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Analysis of the asymptotic and short-range behavior of quasilocal Hartree-Fock
and Dirac-Fock-Coulomb electron-electron interaction potentials
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The analytic origin behavior of Hartree-Fock and Dirac-Fock-Coulomb electron-electron interaction poten-
tials is derived. This yields explicit expressions, which dependildr!) matrix elements. The direct part of the
electron-electron interaction including the self-interaction is equal for all shells. If the self-interaction is
subtracted the Coulomb part will become shell dependent. Additional shell dependence of the origin behavior
originates from the true exchange-interaction terms. For the Dirac-Fock-Coulomb operator we find singular
behavior for nonrs shells, if a Coulomb-type electron-nucleus potential is used, while it is nonsingular for
shells. For all shells in case of finite nuclear models, the electron-electron interaction potentials are nonsingular
at the origin. A comparison of potentials for the small and large component of the relativistic radial spinor
shows that they are equal in the long-range limit, while this is not true, in general, at the origin. The analytic
results presented are tested by comparing them to numerical results obtained for the zinc atom.
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[. INTRODUCTION plification can be achieved by analytical independent-particle

model potentialgcf. e.g.,[8—11]), which are simple analyti-
The Hartree-FockHF) method is a well-known approach cal expressions and replace the two-electron integrals in the
for electronic-structure calculations of atoms. Its relativisticHF and DFC equations. For these approaches, analytically
analog, the Dirac-Hartree-Fock or Dirac-Fock theory, usedl€rived properties of EEIPs in the HF and DFC models are

the relativistic Dirac Hamiltonian as the one-electron opera-Very useful(cqmpare, for instance, the sea_rch for an ex-
L . A change potential that decreases as[28]). While the long-
tor. The exact relativistic many-particle Hamiltonian is not

: range asymptotic behavior is known, the short-range behav-
known. Therefore, simple Coulomb-type operators are USUr has not yet been analyzed in detail.
ally used to describe the electron-electron interaction. We -~ ajthough it can be seen from early work by Hartrid

will denote this approach as the Dirac-Fock-CoulofdFC)  that the EEIPs within HF theory are different for different
method. Both the HF and DFC methods are independenkhells at the origin, shell-independent EEIPs are used in
particle theories and therefore do not include correlatiorKohn-Sham theory and in the optimized-potential method.
effects. Explicit analytical expressions for the short-range behavior
The most computer-time consuming part in the HF andof the nonrelativistic and relativistic EEIPs have not yet been
DFC calculations concerns the calculation of electrongiven. Such an analysis of the short-range behavior of the
electron-interaction matrix elements. Since all orbitals entegelectron-electron interaction terms is carried out here. It is
the electron-electron interaction potentiéEEIPS in the HF  performed for nonrelativistic Hartree-Fock potentials as well
and DFC equations, these equations can only be solved iteras for Dirac-Fock-Coulomb potentials.
tively in a self-consistent-field procedure. Another difficulty ~ Information on analytically determined shell-dependent
is that the EEIPs contain nonlocal exchange-interactioProperties of these potentials may be of importance for the
terms, so that inhomogeneous differential equations must beevelopment of Kohn-Sham effective exchange potentials
solved. Many attempts have been made to simplify thesécOmpare, for instancg’,12-14), effective core potentials
potentials by replacing them by local potentidts. e.g., (see[15] for their introduction into the self-consistent-field

[1-3]), so that homogeneous equations are obtained, whicRauations for atoms and analytical independent-particle

are computationally less demanding. This is the case iﬁmdﬁl potenti_als{8—11]. d as foll h
density-functional theory[4,5]. Another example can be T e]E)ahper Is organized as follows. In Sec. Il a short Isum—
found in the optimized-potential method by Talman andMary Of the HF and DFC notation is given and general ex-

Shadwick[6]. The optimized-potential method determines apressions for the EEIPs are derived. Section Ill presents ana-

local potential such that the expectation value of the Hamillytical expressions for the EEIPs at the origin in terms of

tonian is minimized, and it has been regarded as the exaét/f") matrix elements, while Sec. IV briefly deals with the
Kohn-Sham exchange potential for atofid. Further sim- asymptotic behavior. Graphical representation of numerical
calculated EEIPs in Sec. V confirms the analysis presented.

