ of the transformation is

obtained by a direct calculation
l

R

u

03270
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J~n,l min
2 ,l max

2 !5
l min
2 2 l max

2

4l minl max~n21!2

3F11
l min
2 l max

2

~n21!4
2

l min
2 1 l max

2

~n21!2 G21/2

.

~4.2!

Extracting in the sum~4.1! the dependence on the princ
pal quantum numbern, we arrive at the expression

q* ~n,Z!52E
0

(n21)2

dlmax
2 E

0

l max
2

dlmin
2

J~n,l min
2 ,l max

2 !

11@n/n* ~ l max,l min!#
3

,

~4.3!

where the effective value of the principle quantum numb
n* is introduced with the account of Eqs.~2.2!, ~3.12!,
~3.14!, and~3.16!,

n* 350.284
c3l e f

2

pv2l max

exp~22l min
3 / l e f

3 !

5L~n21!21z21/2exp~2Any3/2!,

L50.284c3l e f
2 p21v22, An52~n21!3l e f

23@1.
~4.4!

Here the dimensionless variablesy5 l min
2 /(n21)2 and z

5 l max
2 /(n21)2 and parametersL,An are also introduced.
Further making the transformation to the variablesy andz

in Eq. ~4.3!, we obtain
q* ~n,Z!5
1

2
~n21!2E

0

1dz

Az
E

0

z dy~z2y!

@y~11zy2z2y!#1/2@11n3~n21!Az exp~Any3/2!/L#
. ~4.5!
One can check that forWR ~that is,L→`) the quantity of
q* (n,Z) is equal to (n21)2, which is just the statistica
weight ~with small corrections! of the energy leveln.

The Eq.~4.5! solves the problem of the distribution of D
rates over principal quantum numbersn.

To make clear the dependence, let us take into acco
that under conditionAn@1 effective values of the variabley
are small as compared withz being of the order of unity.
Neglecting, where it is possible, the magnitude ofy as com-
pared withz, expanding the integration overy to infinity, and
changing variables, one arrives at the expression

q* ~n,Z!5
3.14l e f

24/33
nE

0

` du

u2/3
~11n4eu/L !21. ~4.6!
nt

One can see that the dependence of DR rates onn is
described by the universal functionJ(a) such that

QDR~n!5B~Z,T,v,n!q* ~n,Z!, ~4.7!

where

q* ~n,Z!51.25l e fnJ„n4pv2/~0.284c3l e f
2 !… ~4.8!

and

J~a!5aE
1

`

dx ln 1/3~x!/~11ax!2'H ln 1/3~1/a! if a!1,

0.89a21 if a@1.
~4.9!

The functionJ(a) is presented in Fig. 3.
2-7
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Let us apply general results~4.7!–~4.9! to the case of the
Li-like carbon ion C31 and make a comparison with th
particular calculations@2,3#. Substituting all numerical con
stants into Eqs.~4.7!–~4.9! one obtains the distribution o
DR rates~in units 10212 cm3/s for the electron temperatur
Te5105 K) over principle quantum numbers presented
Fig. 4 ~solid curve!. The specific data@3# are represented b
the dotted line. Our data, at their maximum in Fig. 4, a
closer to data@2# and near two times lager than the data@3#
~see comments in@3#!. The difference may be due to th
proper account of the normalization conditions in Eq.~4.5!
@see comments below Eq.~4.5!#.

It follows from the quasiclassical consideration that t
conditions for the C13 ion are very close to the condition
for the Mg11 presented in@1#. Really one can check tha
both ions mentioned above have the same radiation de
rates and the arguments of theJ function in Eq.~4.8! are also
very close for them. The only difference is the value of t
parameterl e f equal to 4.6 for C13 and 2.7 for Mg11. The
corresponding results are presented in Fig. 5. The close
respondence of both data in Figs. 4 and 5 is a confirmatio
the classical scaling low following from the general res
~4.8!.

FIG. 3. Universal functionJ(a) describing the distribution of
DR rates over principle quantum numbersn, see Eqs.~4.8! and
~4.9!.

