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Two-photon-exchange QED effects in the 42s 'S and 3S states of heliumlike ions
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A numerical calculation, based on full QED, of the energy shift due to the effect of two-photon exchange in
the 1s2s 'S and 3S states in heliumlike ions is presented. At I&vthe QED effects are compared with the
known analytical Z«)2 contributions, and we find good agreement. The calculations have been performed in
the rangeZ=10-92. Already in the mediurd-range, the effects beyond the leadirty)® order are found to

be dominant.
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[. INTRODUCTION lated the relevantZ«)® part associated with the two-photon

exchange.
In this paper, we are concerned with accurate calculations The outline of the paper is the following. In Sec. Il a
of the energy of excited states of heliumlike systems, moréheoretical derivation of the expressions needed are per-
specifically the $2s 'S and 3S states. For lowZ there are  formed both in the Feynman and Coulomb gauge. The nu-
very accurate calculations by Drakg], using the so-called merical procedure and some numerical difficulties are pre-
unified method. In this method the relativistic and quantumsented in Sec. Ill. In Sec. IV, the numerical results are
electrodynamic(QED) effects, beyond their very accurate presented followed in Sec. V by a comparison with analytical
nonrelativistic energy, are calculated to leading orders in theesults in the lowZ region and a discussion of the results.
fine-structure constant. All effects of ordera?, in atomic
units, are included. For highet, effects scaling asZa)* Il. FORMALISM
and higher become important. A large part of these effects
are included in relativistic many-body perturbation theory ~The exchange of two virtual photons between two elec-
(RMBPT). In this method one usually makes the-virtual- ~ trons is represented by the two Feynman diagrams in Fig. 1,
pair approximation(NVPA), where the effects of negative the ladder diagramL) with uncrossed photons and the
energy states and retardation are neglected. To match t§€0ssed photons diagranX). The energy shift due to these
experimental accuracy that is possible to achieve today, it i§ffects are given by the formula derived in 1957 by Sucher
necessary to also include the effects of QED to high order if5]
the expansion paramet&r. In this paper, we give a com- 1
lete description of the numerical calculations of the effect o . 0 0 0
gf the exchaelge of two virtual photons between the electrons ABa= I|m§| 7{4<(I)a|%d”|q)a>+4<q)a|8§
in the 1s2s excited states of heliumlike ions. Other calcula-
tions of this effect for the 42s and 1s2p (notJ=1) triplet —2(0 ST DY, (1)
states have recently been presented by Mohr and Sapirstein
[2], and for the %2s singlet and triplet states by Andreev where®?, the reference state, is the two-electron state con-
et al. [3]. A calculation of the quasidegenerats2p P,  sidered, constructed from orbitals that are solutions to the
and 3P, states has been performed by us[4}, using an  one-electron Dirac equation.
extended model space, involving calculating matrix elements
nondiagonal in energy, which is not possible with the com- A. Feynman Gauge. Uncrossed photons
monly usedS-matrix formulation by Suchelf5]. In this pa- ) _ ) o
per, however, we use th@matrix formulation and the pre- We _conS|der first thg u.ncrosse.d diagram in Fig. 1. The
sented work is essentially a nontrivial generalization of a>Mmatrix element for this diagram igi(=1)
calculation in a previous paper concerning the ground state

@)

ro,y
y—0

[6]. We are not considering here the remaining QED two- r S r s
photon effects, the screened self-energy and vacuum polar-

ization, although they are certainly as important as the con- 3 k’ 4 3 K’ 4
sidered two-photon exchange. Calculations of these effects e

have been made for the ground state of various heliumlike t u t u
and lithiumlike system§7—9]. The QED effect considered in 1 [~> 2

this paper contains both negative energy states and retarda- k 1tk 2
tion of the photons, both effects which scale Zsv}® and

(Za)®In(Ze). Our results are, in the lo&-region, compared a b a b

with known analytical expressions for th&4)* contribu-
tions. These analytical expressions contain the Bethe loga- FIG. 1. The Feynman diagrams representing the two-photon ex-
rithm and to be able to make the comparison we have calcuzhange between two electrons with uncrossed and crossed photons.
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<q>g|%d |<I>2) conservation at the verticém the limit where the adiabatic
v damping factory—0). The remainder of Eq2) reduces to a
=(ie)4f d4X1J d4x2J d4X3J d'x, space integraM (the Feynman amplitude

x e~ Mtale™ MUld T (x4) adi Sg(Xg,Xq) @ P 5(Xy) i
, , M= d3de3xfd3xfd3xf—
X~ ulem 2D {(xg) @ 1Sp (X4, Xp) @5 Py(X2) J e e | ] o] 5

. i X DT (x3)iecaktiSe(X3,X;1,8a— z)iecald 4(x;)
XEDFVV’(X3_X4)EDF/_L’,U,(XZ_Xl)i 2 / ,

X Dl(x)iecal ISe(Xq,Xp,€p+z)ieCal ®p(x,)
where the photon propagator in the Feynman gauge is de- i i
fined by X De(Xe=%e,2) (Druru(Xe=%0,2), (9)

5 ( ) 1 j d4k efik(xzfxl)
v X - X = 13 .
FralXeX) = | o 4 (e . . » .

or, alternatively, by using the explicit representation of the

dz . hoton and electron propagators, we obtain
:f587I2(t27t1)DFv,u(X2_Xl!Z) (3) p p p g

and (ezcz)2 dz
c d3k gik-(xx—xq) - € / tu 2m
D - )= — —4, . Lt
FV,LL(Xz X1 z) Eog ,LLJ (277)3 (22—C2k2+i6) < | f d3k’ ek’ (x3=xg) |t >
X{rs|aja, u
@ 3] 2m)? (27— K'2+ie)
We have here defined tlzparameter bk=(z/c,k) ande is 3 K- (Xp—x1)
a small positive number. The electron propagator is defined % u d°k e
by (2m)° (z°—k“+ie)
dz D (%) DI(xy) 1 L
- T aiz(ty—ty) — M7 T X : :
Se(X2,X1) ; sze T z—e(1-i7) [ea—z—e(l-in)][ey+z—e(1-in")]
dz (10
:f s—e TS (x,%,2), (5)

_ N _ wherez andz’' =z+e,—e, are associated with the momen-
where 7 is a small positive number. The time-dependentyym k andk’, respectively. Intermediate statea degenerate
functions are given by with the reference state are omitted in the summation. How-