Il. HARTREE-FOCK AND DIRAC-FOCK-COULOMB

* ) . .
Present address: Theoretische Chemie, Univérgtdangen- THEORY EOR ATOMS

Nurnberg, EgerlandstralRe 3, D-91058 Erlangen, Germany.
"Email address: markus.reiher@chemie.uni-erlangen.de To clarify the notation used, we recall essential elements
*Email address: j.hinze@uni-bielefeld.de of the HF and DFC theory. Detailed presentations of these

1050-2947/2002/68)/03251810)/$20.00 65 032518-1 ©2002 The American Physical Society



JOHANNES NEUGEBAUER, MARKUS REIHER, AND JUERGEN HINZE PHYSICAL REVIEW 85 032518

theories may be found ill6—19. Since our analysis con- fined by pairs of quantum numbers: in the nonrelativistic
cerns electronic ground states in atoms, the central-field agase by{n;,l;} =i and in the relativistic case byn; ,x;} =i.
proximation is adopted. Hartree atomic units are used
throughout this article, i.e., the numerical values of the el-
ementary charge, #¢g, 7, and the mass of an electron are ) )
chosen to be equal to 1. Accordingly, energies are measured 1he total energy for closed-shell atoms after integration
in units of E,,=e?/(4mexay), i.€., in hartrees and distances ©Ver all angular and spin coordinates is given by

are measured in units @f=4meyh/(Mge?), i.e., in bohrs.

B. Total electronic-energy expectation value

<E>:2i Di“ﬁ%% DiDj| {piiUjjo)

A. Hamiltonian and one-electron functions

The many-electron Hamiltonian in the HF and DFC 1
theory can be written as 2 2,, Al pigUiin) |- ©)
N N
H= 2 h(i)+ l 1 1) In order to treat nonrelativistic and relativistic approaches on
= 2 & Iri—nl” the same footing, we introduced
whereh(i) is defined as _((Pi(r)lhs(r)|Pi(r)), HF
1, " P, Qi(r) [hp(N)[(Pi(r),Qi(r))), DFC,
_ _ 7
hei)= 5P +Voudri),  HF theory (7
ca(i)-p+c?B(i)+Vndri), DFC theory. and the radial density
)
[Pi(r)Pj(r), HF ®
These equations are given in the standard representation, i.e., pijr)= P.(r)P(1)+Q;(rQ;(r), DFC.

pi=—1iV; is the momentum operatos is a three-vector of
4X 4 matrices containing Pauli spin matrices, ghds a 4
X 4 diagonal matri¥19]. N is the total number of electrons
andV,,{r) is the electron-nucleus interaction potential,

The one-electron operatofssp(r) in h;; are the radial
Schralinger and Dirac operators, respectively,

V4
——, point nucleus, hs(r)=
Vnu(,(r): r (3) hSD(r):

model potentials, finite nucleus.

1d?> 1(l;+1)
-
2 dr? 2r?

Voud1)  Al(N)
hp(r)= »|» DFC,

A comprehensive overview of different finite-nucleus models Air) - Vinud 1) —2¢ 9

is given in [20]. The ansatz for a one-electron function

within the central-field approximation is in the HF formalism ..

a spin orbital,

+Vadr)|, HF

Po (1) A=
= b = — Vim0 X, (0), (@ (=c

d+Ki
dr ' r

Further, we utilized the Laplace expansion for the operator

and a spinor, 1/([ri—r;|) (cf., e.g.,[21]) leading to potential functions

orc_y, L[ PrnlWXeam (0.6

M iQniKi(r)X,Kimj'i(ﬁ,(ﬁ) 5

1 r )
Uijy(f1)=mj dry[ pij(ra)rs]
rivl)o

in the DFC formalismPy (r), Pp . (r) (the large compo- w

neny, and Q, . (r) (the small componeptare radial func- +r§fr1dr2[pij(r2)/r5“], (11
tions. In the nonrelativistic formalisr‘m(,imti are spherical

harmonics an(;i(ms‘i(o) are spin functions, while in the rela- which are part of the two-electron integrals

tivistic analogXKimj_ are two-component spherical spinors,

where the spherical harmonics have been coupled with the (paVij,) = fﬂdrlpkl(rl)uijv(rl)- (12)
spin function. Here we have used the central-field approxi- 0

mation and the equivalence restriction, i.e., we use the same

radial functions for spin orbitals belonging to the same shellln the case of HF theory, the sum oueruns from|l;—1; to
Shells are de- li+1;, with v+1;+1; even. In the relativistic DFC frame-
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work, the summation is for alt from |j;—j;| to j;+j;, with o 1 brc
vji+i; odd if sgnie)=sgn(c), and v+j+j; even if  W(N=2 Dj| Ujjo(r)— 5 E ATTCU;; () P(r)IPy(r)
sgn(k ;) # sgn(x ). !

