PHYSICAL REVIEW A, VOLUME 65, 032519
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Four basic theorems involving the correlation matrices are demonstrated here. One of these theorems estab-
lishes, as a necessary and sufficient condition, that the solutions of the fourth-order modified contracted
Schralinger equation correspond uniquely to those of the Stihger equation. The complete equivalence
between these two equations is demonstrated. Another equation equivalent to thdirgeinrequation but
involving only the correlation matrices is also obtained as a consequence of the second theorem.
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[. INTRODUCTION CSEs, the Schudinger equation, and the correlation vanish-
ing terms recently reportefi36,37. The interrelation be-

The convenience of replacing the search for thetween the CSE, the Schdimger equation, and the cancella-
N-electron wave function by that of the second-order reducetion of the high-order correlation effects lies at the root of the
density matrix(2-RDM) was pointed out long ago by the MCSE because it shows that it is possible to construct a
great pioneers in this field: Husinil], Lowdin [2], Mayer  self-contained equation that could be equivalent to the
[3], McWeeny[4] Ayres[5], and Coulsori6]. It is not pos-  Schralinger equation. The fourth theorem proves that when
sible to refer here to the many valuable contributions thathe 4-MCSE, in its self-contained form, is satisfied by a set
followed these early works. However, the interested readeof 1-, 2-, 3-, and 4-RDMs, which must k¢ representable
may find a reliable account in a series of books and review§38,39, then these matrices and the ensuing energy corre-
[7—13 and, in particular, in the recent book by Coleman andspond to eigenstates of the system and eigenvalue, consid-
Yukalov [6]. ered respectively. The converse is also proved. This one-to-

In 1987, Valdemoro applied the RDM contracting map-one correspondence between the 4-MCSE and the
ping to the matrix representation in tieelectron space of Schralinger equation shows that the 4-MC&Enot an arti-
the Schrdinger equation[14] and obtained the family of fice but a relevant equation in many-body theory.
contracted Schiinger equations(CSE, which can be The notation and basic background are described in the
shown to be equivalent to the integrodifferential equationdollowing section, where some new related formulas are also
originally proposed by Chd15] in 1962 and then reported given. In Sec. lll, the problem is stated and solved by estab-
independently by Cohen and Frishbédd,17] and by Na- lishing and proving the above-mentioned theorems. A brief
katsuji [18] in 1976. What hindered the use of these equadiscussion about some of the implications that these theo-
tions is that they are indeterminaf@9]. An approximate rems have when applied in practice is given in the conclud-
algorithm for building a 2-RDM in terms of the 1-RDM was ing section.
reported by Valdemor$20] and subsequently the procedure
was extended in order to approximate higher-order RDMs in Il. BASIC DEFINITIONS
terms of the lower-order ond21,22. The use of these ap-
proximations permitted the removal of the 2-CSE indetermi- In what follows, we consider that the system under study
nacy, thus allowing its iterative solutidi23]. This started a has a fixed and well-defined number of particlis\We will
new line of research that not only shed light on the RDM's@lso consider that the one-electron space is spanned by a
theory but is also established a new approach to study accfihite basis set of XK orthonormal spin orbitals. Under
rately the electronic structure of fermion systems withoutthese conditions @-RDM corresponding to am-electron

having recourse to the-electron wave functiof24—36. stateV may be defined in second quantization formalism as
Alcoba and Valdemord37] have recently reported and

implemented a new family of equations: the modified con-py = _ i(\lf|bT bl b b bi_b; |¥)

tracted Schrdinger equation§MCSE), which have signifi- 2 lpilala-dp o pl Fi R R P E U

cant properties. The most important of this family of equa- (1)

tions is the 4-MCSE, which transforms the search for the

N-electron eigenfunction into the search for the solution of avhereb’ andb are the fermion creator and annihilator op-
fourth-order self-contained equation. The relevance of thi€rators, respectively.

approach lies in the fact that no approximation is, in prin- In this formalism the many-body Hamiltonian may be
ciple, needed. The price that must be paid is that the size dfitten as

the problem augments. A new feature of the MCSEs is that

the correlation matrices play a central role in them. This is N 0 Tt

the reason why this paper aims to state and prove four theo- : k;,s Hisita Brbsbibic @
rems involving the correlation matrices. The first three theo-

rems shed light upon the narrow link existing between thewhere
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1 en St &5k A. Decomposition of the RDMs and correlation matrices

OHrs;k|:§ T+<I’S|k|> , 3 structure

The anticommuting rules satisfied by the fermion opera-
tors, together with the resolution of the identity operator,
render possible the decomposition gpd&rRDM element into
a sum of terms involving lower-order RDM elements and
terms describing purg-body correlation effect$26—30.