B, (x)=e" el (x) ©) ever, these statgs give ris_e to finite c_ontribu;idhsg refer-
n e ence state contributionsvhich are considered in the Appen-
We use here the Furry interaction pict{it®], which implies ~ dix- We begin by evaluating the integral
that nuclear recoil is not included, with the single-electron
states®,(Xx) being solutions of the time-independent Dirac
equation, foc dz 1 1

It=i| 5= .
—=2m (P=Z+im) (p'+z+in,)

hp®n(Xx) =e,®,(X) (7)
1 1

where 22— (ck —im?] [Z—(ck—in)7]

(11)

hp=ca-p+Bmc+V. (8)
where 5, and n,, are small numbers with the same signeas
V is here the Coulomb potential from the nucleus. For Ibw ande,, respectively(We have here used thiat= |k| is posi-
we use a point nucleus but for higheran extended nucleus tive.)
with homogeneous charge density is used. If the intermediate With the notationp=e,—e;,p'=€e,—€,,.q=€,—¢€;,q’
states are not degenerate with the reference state, the tirvee,— e, and with+ and— denoting positive and negative
integrations in Eq(2) are trivial to perform leading to energy intermediate states fdarandu, respectively, we have
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1 1
4ckeK (p+p) | (p—ck)(ck+ck' —q)

|L++:

1
+ ! !
(q+p"'—ck’)(p'—ck)
1
(g+p’'—ck’)(ck+ck' —q)

1
_l’_
(p—ck)(q'+p—ck’)
1
(q'+p—ck’)(ck+ck'—q")

- ! ] (12
(p'—ck)(ck+ck'—q")

1 1

It -
4ckcK (p+p’') { (p’ +ck)(ck+ck'—q)

1
J’_
(p—g+ck’)(p+ck)
1
+
(p—q+ck’)(ck+ck'—q)

1
_|_
(p"+ck)(p'—q’+ck’)
1
+
(p+ck)(ck+ck'—q")

+ ! ] (13
(p'—q’'+ck’')(ck+ck'—q")

Lo 1 [_ 1

4ckcK (p+p’) (p—ck)(ck+ck'—q)

1 1

" (p—ck)(p+q’'—ck’) (p’+ck)(ck+ck'—q)

1
(p'+ck)(p’'—q'+ck’)

1
(p+tq' —ck’)(ck+ck'—q")

1
" (p'—q'+ck)(cktck' —qH)]’

(14
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1 1
4ckcK (p+p’) - (p—q+ck’)(ck+ck'—q)

L—+_

1
J’_
(p’'—ck)(p'+q—ck’)
1
(p'+gq—ck’)(ck+ck' —q)

1 1

- (p+ck)(p—q+ck') (p+ck)(ck+ck'—q")

— ! ) (15
(p' —ck)(ck+ck'—q")

The expressions that follow directly from tlzeintegrals
are not always suitable for implementation, since fictitious
poles will appear. These poles cancel out but will make the
implementation more difficult. The expressions given are re-
written such that no fictitious poles appear.

Multiplying the Feynman amplitude by the imaginary unit
(1), yields the corresponding energy contribution

eZCZ 2 d3k d3k/
60) J(ZW)BJ (2m)3

X (rs|aa, e’ ax|tu)

AEL,=

X (tulafa,e™ 2 ab)lt

After the integration over the angular partsloandk’ this
becomes

K'r
) fdkf dK'(rs|ala,, nlir 34)| tu)

34

AEL=

n(k ro)

u2 lab)(ck)?(ck’)2It, (16

X {tu|af @

and by using the spherical-wave expansion

sirEkrlz):E (21+1)j,(krj (kr)C'(1)-C'(2),
12 1=0

17
we obtain

2
AEL—( ) > (21+1) (2I’+1)fdkf dk’

2’7T €p 117
XZ @ (rla”Cj i (k'r)[t)(s|a,C" j; (k'r)|u)

X (t|a*C'j (kr)a)(ula,C'j (kr)[b)
X (ck)?(ck)2It. (18
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Since the electrons are nonequivalent, antisymmetrization
yields a direct integral 4;(rs=ab) as well as an exchange
integrall .(rs=ba). The angular integrations are performed
using angular momentum graphs as describdéJimnd give
a total direct contributiorD and a total exchange contribu-
t3ion E. The energy contribution t0'S, is D+E and to
S, D-E.

1
+ .
(q"+p—ck')(p'—ck')(p—ck)

(22

1 1
- +
4ckck (p'—q’'+ck)(p+ck)(ck+ck'—q")

Ral

1
+
(p"'—q'+ck)(p+ck)(p’'+ck’)

B. Feynman Gauge. Crossed photons

The Feynman amplitude for crossed-photon diag(&ig.
1) can be evaluated in the same way as for uncrossed pho-
tons

dz
M=f d3x1f d3x2f d3x3j d3x4j§

X D (x3)iecakiSe(X3,X;,8a—z)iecald ,(x;)

1
_|._
(p—q'+ck')(p'+ck')(ck+ck'—q)

|

1
+
(p—g+ck')(p"+ck')(p+ck)

(23

X D I(xp)iecal iSe(Xy,Xs,8p— 2" )iecal Dp(X,) |X+- !
) ) 4ckcK (p—ck)(p’+ck’)(ck+ck' —q)
i i
XEDFVV'(X3_X4IZ’)EDF/.L/,U.(XZ_X]JZ)I (19) 1 1
: 4ckek (p—p'+q') [ (p—ck)(p'+ck’)
wherez’' =z+q’. In the Feynman gauge this becomes
1
2~2\ 2 +
M=(i> E (p'—q"+ck)(p'+ck")
€ | tu ) 2w
1
d3kr eik'~(X37X4) + ; ; ; ;
><<ru|a§a,,4f |ty (p'—q' +ck)(ck+ck'—q')
(2m)% (22— c%k'?+ie€)
1
d3k glk-(xa=xq) + ( (ot )
X (ts|ak f au p—cki(p+q'—ck’
(slofae | o3 ceria Y
1
1 1 - ' ' ’ ' ’ (24)
X . , . (20 (p+q’—ck')(ck+ck'—q )}
[ea—z—e(l-in)][e,—2' —e,(1—i7")]
1
The integration over leads to the integral [X=F=—
4ckeK (p+ck)(p’'—ck’)(ck+ck'—q")
|x:ij°° dz__ 1 ! 1 1
_2 —Z+i " — )4 -
71-[(p z |77’[) (p q Z)+|7]u] 4Ckck/(p_pr_q) (p+ck)(p1_ckr)
1 1 1
(@ra =k —in?) Pk -
d 7 7 (p+ck)(p—q+ck’)
This integral becomes 1

