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Equivalence theorems between the solutions of the fourth-order modified contracted Schro¨dinger
equation and those of the Schro¨dinger equation

D. R. Alcoba
Instituto de Matema´ticas y Fı́sica Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain

~Received 10 October 2001; published 1 March 2002!

Four basic theorems involving the correlation matrices are demonstrated here. One of these theorems estab-
lishes, as a necessary and sufficient condition, that the solutions of the fourth-order modified contracted
Schrödinger equation correspond uniquely to those of the Schro¨dinger equation. The complete equivalence
between these two equations is demonstrated. Another equation equivalent to the Schro¨dinger equation but
involving only the correlation matrices is also obtained as a consequence of the second theorem.
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I. INTRODUCTION

The convenience of replacing the search for
N-electron wave function by that of the second-order redu
density matrix~2-RDM! was pointed out long ago by th
great pioneers in this field: Husimi@1#, Löwdin @2#, Mayer
@3#, McWeeny@4# Ayres @5#, and Coulson@6#. It is not pos-
sible to refer here to the many valuable contributions t
followed these early works. However, the interested rea
may find a reliable account in a series of books and revie
@7–13# and, in particular, in the recent book by Coleman a
Yukalov @6#.

In 1987, Valdemoro applied the RDM contracting ma
ping to the matrix representation in theN-electron space o
the Schro¨dinger equation@14# and obtained the family o
contracted Schro¨dinger equations~CSE!, which can be
shown to be equivalent to the integrodifferential equatio
originally proposed by Cho@15# in 1962 and then reporte
independently by Cohen and Frishberg@16,17# and by Na-
katsuji @18# in 1976. What hindered the use of these eq
tions is that they are indeterminate@19#. An approximate
algorithm for building a 2-RDM in terms of the 1-RDM wa
reported by Valdemoro@20# and subsequently the procedu
was extended in order to approximate higher-order RDM
terms of the lower-order ones@21,22#. The use of these ap
proximations permitted the removal of the 2-CSE indeter
nacy, thus allowing its iterative solution@23#. This started a
new line of research that not only shed light on the RDM
theory but is also established a new approach to study a
rately the electronic structure of fermion systems witho
having recourse to theN-electron wave function@24–36#.

Alcoba and Valdemoro@37# have recently reported an
implemented a new family of equations: the modified co
tracted Schro¨dinger equations~MCSE!, which have signifi-
cant properties. The most important of this family of equ
tions is the 4-MCSE, which transforms the search for
N-electron eigenfunction into the search for the solution o
fourth-order self-contained equation. The relevance of
approach lies in the fact that no approximation is, in pr
ciple, needed. The price that must be paid is that the siz
the problem augments. A new feature of the MCSEs is t
the correlation matrices play a central role in them. This
the reason why this paper aims to state and prove four th
rems involving the correlation matrices. The first three th
rems shed light upon the narrow link existing between
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e
d

t
er
s

d

-

s

-

n

i-

u-
t

-

-
e
a
is
-
of
at
s
o-
-
e

CSEs, the Schro¨dinger equation, and the correlation vanis
ing terms recently reported@36,37#. The interrelation be-
tween the CSE, the Schro¨dinger equation, and the cancella
tion of the high-order correlation effects lies at the root of t
MCSE because it shows that it is possible to construc
self-contained equation that could be equivalent to
Schrödinger equation. The fourth theorem proves that wh
the 4-MCSE, in its self-contained form, is satisfied by a
of 1-, 2-, 3-, and 4-RDMs, which must beN representable
@38,39#, then these matrices and the ensuing energy co
spond to eigenstates of the system and eigenvalue, con
ered respectively. The converse is also proved. This one
one correspondence between the 4-MCSE and
Schrödinger equation shows that the 4-MCSEis not an arti-
fice but a relevant equation in many-body theory.

The notation and basic background are described in
following section, where some new related formulas are a
given. In Sec. III, the problem is stated and solved by est
lishing and proving the above-mentioned theorems. A b
discussion about some of the implications that these th
rems have when applied in practice is given in the concl
ing section.

II. BASIC DEFINITIONS

In what follows, we consider that the system under stu
has a fixed and well-defined number of particles,N. We will
also consider that the one-electron space is spanned
finite basis set of 23K orthonormal spin orbitals. Unde
these conditions ap-RDM corresponding to anN-electron
stateC may be defined in second quantization formalism

pDi 1i 2 . . . i p ; j 1 j 2 . . . j p
5

1

p!
^Cubi 1

† bi 2
† . . . bi p

† bj p
. . . bj 2

bj 1
uC&,

~1!

whereb† and b are the fermion creator and annihilator o
erators, respectively.

In this formalism the many-body Hamiltonian may b
written as

Ĥ5 (
k,l ,r ,s

0Hrs;kl br
†bs

†blbk , ~2!

where
©2002 The American Physical Society19-1
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0Hrs;kl5
1

2 S « rkdsl1«sld rk

N21
1^rsukl& D , ~3!

where« groups the one-electron integrals and^rsukl& are the
two-electron integrals in the Condon and Shortley notatio

The representation of this Hamiltonian in theN-electron
space yields the Hamiltonian matrix,H, whose diagonaliza-
tion provides the full configuration interaction~FCI! eigen-
states. The matrix representation of the Schro¨dinger equation
in this space takes the form

H DC5ECDC5DCH, ~4!

whereC is the considered eigenstate of the Hamiltonian a
D̂C5uC&^Cu is theN-electron density operator.