Let us consider now the decomposition of the 2-RDM that
provides the simplest example.

wheree groups the one-electron integrals gmd|kl) are the

two-electron integrals in the Condon and Shortley notation.
The representation of this Hamiltonian in theelectron

space yields the Hamiltonian matrik;, whose diagonaliza-

tion provides the full configuration interactigqfrCl) eigen-

states. The matrix representation of the Sdimger equation

in this space takes the form 2!2Dij;m|:<\P|binijlbm|\P>: -1p;, Sm

T T
H Z_)‘I’= qug«ngqu +{W¥|b; bmbj by ¥, 7

(4)

and let us write the resolution of the identity,as
whereV is the considered eigenstate of the Hamiltonian and

DY=|W)(W¥| is the N-electron density operator. T N | =Pt &

The fact thatD¥ commutes with+ will not be explicitly ! |\P><\P|+W§W Or=P+Q, ®
taken into account in what follows. Thus only the equation
derived from the left part of Eq4) will be considered. It where|¥) represents the eigenstate of the Hamiltonian be-
should, therefore, be kept in mind that the relations derivedng studied,|¥ ') represent the remaining part of the spec-

in a similar way from the right part of Eq4) are equally  trum and the projectoP and its orthogonal complemeft

true. are defined as
The application of the matrix contracting mapping into
the two-electron spadé4,40,4] to both sides of relatiofd) p= | PP, 9)
(left side equatiop leads to
. 0= > |[¥'\w|. (10)
(¥[Hbbbgb,| W) =E(¥[bbbyb,| ¥)=E212D;;. nq. vy R
5

When inserting in the last term of Eq(7) betweenb,,

T
Replacing the explicit form oH into Eq. (5) and trans- andby one has

forming the left-hand sidélhs) of the equation into its nor- 212D, =D, D= 1D, 8.+ 2Cii i, (11)
mal form one obtains the 2-CSE, which may be written as W b S U
where

2 _ Oy 2 0 3

21E“Djj.pq=2!'2(°H D)i,‘;pq+3!2§s ("Hjs.ki1 °Dpgsiki zcij;mI:<\I,|binmeij||\P>E 2 lD;I;,rE,, 1DJ}1;fI'«p_
V£ 12
+0Hsi:k|3qustk)+4! E 0Hrs:kI4qurs;ijk|
klrs The matrices'D¥Y" are first-order transition reduced den-

52/\/1”. 0q- (6) sity matrices. ThéC matrices can be interpreted as describ-
ing the simultaneous virtual excitations and deexcitations of
two electrons of the system.

Recalling the basic relation obtained by taking the expec-

tation value of the anticommutator of two fermion operators:

In what follows the matrixP M will denote the matrix
representation of that side of tipeCSE that involves th&H
elements.

This equation, whose main variable is the 2-RDM, also ls =1p . 4+1p.
depends on the 3- and 4-RDMs, which is the cause of its b b !
indeterminacy. As reported by Colmenero and Valdemorgyhere the first-order hole reduced density mattix{RDM)
[23]in 1994, the interdependence that—at least apparently—s defined as
exists among the 2-, 3:,..,p-CSEs may be decoupled by
constructing satisfactory approximations of the 3- and 15__:<\I,|b_bfr|q,> (14)
4-RDMs in terms of the 2- and 1-RDMs. The algorithms " = '
used[21,22 were an extension of those proposed by Valdeye can rewrite the decomposition of the 2-RDM as follows:
moro in 1992 for approximating the 2-RDM in terms of the
1-RDM. Since then, several new improvements have been  5y2p  _ip 1p _1p 1p. _1p 1p
implemented in order to enhance the accuracy of the algo- mi™ Fhm =R =R EEm e EE
rithms [24,25,29-31,4p +2Cij 1. (15)

