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Electron correlation and the eigenvalues of the one-matrix
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The Jaynes entropy of the one-particle reduced density matrix is examined within the context of the convex
set ofN-representable one-matrices. The monotonic relationship of the Jaynes entropy with distance from the
hull of the convex set is highlighted, and we show that the Jaynes entropy is monotonically related to the
density-functional definition of the correlation energy, thus qualifying a conjecture of Collins which assumed
a simple proportionality. It is further suggested that maximization of the Jaynes entropy subject to the con-
straints of fixed density and kinetic energy picks out the true one-matrix.
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I. INTRODUCTION

The centrality of the ground-state electron density
quantum chemistry is emphasized by density-functio
theory and enshrined in the original Hohenberg-Kohn Th
rem @1#. Formally, knowledge of the ground-state on
particle electron densityro(r ) infers knowledge ofall prop-
erties exactly, notwithstanding the current lack of knowled
of how precisely to go about determining them directly. A
additional factor of interest with regard to the electron de
sity is that it can be experimentally determined from x-r
diffraction by single crystals@2#. While this fact is well
known, the measured function is related to the Fourier tra
form of the time-averaged electron density in the crys
including thermal motion of the nuclei. The densit
functional theory applies to a static electron density, but
approximate separation of the thermal motion using the a
batic approximation@3# yields a quasi-Born-Oppenheime
density, which is assumed to be close enough to the s
density of the same system. Given such an experimental
sity, it is obviously desirable to extract as much useful inf
mation as possible from it. The elucidation of effective p
tentials, noninteracting kinetic energies, and Kohn-Sh
orbitals for a given density has been well investigated in
past@4–24#.

For the electron density of a ground state, nondegene
wave function, the noninteracting kinetic energyTs@r# has
been shown by Lieb@25# to be unique and well defined. I
can be obtained from the knowledge of the density alone
searching over allN-representable one-matrices yielding t
required density and choosing the one minimizing the exp
tation value of the kinetic energy. Since this process is
minimization of a linear functional on a convex set, the o
timal value occurs at the extreme points of that set, which
those one-matrices corresponding to determinantal wa
functions.

The true one-matrixgo(x,x8) yielding To andro does not
correspond to a determinantal wave function and since
mapping fromr(r )°g(x,x8) is one to many, there is no
direct method of determining the true one-matrix cor
sponding toro(r ). In the following section, we highlight the
topological properties of the set ofN-representable one
matrices emphasizing the convexity of this set. There
been interest in the eigenvalue structure$ni% of the one-
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matrix, in particular its Jaynes entropy@26#

SJ52(
i

ni ln ni . ~1.1!

We highlight some interesting properties of thisconcave
functional and show it to be a monotonically increasing fun
tion of a well-defined distance measure from the convex h
Using relations derived by Savin@27# and Levy and Go¨rling
@28#, we provide a modification of Collins’ conjecture@29#
that the Jaynes entropy is proportional to the correlation
ergy, by using a definition of the correlation energy from t
density functional theory and show that for this definitio
the entropy is a monotonically increasing function of t
correlation energy.

Finally, we provide a conjecture of our own which stat
that given the true ground-state density and the true kin
energy, we can reconstruct the true one-matrix by the ap
cation of the Jaynes maximum-entropy principle.

II. CONVEXITY OF FERMION DENSITY MATRICES

For a system ofN particles, the pure stateN-particle den-
sity matrix is defined as the integral projection operator w
kernel

Gk
N~x1 ,x2 , . . . ,xN ;x18 ,x28 , . . . ,xN8 !

5Ck~x1 ,x2 , . . . ,xN!Ck* ~x18 ,x28 , . . . ,xN8 ! ~2.1!

with x5(r ,s) and where theCk(x1 ,x2 , . . . ,xN) form a
complete orthonormal set of antisymmetricN-particle wave
functions. Gk

N has the properties of Hermiticity (G†5G),
non-negativity (G>0) and idempotency (G25G). This defi-
nition may then be generalized to defineensemble N-particle
density matrices

GN~x1 ,x2 , . . . ,xN ;x18 ,x28 , . . . ,xN8 !

5(
k

WkCk~x1 ,x2 , . . . ,xN!Ck* ~x18 ,x28 , . . . ,xN8 !