The symmetry coefficients are ! XP(r)
=Vi(r)+ —— P r" (19
loow 1\2
HE_ [ ! J
A”V_(o 0 0) ’ (13
WR(r)=2 D,—{U,-,-o(r) 3 2 AU, (r)/Q(r)}
5 i
Ji v Jj XQ(I‘)
DFC _ i
Ajj, =2 % 0 _% . (14) =V,(r)+ IGL (20)

whereby the function¥;(r) andX(""?(r) and their nonrel-
ativistic analogs will be analyzed in the following. These
quasilocal self-consistent-field potenti&ldS ™ <) (r) contain
two different partsV;(r) andX®P9(r). For the homoge-

Since we are dealing with closed-shell atoms, the occupatio
numbers may be written as

=)

D= 4li+2, HF (15) neous party;(r), which represents the Coulomb interaction
' 12j;+1, DFC. and the correction for the self-interaction, we get
C. Self-consistent-field equations Vi(r) 2 D. UJJO(r D 2 A Ui (1) (22)

Variation of the HF total electronic-energy expectation
value with respect to the orbltals yields the radial HF equa—

ferential equatlons part which originates from the exchange interaction only, is
in the nonrelativistic HF framework,
1d®> 1i(l;j+1) S
— EF"‘ ?+Vnu({r)+wi (r)—ei Pi(r)=0,
(16)

1
XAN=-3 2 D2 ALUL(DP(N). (22

where we introduced thguasilocalHF electron-electron in-  while we obtain in the relativistic case
teraction potential

xP (r)——— > D E ADTCU (NP, (29

2
W?(r>=; Dj[u”om 5 2 ALU(DP; (r)/P(r)} b7
X3(r) x.Q(r)=—E > D-E ADTCU;L(NQi(r). (24
_V( ) P(r) (17) : 2],j¢i J v jiv J .
whereby the function¥;(r) andXiS(r) are being dicussed in  1ll. SHORT-RANGE BEHAVIOR OF HF AND DFC EEIPS

detall in the sequdlsuperscripSindicates the nonrelativistic
Hartree-Fock approach based on the Sdmger one- _ _
electron operator The HF equations are only artificially ho- ~ To analyze the short-range behavior of the potentials, we
mogeneous(and therefore the HF EEIPs are quasilpcal make use of the series expansion of the HF radial functions,
since inhomogeneities arise from theshell contributions

throughP;(r). Analogously to the above HF treatment, we PHF(r) = |+12 aHF K (25)
obtain for the relativistic DFC equations ! '

A. Closed-shell atoms

Voud 1) +W (1) — € Al(n) and of the DF radial functions,
A(r) Voud 1) +W3(r)—2¢%— ¢ . .
( (r)) (0) PPFO(=ra X a@rcr%,  Qir=r 2 byr™
) (18 k=0 m=0
Qi(r)/ \0 (26)
with the quasilocal DFC EEIPs about the origin. According to Eq921)—(24), we must
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evaluate the behavior of the potential functidm\@V(r),l
limV;(r)= 2 D; <PJ]/r> (piiIr). (31)

r—0
HF JHF HF JHF
aOI aOJ _ aOI aO]

v+k k—v—1

lim UHP(r )= lim

ijv
r{—0 I‘1~>0

HE(ry)
r 1<piy+2 +oir |,

However, the short-range behavior of the inhomogeneous
part X?(r)/Ri(r) (with R being{S,P,Q} andR; being the
corresponding radial functigrof the EEIPs is different in
nonrelativistic and relativistic theory due to the exponents in
the series expansions of the radial functions, E8S) and
(26). This difference has its origin in the structure of the
differential equationg16), which are of second order, and
Egs. (18), which are coupled first-order differential equa-
tions. The way in which the structure of the differential equa-
DFC_.DFC tions affects the exponents in the radial functions’ series ex-
(a Ao, +b0,ib0,j)(m pansions is explicated, for instance, in R¢ds5] and[24]. In

(27)

2

with k=3+1;+1;=3, and similarly

lim UPFC(r )= lim

ijv

10 rlﬂo the case of the DFC theory it turns out that these exponents
additionally depend on the type of model used for the