- (13)
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While the first two terms of the right-hand sideérs) of Eq.  and the ®'3C;;,...\,, whose formula may be easily be in-
(15 describe the uncorrelated portion of the 2-RDM ferred.
[26,28,32, the last two terms of Eq15) are the analytical The only pure four-body correlation matrices that will be
expression of the second-order cumul@it—35,43—4bthat  used in what follows are
describes the correlated portion of this RDM6,27,32.
Thus, Eq.(15) shows that the cumulant can be decomposed
in two terms: one term that is a product of two one-patrticle ) )
density matrices describing the correlation effects through @20C 0 mars= 2121 2, ’Di{mn?Dire»  (21)
the 1-HRDM and one term expressed as an element of the A
2C matrix that cannot be decomposed in terms of lower-
order density matrices—which is why tH€ matrices have
been called pure two-body correlation matri¢@g—30,38. _ , P "
It should be mentioned here that the choice and the order (4'2'1'1)Ciikl;mlrs=2! ,2,, ZDi\f;\fnnngrw lqu;,s\ya
in which the fermion operators are anticommuted in &. vATEY 22)
is not unique. Thus, one may as well have

212D .= — D "Djumt Di.m:1— 2Cijum-  (16) but, as in the three-order case, all four-order combinations of
1-, 2-, and 3-transition RDMs are possible.
There are still two other possible equivalent expressions
that correspond to the permutation of the creator indices and B. The pure p-body correlation matrices

to the joint permutation of the creator and the annihilator _ . . . .
indices. It should perhaps be mentioned here that in order to The interesting physical-mathematical properties of the

have an antisymmetriéC matrix one must consider the ma- pure p-body correlation matrices desgrve by_ themselves a
separate study48]. Nevertheless, we will describe here three

trix - . .
types of properties that are needed in the following develop-
24A 2Cij;mi— *Cijim— *Cii;mi* °Ciizim ments.
Cijm= 2 , (17
1. Interrelation among correlation matrices
in which case the 2-RDM takes the form Let us first consider the manner in which two differ&ht

matrices of the same order are interrelated. As an example of
how to proceed, let us consider tfe*>C and the*22C
212D=DAD+DAYN+2CA, (18  matrices.

where !l is the unit matrix of dimensions (2K) X (2x K),

and the wedge symbol represents de Grassman prpdibict ) )
In the demonstrations that center our attention here it is not*22C;j mars=212! >, 2D}{ 2Dy
necessary to consider antisymmetrized matrix forms. Thus, v

the theoretical implications and the practical implementation _ tot AL bt

of this property in the 4-MCSE will be reported elsewhere =(¥[bi’bybybnQbybibsby [ W)

[47]. _ tht Art _hih bt

The decomposition of the 3- and 4-RDMs may be carried (¥]b;b7nbrQ{bibsdrr — bibrbi b} W)
out in a similar way as in the 2-RDM ca$29]. These de- = —@20C,,. 5,
composition formulas are given in the Appendix. We will ~
just mention now that the decomposition of the 3- and +(¥|b{ bbb Q{byb, [ W){(¥[b]bs
4-RDMs generate a set of different pure three-body and pure .
four-body correlation matrices. Thus, besides the different +byib,Qb/bg}| W)

matrices arising as the result of the permutation of their in-

(321 (3:21) 1
dices, other structural varieties occur in the higher-order ma- Cijk:mnsir + Cijk;mnr Dis

trices. Consequently, the pure three-body correlation matri- + 2 s
ces are |
Thus,
. LA AT A
(3'2'1)Cijk;mlr:2! % 2Dij;mlle:r ' (19 4;2,2 4211
v Ly (4 ’)Cijkl;mnrs_( o )Cijkl;mnrs
:(S;Z’l)cijk:mnrlDIs_(3;2'1)Cijk?”ms§Ir ) 23
. VAR A LT A
GLLC = > o D Dy

Ly ' ’ The reasoning followed here is general and, therefore, sets
(200  the way in which to handle these matrices.
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2. The vertical contraction of these correlation matrices N 0 @22}
. . . . . . 0=(¥|HQb/bib/b,|¥)= Hoqrs'“o9Chqii:
Let us now consider a different kind of interrelation aris- (W[HQbbib by W) pqzrs pars Pqijirskl

ing from what will be calledvertical contraction As usual,

the sum is carried out over a common creator and annihilator =
index but what is specific to this kind of contraction is that

this common index occupies the same place in the creator

and annihilator labels, respectively. In order to render theThis type of vanishing terms are described @520,y
reasoning more transparent we will consider concrete caseahere only the indices that do not enter into the sum appear

(220,51 (28)

but the procedure and the results are general.
(1) The indices to be contracted are the last oftgsthe
first ones in the label. There are two possible cases:
Case(a):

EI (4;2'1'1)Cijkl ‘mnrl= EI <\P|b|Tb]Tbnbm©bEerblTbI|\P>

=(¥|b{b/b,bQbib, QN|W)=0.

