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Electron correlation and the eigenvalues of the one-matrix
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The Jaynes entropy of the one-particle reduced density matrix is examined within the context of the convex
set of N-representable one-matrices. The monotonic relationship of the Jaynes entropy with distance from the
hull of the convex set is highlighted, and we show that the Jaynes entropy is monotonically related to the
density-functional definition of the correlation energy, thus qualifying a conjecture of Collins which assumed
a simple proportionality. It is further suggested that maximization of the Jaynes entropy subject to the con-
straints of fixed density and kinetic energy picks out the true one-matrix.
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I. INTRODUCTION matrix, in particular its Jaynes entropg6]

The centrality of the ground-state electron density in S __E nnn
quantum chemistry is emphasized by density-functional V& T
theory and enshrined in the original Hohenberg-Kohn Theo-
rem [1]. Formally, knowledge of the ground-state one-\We highlight some interesting properties of thisncave
particle electron density,(r) infers knowledge ofll prop-  functional and show it to be a monotonically increasing func-
erties exactly, notwithstanding the current lack of knowledgetion of a well-defined distance measure from the convex hull.
of how precisely to go about determining them directly. An Using relations derived by Sav[27] and Levy and Gding
additional factor of interest with regard to the electron den{28], we provide a modification of Collins’ conjectuf&9]
sity is that it can be experimentally determined from x-raythat the Jaynes entropy is proportional to the correlation en-
diffraction by single crystal§2]. While this fact is well  ergy, by using a definition of the correlation energy from the
known, the measured function is related to the Fourier transdensity functional theory and show that for this definition,
form of the time-averaged electron density in the crystalthe entropy is a monotonically increasing function of the
including thermal motion of the nuclei. The density- correlation energy.
functional theory applies to a static electron density, but an Finally, we provide a conjecture of our own which states
approximate separation of the thermal motion using the adiahat given the true ground-state density and the true kinetic
batic approximation3] yields a quasi-Born-Oppenheimer energy, we can reconstruct the true one-matrix by the appli-
density, which is assumed to be close enough to the statigation of the Jaynes maximum-entropy principle.
density of the same system. Given such an experimental den-
sity, it is obviously desirable to extract as much useful infor-
mation as possible from it. The elucidation of effective po-
tentials, noninteracting kinetic energies, and Kohn-Sham For a system oN particles, the pure stafé-particle den-
orbitals for a given density has been well investigated in thesity matrix is defined as the integral projection operator with
past[4-24]. kernel

For the electron density of a ground state, nondegenerate
wave function, the noninteracting kinetic ener@yf p] has TR(X1 X, « o XNGXE X o X))
been shown by Lielp25] to be unigue and well defined. It
can be obtained from the knowledge of the density alone by =Wi(Xg,Xg, o XWX X, o x0) (2D
searching over alN-representable one-matrices yielding the
required density and choosing the one minimizing the expecwith x=(r,o) and where theW,(x;,x;, ... xy) form a
tation value of the kinetic energy. Since this process is th&omplete orthonormal set of antisymmethNeparticle wave
minimization of a linear functional on a convex set, the op-functions. 'y’ has the properties of Hermiticity['(=T"),
timal value occurs at the extreme points of that set, which ar@on-negativity ' =0) and idempotencyl(?=T"). This defi-
those one-matrices corresponding to determinantal waverition may then be generalized to defieresemble Marticle

(1.9

II. CONVEXITY OF FERMION DENSITY MATRICES

functions. density matrices
The true one-matrix,(x,x") yielding T, andp, does not
correspond to a determinantal wave function and since the  T™M(X1,Xa, - . . XN X1, X5, - - - XN)
mapping fromp(r)— y(x,x") is one to many, there is no
d|rect.method of determmmg the tr_ue one-matr_lx corre- ZZ Wy (Xq Ko - v Xn)WE (X)X, e X))
sponding top,(r). In the following section, we highlight the K

topological properties of the set df-representable one-
matrices emphasizing the convexity of this set. There has :2 W, (Xq X XXX X 2.2
been interest in the eigenvalue structdre} of the one- X e ARz N
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with W,=0 andZ,W,=1. ~. N(N—1).
The set of all ensembl-particle density matricefl™™} HZZTVee (2.10
is denoted byPN. This is obviously a convex set in the sense
that if A-B_EPN then aA+bB.E7DN for all a,b=0 anda  4cting on the diagonal of the two-matrix to give the two-
+b=1. Cis an extreme point of the set £=aA+bB  yaricle energy
implies thatA and % are multiples ofC and therefore the
extreme points ofP™ are pure states, and are characterized 2_ 402 .
by the idempotency condition. E=tHT (4 X0 0%1. %) - 213
The Klein-Milman theorem asserts that a convex set is
determined by its extreme points, all other elements beingm
obtained by linear combination and hence the convex set is
the convex closure of that set’'s extreme points. This leads t