1 pﬁFC( 5) nucleus, i.e., point nucleus or finite nucleus. In contrast to the

- m) +r s +0(r7) |, DFC theory, the exponents are independent of the electron-

2 nucleus interaction model within the HF theory. The analysis

of IimHO[XiR(r)/Ri(r)] is lengthy but straightforward and is
(28 given in the Appendix. If the homogeneous péy(r) of the
total HF EEIP is added to the inhomogeneous term
Xs(r)/P (r), whose short-range behavior is given in Eg.
with m=1+a;+a;=1. Here we used the power-series ex-(A3) in the Appendix, we obtain
pansions, Eqs(25) and (26), respectively. In both equations
the first term vanishes at the origin, and from the second
term we get contributions only i#=0. Therefore we obtain

the result WE(0)=im LV, (1) + XF(r)/Pi(r)] (32
im U 0, v#0 -
im Ui (ry)=
ri—0 ”V( 1) <Pij /I’2>, v=0, 29 HE HE
=(UR)—{pjj ”)‘2 {,#.Z’ -y DiAj(;-1)
HF
valid for the HF and DFC potential functions. X (pfiFIr'i=ti H)aHF, (33
Since the constraint=0 in Eq.(29) can only be fulfilled 0
if I;=1; or j;=j;, respectively, and the symmetry coeffi-
cients are then given dsf. e.g.,[23])
where we introduced the expectation value
Aiio=2/D;, (30)

(1R)= 2, Di(p; Ir), (34

the value of the homogeneous part of the HF EEIPs and DFC

EEIPs at the origin is which is the shell-independent part W?(O) originating

solely from the Coulomb interaction. Due to the series ex-
T d intearal in Ed11 luated ding t pansions of the radial functions we get different expressions
e second integral in Eq11) was evaluated according to for the radial den3|tprFC(r) depending on the nuclear
© e model used. This leads to an origin behavior of the exchange
f drf(r)—j drf(r)|, contributions to the EEIPs, for which different cases have to
0 0 be considered, which are discussed in the Appendix.
such that thes-independent expectation val(é(r)) enters the ex- Analogously to the derivation of Eq33), for the DFC
pression. The boundagis chosen such that a Taylor-series expan-potentials we get by adding the inhomogeneous contributions
sion for the integrand(r) converges. This series expansion is con- (A25) and (A26)—as derived in in Appendix—to the homo-
structed from the series expansions of the radial functions. geneous part,

lim fxdrf(r)zlim

e—0 e—0
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WF(0)=lim V7 () + X7 (r)/Pi(r)] (35)
r—
( DFC
1 pOFE(N)\ B i
= 8P oDAPEC L LI”  finite nucleus
=(UR)—=(piiFCIr)—{ 1 pPFC(r)\ aDFC _ (36)
= > 8 « D;APEC( c point nucleug«;| =1
2 54, Cla) im0 r DFC '
| @, pointnucleus, otherwise,
WP(0) = lim [V7 (r) +X2(r)/Q;(r)] (37)
r—0
( DFC b .
1 pij (r)\ Pmy i
DFC ] j,min ..
Ej%i 5(ﬁ8’min,0)Dinj(|i|j)< rvmm+1> . finite nucleus
=(1R)—(p>FCIry—< 1 orc/ P S0\ by _ (38)
Ej%i 8y DiATO | by, point nucleug ;| =1
L, point nucleus, otherwise.
|
The third index of the symmetry coefficients results from the WiP(O) =WiQ(O), (41)

possible values of;, j;, andk;,k;, respectively, under the
restrictions included in the Kronecker delt@r details see
the Appendiy. It can be seen from these equations that th o . 1A
main contribution to the EEIPs at the origin is given by the2'® equal at the origin 108, , ar;d P12 shs\l/lg na p0|_ntl|ke
(1/R) expectation value, which by far dominates the abovduclear potential. Fdii|>1, Wi (r), andW;(r) are singu-
expressions. Additional contributions can be written in termdar at .th.e ongin. Not_e that Eq39) does not hold for the case
of (1/") matrix elements. These small corrections, which®f @ finite nucleus, in general.

cause the shell dependence of the EEIPs, result from the

local self-interaction term and the nonlocal exchange inter- B. Open-shell atoms

action only, while the part that concerns the Coulomb inter- The analysis presented so far is derived for closed-shell

action (self-mtera_cn_on_mclude_)dls equal for a".She”S' atoms only. For open-shell systems, the HF and DFC EEIPs
Furthermore, it is interesting to analyze in case of the