(24)

Note that in this case the string of operat@r& acting on
|¥) vanish.
Case(b):

ZI (4;2’2)Cijkl smnrl = <\P|binijnmebler|\P>

=(N=1)20C . mnr- (25

(2) The indices to be contracted are interior.

; B O ; (¥ bfbfbnbméblbkébrbsl‘w

=(W|b/bbybyQNQb by W)

= N(3;2’1)Cijl 'mns-* (26)

Note that in this case the string of operat@8lQ be-
comesNQ.

3. The vanishing products of the Hamiltonian
and the correlation matrices

explicitly in the symbol.

As has been mentioned in R¢86], this property causes
the cancellation of the high-order correlation effects through
the action of the Hamiltonian and explains why, when the
Hamiltonian only has two-body operators, there is a one-to-
one correspondence between the 2-RDM and the wave func-
tion corresponding to an eigenstate of the Hamiltorj4®i.

I1l. EQUIVALENCE THEOREMS BETWEEN THE
SOLUTIONS OF THE FOURTH-ORDER MODIFIED
CONTRACTED SCHRO DINGER EQUATION AND THOSE
OF THE SCHRODINGER EQUATION

A. Presenting the problem

As will be shown here, thganishing termglay a deter-
minant role in the 4-MCSE theory. In fact, there are several
equivalent forms of generating the 4-MCSE, which only dif-
fer on the kind of vanishing terms appearing in the deriva-
tion. To understand the physical meaning and the interrela-
tions existing among the different vanishing terms is not of
only theoretical interest. Thus, the question of whether one
must take these terms explicitly into account when solving
iteratively the 4-MCSE is of the utmost practical relevance.
It will also be shown that an equivalence exists between the
4-MCSE and the Schdinger equation.

In order to present the problem we will first derive the
4-MCSE in a different way from that followed in R€i37]
and then we will recall the general lines of the previous
derivation.

The initial point for generating the 4-MCSE is similar to
that described in Sec. Il B. Thus, starting with the expression
for the 4-CSE,

A recently reported property of the correlation matrices

[36], which plays a central role in our developments, derives

from the basic relation

(P[AQO|W)=0, (27)

41E *Dijuipgrs= (WA bib/ bbby, W)

=*"Mij;pars: (29

one then proceeds to modify the order of the fermion opera-
tors with the ultimate aim of obtaining operator strings of the

where® may be any operator. The reason is that the projech’b'bbb'b'bbb'bTbb type in mind. Then the unit operator

tors Q@ and P are complementary to each other and, as we8) is inserted betweebb andb'b'. Also, when the Ihs of
have mentioned, th# is assumed to be an eigenstate of theEd. (5) appears it will be replaced b@M In order to in-

Hamiltonian.

As an example, let us consider thattis a two- body den-

sity operator. Then, Eq27) becomes

crease the readability of the paper and since no difficult op-
erations are involved, the intermediate steps are reported in
the Appendix. The resulting equation is

032519-4
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A1E *Dijui: pars= (8q18kp— Sp1Okg) *Mij:rs+ (8q18ks™ Skq " Di:s) *Mijpr
+ (O Okg— 5qI1Dk;r)ZMij;ps_(5Ip5ks_ 5kp1D|;s)
X 2 Mijqr— (8kpSir — Sip Dicr) 2Mijiqst 2! 2Mijpg *Dictirs— 5q|(E G20C - psrt G220 06
— Sk E B 2C;1 st 221051000 + 81 (E C2IC; ot 22054450 + Sip(E B2 YC 1 g1
+ 2280, qrs) + B H22C; g parst 22204t pgrs

:4Mijkl;pqrs- (30

the equation derived in Ref37], where only the*:220
appeared, would still be easy to handle.

Another important question is whether satisfying the
4-MCSE, as in the 2-CSE case, is a necessary and sufficient

When one assumes that thE are eigenstates of the
Hamiltonian, the vanishing term§:2220 and (%221 dis-
appear from the equation yielding7],

E4Dii = (8 S Su) 2M . conditiqn so that a set cN—r.gpresentabIe.RDMs corresponds
ki:pars™ (81 Skp ™ Optcg) “Mijirs to an eigenstate of the Scldinger equation and the energy
+(8q1 ks 5kq1D|;S) 2/\/1”- -pr simultaneously obtained coincides with the eigenvalue.