The fact thatDC commutes withH will not be explicitly
taken into account in what follows. Thus only the equati
derived from the left part of Eq.~4! will be considered. It
should, therefore, be kept in mind that the relations deri
in a similar way from the right part of Eq.~4! are equally
true.

The application of the matrix contracting mapping in
the two-electron space@14,40,41# to both sides of relation~4!
~left side equation!, leads to

^CuĤbi
†bj

†bqbpuC&5E^Cubi
†bj

†bqbpuC&5E2!2Di j ;pq .
~5!

Replacing the explicit form ofĤ into Eq. ~5! and trans-
forming the left-hand side~lhs! of the equation into its nor-
mal form one obtains the 2-CSE, which may be written a

2!E2Di j ;pq52!2~0H 2D ! i j ;pq13!2(
k,l ,s

~0H js;kl
3Dpqs; ikl

10Hsi;kl
3Dpqs; l jk !14! (

k,l ,r ,s

0Hrs;kl
4Dpqrs; i jkl

[2Mi j ;pq . ~6!

In what follows the matrixpM will denote the matrix
representation of that side of thep-CSE that involves the0H
elements.

This equation, whose main variable is the 2-RDM, a
depends on the 3- and 4-RDMs, which is the cause of
indeterminacy. As reported by Colmenero and Valdem
@23# in 1994, the interdependence that—at least apparent
exists among the 2-, 3-,. . . ,p-CSEs may be decoupled b
constructing satisfactory approximations of the 3- a
4-RDMs in terms of the 2- and 1-RDMs. The algorithm
used@21,22# were an extension of those proposed by Vald
moro in 1992 for approximating the 2-RDM in terms of th
1-RDM. Since then, several new improvements have b
implemented in order to enhance the accuracy of the a
rithms @24,25,29–31,42#.
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A. Decomposition of the RDMs and correlation matrices
structure

The anticommuting rules satisfied by the fermion ope
tors, together with the resolution of the identity operat
render possible the decomposition of ap-RDM element into
a sum of terms involving lower-order RDM elements a
terms describing pureq-body correlation effects@26–30#.
Let us consider now the decomposition of the 2-RDM th
provides the simplest example.

2!2Di j ;ml5^Cubi
†bj

†blbmuC&521Di ; ld j ;m

1^Cubi
†bmbj

†bl uC&, ~7!

and let us write the resolution of the identity,Î , as

Î 5uC&^Cu1 (
C85” C

uC8&^C8u[ P̂1Q̂, ~8!

where uC& represents the eigenstate of the Hamiltonian
ing studied,uC8& represent the remaining part of the spe
trum and the projectorP̂ and its orthogonal complementQ̂
are defined as

P̂[uC&^Cu, ~9!

Q̂[ (
C8ÞC

uC8&^C8u. ~10!

When insertingÎ in the last term of Eq.~7! betweenbm

andbj
† one has

2!2Di j ;ml5
1Di ;m

1D j ; l2
1Di ; ld j ;m12Ci j ;ml , ~11!

where

2Ci j ;ml5^Cubi
†bmQ̂bj

†bl uC&[ (
C85” C

1Di ;m
CC8 1D j ; l

C8C .

~12!

The matrices1DCC8 are first-order transition reduced de
sity matrices. The2CI matrices can be interpreted as descr
ing the simultaneous virtual excitations and deexcitations
two electrons of the system.

Recalling the basic relation obtained by taking the exp
tation value of the anticommutator of two fermion operato

1d i ; j5
1Di ; j1

1D̄ i ; j , ~13!

where the first-order hole reduced density matrix~1-HRDM!
is defined as

1D̄ i ; j5^Cubjbi
†uC&, ~14!

we can rewrite the decomposition of the 2-RDM as follow

2! 2Di j ;ml5
1Di ;m

1D j ; l2
1Di ; l

1D j ;m21Di ; l
1D̄ j ;m

12Ci j ;ml . ~15!
9-2
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While the first two terms of the right-hand side~rhs! of Eq.
~15! describe the uncorrelated portion of the 2-RD
@26,28,32#, the last two terms of Eq.~15! are the analytical
expression of the second-order cumulant@31–35,43–45# that
describes the correlated portion of this RDM@26,27,32#.
Thus, Eq.~15! shows that the cumulant can be decompo
in two terms: one term that is a product of two one-parti
density matrices describing the correlation effects throu
the 1-HRDM and one term expressed as an element of
2CI matrix that cannot be decomposed in terms of low
order density matrices—which is why the2CI matrices have
been called pure two-body correlation matrices@27–30,36#.

It should be mentioned here that the choice and the o
in which the fermion operators are anticommuted in Eq.~7!
is not unique. Thus, one may as well have

2! 2Di j ;ml521Di ; l
1D j ;m11Di ;md j ; l2

2Ci j ; lm . ~16!