. . are of a different form. Moreover, E§30) cannot be used,
DFC EEIPs, whether there is a connection betw@épr(r) sinceDMFoPenL 41 1 2 andeFc,openi 2}.+1 In spite of
and Wi*(r), since this assumption is usually made in they ;. "0 oo ex;I)ressions WS'P'Q)(O) clan be used as in
relativistic density functional theor{25]. In general, these ' ! L

) . . the case of closed-shell systems. This is now shown for
two components are equal in their long-range behafgee WS(0): for the DECEEIPS at th - |
Sec. IV for detailg, but they may be different in the short- i ( )H or be d s atthe ongn, an analogous ap-
range limit. Nevertheless, these EEIPs are identical at thBroach can be used.

origin in some special cases for the point nucleus; consider- Cc_>nS|der|ng atoms with one open shell, we have to dis-
ing the cusp-analogous condition for the case of a poin{InguISh between the HF EEIPs for the open and the closed
nucleus[24] shells. In the former case the potentia[ 16]

[provided|«;|=1. This demonstrates thst”(r) and W2(r)

boj  (ai+xp)c Wis'o(r,LS):Ej: DjUjjo(r) = Uiio(r)

o 1 HF P;i(r)
) 22 Dinijjiy(r)m
it follows that L#hy i
DFC =2 @ (LS)U;i (1), (42
Qi % (40) =0
ag; ¢ Poj
Only the coefficiente:xi,k(LS) depend explicitly on thel(S)
if kj=«;. Therefore, we obtain from Eq&36) and(38) state of the system. The summation is over all shells of the
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atom. For the closed shells the potential is not explicitly Xis(r) 1

n h f th m im =— = E A SV S A
depende tont eI_(S) state of the atom, r|I mPi(r) 2 i DJ 'JVmin<p”>r|““{rl+v - i(r)]

WPS(r,LS)=2 D;Ujjo(r) = Uiolr) =0 (47)
1 P.(r) within the HF theory and by
- DA (MU (1) =—
ZJJE.£|§V: ] Ij() J'()P,(I’) P
m == > DAPC (p)lim{ —1——1=0,
Pi(r) 2557 1 mint ri* minP;(r)
-2 @+ DALNOU(N. @y T . o |
>0 (48)
At .the'or_igin,_both .potentials Ie_ad to the same expression,_ XiQ(r) 1 orc . Q;(r)
which is identical with Eq(33). Differences may occur only Ilmw= > 2 DjAj, pij) lim § ——————1=0,
by the last sum in these equations, but since0 is ex-  r—= <i Ji# r—ee [ 127 7MINQ; (1)
cluded, there are no additional short-range contributions. (49)
If the method of configuration averages is used for open- o -
shell systems, the EEIPs may be written as within the DFC theory. The vanishing of contributions from
the inhomogeneitieX®"?(r) comes from the use of or-
D,—1 thonormal radial functions yieldingp;;)=0. Thus, there are

only contributions from the homogeneous part, which is

Wis,aU(r)zz DjUjjo(r) = Uijio(r)—
! equal in both cases, and we finally obtain

4l +1

X 21, +1)A; Ui,
VZO( ) " > Dj-1 N

Py(r) im WP ()= ———==—=. (50
Pl(r) (44) r—o

Ji#i

1
3 > DjEV: Aij i)

i ) As can be seen from the preceding section, this expression
The same reasoning as in the former case can be used {345 for closed- and open-shell systems. If we add the
show that this equation leads also to E83) at the origin. g jectron-nucleus potential, this is just the potential of the ion,

which the electron leaves behind, i.e.(Z—N+1)/r.
IV. ASYMPTOTIC BEHAVIOR OF HF

AND DFC POTENTIALS V. GRAPHICAL REPRESENTATION OF HF

The long-range behavior of the EEIPs has been the sub- AND DFC EEIPS
ject of many investigationgs,13,26,27. Especially the cor-

rect asymptotic behavior of the exchange potentials in they, 4 -angehehavior of EEIPS, obtained using fully numeri-

context of the density-functional theory and related method§al atomic-structure programs for the 9] and DFC cal-
has often been examined in the nonrelativistic frameworkCulations [30]. The implemented numerical discretization