- (p—g+ck’)(ck+ck' —q)

|X++: _ 1
4ckck | (q+p’—ck)(p—ck)(ck+ck' —q) N 1
1 (p'—ck')(p’+g—ck)
+
(q+p’—ck)(p—ck)(p'—ck’) 1

1
(g’ +p—ck)(p'—ck')(ck+ck —q')
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AEY,=

82C2>2f d3k f d3k’
€0 2m)3) (2m)3
X (ru| aba, e’ %=X th)

X(ts|af ar €' 2 aupl X,

After the integration over the angular parts of the photon

momenta we then get

AEX:(

2
27T EO |‘|’

XZ g (rlaCj (k'r)[t)(ula,C" j; (k'r)|b)

X(t|a*Clji(kr)[a)(s|a,C'j(kr)|u)
X (ck)X(ck')2I%,

C. Coulomb gauge

In the Coulomb gauge we have to replace the interaction

in the Feynman gauge

2 2
© ) > (2|+1>(2|'+1)fdkf dk’
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e?c?

d3k
E_O(ea_et)(eb_eu)<tu| f

(2m)®

gik (k3= x)
|aby). (32

X
(26) (22—C2k2+ie)(—02k2+ie)
1. Coulomb-Coulomb

The combination of two unretarded Coulomb interactions
leads, in the ladder case, to théntegral

(>~ dz 1 1
—=2m (P=2Z+im) (p' +z+in,)

w1 1
(—c®kP+in) (—c?k'2+in)

(33

If the intermediate energies ande, are both positive, the
integral becomes 1(+p’) and if both are negative- 1/(p
(27 +p’). If e, ande, have different signs, the integral vanishes.
Considering crossed photons, thetegral will be

« . [* dz 1 1
|cc:'f 2 (D—27+i I :
—=2m (P=Z+im) (p'—q' —z+in)

1 1
2.2 3 ik- (Xp—Xq) X - —. (34)
o e c d~k el X1 29) (_C2k2+|77) (_C2k/2+|7’)
2T ) 2m)?® (- A tie)
In this case, the intermediate energe&gsand e, must have
different signs for a nonvanishing integral. The integral for
by the following three terms. positive e;, negativee, becomes 1{-p+p’'—q’) and for
(a) Unretarded Coulomb interactigiscalay negativee,, positivee, we have 1/p—p’+q’').
2. Coulomb-Gaunt
22 3 ik (xp—
_ec j d*k elbem) 29) There are two ways of writing this interaction. Tk@ho-
€0 J (2m)% (—c®k3+ie) ' ton may be Coulomb and tHé-photon Gauntdenoted CG
and vice versdGC). The z integrals become for uncrossed
] ) photons
(b) Retarded Gaunt interactignecto
Lo Jw dz' 1 1
= | —_—
e’c? [ d3k ek (emx) ) w2m (prg'—z'+in) (p'+a+Z +iny)
Taay J 3,,2_ 202, ' (30
€0 J (2m)° (z—c°k +ie) 1 1
X , (35
. (z2—c?k'?+in) (—c?k%+in)
(c) Scalar retardation
- foc dz 1 1
=i — -
e%c? [ d%k e ) w2m (p—z+in) (p'+z+i7n,)
- Cal-Vl, CaZ'VZ!_f 3
€0 (277) 1 1
. X , 36
k- (—x1) 1 - (Z2—c?k?+in) (—c’k'?+in) %9
X . 1
(22— ck?+ie)(—c?k?+ie) which yields
. . . Loy 1 1 1
If the orbitals are generated in a local potential, we can leg =— -l — - -
replaceca-V in the commutators by the imaginary unit p+p'[q'+p—ck’ 2ck
times the single-electron Dirac Hamiltonidp, which gen- 1 1 1
erates the difference between the orbital energesr(p’) + , (37)
when acting on the orbitals. This gives the matrix element q+p’—ck’ 2ck’ [(—c?k?)
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Lis 1 1 1 1 1 1
lec =~ st 5 ,
p+p’ p_CkZCk p’—Ck 2ck (_C2k12)
(38)
e 1 1 1
ce p+p’|p—q+ck’ 2ck’
+ ! ! ! (39
p’—q’+ck’ 2ck’ |(—c%k?)’
L 1 1 1 1 1 1
lec =— Sk T ok ;
p+p’ p+Ck 2ck p’+Ck 2ck (_Czk’z)
(40)
Lo 1 1 1 1
ICG = ’ oA ’ ’ ’ 21,2\’
g +p—ck' p'—qg’'+ck’ 2ck’ (—c“k?)
(41)
1 1 1 1
lge =— — : 42
e p—ck p’+ck 2¢ck (—c%k’?) (42
Lo 1 1 1 1
ICG = oA ’ ’ 21,2\’
p—qg+ck’ p'+qg—ck’ 2ck’ (—ck?)

(43

e 1111 y
Ge — p+Ckp’_Ck2Ck(_Czk’2). ( )

For crossed photons tteintegrals become

X .fw dz' 1 1
ICG:I ! ! H ! ! H
—=2T (p+q'+2' +in) (p'+2' +iny)

1 1

X , 45
(2'?—=c%k'?+i7y) (—c?k?+ip) 49
s =if°c gz ! L
¢C w2 (p'+q-z+in,) (P—Z+in)
X ! ! (46)
(22— c2P+in) (—ck'2+ip)’
which leads to
1 1 1 1
Iéng:_ ’ N ’ ’ 22\’ (47)
p+q —ck’ p’—ck’ 2ck’ (—c°k?)
1 1 1 1
lge =— =— , (49
P—cKp’+q-ck 2¢ck (—c%k’?)
. 1 1 1 1

p—q+ck’ p'+ck’ 2ck’ (—c%k?)’
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o1 1 11 -
6¢  ptckp —qg +ck 20k (—c&’?)’