There are still two other possible equivalent expressi
that correspond to the permutation of the creator indices
to the joint permutation of the creator and the annihila
indices. It should perhaps be mentioned here that in orde
have an antisymmetric2C matrix one must consider the ma
trix

2C i j ;ml
A 5

2Ci j ;ml2
2Ci j ; lm22Cji ;ml1

2Cji ; lm

4
, ~17!

in which case the 2-RDM takes the form

2! 2D51D` 1D11D`1I 12C A, ~18!

where 1I is the unit matrix of dimensions (23K)3(23K),
and the wedge symbol represents de Grassman product@46#.
In the demonstrations that center our attention here it is
necessary to consider antisymmetrized matrix forms. Th
the theoretical implications and the practical implementat
of this property in the 4-MCSE will be reported elsewhe
@47#.

The decomposition of the 3- and 4-RDMs may be carr
out in a similar way as in the 2-RDM case@29#. These de-
composition formulas are given in the Appendix. We w
just mention now that the decomposition of the 3- a
4-RDMs generate a set of different pure three-body and p
four-body correlation matrices. Thus, besides the differ
matrices arising as the result of the permutation of their
dices, other structural varieties occur in the higher-order m
trices. Consequently, the pure three-body correlation ma
ces are

(3;2,1)Ci jk ;mlr52! (
C85” C

2Di j ;ml
CC8 1Dk;r

C8C , ~19!

(3;1,1,1)Ci jk ;mlr5 (
C8,C95” C

1Di ;m
CC8 1D j ; l

C8C9 1Dk;r
C9C ,

~20!
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and the (3;1,2)Ci jk ;mlr , whose formula may be easily be in
ferred.

The only pure four-body correlation matrices that will b
used in what follows are

(4;2,2)Ci jkl ;mnrs52!2! (
C85” C

2Di j ;mn
CC8 2Dkl;rs

C8C , ~21!

(4;2,1,1)Ci jkl ;mlrs52! (
C8,C95” C

2Di j ;mn
CC8 1Dk;r

C8C9 1Dl ;s
C9C ,

~22!

but, as in the three-order case, all four-order combination
1-, 2-, and 3-transition RDMs are possible.

B. The pure p-body correlation matrices

The interesting physical-mathematical properties of
pure p-body correlation matrices deserve by themselve
separate study@48#. Nevertheless, we will describe here thr
types of properties that are needed in the following devel
ments.

1. Interrelation among correlation matrices

Let us first consider the manner in which two differentC
matrices of the same order are interrelated. As an examp
how to proceed, let us consider the(4;2,1,1)C and the(4;2,2)C
matrices.

(4;2,2)Ci jkl ;mnrs52!2! (
C85” C

2Di j ;mn
CC8 2Dkl;rs

C8C

5^Cubi
†bj

†bnbmQ̂bk
†bl

†bsbr uC&

2^Cubi
†bj

†bnbmQ̂$bk
†bsd lr 2bk

†brbl
†bs%uC&

52 (3;2,1)Ci jk ;mnsd lr

1^Cubi
†bj

†bnbmQ̂$bk
†br uC&^Cubl

†bs

1bk
†brQ̂bl

†bs%uC&

52 (3;2,1)Ci jk ;mnsd lr 1 (3;2,1)Ci jk ;mnr
1Dls

1 (4;2,1,1)Ci jkl ;mnrs.

Thus,

(4;2,2)Ci jkl ;mnrs2
(4;2,1,1)Ci jkl ;mnrs

5 (3;2,1)Ci jk ;mnr
1Dls2 (3;2,1)Ci jk ;mnsd lr . ~23!

The reasoning followed here is general and, therefore,
the way in which to handle these matrices.
9-3
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2. The vertical contraction of these correlation matrices

Let us now consider a different kind of interrelation ar
ing from what will be calledvertical contraction. As usual,
the sum is carried out over a common creator and annihil
index but what is specific to this kind of contraction is th
this common index occupies the same place in the cre
and annihilator labels, respectively. In order to render
reasoning more transparent we will consider concrete ca
but the procedure and the results are general.

~1! The indices to be contracted are the last ones~or the
first ones! in the label. There are two possible cases:

Case~a!:

(
l

~4;2,1,1!Ci jkl ;mnrl5(
l

^Cubi
†bj

†bnbmQ̂bk
†brQ̂bl

†bl uC&

5^Cubi
†bj

†bnbmQ̂bk
†brQ̂N̂uC&50.

~24!

Note that in this case the string of operatorsQ̂N̂ acting on
uC& vanish.

Case~b!:

(
l

~4;2,2)Ci jkl ;mnrl5^Cubi
†bj

†bnbmQ̂bk
†N̂br uC&

5~N21!(3;2,1)Ci jk ;mnr . ~25!

~2! The indices to be contracted are interior.

(
k

~4;2,1,1)Ci jkl ;mnks5(
k

^Cubi
†bj

†bnbmQ̂bk
†bkQ̂bl

†bsuC&

5^Cubi
†bj

†bnbmQ̂N̂Q̂bl
†bsuC&

5N(3;2,1)Ci jl ;mns. ~26!

Note that in this case the string of operatorsQ̂N̂Q̂ be-
comesNQ̂.