(see, fof i'nsftance|;28])..W.e briefly recall the analysis fpr schemes and solution methods are described elsewhere
nonrelativistic theory within our approach and extend it t°[15,24,29,3g] For the relativistic calculations, the value for

the DFC theory. For large values ofthe EEIPs are domi- the speed of light=137.0359895 was usd@1]. Al re-

nated by the 1/ decay of the potential functions;j, with g5’ \were obtained with 2000 inner grid points on a rational
v=0 since (HF calculation$ and logarithmic grid(DFC calculationy
) I respectively. Figures 1 and 2 reproduce nicely the analytical
lim Ui, (r)=(pi(r)r") limr=»==, (49 results. Particularly, Fig. 1 shows the shell dependence of the
= e EEIPs. Additionally, Fig. 2 shows that the DFC EEIPs are
o ] not identical for large and small components. But ifer0,
Thus, the hpmogeneous c_ontr|but|ons to the EEIPs in thg,o reIationshiWVF(r)zWiQ(r) is valid for shells with|«|
long-range limit may be written as =1, i.e., j={1/2~1/2). The singularities for shells with
L b L other values foij affect only the very first grid points, be-
. _ o Py T o cause the absolute values of the exponedisy, in Eq.
rl|mVi(r)— r ; Dieis) 2 Aiiolpi) r {2 D 1}’ (A16) are very small. Nevertheless, caIcuIaFtions with grid
points closer to the origin leave no doubt that singularities
occur for shells wittjx|> 1, while the EEIP&V], (r) show

which holds for both the HF and the DFC potentials. Theregular behavior and, furthermore, yield the same values as
inhomogeneous part is determined by WnQpllz(r) at the first grid point as obtained by E@1).

In this section, we present the numerically calculated

— 00

(46)
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125 — T T T T 125 — T T T T
h— WP1:
....... WP2
-—— w”3
120 120 —w,
g 115 | 3 115 |
g g
‘”; 110 2 110
T
105 | 105 |
100 ' L \ \ L 100 I L \ I
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
r (units of a,) r (units of a,)

FIG. 1. HF EEIPs for orbitals of ZnZ=N=30). Note that the
value for(1/R), which is common in all the shell-dependent poten-

tials, is 142.06. 140

VI. CONCLUSION
130

Writing the HF and DFC equations as formally homoge-
neous differential equations introduces quasilocal EEIPs. Ang
analysis of the short- and long-range behavior shows that th¢§
HF and DFC EEIPs can be treated parallel and lead to comf
pletely analogous expressions. The main contribution to the&';— 110
value of these potentials at the origin is shell independent
and given by th€ 1/R) expectation value. Shell dependence
originates from the contributions of the local self-interaction 100
term and the nonlocal exchange interaction terms and can b
ascribed tg1/r"y matrix elements. The DFC EEIPs addition- . . '
ally depend on the kind of potential used to describe the 90 0 0_61 0.02 0.03 0_64 0.05
electron-nucleus interaction, due to its influence on the short: r (units of a;)
range series expansion of the radial functions, which enter ) )
the analysis of the exchange contributions at the origin. We FIG- 2. DFC EEIPs fos andp spinors of Zn g=N=30) (point
find singularities at the origin for the DFC EEIPs of shells Nucleus. Note that the value fof1/R), which is common in all the
with |x;]#1, if a point-nucleus model is used. However, Snell-dependent potentials, is 144.47.
well-defined expressions can be given for shells with ) ) ) ) ]
=1 (point nucleus and for all shells, if a finite nucleus structure cal_culatlons without evaluating time-consuming
model is applied. The relativistic DFC EEIPs for large andfWo-electron integrals.
small components are not identical, in general, only in the
case of a point nucleus, and fikj=1 we could prove ACKNOWLEDGMENTS
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nonrelativistic instantaneous Coulomb-type electron-electron For the evaluation of the short-range behavior of Egs.
interaction operator. (17), (19), and (20), lim,_o[V;(r)+X(r)/Ri(r)] (with R
The analytical expressions derived here can be used in tHeeing{S,P,Q} andR; being the corresponding radial func-
construction of local model potentials exhibiting the correcttion), we used expressions for the origin behavior of
short-range and asymptotic behavior for efficient eIectronic-)(iR(r)/Ri(r), which are derived in the following.
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1. Nonrelativistic framework

For the determination OXiS(O)/Pi(O), we evaluate prod-
ucts of potential function#;;,(r) and ratios of radial func-
tions P;(0)/P;(0),

P;(rq)
lim | U, (ry)—=——
r,—0 r Pi(rl)
HF2 HF2
— lim | -t 20 _ %
A p+l+1+3 L+l —v+2
r,—0 it it
HF HF
vili—1: | Pij (rZ) aO,j m _
+r1 J I< s+l w'i'o(rl) ) m_3+2|J’
2 Qoj