. . N .
the interpretation of the convex s@t" topologically as a is a2 member of the sé?ﬁ, _This set is a subset 611, the set

cone or convex huf30-34. of all positive[37], Hermitian one-particle density operators
In quantum chemistry the Hamiltonian contains, at most, b ' b y op

two-particle interactions and in this sense Mwparticle den- of unit trace includi_ng those \_/vherg cannot be obtained by
sity operator contains more details than necessary. In thige a_bove contractlon mapping, 1.€., ﬁothgt qontracts to'
work we concentrate on the one and two-partigduced e giveny exists. Expressing the one-matrix in terms of its
density matricesy andI" defined by the action of the con- spectral resolution

traction operatof33]

We takey(x,x") andT'(Xq,X2;X1,X5) to be normalized to
ity, although other values are also comnj8B,36. Since

has been obtained by contraction offduparticle ensemble
ensity operator, it is termeensemble Nepresentable, and

y(x,x'>=2 nigi(X), o (x'), (2.12

Y X )= LETN(X Xa, o XX Xy e XN

the necessary and sufficient conditions thathust satisfy to
be a member of the s@ﬁ are (i) that its eigenvaluesy; lie
on the interval 0,AN] and(2) that Try=23;n;=1 [38].

Since PN is convex and the contractiody, is a linear
map, the seﬂ?ﬁ, is also convex, and is again specified by
knowledge of its extreme points, which in this case are those

=f --~JFN(x,x2, C XX Xy e X
XdXy, ... dXy (2.3

['(X1,X2;X1,X5)

=L2TN(X1, X00 « oo XNGXL XD, - XN) one-matrices havinyyl eigenvalues equal toN/and all oth-
ers zero that we denote ds,}. These satisfyNy?=1y,,
:f ”.IFN(X X o X! X, Xn) which is equivalent to idempotency of thenormalized one-
LRz AN AL T2 e N matrix. Note that anyy with at least one but less thax
% dx dx (2.4) eigenvalues equal to N/covers a boundary point d?ﬁ,.
310N ' Now due to the convexity o}, any general member
and related to each other by ¥(x,x") can be represented by
Y(X,X") =L 3T (X, %p;X" ,X5). (2.5 Y% X" =ay(x,x") +byp(x,x")+--- (213
In order to obtain the energy of the system, the reduce@nd the convex sePy, is, therefore, the convex closure of
Hamiltonian,K acts on the three-variable function the set of ally, . _
It is well known that idempotent one-kernels correspond
E=tr[RF(x1,x2;x1,x2)], (2.6)  with N-particle wave functions of single Slater-determinant
form
however this can be partitioned into one- and two-patrticle

terms

1
7(xx") =gl h1(x) dT (X' )+ -+ dn(X) DN (X)],
K=HR+H2 2.7 (2.14

where the one-particle term contains kinetic and nuclearwhere the wave function is
electron components
Dp=(N)""2def p1(x1) $a(%2) - - - dn(xn)] (2.1

and “det” indicates the Slater determinant formed from the
and acts on the one-matrix to give the one-particle energy eigenvectors ofy,. For such a system the two-matrix is a
function of the one-matrix and hence the total energy is a
El=tHly(x,x")], (2.9  function of the one-matrix alone. Examples of such wave
functions are those in Hartree-Fock or in Kohn-Sham theory
and the two-particle term contains the electron-electron term39].

Al=N(T+V,o) (2.9
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We now wish to consider some specific members of theelations between a general member of a convex set and the

setPy,. Define an element oPy, as yy limit points.
Let f be a real-valued function defined on a convex set D.