Ko —2ck’'+p—p’'+q’
2ck'(p+q'—ck')(p'+ck')(p—p'+q’)
1
X(—czkz)’ (51)
oo —2ck+p—p’'+q’
¢ " 2ck(p—ck)(p'—q +ck)(p—p'+q’)
L (52
(—c%'?)
o —2ck’'—p+p’'+q
2ck'(p—qg+ck’)(p’—ck')(p'—p+Qq)
1
X(—czkz)’ 59
et —2ck—p+p’'+q
¢ 2ck(p'+ck)(p'+q—ck)(p'—p+0)
1
xm. (54

3. Coulomb-Scalar retardation

Thezintegrals are, for uncrossed and crossed photons, the
same as for Coulomb-Gaunt and Gaunt-Couldigs. (37—
44) and (47-59, respectively. There is also an additional
factor from the scalar retardation interaction. For the
Coulomb-Scalar case the resulting momentum expressions
must be multiplied with the factor —(p—q)(p’
—q")/(ck’)? for ladder and— (p—q)p’/(ck’)? for crossed.
For the Scalar-Coulomb case the resulting momentum ex-
pressions must be multiplied with the factepp’/(ck)? for
ladder and—p(p’ —q’)/(ck)? for crossed.

4. Gaunt-Scalar retardation

Thezintegrals are, for uncrossed and crossed photons, the
same as in the Feynman gaddsgs. (12—-15 and (22-25,
respectively. The additional factors from the scalar retarda-
tion interaction are the same as in the Coulomb-Scalar retar-
dation case.

5. Scalar retardation-Scalar retardation

Thezintegral is, for uncrossed as well as crossed photons,
the same as in the Feynman galjges. (12—-15 and (22—
25), respectively timespp’ (p—q)(p’ —q’)/[(ck)?(ck’)?].
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D. Unretarded contributions " f(K) K f(w) K (k) - f(w)
In order to be able to compare the QED results with those f d EURY :f d DRV +J dk EURY
0 (k—w) 0 (k—w) 0 (k—w)
of standard RMBPT calculations, we have performed the cal-
culations also without retardation. This is easily done in the o f(K)
formalism presented here simply by setting 0 in the pho- +f dk 5
ton propagators. Leaving out the effects of the virtual pairs K (k-w)
then yields results which are equivalent to the corresponding
RMBPT resuilts. R, F flk) — f(w)
o(w=K)  Jo (k—w)?
IIl. NUMERICAL PROCEDURE f(K)
The basis functions used in this calculation are obtained + fK k(k 2 (58)
—w

by solving the single-particle Dirac equation in the nuclear
potential, using the method of discretization, developed b . e ' .
Salomonson and er[11]. Analytical Bessel functions are ¥vhere the integration limikC is defined such that all possible

used, and the radial integrations are performed numericall igiltee Sigeti;; ttr?s g:;;\r/fg(:gr]n Igﬁvﬁazznsrg;v:et:‘grgﬁlajb@ee
Also the integrations over the photon momenta are pers 9 y

. . . The second term is calculated using the scheme for simple
formed numerically using the method of Gaussian quadra oles outlined above and the last term, together with all other

ture. 100—200 grid points are used in the radial integrationg . . . )
and 100—140 points in the momentum integration. The anpole freek integrations, is computed using Gauss-Legendre

gular factors needed are taken from Héi. and Gauss-Laguerre quadrature.

B. Products of poles

A. Pole-integration Since we integrate over two momenkaandk’, and thus

Since the&k integration is performed along the real axis we on two different real axes, there are cases when there are
have to perform principal-value integrals whenever a polgoles on both these axes simultaneously. We will then not
appears. Special care must be taken when integrating ovg@rst get a contribution from the principal integration, but also
these poles in order to maintain the numerical accuracy. Fdrom the product of the two imaginary semicircle integra-
excited states both simple and double poles will appear. Cortions, which when multiplied will yield a real contribution to
sider now the case of a simple polekat w. The integral can the energy. For the case with two simple poles we have the
then be written as expression

f(k) f(k) g(k’
f dkj—," (55 f dkf dk'& o )h(k,k’). (59)

k' —w'

It is convenient to separate out the matrix elements, which

where the numeratdi(k) is a discrete-valued function in the depend only ork or k'. The additional contribution will be

chosenk grid. We use a Lagrange polynomial ik{k;) to
interpolatef (k) to a continuous function. The integral above imf(w)iTg(o )h(w,o). (60)
then reduces to a number kfintegrals which look like
We only find contributions from poles which are on the same
o m side of the real axis.
f '”dk(k_ki) (56) If one (or both of the poles is a double pole one has to
ki k—ow differentiate the expression with respect to the momentum
that corresponds to the double pole. Considering

These integrals are easily evaluated analytically and the f(k) g(k’)
principal-value integrals are obtained with high accuracy. For f dkf dk’ > -
the case of double poles we have instead the integral (k=) (K"~ ")

_h(kk'),  (6D)

the contribution will in this case be

(k—w)?
+H(0)g (0 )hy (o,0")
By rewriting the numerator ag(k)=f(w)+[f(k)—f(w)], +fk(w)gk'(w,)hﬁ’k,(w,w')}_ 62

the double pole is isolated in the first term and the remainder
is again of simple pole structure. The double pole can be An extra difficult case is for the crossed exchange case
integrated analytically and we obtain when the intermediate states both are k. The term

032516-7
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f(K) g(k) One of thek integrations can be performed analytically
f dkf dk’(k h(k,k") (63  which yields
+

k'—w) (k' —w)?

will have a pole ink=0,k’ =w. The imaginary contribution

i i i o 1 X K-o 1 X
from thek |_r1tegra'g|or_1 here comes fromauarter circle —M(O,W)f “inl1+ 2 dx+f “linl1+ 2
When differentiating the matrix elements one needs the —0 X K w X K
derivatives of the spherical Bessel functions. We have chosen
to use known recurrence relations to express these deriva- X
. ! —In| =] |dx. (67)
tives analytically. K

The contributions from products of poles are very impor-
tant, especially for the reference statsge the Appendijx

and corresponding crossed diagrams. We also find that the ] ) )
sum of all contributions from products of poles are gaugeHere thex integration can be performed to arbitrary accuracy
invariant. using Gaussian quadrature and then this semianalytically

evaluated term is readded.
C. Canceling of singularities

Some of the reference state contributions are singular in E. Extrapolation
the limit k,k’— 0. These singularities occur when the matrix
elements do not approach zero whek' —0, implying that
the Bessel functiong (kr) andj,.(k'r), which are involved
in the matrix elements, do not approach zero, which will
only be the case it =L’=0. Singularities in the crossed