1 2
+ (ir Okg— 91 Di;r) “Mijps B. The theorems

—(81pBks— Sip ' Di;s) “Mijiqr Theorem 1. Let us assume that the pure four-body corre-

_ a1 204 lation matrix ('22C is derived from the decomposition of
(Oicpdie = Oip “Dicr) “Mijas an N-representable 4-RDM, then

+2Mij;pq2Dkl;rs_ 5qIE(3:2'1)Cijk;psr

— OkgE (3;2'1)Cijl ;prs
+ 8y pE B121C;

(4:22p=0, (33
+5IpE(3;2'l)Cijk;qsr . . . - . ;
will be satisfied by this four-body correlation matrifxand
st E @2AC 1 pars- only if the density matrix, preimage of the 4-RDM, satisfies
(31) the Schrdinger equation, Eq4). )
Proof. (a) Let us assume that the Schinger equation,
Eq. (4), is satisfied for?. It then follows that

ijl;q

This equation is self-contained, since the highest-order
RDM involved is the 4-RDM from which all the other ma-

trices appearing in the equation may be derived either 0=(¥|HQb[b/bb,|¥)= E "Hpqrs Y2 Cpqiirsk
through contraction or by applying the decomposition tech-
niques described previously. =®220, (34)

Note that the Ihs of Eq(29) arising directly from the
contraction of theEy, DY member of the Schainger equa- for all i,j,k,I.

tion is left untouched. Now, in our previous derivatif] (b) The second part of the theorem is proved as follows.
the reasoning followed was to some extent different. Let ug'hrough the use of the resolution of the identity it is easy to
insert the unit operator into E¢29) as follows: see that*220 can be rewriten as
- (4220 — E212p —
A1 *Dyjpars= (| AT/ b bbb, bb,| W) 0=E2!”D M. (35
=41 4Dijk|;pqrs+(6;2'4)oijk|;pqrs- (32) Now, by hypothesis

(4:2,2)y —
Then the rhs of this equation could be set equal to the rhs )9 9, (36

of Eq. (30) and the high-order vanishing terms would disap-
pear leaving just thé*>20. When the vanishing terms are
set equal to zero both derivations yield the same final result. E212D—-2M=0, (37)
However, while in the derivation reported here we are keep- -

ing the structure obtained by contraction from the Sehrothat is, the 2-CSE is satisfied. By the Nakatsuji's theorem
dinger equation, where the energy corresponds to an eigeft8], whose second quantization equivalent was given by
value, in the other derivation the energy is just anMazziotti [31], it follows that the Schrdinger equation is
expectation value. But if the vanishing terms would have tosatisfied. The proof is thus completed.

be evaluated explicitly in order to solve the equation—that Theorem 2. Let us assume that the pure four-body corre-
is, if Eq. (30) must be considered instead of H§1)—then lation matrix 4221)C is derived from the decomposition of
the equation would not be self-contained. On the other handyn N-representable 4-RDM, then

which implies
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(4:211p=0, (39 Attention should be called to a relevant implication of Eq.
- (38). Thus, in a similar way that expressi@B) is equivalent
will be satisfied by this four-body correlation matiifxand  to demanding that the 2-CSE is satisfied, the equation
only if the density matrix, preimage of the 4-RDM, satisfies

the Schrdinger equation, Eq4). ) (4:211pn=0, (42)
Proof. (a) Let us assume that the Schmger equation, o
Eq. (4), is satisfied for?. It then follows that implies that the equation
0=(¥|AQb/b Qbb|¥)= D, OH o421 i :
< | Qb;b,Q j I| > pqErs pa;rs pqij;rskl EZCij;pq:kzlr OHkI;ri (3'2'1)Cklj;rpq
=200, 39 S o (3:2,1),
— H,...G20c, .
for all i,j k.. s e Kliispa
(b) The second part of the proof is as follows. We first use
the fact that the fourth-order correlation matf&?**C can n OH, .  (431c, (43)
be contracted to the third-order orf&23C, as has been k%,s Klirs Kijirspa

previuosly shown in Sec. Il B 2. Thus, our hypothesis
(412100 involving the correlation matrices must also be sgtisfied and
o )9—9’ (40 also that this last equation is equivalent to the Sdimger

equation. This reasoning can be easily extended through the
use of the following theorem.