(A1)

where we used the definition &f;;,(r) in Eqg. (11) and the
series expansion, E425). Only the last term yields nonva-
nishing contributions for short distances provided v=1,

—I; andl;=I; (otherwise this term always vanishes, since
negative values for are not allowed by the selection rules
The former constraint can easily be understood, since for
>1;—1; we have lim__o(r;"i"")=0, andv<l;~1; is not
allowed due to the selection rules. Summarizing the abov
results, we get

O, V?éli_lj
. P(r)} HE
lim| Uj; (1) =——=|= a!
rﬁo{ it )Pi(r) (pHF/r"“)%, v=l—1

0
(A2)

and we are now able to evaluexé(r)/Pi(r) in Eq. (32) for
r=0,

Xfm] 1
lim == > DA
r—ol Pi(r) 2 i =1 PG
2,

X(piFIrliTlit (A3)

HF ’
0j

to arrive at Eq.(33).

2. Relativistic framework

PHYSICAL REVIEW @5 032518

In the latter case, eith@g"© or by in Eq. (26) may be zero,
dependent on sgrf{). Thus, one must distinguish the fol-
lowing two cases.

(1) k>0, a=«: this yields

adFC=0=kpnin=1 and by#0=m,,=0. (A6)
(2) k<0, a=—«k: this yields

adFC#0=knin=0 and by=0=m,,=1. (A7)

Here we introduced,,;, and my;,, which denote the
lowest indicesk and m in Eq. (26) with nonzero values for
the coefficienteaP™© andb,,. Both ky,i, andmy,;, are zero
in case of a point nucleus. In analogy to the HF treatment,
we therefore obtain

I DFC
lim [U-- (r )'Pj(rl)}: im rﬁﬁ pﬁFC(rZ) A min i
e ijritl Pi(rl) r1—>0_ 1 r5+1 allzif:mci;n'i ’
(A8)
i o QD] L ge) PE(r2) | B
Im iiv(rl)Q‘(r y| =M +1 | p L
r—0 ithy r,—o| rs M min!

e
(A9)

where we already skipped the terms vanishing in the short-
range limit. The exponentg8 are defined by the following
expressions:

Bil:j’:V+(a]+kj,min)_(ai+ki,min)y (A].O)

i?:V+(aj+mj,min)_(ai+mi,min)- (A11)
Obviously, in the case of an external potential of a point
nuclegs both expres:sior)s are eql@,z ,Bi?z[a’ij . T_he next
task is the determination of the lowest possible values
Bij,min, Since onlyB;; min=0 results in regular, nonvanish-
ing contributions at the origin.

a. The case of a point nucleus

In the presence of the external potential of a point
nucleus, the exponents are noninteger, while the allowed
values ofv are always integers. Therefore, additional cases
must be considered in order to determine those, which lead

The exchange-interaction contributions to the EEIPs ing nonvanishing contributions at the origin in E¢a8) and
the DFC theory at the origin require to consider different(ag), j.e., which yield exponentg;; #0.

cases due to different first exponents in the series expansions (g) |«;|=|«;|: The lowest possible value far is? vy,
for the radial functions resulting from different nucleus mod- —g sq that :
els. In case of the pointlike nucleus model, we hg34]

Bij min=0. (A12)

A4 . R
(Ad) (b) |ki|<|kj|: Here we havevyin=j;—ji=|xj|—|«il,
and therefore
while for finite nucleus modelg; is a non-negative integer
[24]

The quantum numberis and «; are related by;=|«;|—1/2 and
Vmin:|ji*jj|:||'<i|*|'<j||-

(A5)

a;=|xl.

032518-8
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72 72 since ji—jj|+Ji+Jj=|xi| =[xyl +|xi| +] x| =1 is always
Bij min= x| =il —{ | xi] \/ 1— W_l"” 1-—— odd. Combining Eqs(A17), (A18), and(A19) yields
CK CK!

i K;j
(A13)
72 [ 1 1 [ il =il + sl =i, sgr(xi) =sgr(k;)
~2|Kl|_2|K||+E(m—m)>o (A14) lgiﬁ,min: ||Ki|—|Kj||+|Kj|_|Ki|, Ki>0/\Kj<O
|
: ||| = | iejl |+ | ;| = | i+ 2, k<OAK;>0,
In the last transformation, we utilized the Taylor-series ex- (A20)
pansion \1+x=1+x/2+O(x?), which converges folfx|
<1.
(©) |ki|>|kj|: This leads to EEIP singularities, since
vmin=|&i| —| x|, from which we obtain [lcil =Ll i =il sgriei) =sgnix;)
B2 min= 1 kil =l&jll + il =i, ki<0/\k;>0
. 1 22 1 Z2 ||K||_|KJ||+|K]|_|K||+2, Ki>0/\Kj<0'
Bij min= kil =i ={ [xi] \/ i | i (A21)
(A15)
_ zz [ 1 1 These expressions may be investigated subject to the abso-
o2l k] W <0. (A18)  |ute values of thec guantum numbers,