The calculation procedure discussed above is executed for
different numbers of radial grid points for each given par-
tial wave (L value. The values obtained are then grid ex-
trapolated toN=. We evaluate several partial waves, the
)maximum number of. depending on the convergence prop-

a corresponding singularity in one of the reference state corg"i€s Of the given contribution, and finally we extrapolate to
tributions. There is a singularity in the crossed direct contri--= - We typically use three grids in the range of 100-200
bution whent,u= 1s,2s. This singularity is cancelled by the radial grid points and evaluate partial wave terms up.to
reference state contribution in the ladder direct case whefr 20. For Z=10, however, we use up to=30 partial
t,u=1s,2s. There is also a singularity in the crossed ex-waves, since for such lo& the effects are so small that the
change contribution whetju=1s,1s or t,u=2s,2s. These accuracy has to be high to give relevant results. It is also
expressions are canceled by the reference state contributionscessary to use a large number of partial waves for the
for the ladder exchange whenu=1s,2s andt,u=2s,1s, singlet state, since it converges slowly, which can be seen in

respectively. Tables | and II.
D. Numerical singularities IV. RESULTS
Considering crossed exchange, there is a contribution of The results of our calculations are given in Tables I-Ill. It
the form should be noted that we have uspdint nucleus forZ
=10,14,18 andextendechucleus forz=24,30,60,92. When
Kk’ M (K,k’) possible, we compare our values with recent calculations by
f ko dk’ ’ 1 (64) Mohr and Sapirsteifi2]. We have performed the calculations
(k+k'—o)(k'— ) in both the Feynman and Coulomb gauges, and the total

results are found to be gauge invariant. The A0-A0, AO-ALF,
and ALF-ALF parts, where AO stands for the scalar part and
. , . ALF for the vector part of the interaction, are also separately
trix elementsM(k,k") do not approach zero. This makes the gauge invariant. Furthermore, these parts as well as the total

prir_1cip_al integration very d_ifficult numerit_:ally, a problem values are gauge invariant for each partial wave limit for the
which is solved by subtracting the most singular part. More

explicitly this is done by expanding the numerator exchanged photons,!”<L in Egs.(18) and (27)

which becomes singular whéd — » andk— 0, if the ma-

Kk’ =[(k+k’ —w)— (k' —w)]k’ (65) V. ANALYSIS
and the matrix-elementd (k,k’) around the pole. In the The various energy contributions to heliumlike ions of
numerical evaluation we subtract the most singular partorder €a)® and Za)°In(a) have been evaluated analyti-

which involves the second term in E@5) and is given by ~ cally by Kabir and Salpetef12], Araki [13], Sucher[5],
Ermolaev]14] and others, and the results of Sucher are sum-

K — o) marized in Table 1V. Araki gives the following total contri-
(K- oo . (66) butions in the three casdsve are omitting the factoe®
(k+tk'—o)(k' —w)? below):

K K
_M(O’W)f dkf dk’
0 0
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TABLE I. Full two-photon-exchange calculation f@=10 us-

ing Coulomb gaugdin whartree. The calculation is performed

dation and without virtual pairgnegative-energy statesnd is

with retardation but without virtual pairs;

PHYSICAL REVIEW A 65 032516

TABLE II. Full two-photon-exchange calculation f@= 30 us-
ing Coulomb gaugdin whartreg. The calculation is performed
with a point nucleus. “Unretarded” represents results without retar-with an extended nucleuRMS=3.955. “Unretarded” represents
results without retardation and without virtual paifsegative-
equivalent to RMBPT,; “no-virtual pairsNVP) represents results energy statgsand is equivalent to RMBPT; “no-virtual pairs”
(NVP) represents results with retardation but without virtual pairs;

Z=10 s 3s Z=30 s 3s
Coulomb-Coulomb Coulomb-Coulomb
Unretarded=NVP -115180.10 -47627.57  Unretarded=NVP -120895.80 -49433.33
Virtual pairs 4.86 0.04 Virtual pairs 99.73 3.11
Total -115175.24 -47627.53 Total -120796.12 -49430.22
Coulomb-Breit Coulomb-Breit
Unretarded -815.00 -10.37 Unretarded -7056.69 -98.20
No-virtual pairs -791.42 -11.36 No-virtual pairs -6712.45 -120.12
Virtual pairs -19.09 0.05 Virtual pairs -379.43 3.49
Total -810.51 -11.31 Total -7091.88 -116.63
QED=Total-Unretarded 4.49 -0.94 QED=Total-Unretarded -35.05 -18.42
Breit-Breit Breit-Breit
Unretarded -10.10 -0.14 Unretarded -396.63 -10.21
No-virtual pairs -7.33 -0.12 No-virtual pairs -274.22 -8.18
Virtual pairs -5.67 -0.34 Virtual pairs 11.35 7.05
Total -13.00 -0.46 Total -262.88 -1.13
QED=Total-Unretarded -2.90 -0.32 QED=Total-Unretarded 133.95 9.08
Total TOTAL
Unretarded -116005.55 -47638.07  Unretarded -128349.12 -49541.73
No-virtual pairs -115978.85 -47639.05  No-virtual pairs -127882.47 -49561.62
Virtual pairs -19.90 -0.25 Virtual pairs -268.35 13.66
AO0-A0 -115170.83 -47584.02  A0-A0 -121057.69 -49031.91
AO-ALF -803.53 -54.66 AO-ALF -6669.60 -517.23
ALF-ALF -24.40 -0.62 ALF-ALF -423.59 1.19
GRAND TOTAL -115998.77 -47639.30 GRAND TOTAL -128150.88 -49547.95
QED=Total-Unretarded I{ = 10) 7.67 -1.23 QED=Total-Unretarded I( = 10) 205.01 -6.44
QED=Total-Unretarded 6.45 -1.23 QED=Total-Unretarded 198.24 -6.22
RMBPT? -49541.34
4 s Coulomb-Coulomb Grand Totat -49550.08
—§< (r1)), oulomb-Coulom QED? -8.74

4(8 4 8
§<§—2 In a)<5(r12)>— §<01' 0,8(r1)))— 3Q

2
37

17 8
——=In24+2Ina

3 3

—2Q, Breit-Breit

which gives theotal contribution

Coulomb-Breit

1
)(5(r12)>+ §<0'1‘ 0,8(r12))

(68)

%From Ref.[2].

71 8

2 14
9 §In2— §|n a |(8(r1p) — (o 0,8(r 1) — gQ

__M’,

(69

whereQ is the principal part of the logarithmically diverging
quantity ry,> [1] and M’ is a part of the Bethe logarithm
[15]. These results agree with those given by Sucher.
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TABLE Il Full two-photon-exchange calculation compared where M” is a second part of the Bethe logarithm. The

with MBPT and other calculations. The values are in hartree.

