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Application of density-functional theory to line broadening: Cs atoms in liquid helium
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We test the applicability of density-functional theory~DFT! to spectral perturbations taking an example of a
Cs atom surrounded by superfluid helium. The atomic DFT of helium is used to obtain the distribution of
helium atoms around the impurity atom, and the electronic DFT is applied to the excitations of the atom,
averaging over the ensemble of helium configurations. The shift and broadening of theD1 andD2 absorption
lines are quite well reproduced by theory, suggesting that the DFT may be useful for describing spectral
perturbations in more complex environments.
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I. INTRODUCTION

The time-dependent density-functional theory~TDDFT!
has proved to be a powerful tool in the description of opti
absorption for molecules and clusters in free space~for a
review, see Ref.@1#; more recent citations can be found
Refs.@2,3#!. We would like to know whether the theory ca
be extended to calculate the line shifts and broadening w
the absorber is embedded in a medium. Most applicati
have treated electronic excitations from a single froz
nuclear configuration representing the ground state of an
lated molecule or an ideal crystal, in which case the p
dicted absorption lines are sharp below the photoioniza
threshold. Recently it was shown that the TDDFT also wo
well in describing the broadening of the transitions and
strength of symmetry-forbidden transitions due to zero-po
vibrational motion, taking the example of the benzene sp
trum @4#. In the present work, we will calculate the effects
external perturbations on optical absorption. We choose
simple test case a cesium atom immersed in liquid helium
low temperature, because of the simplicity both of the el
tronic structure and of the external perturbation. In the lo
term we are interested in extending this kind of analysis
more complex systems which would require the full pow
of the time-dependent density-functional theory.

Aside from our motivation from the perspective of app
cations of DFT, spectroscopic measurements of impurity
oms and molecules in superfluid helium have been attrac
considerable interest in recent years@5#. The repulsive force
between an impurity and helium atoms induces a bub
around the impurity. This leads to a weak perturbation by
helium atoms on the spectra of impurities. The line shifts a
spectral shapes induced by the helium perturbation pro
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information on the properties of the bubble in the quant
liquid as well as the excited states of the impurity. Since
perturbation is weak, this method also provides a unique
for spectroscopic measurements of atomic clusters at
temperature@6–8#.

Perturbations of cesium lines have been studied exp
mentally as a function of helium pressure@9# and we shall
calculate this system. There are twos-to-p transitions, the
D1 (s1/2→p1/2) andD2 (s1/2→p3/2) lines, both of which are
blueshifted and acquire widths in a helium bath. The sh
and widths of the two lines are different, and theD2 line has
a skewed shape suggesting a double-peak structure. T
features were first analyzed with a collective vibration mo
of the helium bubble@10#. That model reproduced averag
peak shifts, but gave linewidths less than one-half of o
served ones. A more sophisticated analysis has been m
treating the liquid helium environment by the path-integ
Monte Carlo method@11#. This quantum simulation succes
fully reproduced observedD2 line profiles of the Cs spec
trum. However, the method is very costly in computer
sources. We are thus motivated to develop an approac
treating helium perturbation that is both simple and yet h
quantitative accuracy. We will show that a density-function
theory together with a statistical description of helium co
figurations meets our purpose. The helium density distri
tion around an embedded atom is calculated with the D
and the helium configurations are generated by a rand
sampling using the density distribution as the sampl
weight function.

In addition to reporting the calculations on the absorpt
spectrum of cesium in helium, we offer some simple qua
tative interpretation of how the qualitative features of t
spectrum reflect the properties of the helium bubble aro
the atom.

II. FORMALISM

A. Description of liquid helium around an impurity atom

Among a number of density-functional methods for liqu
helium, we adopt the Orsay-Paris functional of Ref.@12#.
©2002 The American Physical Society12-1
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NAKATSUKASA, YABANA, AND BERTSCH PHYSICAL REVIEW A 65 032512
Although the Orsay-Paris functional is known to have so
problems with the dynamic properties of liquid helium@13#,
it has correct long-range behavior and reasonable short-r
characteristics. Since we are interested in a density profil
liquid helium, it should be adequate for our purposes.

The energy in the DFT is assumed to have the form

E5E dr H0~r !, ~2.1!

where

H0~r !5
1

2m
u¹Ar~r !u21

1

2E dr 8r~r !r~r 8!VLJ~ ur2r 8u!

1
c

2
r~r !~ r̄ r !

11g. ~2.2!

Here, m is the mass of a helium atom andr̄ r is a coarse-
grained density defined by

r̄ r5
3

4ph3Er ,h
dr r~r !. ~2.3!