R f is convex if
k; PX) i (X'), (2.19 f(ax+by)<af(x)+bf(y) (3.1

x|+~

FYX(Xlxr) =

with a+b=1; a,b=0. Conversely, a concave functional

where R the rank of the one-kernel tends to infinity. The ~_.." °
satisfies

existence ofyy as R—« can be proven using the Gilbert
construction[40]. Now since all eigenvalues are degenerate f(ax+by)=af(x)+bf(y). (3.2
at 1R, this one-kernel is unique since any unitary transfor-

mation amongst degenerate eigenvectors does not change the” concave fur}ctionaf attains itsdrrrw]inimum valuel at the N
kernel. Now consider a general membgy of the setpl,.  €XUeme points of a convex set and has greater values at the

Irespective of the eigenvectors g, we can always rotate interior points. A simple concave functional of interest was
P 9 o, Y first defined by Lavdin [35]. Here, we write it in terms of

tho_se ofyx_ to coincide W|t_h them and hence both _kernels areyne-normalized occupation numbers
defined with the same eigenvectors. As was pointed out by
Harriman[41], since bothyy and y, have the same eigen-
vectors, the distance betweery and vy, in the sense of a

Euclidean vector space may be written in terms of the eigen-
values alone as It was used as a measure of how dissimilar a wave function
is to a Slater determinant. If thé-largest eigenvalues of the
12 one-matrix are greater then N2and the remainindR—N
, (2.17 eigenvalues are less than l/2which is almost certainly the
case for Coulomb system€, has a monotonic relationship
. with dy, previously definedEq. (2.19], in that it is zero for
wheren; are the eigenvalues ofy . _ , y, and increases as one moves to the interior of the set to-
Now consider another one-kernel, which hasN eigen- a4s,,. . Zieschd46] calls this functionalwith a prefactor
values of 1|N1WIth all other; being zero. This is an exﬁreme of N~ 1) the nonidempotency per particle. He also general-
element of Py;. yx can again be rotated to have coincidentalj;as it to thevth order,
eigenvalues withy, and the distance between these two ele-
ments is then

C.=2>, Nn(1—Nn)=N—N2> n?. (3.3

SER

dxv=

Cvzl—%Z (Nn)*=1-N""> n!. (3.4

o % (1 1), R (1)21/2_[(R—N)r’2 . .
=< |RTN < R =" R’N Interestingly, the slope o, at v=1 is
(2.18 dc,
5 =—> nilnni—> nInN=S;—InN.
and hence the extreme elements7 will lie on a hyper- Vil : :
sphere of radiu§(R—N)/RN]Y? aboutyy . (3.5

The closest extreme element Bf; to yy is the member N is constant for a fixed number of electrons, a6
of ¥, with the same eigenvectors &g and lies at a distance =NC, has a monotonic relationship with, . Furthermore,
dy, away, where all C, have a monotonic relationship among each other, and
so has the slope E@3.5), i.e., if one increases, so do all of
them. It follows that there is a monotonic relationship be-
(219 tweenC, andS, and hence betweeth,, andS,. The func-
tional Sy, the Jaynes entropy, is of great importance in the
This defines a unique distance measure from an arbitrar.nformation .t_heor.y as a measure of th_e information content
member ofPﬁ to the closest extreme point, of in other words “.f a probability distribution and hence is often referred to as

the distance that the arbitrary kernel is from representability'nformat'on entropy” [26,47,4§.

. . ) We have, therefore, succeeded in making a connection
by a Slater determinant. The corresponding membey; 08 oo 100010 oPL and the information theory, in
known as the “best-density” kernel defined by Kutzelnigg pology OFy Y,

and Smith[42] particular, it has been shown that the distance measure from
' an extremity in a Euclidean vector spadg monotonically

increases with the so-called Jaynes information entropy of
. CONVEX AND CONCAVE FUNCTIONALS the one-matrix.

1/2
dy,=

2 R
+ 2 nf

i=N+1

SIS

In the preceding section, we introduced the idea tht
is a convex set and also highlighted a unique distance mea-
sure. If we wish to study relationships between members of a
convex set, it is pertinent to use convex functionals defined In discussions of electron correlation, the traditional
on the sef43—415. In particular, we will be interested in the quantum-chemical definition of the uncorrelated reference

IV. ELECTRON CORRELATION AND COLLINS’
CONJECTURES
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system has been the Hartree-Fock wave funcligx . The  with the determinant obtained in E@.5). The optimization
correlation energy is defined as the difference between thim Eq. (4.6) cannot be applied ta.>0 since AV, is no
exact, nonrelativistic ground-state energy and the exadbnger a function of the one-matrix. We can, however, per-
Hartree-Fock energj49] form a similar constrained search over the convex set of
N-representable two-matrices
E.=E,—E{r=<0. 4.1
mintr[ (H+ XA (X1,%0; X ,X2) ] 4.7

It was conjectured by Colling29] that the Jaynes entropy Feop
—Po

of the N-normalized one-matrix8) [50] is directly propor-

tional to the negative of the correlation energy of the systemye that theN-representability conditions on the two-matrix

are not known in a tractable form. This optimization results
—E.=—x>, niInn=8x, (4.2 in a two-matrix, which reduces under the action®f to a
' nonextreme one-matrix.