(8(rq1)) parts of the self-energy and vacuum-polarization

contributions come from the vertex diagram and the inter-

2 's 2°s, electronic vacuum-polarization diagram, respectively. The
72210 (8(ry)),{8(r,)) parts consists of one electron self-energy
2y -0.11599877 -0.04763930 andI vaguum pqlarlz?ftlo? effects, as well as higher-order
RMBPT -0.11600497 -0.04763807 coulomb-Screening etiects.
QED 0.00000620 -0.00000123 Adding these quantities to the total two-photon exchange
‘ ' above Eq.(69), gives M’ +M"=M)
£=14 89 14 5 419 ,
2y -0.11742901 -0.04786237 =" gln a— 5(01- o) [{(8(r)+ 3 %—In(Za )
RMBPT -0.11744606 -0.04785964
QED 0.0001690 -0.00000273 14 2
X + - —Q—=—M.
[25(r1)+25(15)]— 5 Q=3 -M (72
Z=18
2y -0.11934461 -0.04816257 With (o, 0,)=—3 for singlet states, this agrees with the
RMBPT -0.11938138 -0.04815795 results of Drakd 16].
QED 0.0000379  -0.00000462 To leading order in a 1/Z expansio®,is
Z=24 (RMS=3.655) L 1228
2y -0.12315605 -0.04876184 QS =-I[IN(2)+C(9lg7 . (73
RMBPT -0.12324940 -0.04875490
QED 0.00009343 -0.00000694 273
Q(°S)=-C(*S) gr - (74
Z=30 (RMS=3.955) ™
2y -0.12762 -0.04954
2y 012815090 -0.04954795 -0.04955508 where we have evaluated the constants to be
RMBPT -0.12834910 -0.04954173 -0.04954%34 1 1947
QED 0.00019810 -0.00000622 -0.00000874 C(ls) = > IN3—142In2+ >0 ~—0.52759, (75
Z=60 (RMS=4.915)
2y -0.1753732 -0.0568096  -0.056799 C(3S) _ E In3—141In 2+ 1963~ —0.133086, (76)
RMBPT -0.1777315 -0.0570252  -0.057023 2 20 ’
QED 0.0023583  0.0002156 0.000224
which is in agreement with Drakgl]. Similarly M’ is in
Z=92 (RMS=5.86) leading order given by
2y -0.30082 -0.07416° 5 16 3
2y -0.3018243 -0.0743067  -0.074226 — 2 M) =| - ZInz+D('s 7
RMBPT -0.3149504 -0.0762391  -0.076230 3w S) 3 S 81w’ (77
QED 0.0131261  0.0019323 0.001984
2 (3 3 223
Corresponding values from Ré8]. —3 M S)=D( S g1 (78)

From Ref.[2].

whereD(1S) andD(3S) are constants that have to be evalu-

The self-energy and vacuum-polarization contributions,ieq numerically. We have evaluated these constants along

have been evaluated by Araki with the following results:
4(5
AEse:§ g—m 2-2Ina

2 2
—2(8(rip)]— §<0'1' 02)(8(r12))— EM",

4 4
AEvp:l_5< 8(rip))— 1—52[<5(r1))+(5(r2)>], (71

[Z(8(r1))+2Z(5(r3))

the lines in Appendix C in Ref6]. The values achieved are
D(}S)~—2.27367 andD(3S)~—0.01080, and are ex-
pected to be accurate to the number of digits given. We have
chosen to factor outZ®/81s, which is the value of 5(r,,))

for the singlet state, using hydrogenic functions.

The total theoretical contributions are given in Tables V
and VI, as well as numerical values from the average of
several least-square fits, shown in Figs. 2 and 3. The fits are
performed using different polynomials and do not include the
Z=60 andZ=92 values, since other effects as, for instance
the extended nucleus, affects the fits too much. Our calcu-
lated zeroth-order nonrelativistic values arel14 510 har-

(70
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TABLE IV. Coefficients(in hartree unitsfor the (Za)® contributions for electron-electron interaction in heliumlike ions, evaluated by
Sucher(Ref.[5]). The entries for bottS and S should be multiplied by 2/8#, which is the value of 5(r1,))/Z® for the singlet state. We
have chosen to keep the separation of terms dependifig-pnr,), which has the value of 3 for singlet states and 0 for triplet states. For
3S, (8(r2))=0 and we only have contributions from tizandM’ parts.

Contribution s s
Coulomb-Coulomb
No pai=RMBPT T 5
*(5 +§)
Single pair 2
Double pair T 5
2
Total Coul-Coul _4
3
Coulomb-Breit
UnretardeecRMBPT T
—§ E"rl <0’1><0'2>
No pair 8 32 4w 1 8 8 3 3
—c(t gy _|= Z ] sC(°S)+D(°S)
3C( S+D("9+ 9732 +1+2In2 (o1 X 09) 3|n(Za) 3
Single pair 4
gep §(1+In 2) (o1 X 05)
Double pair Al 1
5(5—1_5"1 2 <0'1X0'2>
Total Coul-Breit 8 . 1 32 4 8 8 . 3
C(*9)+D(*S) + 5 —5(o1 X 0y) —5In(Za) sC(°S)+D(°S)
3 9 3 3 3
Breit-Breit
Unretarded-RMBPT 4-27P
No pair 37711|21 7711|2
—— tltgin +§ — g Tl (o X ap)
Single pair 1
gep 1+31n 2+§(1—In 2) (o X a5)
Double pair . 37 11 37 Unr 1 2C(%9)
2C( S)+T+§_€ln 2+§ Z—1+§In2 <0’1X0'2>
+21In(Za)
Total Breit-Breit 17 8 1 2C(%s
2C(15)+?*§|n 2+§(crl><02)+2|n(2a) 9
TOTAL
UnretardeecRMBPT 19 7
No pair 8C 154D lSJr26 5’7T+l| ) 377+1+1| ol §C(3S)+D(3S)
IR 2|t 2o 3
8I Z
—gn( a)
Single pair 5
3(1+In2)+ §+In 2 (o1 X )
Double pair .. 5w 37 3r 5 1 2C(%9)
2C( S)+T+2—€In 2+ T—é—éln 2 (0’1><0'2>
+2In(Za)
GRAND TOTAL 14 1 71 8 2 14 . 3
?C( S)+D( S)+3—§In 2—(0’1><0'2>—§|n(2a) ?C( S)+D(°S)

#This expression is taken from R¢fL8]. Here the( o, - o) term is not separated out.
bThis expression is deduced from the other unretarded values in this column.