3. The vanishing products of the Hamiltonian
and the correlation matrices

A recently reported property of the correlation matric
@36#, which plays a central role in our developments, deriv
from the basic relation

^CuĤQ̂Q̂uC&50, ~27!

whereQ̂ may be any operator. The reason is that the pro
tors Q̂ and P̂ are complementary to each other and, as
have mentioned, theC is assumed to be an eigenstate of t
Hamiltonian.

As an example, let us consider thatQ̂ is a two-body den-
sity operator. Then, Eq.~27! becomes
03251
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05^CuĤQ̂bi
†bj

†blbkuC&5 (
pqrs

0Hpq;rs
~4;2,2)Cpqi j ;rskl

5 (4;2,2)0i j ;kl . ~28!

This type of vanishing terms are described as(4;2,2)0i j ;kl

where only the indices that do not enter into the sum app
explicitly in the symbol.

As has been mentioned in Ref.@36#, this property causes
the cancellation of the high-order correlation effects throu
the action of the Hamiltonian and explains why, when t
Hamiltonian only has two-body operators, there is a one
one correspondence between the 2-RDM and the wave f
tion corresponding to an eigenstate of the Hamiltonian@49#.

III. EQUIVALENCE THEOREMS BETWEEN THE
SOLUTIONS OF THE FOURTH-ORDER MODIFIED

CONTRACTED SCHRÖDINGER EQUATION AND THOSE
OF THE SCHRÖDINGER EQUATION

A. Presenting the problem

As will be shown here, thevanishing termsplay a deter-
minant role in the 4-MCSE theory. In fact, there are seve
equivalent forms of generating the 4-MCSE, which only d
fer on the kind of vanishing terms appearing in the deriv
tion. To understand the physical meaning and the interr
tions existing among the different vanishing terms is not
only theoretical interest. Thus, the question of whether o
must take these terms explicitly into account when solv
iteratively the 4-MCSE is of the utmost practical relevanc
It will also be shown that an equivalence exists between
4-MCSE and the Schro¨dinger equation.

In order to present the problem we will first derive th
4-MCSE in a different way from that followed in Ref.@37#
and then we will recall the general lines of the previo
derivation.

The initial point for generating the 4-MCSE is similar t
that described in Sec. II B. Thus, starting with the express
for the 4-CSE,

4!E 4Di jkl ;pqrs5^CuĤbi
†bj

†bk
†bl

†bsbrbqbpuC&

[4Mi jkl ;pqrs , ~29!

one then proceeds to modify the order of the fermion ope
tors with the ultimate aim of obtaining operator strings of t
b†b†bbb†b†bbb†b†bb type in mind. Then the unit operato
~8! is inserted betweenbb andb†b†. Also, when the lhs of
Eq. ~5! appears it will be replaced by2M. In order to in-
crease the readability of the paper and since no difficult
erations are involved, the intermediate steps are reporte
the Appendix. The resulting equation is
9-4
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4!E 4Di jkl ;pqrs5~dqldkp2dpldkq!
2Mi j ;rs1~dqldks2dkq

1Dl ;s!
2Mi j ;pr

1~d lr dkq2dql
1Dk;r !

2Mi j ;ps2~d lpdks2dkp
1Dl ;s!

3 2Mi j ;qr2~dkpd lr 2d lp
1Dk;r !

2Mi j ;qs12! 2Mi j ;pq
2Dkl;rs2dql~E (3;2,1)Ci jk ;psr1

(5;2,2,1)0i jk ;psr!

2dkq~E (3;2,1)Ci jl ;prs1
(5;2,2,1)0i j l ;prs!1d lp~E (3;2,1)Ci jk ;qsr1

(5;2,2,1)0i jk ;qsr!1dkp~E (3;2,1)Ci jl ;qrs

1 (5;2,2,1)0i j l ;qrs!1E (4;2,2)Ci jkl ;pqrs1
(6;2,2,2)0i jkl ;pqrs

54Mi jkl ;pqrs . ~30!
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When one assumes that theC are eigenstates of th
Hamiltonian, the vanishing terms(6;2,2,2)0 and (5;2,2,1)0 dis-
appear from the equation yielding@37#,

E 4Di jkl ;pqrs5~dqldkp2dpldkq!
2Mi j ;rs

1~dqldks2dkq
1Dl ;s!

2Mi j ;pr

1~d lr dkq2dql
1Dk;r !

2Mi j ;ps

2~d lpdks2dkp
1Dl ;s!

2Mi j ;qr

2~dkpd lr 2d lp
1Dk;r !

2Mi j ;qs

12Mi j ;pq
2Dkl;rs2dqlE

(3;2,1)Ci jk ;psr

2dkqE
(3;2,1)Ci jl ;prs1d lpE (3;2,1)Ci jk ;qsr

1dkpE
(3;2,1)Ci jl ;qrs1E (4;2,2)Ci jkl ;pqrs .

~31!

This equation is self-contained, since the highest-or
RDM involved is the 4-RDM from which all the other ma
trices appearing in the equation may be derived eit
through contraction or by applying the decomposition te
niques described previously.

Note that the lhs of Eq.~29! arising directly from the
contraction of theECDC member of the Schro¨dinger equa-
tion is left untouched. Now, in our previous derivation@37#
the reasoning followed was to some extent different. Let
insert the unit operator into Eq.~29! as follows:

4!E 4Di jkl ;pqrs5^CuĤ Î bi
†bj

†bk
†bl

†bsbrbqbpuC&

[4!E 4Di jkl ;pqrs1
(6;2,4)0i jkl ;pqrs . ~32!