(B321p=0. (41) Theorem 3. Let us assume that the correlation matrix

- - (Pi2xy.--)C is obtained from the decomposition of an
Now, making use of relatiorf23) and the resolution of the N-representabl@-RDM, then the following relation
identity, it follows that

implies that

(P2XY, ... )0 =
E2! 2qu;rs_szq;rs:(A';z'z)opq:rs: —drq (3;2'1)0;):5 9=2 (49
+(3;2‘1)0p;rqu;s+(4;2’1’l)0pq;rs, with p>4 qnd x+y+~:-=p—2 .Wi|| be sat?sfied by t'he
corresponding-correlation matrixif and only if the density
for all p,q,r,s. Since the rhs of this relation vanishes, somatrix, preimage of th@-RDM, satisfies the Schdinger
does the |hs, that is, the 2-CSE is satisfied. By the Nakatequation, Eq(4).
suji's theorem, it follows that the Schiimger equation is Proof. (a) Let us assume that the Scdinger equation,
satisfied. The proof is thus completed. Eq. (4), is satisfied forl. It then follows that

O:(\P|I:|QbiT1...b;‘xbtx...btléb;rl...b;fybvy...b Q...|v)

U1

= 0 (P;2X,Y, - +) ) . )
2 Hpq;rs Cpqll...|le...1

Bt y...;rstl...txul...vy...
= (Pizxy. "')Oil...ile...jy...;tl...txul...vy... . (45)
|

for all il,...,ix,jl,...,jy,...,tl,...,tx,l)l,..., (4;2,1,1b:0. (47)
Uyyvnn

(b) The second part of the proof is as follows. We first _ _ .
consider the particular case whegn. ..=0. Recalling the The proof is completed by following the same reasoning
rules given in Sec. 1B 2, it can be shown that the vanishingas in the two previous theorenisecond part of the proofs
term of the form(P2¥0 can be contracted t6§°220. Thus, Theorem 4. Assuming that the correlation matrices

(3:21C and (4:211)C are obtained from the decomposition of
a set ofN-representable 3- and 4-RDM, then the 4-MCSE,
(4:22n=0, (46)  Eq.(31), will be satisfied by this set of RDMi§ and only if
o the density matrix, preimage of the 3- and 4-RDM, satisfies
In all the other cases it can be shown that the vanishinghe Schrdinger equation, Eq4).
term of the form(P2*Y:---)0 can be contracted t¢>110. Proof.(a) It is easy to see that if the Scitiager equation
Thus, Eq.(44) implies Eq. (4) is satisfied, then, by contraction, the equation

Eq. (44) implies
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41E*D="M, null we may be sure that all the CSE forp=2 are satisfied
- and hence so is the Scliinger equation. In practice, of
must hold; and, therefore, the equivalent equation B8@)  course, we can only aim at values of the matfi¥20 close
must also hold. Another consequence of E4).is that Eq.  to zero, since the matrices involved will probably be only
(27) is also satisfied and, therefore, the vanishing terms apapproximatelyN-representable. In fact, the error in the evalu-
pearing in the rhs of this equation vanish. Thus, the 4-MCSEted (4220 matrix is a reliable and severe measure of the

Eq. (31) holds. calculation error.
(b) We prove the converse. Contracting E81) over the Thus, the results just reported guarantee that any conver-
last two indices, we obtain gent method applied on the 4-MCSE will converge to those
2IE2D =2\ sets of RDM’s corresponding to the FCI solutions. Therefore,

the method cannot converge to oth&-representable
sets—as in the case of the 1-CSE that presents at least two
N-representable solutions, those corresponding to the FCI
a.;_md Hartree-Fock solutions, and which makes, in principle,
the equation useless to perform calculatip?3|.

and this last matrix equatioi2-CSB implies that the Schro
dinger equation is satisfied. The proof is thus completed.