5(
k

WkGk~x1 ,x2 , . . . ,xN ;x18 ,x28 , . . . ,xN8 ! ~2.2!
©2002 The American Physical Society08-1
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with Wk>0 and(kWk51.
The set of all ensembleN-particle density matrices$GN%

is denoted byP N. This is obviously a convex set in the sen
that if A,BPP N then aA1bBPP N for all a,b>0 and a
1b51. C is an extreme point of the set ifC5aA1bB
implies thatA and B are multiples ofC and therefore the
extreme points ofP N are pure states, and are characteriz
by the idempotency condition.

The Klein-Milman theorem asserts that a convex se
determined by its extreme points, all other elements be
obtained by linear combination and hence the convex se
the convex closure of that set’s extreme points. This lead
the interpretation of the convex setP N topologically as a
cone or convex hull@30–34#.

In quantum chemistry the Hamiltonian contains, at mo
two-particle interactions and in this sense theN-particle den-
sity operator contains more details than necessary. In
work we concentrate on the one and two-particlereduced
density matricesg and G defined by the action of the con
traction operator@33#

g~x,x8!5L N
1 GN~x ,x2 , . . . ,xN ;x8 ,x2 , . . . ,xN!

5E •••E GN~x ,x2 , . . . ,xN ;x8 ,x2 , . . . ,xN!

3dx2 , . . . ,dxN ~2.3!

G~x1 ,x2 ;x18 ,x28!

5L N
2 GN~x1 ,x2 , . . . ,xN ;x18 ,x28 , . . . ,xN!

5E •••E GN~x1 ,x2 , . . . ,xN ;x18 ,x28 , . . . ,xN!

3dx3 , . . . ,dxN ~2.4!

and related to each other by

g~x,x8!5L 2
1G~x ,x2 ;x8 ,x28!. ~2.5!

In order to obtain the energy of the system, the redu
Hamiltonian,K̂ acts on the three-variable function

E5tr@K̂G~x1 ,x2 ;x18 ,x2!#, ~2.6!

however this can be partitioned into one- and two-parti
terms

K̂5Ĥ11Ĥ2, ~2.7!

where the one-particle term contains kinetic and nucle
electron components

Ĥ15N~ T̂1V̂ne! ~2.8!

and acts on the one-matrix to give the one-particle energ

E15tr@Ĥ1g~x,x8!#, ~2.9!

and the two-particle term contains the electron-electron t
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Ĥ25
N~N21!

2
V̂ee ~2.10!

acting on the diagonal of the two-matrix to give the tw
particle energy

E25tr@Ĥ2G~x1 ,x2 ;x1 ,x2!#. ~2.11!

We takeg(x,x8) andG(x1 ,x2 ;x18 ,x28) to be normalized to
unity, although other values are also common@35,36#. Since
g has been obtained by contraction of anN-particle ensemble
density operator, it is termedensemble Nrepresentable, and
is a member of the setP N

1 . This set is a subset ofP 1, the set
of all positive@37#, Hermitian one-particle density operato
of unit trace including those whereg cannot be obtained by
the above contraction mapping, i.e., noG that contracts to
the giveng exists. Expressing the one-matrix in terms of
spectral resolution

g~x,x8!5(
i

nif i~x!,f i* ~x8!, ~2.12!

the necessary and sufficient conditions thatg must satisfy to
be a member of the setP N

1 are~i! that its eigenvalues,ni lie
on the interval@0,1/N# and ~2! that Trg5( ini51 @38#.

Since P N is convex and the contractionL N
1 is a linear

map, the setP N
1 is also convex, and is again specified b

knowledge of its extreme points, which in this case are th
one-matrices havingN eigenvalues equal to 1/N and all oth-
ers zero that we denote as$g I%. These satisfyNg I

25g I ,
which is equivalent to idempotency of theN-normalized one-
matrix. Note that anyg with at least one but less thanN
eigenvalues equal to 1/N covers a boundary point ofP N

1 .
Now due to the convexity ofP N

1 , any general membe
g(x,x8) can be represented by

g~x,x8!5ag I1~x,x8!1bg I2~x,x8!1••• ~2.13!

and the convex setP N
1 is, therefore, the convex closure o

the set of allg I .
It is well known that idempotent one-kernels correspo

with N-particle wave functions of single Slater-determina
form

g I~x,x8!5
1

N
@f1~x!f1* ~x8!1•••1fN~x!fN* ~x8!#,

~2.14!

where the wave function is

FD5~N!21/2det@f1~x1!f2~x2!•••fN~xN!# ~2.15!