Then the rhs of this equation could be set equal to the
of Eq. ~30! and the high-order vanishing terms would disa
pear leaving just the(4,2,2)0. When the vanishing terms ar
set equal to zero both derivations yield the same final res
However, while in the derivation reported here we are ke
ing the structure obtained by contraction from the Sch¨-
dinger equation, where the energy corresponds to an ei
value, in the other derivation the energy is just
expectation value. But if the vanishing terms would have
be evaluated explicitly in order to solve the equation—t
is, if Eq. ~30! must be considered instead of Eq.~31!—then
the equation would not be self-contained. On the other ha
03251
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the equation derived in Ref.@37#, where only the(4;2,2)0
appeared, would still be easy to handle.

Another important question is whether satisfying t
4-MCSE, as in the 2-CSE case, is a necessary and suffic
condition so that a set ofN-representable RDMs correspond
to an eigenstate of the Schro¨dinger equation and the energ
simultaneously obtained coincides with the eigenvalue.

B. The theorems

Theorem 1. Let us assume that the pure four-body co
lation matrix (4;2,2)C is derived from the decomposition o
an N-representable 4-RDM, then

(4;2,2)050, ~33!

will be satisfied by this four-body correlation matrixif and
only if the density matrix, preimage of the 4-RDM, satisfi
the Schro¨dinger equation, Eq.~4!.

Proof. ~a! Let us assume that the Schro¨dinger equation,
Eq. ~4!, is satisfied forC. It then follows that

05^CuĤQ̂bi
†bj

†blbkuC&5 (
pqrs

0Hpq;rs
~4;2,2)Cpqi j ;rskl

5 (4;2,2)0i j ;kl , ~34!

for all i , j ,k,l .
~b! The second part of the theorem is proved as follow

Through the use of the resolution of the identity it is easy
see that(4;2,2)0 can be rewriten as

(4;2,2)05E2! 2D22M. ~35!

Now, by hypothesis

(4;2,2)050, ~36!

which implies

E2! 2D22M50, ~37!

that is, the 2-CSE is satisfied. By the Nakatsuji’s theor
@18#, whose second quantization equivalent was given
Mazziotti @31#, it follows that the Schro¨dinger equation is
satisfied. The proof is thus completed.

Theorem 2. Let us assume that the pure four-body co
lation matrix (4;2,1,1)C is derived from the decomposition o
an N-representable 4-RDM, then
9-5
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(4;2,1,1)050, ~38!

will be satisfied by this four-body correlation matrixif and
only if the density matrix, preimage of the 4-RDM, satisfi
the Schro¨dinger equation, Eq.~4!.

Proof. ~a! Let us assume that the Schro¨dinger equation,
Eq. ~4!, is satisfied forC. It then follows that

05^CuĤQ̂bi
†bkQ̂bj

†bl uC&5 (
pqrs

0Hpq;rs
~4;2,1,1)Cpqi j ;rskl

5 (4;2,1,1)0i j ;kl , ~39!

for all i , j ,k,l .
~b! The second part of the proof is as follows. We first u

the fact that the fourth-order correlation matrix(4;2,1,1)C can
be contracted to the third-order one(3;2,1)C, as has been
previuosly shown in Sec. II B 2. Thus, our hypothesis

(4;2,1,1)050, ~40!

implies that

(3,2,1)050. ~41!

Now, making use of relation~23! and the resolution of the
identity, it follows that

E2! 2Dpq;rs22Mpq;rs5 (4;2,2)0pq;rs52d rq
(3;2,1)0p;s

1 (3;2,1)0p;r
1Dq;s1

(4;2,1,1)0pq;rs ,

for all p,q,r ,s. Since the rhs of this relation vanishes,
does the lhs, that is, the 2-CSE is satisfied. By the Na
suji’s theorem, it follows that the Schro¨dinger equation is
satisfied. The proof is thus completed.
s

in

in

03251
e

t-

Attention should be called to a relevant implication of E
~38!. Thus, in a similar way that expression~33! is equivalent
to demanding that the 2-CSE is satisfied, the equation

(4;2,1,1)050, ~42!

implies that the equation

E 2Ci j ;pq5 (
k,l ,r

0Hkl;ri
(3;2,1)Ckl j ;rpq

2 (
k,l ,s

0Hkl; is
(3;2,1)Ckl j ;spq

1 (
k,l ,r ,s

0Hkl;rs
(4;3,1)Ckli j ;rspq , ~43!

involving the correlation matrices must also be satisfied a
also that this last equation is equivalent to the Schro¨dinger
equation. This reasoning can be easily extended through
use of the following theorem.

Theorem 3. Let us assume that the correlation ma
(p;2,x,y, . . . )C is obtained from the decomposition of a
N-representablep-RDM, then the following relation

(p;2,x,y, . . . )050, ~44!

with p.4 and x1y1•••5p22 will be satisfied by the
correspondingp-correlation matrixif and only if the density
matrix, preimage of thep-RDM, satisfies the Schro¨dinger
equation, Eq.~4!.