The main consequence of this theorem is that the equiv
lence between the 4-MCSE and the Sclinger equation is
established.
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open in the iterative solution of the 4-MCSE, there was anal (AECI)/Seccia Mutis.
particularly intriguing one: What was the role played by the

vanishing terms? Should one try to solve the 4-MCSE form APPENDIX
where the vanishing terms appeared explicitly? Or, alterna-
tively: Should one impose them to be zero, thus removing
them from the equation, and keeping them only as conver- It has been shown that the 3- and 4-RDM may be decom-
gence tests? We think the answer is clear, in view of thepose_d in terms of the pure three- and four-body correlation
results just reported. Thus, if one wishes to obtain a set ofnatrices a$29]

RDM'’s and the energy that would correspond to the Schro 3 52 2

dinger equation solutions, one must solve a form of the 3! Dikmijin = = 2! “Di;jn Smi+ 2! “Dicin

4-MCSE such as Ed31), where the vanishing terms do not +2! 2Dik'j| 1Dm,n+(3:2,1)(;ikm.j,n , (A1)
explicitly appear. On the other hand, evaluating thé20 ' ’ ’

matrix is the best convergence test, since when this matrix iand

1. Decomposition formulas of the 3- and 4-RDM

41D pars= 2! 2Dijrs( Sqkdp1 — Spkdq1) + 3! °DijiqrsOkpt 3! *Dijk:prsdig— 3! *Diji:prsSk:q— 3! *Dijk:qrsSi:p
+212Djj;pq2! 2Di;rs+ 42 Ciji pars- (A2)

2. Details of the 4-MCSE derivation

We rearrange the operators in the te¢dt|Hb/b/bfb/bsb,byb,|¥), hereafter calledh as described in the text. The
different steps are

A= 8q(W|Hbb/bib,bsb, [ W) — (¥|Hb[bblbybbybsb, | W)

= 851 0kp( W|HbDb bgb, | W) — 84 (W [Hb]b/byblbsb, | W) — (W|Hb b bibyb bbb, ¥).
Recalling the definition of M, Eq. (6),

A= 8482 Mijes— Sqi{ W|HBb bbb [ W) — 8 W[Hb b bl bybsb, [ W) + (W [Hb b/ bybib bbb, [ ¥)
= ( 5q| 5kp_ 5p| 5kq) 2-/\/tij ;rs+ 5qI5k52Mij ;pr+ 5ql<qf| |:| b?b}bpbsblbr|q’> + 6kq<qf| |:| binJprbITbsbr|\P>

+ 8,p(W|Hb{b/bgbfbsb, [ W) — (¥ [Hbbbblbyb b, [W). (A3)