and ‘‘det’’ indicates the Slater determinant formed from t
eigenvectors ofg I . For such a system the two-matrix is
function of the one-matrix and hence the total energy i
function of the one-matrix alone. Examples of such wa
functions are those in Hartree-Fock or in Kohn-Sham the
@39#.
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ELECTRON CORRELATION AND THE EIGENVALUES OF . . . PHYSICAL REVIEW A 65 032508
We now wish to consider some specific members of
setP N

1 . Define an element ofP N
1 asgX

gX~x,x8!5
1

R (
k51

R

fk~x!fk* ~x8!, ~2.16!

where R the rank of the one-kernel tends to infinity. Th
existence ofgX as R→` can be proven using the Gilbe
construction@40#. Now since all eigenvalues are degener
at 1/R, this one-kernel is unique since any unitary transf
mation amongst degenerate eigenvectors does not chang
kernel. Now consider a general membergV of the setP N

1 .
Irrespective of the eigenvectors ofgV , we can always rotate
those ofgX to coincide with them and hence both kernels a
defined with the same eigenvectors. As was pointed ou
Harriman@41#, since bothgX andgV have the same eigen
vectors, the distance betweengX and gV in the sense of a
Euclidean vector space may be written in terms of the eig
values alone as

dXV5F(
i 51

R S 1

R
2ni D 2G1/2

, ~2.17!

whereni are the eigenvalues ofgV .
Now consider another one-kernel,g I which hasN eigen-

values of 1/N with all others being zero. This is an extrem
element ofP N

1 . gX can again be rotated to have coinciden
eigenvalues withg I and the distance between these two e
ments is then

dXI5F(
i 51

N S 1

R
2

1

ND 2

1 (
i 5N11

R S 1

RD 2G1/2

5F ~R2N!

RN G1/2

~2.18!

and hence the extreme elements ofP N
1 will lie on a hyper-

sphere of radius@(R2N)/RN#1/2 aboutgX .
The closest extreme element ofP N

1 to gV is the member
of g I with the same eigenvectors asgV and lies at a distance
dVI away, where

dVI5F(
i 51

N S 1

N
2ni D 2

1 (
i 5N11

R

ni
2G1/2

. ~2.19!

This defines a unique distance measure from an arbit
member ofP N

1 to the closest extreme point, or in other wor
the distance that the arbitrary kernel is from representab
by a Slater determinant. The corresponding member ofg I is
known as the ‘‘best-density’’ kernel defined by Kutzelnig
and Smith@42#.

III. CONVEX AND CONCAVE FUNCTIONALS

In the preceding section, we introduced the idea thatP N
1

is a convex set and also highlighted a unique distance m
sure. If we wish to study relationships between members
convex set, it is pertinent to use convex functionals defin
on the set@43–45#. In particular, we will be interested in th
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relations between a general member of a convex set and
limit points.

Let f be a real-valued function defined on a convex set
f is convex if

f ~ax1by!<a f~x!1b f~y! ~3.1!

with a1b51; a,b>0. Conversely, a concave function
satisfies

f ~ax1by!>a f~x!1b f~y!. ~3.2!

A concave functionalf attains its minimum value at the
extreme points of a convex set and has greater values a
interior points. A simple concave functional of interest w
first defined by Lo¨wdin @35#. Here, we write it in terms of
one-normalized occupation numbers

CL5(
i

Nni~12Nni !5N2N2(
i

ni
2 . ~3.3!

It was used as a measure of how dissimilar a wave func
is to a Slater determinant. If theN-largest eigenvalues of th
one-matrix are greater then 1/2N and the remainingR2N
eigenvalues are less than 1/2N, which is almost certainly the
case for Coulomb systems,CL has a monotonic relationshi
with dVI previously defined@Eq. ~2.19!#, in that it is zero for
g I and increases as one moves to the interior of the se
wardsgX . Ziesche@46# calls this functional~with a prefactor
of N21! the nonidempotency per particle. He also gener
izes it to thenth order,

Cn512
1

N (
i

~Nni !
n512Nn21(

i
ni

n . ~3.4!

Interestingly, the slope ofCn at n51 is

dCn

dn U
n51

52(
i

ni ln ni2(
i

ni ln N5SJ2 ln N.

~3.5!

N is constant for a fixed number of electrons, andCL
5NC2 has a monotonic relationship withdVI . Furthermore,
all Cn have a monotonic relationship among each other,
so has the slope Eq.~3.5!, i.e., if one increases, so do all o
them. It follows that there is a monotonic relationship b
tweenCL andSJ and hence betweendVI andSJ . The func-
tional SJ , the Jaynes entropy, is of great importance in
information theory as a measure of the information cont
of a probability distribution and hence is often referred to
‘‘information entropy’’ @26,47,48#.