032516-11



BJORN ASE\I, STEN SALOMONSON, AND INGVAR LINDGREN PHYSICAL REVIEW A65 032516
TABLE V. Coefficients for Za)" from the least-squares fit of the numerical data for tisesl 'S state. The Z«a)® coefficients are
compared with theoretical predictions of SucliBef. [5]). “Unretarded” represents results without retardation and without virtual pairs

(negative-energy states'no-virtual pairs” (NVP) represents results with retardation but without virtual pairs.

(Za)? (Za)3's (Za)®1s (Za)*'s
Contribution Numerical Numerical Suchgs] Numerical
Coulomb-Coulomb 0.11@)
Unretardee=NVP -0.0252) -0.02545 -0.0641)
Virtual pairs 0.018%1) 0.01497 -0.041)
Total -0.0101) -0.01048 -0.11)
Coulomb-Breit 0.1581)
Unretarded 0.082) 0.08082 -0.112)
No-virtual pairs 0.0912) 0.09073 -0.191)
Virtual pairs -0.0583) -0.06063 0.121)
Total 0.0312) 0.03046 0.08)
QED=Total-Unretarded -0.049) -0.05037 0.082)
Breit-Breit
Unretarded -0.01@) -0.01795 -0.1Q)
No-virtual pairs -0.01@) -0.01235 -0.112)
Virtual pairs 0.0261) 0.02620 0.101)
Total 0.0141) 0.01390 -0.08)
QED=Total-Unretarded 0.032) 0.03180 0.08B)
TOTAL
Unretarded 0.03@) 0.03743 -0.3®@)
No-virtual pairs 0.05@2) 0.05294 -0.3®)
Virtual pairs -0.01W) -0.01946 0.001)
GRAND TOTAL 0.2744) 0.0332) 0.03380 0.2®)
QED=Total-Unretarded -0.0G3) -0.00360 0.082)
0.06 T T T T T T
Breit-Breit 3
x10
QMW 4 T T T T T T
al
z Coulomb—Coulomb
@ 002 g
] oL
E Total é",
% ""g 0 Breit—Breit
@-0.02- e ¥l
004k Coulomb-Breit 1 E
’ g
Coulomb-Breit
-3 4
006 . . . . . .
i} 10 20 30 40 50 60 70
Nuclear charge 4 4
FIG. 2. Contributions to the total QED effect of the two-photon  _ , , . , . ,

exchange for the €2s 'S state, divided by Za)®. The o 1 20 Nucloar charge. %0 &0 7

(Za)® In(Za) parts have been subtracted. The curves represent only

effects beyond RMBPT, although there are alBa)® contributions FIG. 3. Contributions to the total QED effect of the two-photon

in RMBPT. The points and slopes at the origin representthe)}  exchange for the £2s 3S state, divided by Z«)2. The points and

and Za)* coefficients, respectively. The crosses represent the anaslopes at the origin represents thga)® and Za)* coefficients,
lytical results by Suchdi5]. The Coulomb-Coulomb curve only has respectively. The crosses represent the analytical results by Sucher
contributions from virtual pairs. [5].
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TABLE VI. Coefficients for Za)" from the least-squares fit of the numerical data for tsgsl ®S state. The Za)® coefficients are
compared with theoretical predictions of SucliBef. [5]). “Unretarded” represents results without retardation and without virtual pairs
(negative-energy states‘no-virtual pairs” represents results with retardation but without virtual pairs. We have omitted the Coulomb-
Coulomb part since there are ndd)® contributions heréthere is however aZ«)? contribution.

(Za)? (Za)33S (Za)33s (Za)*3S

Contribution Numerical Numerical Suchgs] Numerical
Coulomb-Breit -0.00Q)
Unretarded
No-virtual pairs -0.0024) -0.0029 0.0022)
Virtual pairs
Total
QED=Total-Unretarded -0.0029) -0.0029 0.006L)
Breit-Breit
Unretarded
No-virtual pairs
Virtual pairs -0.001@) -0.0021 0.1®)
Total
QED=Total-Unretarded -0.0019) -0.0021 0.0®)
TOTAL
Unretarded
No-virtual pairs -0.0024) -0.0029 -0.0B3)
Virtual pairs -0.001®) -0.0021 0.021)
GRAND TOTAL -0.0432) -0.00483) -0.0050 -0.064)
QED=Total-Unretarded -0.0048) -0.0050 0.0®)

tree for the singlet state and47 409 hartree for the triplet butions also contains singularities, whiear k' goes to zero,
state. The values are in agreement with previous calculationghich are canceled by similar singularities in the crossed

by Safronovd17]. interaction, see Sec. Il C. The procedure presented here is a

We find good agreement between our numerical valuegeneralization to retarded interactions of the procedure in

and the theoretical ones by Sucher. [6]. There is no reference state divergency in the crossed
photon interaction. Contrary tf6], we treat the reference
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For simplicity the Feynman gauge is used below. The lad-
er contribution to the energy shift is given by E®). For
implicity we define a function

APPENDIX: THE REFERENCE STATE CONTRIBUTIONS —c d3k ek (xa=xq)

gsrba(z):f dsxlj d3X2_

€ ) (2m)% (22— c?k?+ie)

Consider the two-photon electron exchange contributions
given by the energy shift formula in E¢L). The intermedi-
ate states degenerate with the initial state, calefdrence XDI(Xp) a, @ (X)) PL(x)) D y(x;). (Al
states lead to divergent expressions in the ladder diagram.