where y is a positive constant, a hypothesis that has some A _useful (_jeflnltlon of th correlatl_on energy from the
supporting numerical eviden¢é1] and some modifications den5|ty-fun_ct|onal theory IS Just t_he d|fferen9e betw_een the
to it have been consideré82]. A second conjecture of Col- total energies of the fully mtgractmg and noninteracting sys-
lins was that maximization of the entropy subject to the contems. yielding the true density
straint of fixed density produces the correct one-matrix. o1 o, \—0 o,

To deal with the first conjecture, we note that the entropy EclPo] = tTK I 77 (X1, X2 X1 ,Xp) =T 75 (X0, X2 X1, %)) ],
is a function of the one-matrix, while the standard correlation (4.8
energy is a function of the full, many-body wave function,
V¥, for a pure state, of for an ensemble. In this work we
use a definition of the correlation energy that is provided b
the density-functional theory, and which uses a more wel
defined independent variable, namely, the coupling constant
\.

which has been rewritten by Savia7] and Levy and Gp
>Jing [28] as an integral along an adiabatic connec{iofh,55
tlinking the noninteracting and fully interacting one-matrices

M=1T M= Ty pol

: - . Edlpol=— ————d\. 4.9
Consider the partly coupled Schiiager equation 0 A2
[T+vext(") +0ge(1) +\Vee W =EW, 43 The partially interacting density matrix* in this equation is
. . the one obtained from* of Eq. (4.3 by reduction[Eq.
Where.the goypllng constants [9{1]’ Vex(r) 'S the extemal (2.3]. This equation also serves to defink-@ependent cor-
potential arising from the nucle|A|n a moleculejs the stan-  q|ation energE} by replacing\ = 1 in the upper integration
dard kinetic-energy operator ail. is the electron-electron |imit by an arbitrary value. The integrand is positive since
interaction operator. The local effective potentidi(r) is  the kinetic energy of a partly interacting system is always
chosen such that the true ground-state density) is ob-  greater than that of a noninteracting systs].

tained for allx. The task of finding¥* in Eq. (4.3 can be We now wish to consider the behavior of the eigenvalue
replaced by a constrained search overdad>p,(r) [53] spectrum ofy*. y*=%c{y,} and is, therefore, extreme in
. Py . The entropy is, therefore, at a minimum but Xass
min (W[T+A\Ved V). (4.4 increased, those eigenvalues formerly & become smaller
W=po while the remainder becomes larger and heBgécreases.

)\ . .

For thex=0 case, this becomes the search for the nonintery ¢ C‘!O not kn(_)vy the value d, for eachi butin the light of
: L the “geometric” considerations of the preceding two sec-

acting kinetic energy . e D ;
tions, it is reasonable to assume that it is a monotonically

Tdpol= min (W[T|w), (4.5  Increasing funcpon of\_ [57]._ If this is true, we may us&,
Vs pg as the integration variable in the coupling constant integra-

tion by making\ a monotonically increasing function &

where =9 is now a unique single determinant assuming

nondegeneracy of the noninteracting system. It is clear that SA=DT[ Y] =Ty pol { AN(Sy)
we can rewrite this in terms of a search over the convex set Eclpo]=— fo (s is. |9%-
of N-representable one-matrices, which hayér) as their (Sy) J 4.10
diagonal, ’
1 A Note that the Jacobiad\(S)/dS; is positive due to the
NTS[pO]: mintr[ Ty(x,x")] (4.6 monptonicity of then—S; mapping. C_Iearly, the derivative
Y=po of this expression at(S;)=1 is negative,
and since it is the optimization of a linear functional on a dE dn
convex set, the minimium occurs at an extreme point of the - d_SC :[T—TS]E >0 (4.11
set, which is the idempotent one-matrix in correspondence JiN=1 =1
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FIG. 1. EntropyS; as a function of the coupling constantfor FIG. 2. Correlation energﬁ’c‘ [see Eq(4.9] versus entropys)
a few two- and four-electron systerfs8]. [58].