TheVLJ is a standard Lennard-Jones potential describing
He-He interaction screened at distances shorter than the
tanceh,

VLJ~ ur2r 8u!

55 4eF S a

ur2r 8u
D 12

2S a

ur2r 8u
D 6G for ur2r 8u>h

VLJ~h!S ur2r 8u
h D 4

for ur2r 8u,h.

~2.4!

The values of the parameters in Eqs.~2.2!, ~2.3!, and ~2.4!
are c51.045 543107 K Å 3(11g), g52.8, e510.22 K, a
52.556 Å, andh52.377 Å. This is the same density fun
tional that was used to study atomic impurities in liquid h
lium @14# and sodium dimers on the surface of liquid heliu
@15#. In those studies, the effect of the impurity was trea
by including in Eq.~2.2! a potential interactionVI(r ) be-
tween the helium atoms and the impurity,

H~r !5H0~r !1VI~r !r~r !. ~2.5!

VI(r ) has important contributions from the repulsive intera
tion between electrons and helium atoms, as well as the
der Waals–type polarization interaction. Since we need
treat the interaction of the impurity electrons with the heliu
atoms explicitly later on when we calculate the electro
excitation, we introduce it here as well for calculating t
helium distribution. We approximate it as a contact inter
tion, i.e., of the form

Ve-He~re2r !5V0d~re2r !, ~2.6!
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wherere andr are the coordinates of the electron and heliu
atom, respectively. The strengthV0 is determined from the
electron-helium scattering lengtha as

V05
2pa

me
, ~2.7!

whereme is the electron mass. ThenVI(r ) is given by

VI~r !5V0re~r !, ~2.8!

wherere(r ) is the electron density of the impurity atom. W
take a50.69 Å, corresponding to the observed low-ener
electron-helium cross sections56.0 Å2 @16#. We have also
assumed that the ion core is heavy enough to be treated
classical particle at the origin. Since Eq.~2.6! expresses the
interaction between He atoms and electrons, the same i
action will be used to estimate the energy shift of valen
electrons due to the helium perturbation. This treatmen
the interatomic potential ignores long-range attraction due
the polarization effects. The influence of the polarization
fect will be mentioned later.

Utilizing the energy functionalE@r#5*dr H(r ), we cal-
culate the density profile of liquid helium, putting the imp
rity atom at the origin. Minimizing the grand potential a
zero temperature,V[E@r(r )#2mN, leads to a Hartree-type
equation

F2
1

2m
¹21U~r !1VI~r !GAr~r !5mAr~r !, ~2.9!

where

U~r ![E dr 8r~r 8!VLJ~ ur2r 8u!1
c

2
~ r̄ r !

g11

1
c

2
~11g!

3

4ph3Eur2r8u,h
dr 8r~r 8!~ r̄ r8!

g.

~2.10!

The equation is solved with the boundary condition that
density go to the bulk densityr0 at larger . This is satisfied
by setting the chemical potential to

m5br01S 11
g

2D cr0
g11 , ~2.11!

whereb5*dr VLJ(r )528.88813102 K Å 3. The bulk den-
sity is related to the pressureP by

P52
]E

]V
5

1

2
br0

21
g11

2
cr0

g12 . ~2.12!

Carrying out the solution of Eq.~2.9! we find the density
profile shown in Fig. 1. The three curves giver(r ) at equi-
librium densitiesr0 of 0.0218, 0.0239, and 0.0253 Å23, cor-
responding toP50, 10, and 20 atm, respectively. One c
see a sharp rise in the density atr'6 Å. This corresponds to
the bubble radius. An oscillatory structure appears in
2-2
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APPLICATION OF DENSITY-FUNCTIONAL THEORY TO . . . PHYSICAL REVIEW A65 032512
density profile, especially under high pressure. Similar d
sity oscillations have been obtained by other authors as
@14,11,17#. This feature is different from that of the bubb
model adopted in Refs.@9,10#. The maximum value of the
density forP520 atm is about 0.0275 Å23 at r 57.2 Å. This
peak height is predicted to be much larger for the case of
gas atoms, corresponding to a solid snowball@14#. This can
be understood by the fact that the alkali-metal–helium
tential has a more extended repulsive core and a we
long-range attraction than the rare-gas potential. As w
mentioned before, we neglect this attractive tail in the cal
lation.