FIG. 4. Distribution of DR rates~in units 10212 cm3/s) overn
for the C31 ion at the electron temperatureTe5105 K: solid curve,
universal quasiclassical formula~4.7!–~4.9!; dotted line, calculation
@3#; long dashed line, calculation@2#.
03270
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V. TOTAL DR RATES

To obtain total recombination rates, in the parabolic ba
one must integrate a differential distribution over all valu
of principle quantum numbers from a small value~put to be
zero below! up to a particular valuenmax depending on the
cutoff conditions in plasmas. Corresponding results can
also expressed in term of a universal function

QDR
tot 5B~Z,T,v,n!q* tot, ~5.1!

where

q* tot50.08c3/2
l e f
2

v
P„nmax

2 vAp/~0.533c3/2l e f!… ~5.2!

and

P~x!5E
0

1 dz

ln 2/3~1/z!
arctan

x

z
'H p

2
G~1/3!'4.2 if x@1

3x ln1/3~1/x! if x!1.
~5.3!

The universal functionP(x) is presented in Fig. 6.
Using the data~5.1!–~5.3! it is possible to investigate a

dependence of DR rates on electric-field strengths expres
the value ofnmax as a function of an electric-field strengthF
from Eq. ~1.3!. Below we will pick up the value ofnmax in
accordance with@3# to make clearer the comparison wit
numerical data, that is,

nmax5~6.83108Zi
3/F !1/4. ~5.4!

Figure 7 presents the dependence of DR rates on the
strength (V/cm). The data@2# are also presented in the Fig
7. These data demonstrate the typical maximum in the
crease of the DR rates, which corresponds to an esse
increase of the phase space due to the action of the field.
field ionization results in a decrease of DR rates with
increase of field strengths. Our model corresponds to r
tively large values of electric-field strengths, that is, to t

FIG. 5. The same as in Fig. 4 but for the Mg11 ion: solid
curve, quasiclassical formula~4.7!–~4.9!; dotted line, calculation
@1# ~multiplied by the factor 2!.
2-8
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full mixing of atomic states, so the only decrease due
ionization is seen in the Fig. 7.

The simple way to take into account plasma density
fects is to connect the value ofnmax with the electron plasma
density. It can be done easily by the substitution into E
~5.4! of the Holsmark field strength given by the formula

F~V/cm!51.331026ZiNi
2/3 cm23,

nmax5~5.2331014Zi
2/Ni

2/3!1/4, ~5.5!

where one can take into account the relationshipNe5ZiNi
for one-component plasmas or substitute an indepen
value Ni for many-component plasmas~for example,Ne
5NH1 for hydrogen plasmas considered in@2,3#! The com-
parison between our data and data of Ref.@3# ~multiplied by
the factor 2, see comments at the end of Sec. IV! is presented
in Fig. 8. One can see a good correspondence between
versal formulas~5.1!–~5.3! and the specific calculation.

The kinetic effects due to electron collisions can be a
taken into account in the following approximate manner. T
main effect of electron collisions is a decrease of recom
nation effects due to the secondary ionization of the captu
electron by other plasma electrons. These effects are
scribed by an attenuation factorj (n,Ne ,Te) equal to a prob-

FIG. 6. Universal functionP(x) ~5.3! describing the depen
dence of total DR rates on cutoff parameters.

FIG. 7. Dependence of total DR rates~5.1! for the C31 ion on
the electric-field strength: solid line, quasiclassical formulas~5.1!
and ~5.2!; dotted line, calculations@2#.
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ability for the electron captured to reach a ground atom
state. The probability can be estimated as the ratio of
radiative decay rateAn from the captured atomic state an
the ionization frequencyNe^vs i& from the state due to elec
tron collisions. Both these rates are estimated for Rydb
atomic states as follows@18#:

An~s21!52.431010Zi
4/n5,

^vs i&51027n2Zi
22~1 Ry/Te!

1/2. ~5.6!

Using these approximations one obtains for the atten
tion factor

j ~n,Ne ,Te!5@11~n/n0!7#21,

n05Zi@2.431017~Te /Ry!1/2/ZiNe~cm23!#1/7. ~5.7!

It is seen that there is a sharp dependence of the facto
the value of the principle quantum number that means
the electron secondary ionization effects can be also ta
into account with the help of a cutoff procedure. So the va
n0 can be used as the cutoff parameter together with thenmax
accounting for ion field ionization effects described by E
~5.5! because both effects result in the ionization of the c
tured electron. So the specific value ofnmax in Eq. ~5.2! must
be put to be the minimum of two magnitudes~5.5! and~5.7!.