We have, therefore, succeeded in making a connec
between the topology ofP N

1 and the information theory, in
particular, it has been shown that the distance measure f
an extremity in a Euclidean vector spacedVI monotonically
increases with the so-called Jaynes information entropy
the one-matrix.

IV. ELECTRON CORRELATION AND COLLINS’
CONJECTURES

In discussions of electron correlation, the tradition
quantum-chemical definition of the uncorrelated referen
8-3
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SMITH, SCHMIDER, AND SMITH PHYSICAL REVIEW A65 032508
system has been the Hartree-Fock wave functionCHF . The
correlation energy is defined as the difference between
exact, nonrelativistic ground-state energy and the ex
Hartree-Fock energy@49#

Ec5Eo2EHF<0. ~4.1!

It was conjectured by Collins@29# that the Jaynes entrop
of the N-normalized one-matrixSJ

N @50# is directly propor-
tional to the negative of the correlation energy of the syst

2Ec52x(
i

ni ln ni5SJ
Nx, ~4.2!

wherex is a positive constant, a hypothesis that has so
supporting numerical evidence@51# and some modifications
to it have been considered@52#. A second conjecture of Col
lins was that maximization of the entropy subject to the c
straint of fixed density produces the correct one-matrix.

To deal with the first conjecture, we note that the entro
is a function of the one-matrix, while the standard correlat
energy is a function of the full, many-body wave functio
Co for a pure state, orG for an ensemble. In this work we
use a definition of the correlation energy that is provided
the density-functional theory, and which uses a more w
defined independent variable, namely, the coupling cons
l.

Consider the partly coupled Schro¨dinger equation

@ T̂1vext~r !1ve f f
l ~r !1lV̂ee#C

l5ECl, ~4.3!

where the coupling constantlP@0,1#, vext(r ) is the external
potential arising from the nuclei in a molecule,T̂ is the stan-
dard kinetic-energy operator andV̂ee is the electron-electron
interaction operator. The local effective potentialve f f

l (r ) is
chosen such that the true ground-state densityro(r ) is ob-
tained for alll. The task of findingCl in Eq. ~4.3! can be
replaced by a constrained search over allC°ro(r ) @53#

min
C°ro

^CuT̂1lV̂eeuC&. ~4.4!

For thel50 case, this becomes the search for the nonin
acting kinetic energy

Ts@ro#5 min
C°ro

^CuT̂uC&, ~4.5!

whereCl50 is now a unique single determinant assumi
nondegeneracy of the noninteracting system. It is clear
we can rewrite this in terms of a search over the convex
of N-representable one-matrices, which havero(r ) as their
diagonal,

1

N
Ts@ro#5 min

g°ro

tr@ T̂g~x,x8!# ~4.6!

and since it is the optimization of a linear functional on
convex set, the minimium occurs at an extreme point of
set, which is the idempotent one-matrix in corresponde
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with the determinant obtained in Eq.~4.5!. The optimization
in Eq. ~4.6! cannot be applied tol.0 since lVee is no
longer a function of the one-matrix. We can, however, p
form a similar constrained search over the convex set
N-representable two-matrices

min
G°ro

tr@~Ĥ11lĤ2!G~x1 ,x2 ;x18 ,x2!#. ~4.7!

Note that theN-representability conditions on the two-matr
are not known in a tractable form. This optimization resu
in a two-matrix, which reduces under the action ofL 2

1 to a
nonextreme one-matrix.

A useful definition of the correlation energy from th
density-functional theory is just the difference between
total energies of the fully interacting and noninteracting s
tems, yielding the true density

Ec@ro#5tr@K̂„Gl51~x1 ,x2 ;x18 ,x2!2Gl50~x1 ,x2 ;x18 ,x2!…#,
~4.8!

which has been rewritten by Savin@27# and Levy and Go¨r-
ling @28# as an integral along an adiabatic connection@54,55#
linking the noninteracting and fully interacting one-matric

Ec@ro#52E
0

l51 T@gl#2Ts@r0#

l2
dl. ~4.9!

The partially interacting density matrixgl in this equation is
the one obtained fromCl of Eq. ~4.3! by reduction@Eq.
~2.3!#. This equation also serves to define al-dependent cor-
relation energyEc

l by replacingl51 in the upper integration
limit by an arbitrary value. The integrand is positive sin
the kinetic energy of a partly interacting system is alwa
greater than that of a noninteracting system@56#.