However, these divergencies are canceled by the squared

second-ordeB-matrix contribution, and the remaining finite There will be four different cases to be calculated. For the
contributions, called theeference state contributionare de-  overall direct cas® (rs=ab), we may have internal direct
rived in this section. Furthermore, the reference state contriby (tu=ab) or internal exchang®, (tu=ba) (see Fig. 1
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Similarly we define for overall exchanges=ba)E4 and

E., here referring to direct and exchange of the first interac- Ed:_4f dzlf dzf (2,— 0,21)f (21,2~ )
tion. Considering the overall direct, internal direct part of ™

(®3]Sh,,|P5). we have

XE gs’r’b’a’(zz)gsrba(zl)r (A6)
lad
Dy
dz dz dz 1 c%e?
=c’e! - : 2 EZ—JdZszfz——zf——zz
©e Jfoc le f jfoon [zz—el(1-in)] R 1 2f (22, —0=2)f (- 0=21,2))
[Z4 eb(1—|7])] 2 Os'r'bra’(Z2)GsrbalZ1) X% Os'r'bar(Z2)GsrbalZ1)- (A7)
xj dt,e(at 2= e)tag it In order to handle the divergent part of the ladder diagram,

we focus on the squared one-photon counter part which has
* _ to be subtracted in order to obtain the finite ladder contribu-
xf dtze (%~ 2 Cltsg It tion. Following standard rules, we can write the dir€xt
- and exchange O, one-photon counter parts of
- @ P9 as
xf dtze*i(21*24+eb)t2e*7\t2| < a| red. 7| a>

2

" B ce? 4y
X f dtle*i(eaf%*zl)tle* YItg] (A2) Og=—i o dzmgsrba(z)i (A8)

By using the integral identity c€ (= 4~
Oe=—i5~ _wdzmgsrba(z)- (A9)

°° 1
f (zz,zl)=f dze—r———
’ Tzl The contribution from theD4 diagram will be £ 4—203
y y and for theD, diagram D .— 20@. The two exchange dia-
gramskEy and E,, yield the contributions E4—2040, and
(€0—2—2,)+¥* (g—z+21)°+ ¥ 4E,—20.04, respectively.
Consider the sum

Z,—7Z,—4i
e (z( SR J)w’ (83)
(zo+21)"+4y" (22 1 f(22,21)+1,(21,2))
we can perform the; andz, integrations, yielding the fol- _ Ty (zy—z1—4ivy)
lowing expression: _(22+Z1)2+472 (z,—iy)(z4+iy)
n (z1—2,—4iy)
—‘J dzlf dzf (25,21)f (21,25) (Zy—iy)(Zo+i7)
2.
X% gs’r’b’a’(zz)gsrba(zl)- (A4) — 2777 | (AlO)

(Z+ ) (B+ 92

Using the same technique and introducing e,—e,, the
other three cases become and the square of the sum

_2772,}/4

(Z+ ) B+ )%
(A11)

e’ 1
- o szlf dzf (2t 0, ~w—2;) E[f7(221zl)+fy(21122)]2:

X fy( —w—Z,Zt w)% Os'rbrar(Z2)9srbal Z1),
a By using this identity we can rewrite the squared one-photon
(A5) counter parts as
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—c2%e* 442
02— f dzlj 5 722
(Z+7) (Zi+9?)

X% gs’r’b’a’(ZZ)gsrba(Zl)
C e4 [} o0 5
_?fwdzlfOCde[f,y(Zz,Zl)"'f,y(zl,zz)]

X 2 Os'r'b’a Zz)gsrba(zl) (AlZ)

—c2e? 4y
O f dzlf d22
[(—z—w)?+ 9%
4 2

Y
X[(aw)?wﬂ%

Os'r'b’a’

X ( - ZZ_W)gsrba(Zl+W)

e4 o0 o]
_—AJ dzlf dz[f,(—z,—w,z;+w)
ers —© —o0

+ fy(Zl+W,—22—W)]2% gs/r/b/a/

X(_ZZ_W)gsrba(Zl"'W)i (A13)
47/2

Oy0g=—— dz; dz,
am? J o T (— 2,

4~
Xm% Os'rbrar(—Zo—W)Qsrpa(Z1)
1

W)2+ ,}/2]2

__4J dzlj dz[f,(—z,—w,z;)
s — —o0
+fy(21,_22_W)]2

Xg}j gs’r’b’a’(_ZZ_W)gsrba(Zl)r (A14)

_ —cet (> = 4y
R S

4'y2
X 2. 272
[(zZy+ W)+ 7]

X % gs’r’b’a’( - Zz)gsrba(zl+w)

——4J d21J dz[f (-2, + W)
s — — o0
+f(zy+wW,—2,)]?

X% gs’r’b’a’(_Zz)gsrba(zl+w)- (Al5)
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Considering theD 4 diagram, it can be rewritten as

c%e*
—_4f dzlf dzf (25,21)f,(21,22)
XE Os'r'b’a Zz)gsrba(zl)
c%e? 1 )
:_4f dzlf dz E[fy(221zl)+f'y(zlnz2)]
T
1., 2
_E[fy(22121)+fy(21122]

x% Osrrbrar(Z2)Osrva(Z1), (A16)

and the squared one-photon counter term can then be sub-

tracted, giving

4Dy—203=

C2 4
—f leJ d222
w

X[f§(22121)+f§(21122)]

XE Os'r'b’a Zz)gsrba(zl) (A17)

Thus, we can in this case write the finite reference state

contribution as

1
AEfef— lim i y(4Dg— 203)
y—0

—C et
= I|m f dzlf dz2
7—>0
X[f$(22y21)+f§(21,22)]

X% gs’r’b’a’(zz)gsrba(zl)v (A18)

or since
:gsrba(_

f(-2,—-21)=f/(z1,2,) and
z). Equation(A18) can be rewritten as

gsrba(z)

4

AER = lim iy —= [ dz, [ dz,at2(z,.20)

Dy 02 Y - 1 241 (42,49
’yﬁ

x% Osrrbrar(Z2)Osrba( Z)- (A19)

The other three cases can be done in the same fashion.
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To obtain expressions which are appropriate for numerical 1 1
calculations, thez; and z, integrations are performed ana- |rEe;:_ 2| 3 =t 23 -
lytically. This yields the momentum expressions to be used kK (o—ck)™  ckk'(ck+ck - w)

in the ladder energy contribution, E(.8),

1 1
+ + ,
c3k%k’ (w+ck’)? c4k3k’(ck+ck’+w)]
o CPKP+cPkk +c%k'? (A22)
I0,=~ 3 5 a3 NE (A20)
2¢c°kk"*(ck+ck’)

ref _ 1 + 1
Fe 4| c3k'2%k(w—ck)? c*k’3k(ck+ck — )

et G+ CPKK + %k 2+ 2(ck+ CK ) o+ 0 N 1 N L ]
De 4c2kk' (ck+ck')(w+ck)X(w+ck)? 3k’ %k(w+ck)?  c*k’3k(ck+ck’ +w)

A23
c?k?+c?kk’ +c%k’'?—2(ck+ck' ) w+ w? (AZ3)
201 N 2, 2 They replace the expression EG2), which is only valid if
4ckk' (cktck’)(w—ck)*(0—ck’) the intermediate states are not degenerate with the initial
(A21)  state.
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