032519-7
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Inserting the unit operatdrinto the third term of Eq(A3),
A= (8q18kp— 8p1Bkq) *Mijrst 31 8ks>Mijpr+ 8qi(W|HD bbbl bib, [ W) + 8o ¥ |Hb b bbb, | ¥)
+8,p( Wb b/ bablbsb, | ¥) —(W|Hb/bbybib,b/bb,| )
and using the resolution of the identity E&), we have
A= (8418kp= 3p1Bkg) *Mijirs T 8qiSks>Mijpr + g W|H b?bfbpbsf?blbrI% = 81 Digr “Mij s
+ Sko{ W|HbBbbybbsb, | W) + 8,(W[Hb b/ bybibsb, [ W) — (W|Hb b/bybib bbb, ).
Carrying out similar operations at different places yields
A=(8q18kp= p19ice) “Mijirs T 81Sics™Mijpr = Sip Ses "My qr + (8ir Sicq— 81 Dicr) “Mij pst Sip( W Hb bbby blb, [ W)
— k(W |Hb bbb beb, | W) + 8 (W AT bbb Qblb, | ¥) — (¥ Hbbb,b,yi b by W)
+(W[Hb/b/bgb,lbbbsb, | W)
= (8q18kp— Bp1Okq) “Mijrs T (8qi ks Skq Di:s) ZMij - pr = S1pOks “Mij g+ (81 Skq— 81 Dicr) “Mijps
+ 81p(W|Hb bbbl bib, W) = 8 y8i 2Mij.qs— S ¥ |HD bbb, b by W)
— 8qi(E B2NC; o+ B12210,, ),
where we have used the definitions E(9) and(27). The same operations are now used several times
A= (8418p= pidig) *Mijirs+ 8q10ks”Mijpr = dipSks Mijqr + (8ir Skq— Sq1 Dicr) 2Mijpst 8ip(W|Hb bbby blb, | W)
— Sxp(W|HDbbgbbsb, | W) + 8 (W |HTb bl b bsQblb, [ W) — s (W[ Hb bbbyl by W)
+(W|Hb/b/byb,i bbby, |¥)
= (8q1%kp— Bp1kq) “Mijirs T (8qi ks Skq Di:s) ZMijpr = S1pOks “Mij g+ (81 Skq— 01 'Dicr) “Mijps
+ 81p(W|Hb b/ bgbgl bib [ W) = 8is8ir 2Mij.qs— Skp( WIHDT bbb, T bg| W) — 8qi(E G721 10,05+ 221055 0,)
— Sko{ ¥|HTb{ bbb, Qb W)+ (W|HTb bbb, Qbb by, [ W) +2! 2M;;. 042 Diiirs
= (8q10kp— Bp1Skq) “Mijrs T (31 ks™ kg Di:s) *Mijpr = (81pSks— Skp Dizs) “Mijqr + (i Skq— 8q1 'Dicr) Mijps
— (8kpdir = 81p "Dicr) 2Mijqst 8ip( W |HIb{ bbb Qbyib, | W) — 8o WHTb b bgb, Qb bg| W) — 5qi(E C21C ;.05
+ O 2210, p50) = Sal(E 2N 1 prs+ O2210; 1 5rg) + B G2 AC 1 pqrst C22 2051 pgrsT 2! 2Mij 509 Diirs
= (8q10kp— Bp1Okq) “Mijirs T+ (8qiSks™ Skq Di:s) *Mijpr + (8ir Skq— g1 Dicer) ZMijps— (81pSks— Skp Diis) M gr
—(Skpbir — dip D) 2/Vlij .qs— OqI(E (3;2'1)Cijk;psr+ (5;2’2'1)0ijk;psr) — 6kq(E (3;2'1)Cijl prst (5;2'2’1)0ij| -prs)
+ 8ip(B B2 0C; ¢ qort O3 My q0) + Sip B B2 HCij1, 15+ 522 j51,416) 20 MG 5g"Dities
+E 422C 1 parst O22 20k pgrs
where we also have used the definition E2{). It then follows that
A= (8418kp= Sp1Okg) “Mijrs+ (8qiOks™ Okq Di:s) “Mijipr+ (8ir Skq— Og1 'Dicr) ZMij:ps— (81pSks™ Skp Di:s) Mg
—(SkpSir = S1p D) “Mijqs— Sqi(E F2UC . psr+ 221045 o) — Sg(E B12UC;1 s+ G220, 01)
+dp(E (3;2'1)Cijk;qsr+ (5;2'2’1)0ijk;qsr) + yp(E (3;2'1)Cij| qrst (5;2'2'1bijl -qrs) T 2! 2/Vlij pq “Dyirs
+EE22C 0 parst © 220 pgrs,

which is the rhs of Eq(30).
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3. Details of the 4-MCSE contraction
The equation to be contracted is
41E "Dt pars= (8q18p~ Op1 Skg) *Mijrst (3q18s™ S "Die) “Mijpr+ (31 Siq— 81 *Dicr) M ps— (Sip s 8y Die)
X2 Mijar= (8kpdic = Bip Digr) 2Mij g5+ 2! 2Mijp”Dities = 9giE C2UC; i psr— S B2 Ciji s

+ 5IpE (3;2'1)Cijk;qsr+ 5ka (S;ZYl)Cijl ;qrs+ E (4;2'2)Cijkl ;pars-

In order to contract this equation we impdses and add _
over this common index, Z (3:21C;j1.qn =0,
3I(N-3)E 3Dijk;pqr: (N=3)(— 5kq2Mij prt 5kp2Mij .qr

+ le;r 2/Vlij :pg) —2E (3;2’1)Cijk:pqr

and

2 @220C 1. pgn=(N—=1)&20Cy, oo,
+§|: SkpE PG qrs

which allows us to rewrite EqA4) as follows:
— > kg€ FIC s 31(N=3)E *Djjk:pqr=(N=3)(— kg Mij . pr + Skp " Mij qr
| +1Dk;rzf\/lij;pcPLE(3;2'1)Ciik;pqr)'
+EI E“22C; 1 pars: (A4) It must be noted that this last equation is the 3-MCSE

multiplied by the factor N—3) [37].

where we have implicity assumed that the RDMs and [N order to carry out a second contraction we impose now
TRDMs are antisymmetric matrices. From the relations dek=r and add over this common index. Proceeding in a simi-
rived in Sec. 11 B2, it follows that lar way as before, one finally has

21(N=3)(N=2)E 2D}, pg=(N—3)(N—2) 2M;j nq.

G2hc. =0,
E| titprl which is the result used in Sec. 11l B.
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