Proof. ~a! Let us assume that the Schro¨dinger equation,
Eq. ~4!, is satisfied forC. It then follows that
05^CuĤQ̂bi 1
† . . . bi x

† btx
. . . bt1

Q̂bj 1

† . . . bj y

† bvy
. . . bv1

Q̂ . . . uC&

5 (
pqrs

0Hpq;rs
~p;2,x,y, . . . )Cpqi1 . . . i xj 1 . . . j y . . . ;rst1 . . . txv1 . . . vy . . .

5 (p;2,x,y, . . . )0i 1 . . . i xj 1 . . . j y . . . ;t1 . . . txv1 . . . vy . . . . ~45!
ing

es
of
E,

es
for all i 1 , . . . ,i x , j 1 , . . . ,j y , . . . ,t1 , . . . ,tx ,v1 , . . . ,
vy , . . . .

~b! The second part of the proof is as follows. We fir
consider the particular case wheny, . . . 50. Recalling the
rules given in Sec. II B 2, it can be shown that the vanish
term of the form(p;2,x)0 can be contracted to(4;2,2)0. Thus,
Eq. ~44! implies

(4;2,2)050. ~46!

In all the other cases it can be shown that the vanish
term of the form(p;2,x,y, . . . )0 can be contracted to(4;2,1,1)0.
Thus, Eq.~44! implies
t

g

g

(4;2,1,1)050. ~47!

The proof is completed by following the same reason
as in the two previous theorems~second part of the proofs!.

Theorem 4. Assuming that the correlation matric
(3;2,1)C and (4;2,1,1)C are obtained from the decomposition
a set ofN-representable 3- and 4-RDM, then the 4-MCS
Eq. ~31!, will be satisfied by this set of RDMsif and only if
the density matrix, preimage of the 3- and 4-RDM, satisfi
the Schro¨dinger equation, Eq.~4!.

Proof.~a! It is easy to see that if the Schro¨dinger equation
Eq. ~4! is satisfied, then, by contraction, the equation
9-6
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4!E 4D54M,

must hold; and, therefore, the equivalent equation Eq.~30!
must also hold. Another consequence of Eq.~4! is that Eq.
~27! is also satisfied and, therefore, the vanishing terms
pearing in the rhs of this equation vanish. Thus, the 4-MC
Eq. ~31! holds.

~b! We prove the converse. Contracting Eq.~31! over the
last two indices, we obtain

2!E 2D52M,

and this last matrix equation~2-CSE! implies that the Schro¨-
dinger equation is satisfied. The proof is thus completed

The main consequence of this theorem is that the equ
lence between the 4-MCSE and the Schro¨dinger equation is
established.

The contraction of the 4-MCSE, which is not too obviou
is described in detail in the Appendix due to its length,
though it does not involve any difficult operation.

IV. CONCLUSION

When discussing in Ref.@37# the questions that remaine
open in the iterative solution of the 4-MCSE, there was
particularly intriguing one: What was the role played by t
vanishing terms? Should one try to solve the 4-MCSE fo
where the vanishing terms appeared explicitly? Or, alter
tively: Should one impose them to be zero, thus remov
them from the equation, and keeping them only as con
gence tests? We think the answer is clear, in view of
results just reported. Thus, if one wishes to obtain a se
RDM’s and the energy that would correspond to the Sch¨-
dinger equation solutions, one must solve a form of
4-MCSE such as Eq.~31!, where the vanishing terms do no
explicitly appear. On the other hand, evaluating the(4;2,2)0
matrix is the best convergence test, since when this matr
03251
p-
E

a-

,
-

a

a-
g
r-
e
of

e

is

null we may be sure that all thep-CSE forp>2 are satisfied
and hence so is the Schro¨dinger equation. In practice, o
course, we can only aim at values of the matrix(4;2,2)0 close
to zero, since the matrices involved will probably be on
approximatelyN-representable. In fact, the error in the eva
ated (4;2,2)0 matrix is a reliable and severe measure of
calculation error.

Thus, the results just reported guarantee that any con
gent method applied on the 4-MCSE will converge to tho
sets of RDM’s corresponding to the FCI solutions. Therefo
the method cannot converge to otherN-representable
sets—as in the case of the 1-CSE that presents at least
N-representable solutions, those corresponding to the
and Hartree-Fock solutions, and which makes, in princip
the equation useless to perform calculations@27#.
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APPENDIX

1. Decomposition formulas of the 3- and 4-RDM

It has been shown that the 3- and 4-RDM may be deco
posed in terms of the pure three- and four-body correlat
matrices as@29#

3! 3Dikm; j ln522! 2Dik; jndml12! 2Dik; lnd jm

12! 2Dik; j l
1Dm;n1 (3;2,1)Cikm; j ln , ~A1!

and
e

4! 4Di jkl ;pqrs52! 2Di j ;rs~dqkdpl2dpkdql!13! 3Di jl ;qrsdkp13! 3Di jk ;prsd lq23! 3Di jl ;prsdk;q23! 3Di jk ;qrsd l ;p

12! 2Di j ;pq2! 2Dkl;rs1 (4;2,2)Ci jkl ;pqrs . ~A2!