so that we have proven the following theorethsS; is a
monotonically increasing function af, then there is a mon-
tonically decreasing relationship between the information
entropy and the correlation energy the fully interacting
system.
Since the premise in this theorem is plausible but not
proven, this leads to our “modified Collins’ conjecture”: As
the correlation energf,, in its density-functional theory ;= max | =2 ni[ylinniy]]. (4.12
.. . . — T !
definition,decreasesi.e., becomes more negatjy¢he infor- 7Po
mation entropyS; increases. This is, of course, weaker than
the original conjecture, but it is physically plausible. ZiescheThis scheme would apply for arbitrary values of the coupling
et al. have empirically arrived at a very similar modification constant since this information is already suppliedTBy At
of Collins’ conjecture on the grounds of their analysis of A=0, the kinetic energyl =Ty is at its minimum value and
two-particle system§52]. we know this can only occur at the extreme points of the
Colonna and Savin have recently producketi along the  convex set and hence the eigenvalue spectrum is completely
adiabatic connection for a number of two- and four-electrorfixed. The sef y—p,, T} reduces to a single member and
systems[58]. Using their results for He, Be, Né, and there is no space over which to maximize the entropy. How-
Ne®", we have calculate8) and Fig. 1 confirms the mono- €ver, asT* increases, a set of one-matrices, all degenerate in
tonic relationship ofS} with A for these atoms and ions. Of the one-electron energi*, results. For each value of the
greater interest is the relationship &J[p,] with S} as couplmg cor;stant, the actuff;th is thle one which is the con-
shown in Fig. 2 for the same systems. Again there is a mondraction of ' under the action of’ ;, however, at the level
tonicity of the two quantities confirming our modified Col- Of the one-matrix alone, we cannot identify it without re-
lins’ conjecture, but a simple proportionality is absent. course to something other thadt, and we conjecture that
The second conjecture of Collins was that the true onemaximization of the entropy picks out the trgé. If this is
matrix is obtained by applying the maximum-entropy prin-indeed the case, it provides an additional argument that the
ciple of Jayne$59] subject to the constraint of fixed density. entropy always increases R0~ 1, sinceT is a monotonic
We know that a one-matrix with any eigenvalue structure carincreasing function o and we are moving from the hull of
describe any densitf60] and hence ay with a flat eigen- the convex set towards its interior, the maximum attainable
value spectrum would result. This is certainly not the correctvalue of the entropy must increase.
one-matrix, since its kinetic energy is far too great. The It should be noted that there is no explicit information in
maximum-entropy principle states that one should satisfy aleither the density, the kinetic energy, or the entropy about the
known constraints and then maximize the entropy. We connature of the electron-electron interaction. How can we ex-
jecture that the additional constraint of fixed kinetic energypect to derive from these quantities the true one-matrix,
will produce a one-matrix with the correct entropy. This sug-which is, after all, a reduced form of the exact wave func-
gests a methodology for the direct determination of the trudion? A possible answer might be that the relationship is
one-matrix of the system from its density and its kineticimplicit, i.e., a specific combination of density and kinetic
energy: Of the set oN-representable one-particle density energy is physically only possible if the electron-electron
matrices y(x,x"), which collapse to the true ground-state interaction has a specifinamely, the Coulombform.

density p,(r) and that yield the true value of the kinetic
energy the one maximizing the information entropy is
unigquely defined and is the true one-matrix. This then defines
a new constrained search-type definition for the one-matrix
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If the true density is knowite.g., from x-ray diffraction ~ the correlation energy to a one-particle quantity. This sug-
and so is the kinetic enerdg.g., from Compton scattering gests the use of the density-functional theory definition, since
then this would be a practical way of going about determin-for the latter, such an expression exists in Eg9).
ing the density matrix from experimental data, which is a We further suggest that the maximum-entropy principle
problem of long standing indeddee[61—63 and references be used for the construction of the one-particle reduced den-
therein. sity matrix from experimentally known densities and kinetic

energies. This is in contrast to Collins’ suggestion to focus
V. CONCLUDING REMARKS exclusively on the density. We would like to point out that it
) ) has been shown by Harrimd64], that both in the actual

We have made an argument that Collins’ conjecture aboyase, and within a finite basis set of “reasonable” size, the
the relationship of the one-particle information entropy of aynjque determination of the one-matrix from charge densities
system and its correlation energy can be formulated in &, poth positionand momentum space is impossible. Perhaps
modified manner, leading to monotonicrelationship be-  the maximization of information entropy supplies the miss-
tween thedensity-functionadefinition of the correlation en- ing piece to make this determination unique. We hope this
ergy and the information entropy of the system. This differsgontributes one more step towards an understanding of the

from the original formulatior{29] that postulated @ropor-  feasibility of direct density matrix reconstruction, and of the
tionality between the information entropy and thandard  gnditions that have to be met.

definition of the correlation energg.e., the difference be-
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