We now wish to consider the behavior of the eigenva
spectrum ofgl. gl50P$g I% and is, therefore, extreme i
P N

1 . The entropy is, therefore, at a minimum but asl is
increased, those eigenvalues formerly at 1/N become smaller
while the remainder becomes larger and henceSJ increases.
We do not know the value ofSJ

l for eachl but in the light of
the ‘‘geometric’’ considerations of the preceding two se
tions, it is reasonable to assume that it is a monotonic
increasing function ofl @57#. If this is true, we may useSJ
as the integration variable in the coupling constant integ
tion by makingl a monotonically increasing function ofSJ

Ec@ro#52E
0

SJ(l51)T@gSJ#2Ts@r0#

l2~SJ!
S dl~SJ!

dSJ
DdSJ .

~4.10!

Note that the Jacobiandl(S)/dSJ is positive due to the
monotonicity of thel←SJ mapping. Clearly, the derivative
of this expression atl(SJ)51 is negative,

2
dEc

dSJ
U

l51

5@T2Ts#
dl

dSJ
U

l51

.0 ~4.11!
8-4
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ELECTRON CORRELATION AND THE EIGENVALUES OF . . . PHYSICAL REVIEW A 65 032508
so that we have proven the following theorem:If SJ is a
monotonically increasing function ofl, then there is a mon-
tonically decreasing relationship between the informati
entropy and the correlation energyin the fully interacting
system.

Since the premise in this theorem is plausible but
proven, this leads to our ‘‘modified Collins’ conjecture’’: A
the correlation energyEc , in its density-functional theory
definition,decreases~i.e., becomes more negative!, the infor-
mation entropySJ increases. This is, of course, weaker th
the original conjecture, but it is physically plausible. Ziesc
et al. have empirically arrived at a very similar modificatio
of Collins’ conjecture on the grounds of their analysis
two-particle systems@52#.

Colonna and Savin have recently producedCl along the
adiabatic connection for a number of two- and four-elect
systems@58#. Using their results for He, Be, Ne61, and
Ne81, we have calculatedSJ

l and Fig. 1 confirms the mono
tonic relationship ofSJ

l with l for these atoms and ions. O
greater interest is the relationship ofEc@ro# with SJ

l as
shown in Fig. 2 for the same systems. Again there is a mo
tonicity of the two quantities confirming our modified Co
lins’ conjecture, but a simple proportionality is absent.

The second conjecture of Collins was that the true o
matrix is obtained by applying the maximum-entropy pr
ciple of Jaynes@59# subject to the constraint of fixed densit
We know that a one-matrix with any eigenvalue structure
describe any density@60# and hence ag with a flat eigen-
value spectrum would result. This is certainly not the corr
one-matrix, since its kinetic energy is far too great. T
maximum-entropy principle states that one should satisfy
known constraints and then maximize the entropy. We c
jecture that the additional constraint of fixed kinetic ener
will produce a one-matrix with the correct entropy. This su
gests a methodology for the direct determination of the t
one-matrix of the system from its density and its kine
energy: Of the set ofN-representable one-particle dens
matricesg(x,x8), which collapse to the true ground-sta

FIG. 1. EntropySJ as a function of the coupling constantl for
a few two- and four-electron systems@58#.
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density ro(r ) and that yield the true value of the kineti
energy, the one maximizing the information entropy
uniquely defined and is the true one-matrix. This then defi
a new constrained search-type definition for the one-mat

SJ5 max
g→ro ,T

S 2(
i

ni@g# ln ni@g# D . ~4.12!

This scheme would apply for arbitrary values of the coupli
constant since this information is already supplied byTl. At
l50, the kinetic energyT5Ts is at its minimum value and
we know this can only occur at the extreme points of t
convex set and hence the eigenvalue spectrum is comple
fixed. The set$g°ro ,Ts% reduces to a single member an
there is no space over which to maximize the entropy. Ho
ever, asTl increases, a set of one-matrices, all degenerat
the one-electron energyE1, results. For each value of th
coupling constant, the actualgl is the one which is the con
traction ofGl under the action ofL 2

1, however, at the leve
of the one-matrix alone, we cannot identify it without r
course to something other thanĤ1, and we conjecture tha
maximization of the entropy picks out the truegl. If this is
indeed the case, it provides an additional argument that
entropy always increases asl:0°1, sinceTl is a monotonic
increasing function ofl and we are moving from the hull o
the convex set towards its interior, the maximum attaina
value of the entropy must increase.