This shows that all EEIP®/(r),WS(r) [see Eqs(19) and

(20)], in which contributions with «j|>|«;| occur, i.e., all

EEIPs except those with the minimpt;|=1, behave non- | = ||+ ki = | | = 0, |«il=]xl

regular at the origin. : ! ! Yol 2lkil = 2]ki>0, kil <]kl
Only for | x;| =1 we find a regular short-range behavior of (A22)

the EEIPs for the case of a point nucleus. In this case, we

find nonvanishing contributions only fofx;|=|«i|=1,

where vy, +ji+]j;=2j; is odd. Thus, these contributions

occur only if sgnk;) =sgn(x;) and thereforeq=xj=*1. Thus, the lowest exponeng; min are for the case of a finite

nucleus
b. The case of a finite nucleus

In the presence of an external potential of a finite nucleus,
the valuess;; i, are different for large and small component

in accordance with EqQSA10) and (A11). They are depen- 0, sgrixi)=sgri«j)/\|ki|=|x||

dent on sgng ), which can be seen by means of E(&6) B ={0, k>0NAk<ON[ki|=]k] (A23)
and (A7). Writing Egs. (A10) and (A11) explicitly for all 1min b :

possible combination§sgn(x;),sgn(x;)}, we obtain Bij,min=>0,  otherwise,

1/+|Kj|_|Ki|, Sgr(Ki):Sgr(Kj)
B =9 vFilxl=lxl=1, x>0A\k<0 (A17) 0,

i sgri i) =sgri «))/\| ki =] x|
vt|kj|—|ki|+1, k<0/\k;>0,

B min=1 0 ki<ONAKk;>0N|ki|=|x|  (A24)

Q .
vl =il sgrix)=sartx) Plimn=0r  otherwise:
/:)’Q: V+|KJ|_|K||_1, K|<O/\KJ>O (A18)
vt|jl—|xi| +1, K>0/\k;<0. ) _ )

It can easily be seen that in contrast to the point-nucleus
v=|j,—j;| has to be fulfilled as well as the constraint con- finite nucleus. Hence, an analytical expression for the EEIPs
cerning the sumv+j;+j;, so that at the origin can be determined for a finite nucleus, and for a

point nucleus, as far as shells witk;| =1 are concerned.

B To evaluate the inhomogeneous terms in E®) and

- [lil =il sgrixi)=sgri;) (A19) (37 we have to carry out the summation in E¢83) and
MUl kil =kl [+1, sgik) #sgr(k;), (24), and obtain in the short-range limit

032518-9
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( 1 pDFC aPFe j
_Z aDFC [ _Fij ) Fjmin: -
5 %I St ORI g T finite nucleus
XP(r) 1) i,min!
Iim[ ' }= 1 DFC\ ,DFC (A25)
: Pij \ ag; :
ol Pi(r) -5 % 5(Ki,Kj)Din[j’gC< ”r >%, point nucleus) ;| = 1
ji#i 0j
L~ point nucleus, otherwise,
( DFC \ p .
_ - ) PFC 1] j,min ..
. 5 j%i 5(,8§J?Vmin,0)DJA.JVmin< —rvmin+1>—bm_ o finite nucleus
Xi (r) ’ i,min’
lim =< 1 PR\ by: (A26)
ol Qi(r) _ Ej ) S, ,Kj)DjAﬁ§C< IJr b_(;’J" point nucleus | ;| =1
f il
\ —, point nucleus, otherwise.

In the analysis that leads to E@\4) it is assumed that there is no EEIP which behaves likeoLimore singular at the origin.

Since in the relativistic case the pointlike nucleus model can only be applied<far;, the prefactor in Eq(AL6) is always

<1. The term in parentheses in E&16) is always larger thar-1, such tha{3>—1. Typical values for the Zn atom are

B~ —0.02. Therefore, in case of singular behavior of the DFC EEIPs, the series expansions of the radial functions remain

unaffected by the weak singularity.
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