We use ther(r ) computed above to generate configu
tions of helium atoms as follows. Take a large volume s
rounding the alkali-metal atom and denote it asV. This vol-
ume includesN helium atoms on average, whereN is given
by *V dr r(r )5N. We randomly sampleN helium positions
in V according to the density distributionr(r ). This sam-
pling procedure gives a probability distribution without co
relation among helium atoms. Denotingf (r )5r(r )/N, the
probability distribution ofN atoms is given by

wnc~t!5)
i 51

N

f ~r i !, ~2.13!

wheret stands for (r1 , . . . ,rN). We will also study the ef-
fect of helium-helium correlations by considering a probab
ity distribution of the form

wc~t!5)
i 51

N

g~r i !)
i , j

N

u~r i j 2d!. ~2.14!

Here d is the range of a short-range correlation. The dis
bution functiong(r ) is determined by the condition that th
distribution of Eq.~2.14! gives a helium densityr(r ),

r~r !5NE
V
dr2•••drN wc~r ,r2 , . . . ,rN!. ~2.15!

FIG. 1. Helium density profile around Cs atom. The coordin
r represents the distance from the Cs atom.
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In practice, we employ an iterative procedure to findg(r )
from this condition.

B. Helium perturbation of atomic spectra

In the previous section, we described a density-functio
theory for calculating the density profile of liquid helium
r(r ), and taking account of the effect of an impurity atom
the origin. In this section, we discuss the calculation of
atomic spectrum, including the effects of the helium atom

We begin with the theory of the isolated atom. Orbit
wave functions are calculated using density-functio
theory with Dirac wave functions and a kinetic energy o
erator. We need accurate wave functions at large distan
from the atom, which cannot be achieved with the traditio
local-density approximation due to the incorrect orbital
genvalues and the incorrect asymptotic behavior of the
tential. As is well known, these problems are diminish
with the generalized gradient approximation~GGA!. We em-
ploy the GGA functional of Ref.@18#, which was designed to
produce the correct asymptotic behavior of the potential. T
gradient correction includes an adjustable parameterb, and
we utilize this freedom to make the orbital energy coinci
with the measured one. For thes1/2 orbital, the orbital energy
is set equal to the ionization potential of the Cs atom, 3
eV. For thep1/2 andp3/2 orbitals, the orbital energies are s
equal to the ionization potential minus the excitation energ
~about 1.43 eV!. The quality of the wave function may b
tested by examining the transition oscillator strength. ForD1
andD2 transitions, the calculated oscillator strength assu
ing a pure single-electron transition is 1.034, in good agr
ment with measured value 1.058. The calculated elec
density distributions are shown in Fig. 2. In principle, the
will be contributions to the transition from core electrons
well that can be taken into account with the TDDFT. Appl
ing the TDDFT to the present case, the core contributio
reduce the oscillator strength by some tens of percent, bu
not significantly affect the asymptotic wave function of th
valence electron. We therefore use the simpler sing
electron wave functions below rather than wave functio
from the TDDFT.

e FIG. 2. Electron density distribution of thes1/2 ~solid! and p1/2

~dashed line! orbitals of Cs. See text for details of the calculatio
2-3
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NAKATSUKASA, YABANA, AND BERTSCH PHYSICAL REVIEW A 65 032512
We use first-order perturbation theory to evaluate the
bital shifts in the ensemble of helium configurationst
5(r1 , . . . ,rN). The same helium configuration is used f
the ground states1/2 and excited statesp1/2 andp3/2, follow-
ing the Frank-Condon principle. Fors1/2 andp1/2 states, the
energy shifts of the valence electron are then calculated

DE(k)~t!5K c (k)U(
i

Ve-He~ i !Uc (k)L 5(
i

V0uc (k)~r i !u2,

~2.16!

wherek stands for orbital quantum numbers (l j ) and either
m state may be taken. Forp3/2 states, the matrix element
depend onm and we have to diagonalize a 434 matrix to
get the energy shifts. We then obtain two eigenenergies, e
of which is doubly degenerate.

Each helium configuration produces an energy shift a
possible splitting but the transitions remain sharp. The l
broadening comes from the ensemble average over he
configurations. The line shape of theD1 (s1/2→p1/2) transi-
tion is given by

SD1
~E!5E

V
dt w~t!

3d„E2@DE(p1/2)~t!2DE(s1/2)~t!#…,

~2.17!

where E is the shift from the energy position of the fre
atom. For theD2 (s1/2→p3/2) transition, we need to add th
two eigenmodes

SD2
~E!5E

V
dt w~t!

3$d„E2@DE1
(p3/2)~t!2DE(s1/2)~t!#…

1d„E2@DE2
(p3/2)~t!2DE(s1/2)~t!#…%.

~2.18!

C. Origin of peak shifts, broadening, and splitting

In this section, we discuss qualitatively how the blu
shifts, the broadening of the lines, and the splitting ofD2
transitions occur. First consider a valence electron of
alkali-metal atom interacting with a single helium atom a
position R with respect to the impurity atom. The energ
shift of the valence electron is determined by the elect
wave function at the position of the helium atom
c(re5R).