2. Details of the 4-MCSE derivation

We rearrange the operators in the term^CuĤbi
†bj

†bk
†bl

†bsbrbqbpuC&, hereafter calledA as described in the text. Th
different steps are

A5dql^CuĤbi
†bj

†bk
†bpbsbr uC&2^CuĤbi

†bj
†bk

†bqbl
†bpbsbr uC&

5dqldkp^CuĤbi
†bj

†bsbr uC&2dql^CuĤbi
†bj

†bpbk
†bsbr uC&2^CuĤbi

†bj
†bk

†bqbl
†bpbsbr uC&.

Recalling the definition of2M, Eq. ~6!,

A5dqldkp
2Mi j ;rs2dql^CuĤbi

†bj
†bpbk

†bsbr uC&2dkq^CuĤbi
†bj

†bl
†bpbsbr uC&1^CuĤbi

†bj
†bqbk

†bl
†bpbsbr uC&

5~dqldkp2dpldkq!
2Mi j ;rs1dqldks

2Mi j ;pr1dql^CuĤbi
†bj

†bpbsbk
†br uC&1dkq^CuĤbi

†bj
†bpbl

†bsbr uC&

1d lp^CuĤbi
†bj

†bqbk
†bsbr uC&2^CuĤbi

†bj
†bqbk

†bpbl
†bsbr uC&. ~A3!
9-7
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Inserting the unit operatorÎ into the third term of Eq.~A3!,

A5~dqldkp2dpldkq!
2Mi j ;rs1dqldks

2Mi j ;pr1dql^CuĤbi
†bj

†bpbsÎ bk
†br uC&1dkq^CuĤbi

†bj
†bpbl

†bsbr uC&

1d lp^CuĤbi
†bj

†bqbk
†bsbr uC&2^CuĤbi

†bj
†bqbk

†bpbl
†bsbr uC&

and using the resolution of the identity Eq.~8!, we have

A5~dqldkp2dpldkq!
2Mi j ;rs1dqldks

2Mi j ;pr1dql^CuĤbi
†bj

†bpbsQ̂bk
†br uC&2dql

1Dk;r
2Mi j ;ps

1dkq^CuĤbi
†bj

†bpbl
†bsbr uC&1d lp^CuĤbi

†bj
†bqbk

†bsbr uC&2^CuĤbi
†bj

†bqbk
†bpbl

†bsbr uC&.

Carrying out similar operations at different places yields

A5~dqldkp2dpldkq!
2Mi j ;rs1dqldks

2Mi j ;pr2d lpdks
2Mi j ;qr1~d lr dkq2dql

1Dk;r !
2Mi j ;ps1d lp^CuĤbi

†bj
†bsbqÎ bk

†br uC&

2dkp^CuĤbi
†bj

†bqbl
†bsbr uC&1dql^CuĤ Î bi

†bj
†bpbsQ̂bk

†br uC&2dkq^CuĤbi
†bj

†brbpÎ bl
†bsuC&

1^CuĤbi
†bj

†bqbpÎ bk
†bl

†bsbr uC&

5~dqldkp2dpldkq!
2Mi j ;rs1~dqldks2dkq

1Dl ;s!
2Mi j ;pr2d lpdks

2Mi j ;qr1~d lr dkq2dql
1Dk;r !

2Mi j ;ps

1d lp^CuĤbi
†bj

†bsbqÎ bk
†br uC&2dkpd lr

2Mi j ;qs2dkp^CuĤbi
†bj

†bqbr Î bl
†bsuC&

2dql~E (3;2,1)Ci jk ;psr1
(5;2,2,1)0i jk ;psr!,

where we have used the definitions Eqs.~19! and ~27!. The same operations are now used several times

A5~dqldkp2dpldkq!
2Mi j ;rs1dqldks

2Mi j ;pr2d lpdks
2Mi j ;qr1~d lr dkq2dql

1Dk;r !
2Mi j ;ps1d lp^CuĤbi

†bj
†bsbqÎ bk

†br uC&

2dkp^CuĤbi
†bj

†bqbl
†bsbr uC&1dql^CuĤ Î bi

†bj
†bpbsQ̂bk

†br uC&2dkq^CuĤbi
†bj

†brbpÎ bl
†bsuC&

1^CuĤbi
†bj

†bqbpÎ bk
†bl

†bsbr uC&

5~dqldkp2dpldkq!
2Mi j ;rs1~dqldks2dkq

1Dl ;s!
2Mi j ;pr2d lpdks

2Mi j ;qr1~d lr dkq2dql
1Dk;r !

2Mi j ;ps

1d lp^CuĤbi
†bj

†bsbqÎ bk
†br uC&2dkpd lr

2Mi j ;qs2dkp^CuĤbi
†bj

†bqbr Î bl
†bsuC&2dql~E (3;2,1)Ci jk ;psr1

(5;2,2,1)0i jk ;psr!

2dkq^CuĤ Î bi
†bj

†brbpQ̂bl
†bsuC&1^CuĤ Î bi

†bj
†bqbpQ̂bk

†bl
†bsbr uC&12! 2Mi j ;pq

2Dkl;rs

5~dqldkp2dpldkq!
2Mi j ;rs1~dqldks2dkq

1Dl ;s!
2Mi j ;pr2~d lpdks2dkp

1Dl ;s!
2Mi j ;qr1~d lr dkq2dql

1Dk;r !
2Mi j ;ps

2~dkpd lr 2d lp
1Dk;r !