The effects of both plasma ion microfields and electr
collisions on DR rates for the C31 ions are presented in Fig
9 as a function of electron densities for the electron tempe
tureTe5105 K. One can see that the ionization by electro
produces larger effect on DR rates than does the ioniza
by the electric field. The results of the present simplifi
consideration are also in a reasonable correspondence
numerical data@3#.

Note that Refs.@2# and @3# deal with plasma effects by
solving a set of rate equations, whereas the present p
uses the cutoff procedure. The procedure takes into acc
diagonal elements of the relaxation matrix only. This is t
reason for the discrepancy between data in Fig. 9. It is n
essary to note, however, that the discrepancy is not so l

FIG. 8. Effect of plasma electron densityNe on the DR rate for
the C31 ion for the electron temperaturesTe5105 K ~solid line,
quasiclassical formula~5.1!; dotted line, calculations@3#!.
2-9
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as to be of a great importance because the matrix elemen
the relaxation matrix can be also modified by the plas
microfield.

VI. CONCLUSION

The above consideration results in the general quasic
sical formulas~3.12!, ~4.8!–~5.3! for differential and total
DR rates as functions of the atomic and cutoff parameter
describes effects of relatively strong electric fields~full mix-
ing of atomic states! on DR rates accompanied by transitio
in atomic cores without change in their principle quantu
numbers (Dn50 transitions!. These transitions are respo
sible for the most of the contribution to atomic processes
collisions of plasma electrons with complex ions. T
present results make it possible to calculate DR rates
simple way for every ion havingDn50 transitions in the
core.

The above results can be generalized to the case of pa
l mixing in the following way. Let us write down the cond
tion of the total mixing comparing the energy shift due to
quantum defectd l and the matrix elements of the ato
electric-field interaction

3n~n22 l 2!1/2F.Z3d l /n3. ~6.1!

The condition~6.1! determines a minimum value of th
orbital momentuml consistent with full mixing conditions
The value must be substituted instead of the parameterl min in
Eq. ~3.11!. A contribution of atomic states withl , l min from
the Eq.~6.1! is taken into account in Eq.~2.1! in the usual
manner as in the conventional spherical basis.

Let us estimate an enhanced factor for DR rates. To d
one can calculate the DR rate in a spherical basis with

FIG. 9. Effects of ion electric field~upper curves: 1, quasiclas
sical formula~5.1!; 2, calculation@3#! and electron collisions~lower
curves: 3, quasiclassical formula~5.1!; 4, calculation@3#! on DR
rates for C31 in a hydrogen plasma withTe5105 K.
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help of Eq.~2.18!. The general expression for the effectiv
DR rate qsph* (n,l ) into particular valuesn,l in a spherical
basis takes the form@10,11#

qsph* ~n,l !5~2l 11!@~n/n* !311#21, ~6.2!

where

n* ~ l !5$3c3~2l 11!G„v~ l 11/2!3/3Z2
…/~2pv f i f !%

1/3.
~6.3!

Using the asymptotic expression for the functionG(u),
one can present Eq.~6.3! in the form @see the valuel e f in
Eqs.~3.11!–~3.13!#

n* ~ l !5n* ~0!exp@2~ l / l e f!
3# , ~6.4!

n* ~0!5c@3l e f /~2v2!#1/3@1 . ~6.5!

When integrating Eq.~6.2! over l, it is natural to change
variables ton* ( l ) according Eqs.~6.3! and ~6.4!. One can
obtain the following simple estimation for the total effectiv
DR rateqsph* (n):

qsph* ~n!; l e f
2 ln2/3@n* ~0!/n# , ~6.6!

that is, it practically does not depend on values ofn. This
value must be compared with the one in the parabolic b
given by Eq. ~4.8!. Neglecting slow logarithmic depen
dences, we arrive at the simple estimation

qpar* ~n!/qsph* ~n!;n* ~0!/ l e f , ~6.7!

where we have introduced the designation ‘‘par’’ for the r
sult ~4.8! obtained above in the parabolic basis. The sa
estimation is approximately true for the total DR recombin
tion rates.

It is seen from the estimations that the enhanced factor
DR in an electric field is approximately equal to the ratio
the effective volume in then space to the effective volume i
the l space for the spherical basis. This ratio depends o
specific atomic structure of a recombining ion determini
effective values of parameters in Eq.~6.7!. Practically for
most ions the value ofl e f changes from 3 up to 10 wherea
n* (0) is of order of 102 that means the enhanced factor
near 20–30, which is in a reasonable correspondence
numerical calculations@1–5#.
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