For s1/2 and p1/2 states, the energy shiftDe is calculated
as

De (k)5V0re
(k)~R!, ~2.19!

as a first-order perturbation byVe-He. SinceV0 is positive,
the energy shift in Eq.~2.19! is also positive. As may be see
from Fig. 2, the wave function of thep1/2 state is consider-
03251
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ably larger than thes1/2 state outside the bubble. Thus, w
expect a blueshift of theD1 transition,De (p1/2)2De (s1/2).0.

For p3/2 states, the situation is slightly more complicat
because, in general, there are off-diagonal matrix elem
among degenerate states with differentm. However, all the
off-diagonal elements vanish if we assume that the heli
atom lies on theZ axis, X5Y50 and Z5R. We lose no
generality in the case of a single helium atom. The heli
atom atZ5R produces an energy shiftDe given by

Dem
(p3/2)5^cm

(p3/2)uVe-Heucm
(p3/2)&5H 2V0r̄e

(p3/2) for umu51/2

0 for umu53/2,
~2.20!

wherer̄ (k) is the angle-averaged electron density. There is
shift for umu53/2 states in the first-order perturbation b
Ve-He. As a result, theD2 transition splits into two peaks
one has a blueshift,De umu51/2

(p3/2) 2De (s1/2).0, and the other has

a small redshift, 2De (s1/2),0. In fact we can neglec
2De (s1/2) in comparison to the other shifts due to the lar
distance from the perturbing helium atom. Also one can
glect the small energy difference between the two spin-o
partners. Then the energy shift ofumu51/2 states is twice as
large as that ofp1/2 states. Note that the average shift of t
D2 components is the same as of theD1 line. In summary, a
helium atom at a distanceR shifts theD1 transition byD
[V0re

(p1/2)(R). The energy of theD2 transition splits into
two: one has no shift and the other is shifted by 2D. This
explains qualitatively the overall blueshift of both lines a
the skewed profile of theD2 line.

However, while the observedD2 line shape can be ana
lyzed as a sum of two components, both components
blueshifted by roughly the same amount as theD1 line. This
shows that the shift is due to the simultaneous interac
with several helium atoms. For example, if two helium ato
are at (R,0,0) and at (0,0,R), again aD2 line splits into two.
However, in this case, both have blueshifts (D and 3D). If
three helium atoms are at (R,0,0), (0,R,0), and (0,0,R), then
theD2 line shows a blueshift of 3D but no splitting. Roughly
speaking, the magnitude of the line shift is determined by
number of helium atoms contributing to the perturbation a
the splitting is determined by anisotropy of the helium co
figuration, which increases as the square root of the num
of atoms, assuming that there are no correlations betw
atoms. The average energy shift remains the same for theD1
and D2 lines, irrespective of the number of helium atom
causing the perturbation.

III. NUMERICAL RESULTS

To calculate the line shapes of the cesiumD transitions in
liquid helium, we evaluated Eqs.~2.17! and ~2.18! by sam-
pling 100 000 helium configurations, generated according
the density profiles in Fig. 1. The calculated energy shifts
added to the observedD lines of free Cs atom (l5894.9 nm
for D1 and 852.7 nm forD2). Then, the intensity is estimate
by counting the numbers of events in bins of wavelen
Dl50.1 nm. The obtained intensity spectra are shown
2-4
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APPLICATION OF DENSITY-FUNCTIONAL THEORY TO . . . PHYSICAL REVIEW A65 032512
Fig. 3. TheD1 line can be well approximated by a sing
Gaussian, although there is a slightly larger tail at the hi
energy~low-wavelength! side. On the other hand, theD2 line
has a double-peaked structure. This feature agrees with
perimental observations@9,10#.

Figure 4 shows the pressure dependence of the peak
and broadening of theD1 excitation lines. The peak shif
reproduces the observed pressure dependence, but com
about 20% lower than measured. The difference could be
to an incorrect asymptotic wave function in the Cs ato
only a 10% error in the wave function would be required
explain the difference. Or the calculated helium bub
might be too large. Here, decreasing the size of the bubbl
0.3 Å out of 6 Å would be sufficient to produce the measur

FIG. 3. ~a! Cs D1 excitation spectrum at different helium pre
sureP50, 10, and 20 atm.~b! The same as~a! but for D2 excita-
tion spectrum. Experimental data from Ref.@9# are plotted as filled
squares.