2Mi j ;qs1d lp^CuĤ Î bi
†bj

†bsbqQ̂bk
†br uC&2dkp^CuĤ Î bi

†bj
†bqbrQ̂bl

†bsuC&2dql~E (3;2,1)Ci jk ;psr

1 (5;2,2,1)0i jk ;psr!2dkq~E (3;2,1)Ci jl ;prs1
(5;2,2,1)0i j l ;prs!1E (4;2,2)Ci jkl ;pqrs1

(6;2,2,2)0i jkl ;pqrs12! 2Mi j ;pq
2Dkl;rs

5~dqldkp2dpldkq!
2Mi j ;rs1~dqldks2dkq

1Dl ;s!
2Mi j ;pr1~d lr dkq2dql

1Dk;r !
2Mi j ;ps2~d lpdks2dkp

1Dl ;s!
2Mi j ;qr

2~dkpd lr 2d lp
1Dk;r !

2Mi j ;qs2dql~E (3;2,1)Ci jk ;psr1
(5;2,2,1)0i jk ;psr!2dkq~E (3;2,1)Ci jl ;prs1

(5;2,2,1)0i j l ;prs!

1d lp~E (3;2,1)Ci jk ;qsr1
(5;2,2,1)0i jk ;qsr!1dkp~E (3;2,1)Ci jl ;qrs1

(5;2,2,1)0i j l ;qrs!12! 2Mi j ;pq
2Dkl;rs

1E (4;2,2)Ci jkl ;pqrs1
(6;2,2,2)0i jkl ;pqrs ,

where we also have used the definition Eq.~21!. It then follows that

A5~dqldkp2dpldkq!
2Mi j ;rs1~dqldks2dkq

1Dl ;s!
2Mi j ;pr1~d lr dkq2dql

1Dk;r !
2Mi j ;ps2~d lpdks2dkp

1Dl ;s!
2Mi j ;qr

2~dkpd lr 2d lp
1Dk;r !

2Mi j ;qs2dql~E (3;2,1)Ci jk ;psr1
(5;2,2,1)0i jk ;psr!2dkq~E (3;2,1)Ci jl ;prs1

(5;2,2,1)0i j l ;prs!

1d lp~E (3;2,1)Ci jk ;qsr1
(5;2,2,1)0i jk ;qsr!1dkp~E (3;2,1)Ci jl ;qrs1

(5;2,2,1)0i j l ;qrs!12! 2Mi j ;pq
2Dkl;rs

1E (4;2,2)Ci jkl ;pqrs1
(6;2,2,2)0i jkl ;pqrs,

which is the rhs of Eq.~30!.
032519-8
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3. Details of the 4-MCSE contraction

The equation to be contracted is

4!E 4Di jkl ;pqrs5~dqldkp2dpldkq!
2Mi j ;rs1~dqldks2dkq

1Dl ;s!
2Mi j ;pr1~d lr dkq2dql

1Dk;r !
2Mi j ;ps2~d lpdks2dkp

1Dl ;s!

32Mi j ;qr2~dkpd lr 2d lp
1Dk;r !

2Mi j ;qs12! 2Mi j ;pq
2Dkl;rs2dqlE

(3;2,1)Ci jk ;psr2dkqE
(3;2,1)Ci jl ;prs

1d lpE (3;2,1)Ci jk ;qsr1dkpE
(3;2,1)Ci jl ;qrs1E (4;2,2)Ci jkl ;pqrs .
nd
de

SE

ow
mi-
In order to contract this equation we imposel 5s and add
over this common index,

3!~N23!E 3Di jk ;pqr5~N23!~2dkq
2Mi j ;pr1dkp

2Mi j ;qr

11Dk;r
2Mi j ;pq!22E (3;2,1)Ci jk ;pqr

1(
l

dkpE
(3;2,1)Ci jl ;qrs

2(
l

dkqE
(3;2,1)Ci jl ;prs

1(
l

E (4;2,2)Ci jkl ;pqrs , ~A4!

where we have implicitly assumed that the RDMs a
TRDMs are antisymmetric matrices. From the relations
rived in Sec. II B2, it follows that

(
l

~3;2,1)Ci jl ;prl50,
:

m

nd
th-
ah

o
.

m
,

O

03251
-

(
l

~3;2,1)Ci jl ;qrl50,

and

(
l

(4;2,2)Ci jkl ;pqrl5~N21!(3;2,1)Ci jk ;pqr ,

which allows us to rewrite Eq.~A4! as follows:

3!~N23!E 3Di jk ;pqr5~N23!~2dkq
2Mi j ;pr1dkp

2Mi j ;qr

11Dk;r
2Mi j ;pq1E (3;2,1)Ci jk ;pqr!.

It must be noted that this last equation is the 3-MC
multiplied by the factor (N23) @37#.

In order to carry out a second contraction we impose n
k5r and add over this common index. Proceeding in a si
lar way as before, one finally has

2!~N23!~N22!E 2Di j ;pq5~N23!~N22! 2Mi j ;pq ,

which is the result used in Sec. III B.
o-
.
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