It should be noted that there is no explicit information
either the density, the kinetic energy, or the entropy about
nature of the electron-electron interaction. How can we
pect to derive from these quantities the true one-mat
which is, after all, a reduced form of the exact wave fun
tion? A possible answer might be that the relationship
implicit, i.e., a specific combination of density and kine
energy is physically only possible if the electron-electr
interaction has a specific~namely, the Coulomb! form.

FIG. 2. Correlation energyEc
l @see Eq.~4.9!# versus entropySJ

l

@58#.
8-5
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SMITH, SCHMIDER, AND SMITH PHYSICAL REVIEW A65 032508
If the true density is known~e.g., from x-ray diffraction!,
and so is the kinetic energy~e.g., from Compton scattering!,
then this would be a practical way of going about determ
ing the density matrix from experimental data, which is
problem of long standing indeed~see@61–63# and references
therein!.

V. CONCLUDING REMARKS

We have made an argument that Collins’ conjecture ab
the relationship of the one-particle information entropy o
system and its correlation energy can be formulated i
modified manner, leading to amonotonic relationship be-
tween thedensity-functionaldefinition of the correlation en
ergy and the information entropy of the system. This diffe
from the original formulation@29# that postulated apropor-
tionality between the information entropy and thestandard
definition of the correlation energy~i.e., the difference be-
tween the total energy and the Hartree-Fock energy of
system!.

This reformulation was deemed necessary since the
sence of a simple proportionality can be demonstrated
pirically @51,52#. Furthermore, the original Collins’ conjec
ture does not make any statements about the indepen
variable on which both the correlation energy and the inf
mation entropy depend. In this work, we have identified t
variable with the coupling constantl. Finally, there is no
known explicit expression linking the standard definition
s
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the correlation energy to a one-particle quantity. This s
gests the use of the density-functional theory definition, si
for the latter, such an expression exists in Eq.~4.9!.

We further suggest that the maximum-entropy princip
be used for the construction of the one-particle reduced d
sity matrix from experimentally known densities and kine
energies. This is in contrast to Collins’ suggestion to foc
exclusively on the density. We would like to point out that
has been shown by Harriman@64#, that both in the actua
case, and within a finite basis set of ‘‘reasonable’’ size,
unique determination of the one-matrix from charge densi
in bothpositionandmomentum space is impossible. Perha
the maximization of information entropy supplies the mis
ing piece to make this determination unique. We hope t
contributes one more step towards an understanding of
feasibility of direct density matrix reconstruction, and of th
conditions that have to be met.
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@18# Á. Nagy, J. Phys. B26, 43 ~1993!.
@19# V.E. Ingamells and N.C. Handy, Chem. Phys. Lett.248, 373

~1996!.
.

@20# R. van Leeuwen and E.J. Baerends, Phys. Rev. A49, 2421
~1994!.

@21# O.V. Gritsenko, R. van Leeuwen, and E.J. Baerends, Ph
Rev. A52, 1870~1995!.

@22# O.V. Gritsenko, R. van Leeuwen, and E.J. Baerends, Int
Quantum Chem.61, 231 ~1997!.

@23# P.R.T. Schipper, O.V. Gritsenko, and E.J. Baerends, Th
Chem. Acc.98, 16 ~1997!.

@24# E.V. Ludeña, J. Maldonaldo, R. Lo´pez-Boada, T. Koga, and
E.S. Kryachko, J. Chem. Phys.102, 318 ~1995!.

@25# E.H. Lieb, in Physics as Natural Philosophy, edited by A.
Shimony and H. Feshbach~MIT Press, Cambridge, 1982!.

@26# E.T. Jaynes, Phys. Rev.106, 620 ~1957!.
@27# A. Savin, Phys. Rev. A52, R1805~1995!.
@28# M. Levy and A. Görling, Phys. Rev. A52, R1808~1995!.
@29# D.M. Collins, Z. Naturforsch., A: Phys. Sci.48, 68 ~1993!.
@30# R.M. Erdahl, Int. J. Quantum Chem.13, 697 ~1978!.
@31# R.M. Erdahl, in Density Matrices and Density Functionals,

edited by R. Erdahl and V.H. Smith, Jr.~Reidel, Dordrecht,
1987!.

@32# C. Garrod and J.K. Percus, J. Math. Phys.5, 1756~1964!.
@33# H. Kummer, J. Math. Phys.8, 2063~1967!.
@34# A.J. Coleman, Int. J. Quantum Chem.11, 907 ~1977!.
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