FIG. 4. Pressure shift~solid line! and broadening~dashed line!
of the D1 transition of Cs as a function of helium pressure. Op
squares represent broadening calculated with He-He correlatio
P50, 10, and 20 atm. The experimental data are plotted as fi
squares.
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peak shift. We shall return to this later. The line broaden
comes out better than would be expected, given the qua
of agreement for the peak shift. The agreement here sh
that the fluctuations of the helium distribution are well d
scribed by the model adopted.

A qualitative measure of the fluctuations can be co
structed by defining an effective number of helium ato
that contribute to the perturbation. Calling the shift from
individual helium atomD( i ), the total shift is

DE5(
i 51

N

D~ i !. ~3.1!

The effective number of atomsMeff responsible for the shift
may be defined as

Meff[K F(
i

D~ i !G2

(
i

D~ i !2 L , ~3.2!

where^•••& indicates the ensemble average. The calculat
leads toMeff'8 for the s1/2 state atP50, increasing to
11–12 atP525 atm. TheMeff can be compared with the
number of helium atoms in the first shell of the density p
file ~Fig. 1!. The average numbers of helium atoms in a
gion of r ,8.5 Å are 27 atP50 and 45 atP525 atm.Meff
turns out to be much smaller than the number in the fi
shell. Therefore, we may say that the perturbation of
valence electron is dominated by a small number of heli
atoms in the inner surface of a bubble. This fact indicates
importance of treating the perturbation from individual h
lium atoms in describing the fluctuation effect.

We can also understand the order of magnitude of
fluctuation effects usingMeff . Assuming independent helium
atoms, the fluctuations are proportional to 1/AMeff. Thus we
would expect that the widths of the lines and the splitting
the components ofD2 would be proportional to the averag
shift times that quantity. In fact, theD1 width is about 1/2 its
average shift in the zero-pressure data, to be compared
1/AMeff'1/3. Reference@9# analyzes theD2 line shape as a
sum of two Gaussian peaks. For measurements at low p
sure, the splitting of the components relative to the aver
shift is just 1/3, agreeing with our very crude argument.

In order to investigate effects of the polarization potent
that we have so far neglected, we consider also a He
interaction that includes the van der Waals terms@19#. Once
the density profiler(r ) is determined, we use the interactio
between a valence electron and helium, Eq.~2.6!, to calcu-
late the atomic spectrum. We find that the potential of R
@19# gives a reduced radius for the helium bubble at z
pressure, by about 0.3 Å. As a result, the blueshift increa
by about 35 cm21 at P50, which fits the experimental dat
very well. The linewidth is also slightly increased. This e
hancement of blueshifts diminishes as the pressure is
creased. The calculation shows almost no additional shif
P520 atm.

at
d

2-5
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NAKATSUKASA, YABANA, AND BERTSCH PHYSICAL REVIEW A 65 032512
Next, let us discuss effects of correlations among heli
atoms. The He-He correlation should influence the linewi
because it removes some part of the fluctuations of the
configuration. Roughly speaking, the radial fluctuation co
trols the linewidth and the angle fluctuation determines
skewness of theD2 line. To test this, we sample the heliu
configurations using the probability distribution of E
~2.14!, taking d52.377 Å. We construct the distributio
function g(r ) in Eq. ~2.14!, so as to reproduce the densi
profile r(r ) determined by the DFT, Eq.~2.9!. The results
are displayed in Fig. 5 and also in Fig. 4 with open squa
The correlation effect does not change the average peak
sitions at all. However, it reduces the linewidths, especia

FIG. 5. ~a! Cs D1 excitation spectrum and~b! D2 excitation
spectrum as in Fig. 3, with inclusion of He-He correlations. See
for explanation.
o

ys

n

oe

ys
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when the liquid helium is under high pressure. AtP
520 atm, the full width at half maximum of theD1 line is
calculated to be 150 cm21, which agrees well with the ex
periment (140 cm21). The skewness of theD2 line is also
decreased.

IV. SUMMARY

We have developed a simple model to describe the ato
spectra of impurities embedded in superfluid helium. O
description employs a density-functional theory for the h
lium distribution, and treats helium configurations statis
cally. The model is applied to the spectrum of cesium ato
embedded in superfluid helium. Various features in the sp
trum, including line shifts, broadening, and skewness,
nicely reproduced in our calculation without any adjusta
parameters. Thus we are confident that our model inclu
the basic physical elements of the helium perturbation c
rectly. It will be interesting to see whether the model can a
describe the emission spectra of atoms immersed in heli
and that will be a subject of future study. Since the mode
simple enough to apply to more complex chromophores s
as molecules and clusters, we also wish to analyze la
systems as well in the future.
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