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Classical simulation of noninteracting-fermion quantum circuits
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We show that a class of quantum computations that was recently shown to be efficiently simulatable on a
classical computer by Valiarffin Proceedings of the 33rd ACM Symposium on the Theory of Computing
(2001, p. 114 corresponds to a physical model of noninteracting fermions in one dimension. We give an
alternative proof of his result using the language of fermions and extend the result to noninteracting fermions
with arbitrary pairwise interactions, where gates can be conditioned on outcomes of complete von Neumann
measurements in the computational basis on other fermionic modes in the circuit. This last result is in remark-
able contrast with the case of noninteracting bosons where universal quantum computation can be achieved by
allowing gates to be conditioned on classical pis Knill, R. Laflamme, and G. Milburn, Naturg.ondon
409, 46 (200D)].
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[. INTRODUCTION result, when compared with the universal computation by
linear optics in Ref[2], shows a fundamental difference be-
To understand the power of a quantum computer, it igween bosons and fermions. One possible cause for the dif-
worthwhile to explore under what restrictions that power isference is that the bosonic modes, unlike fermionic modes,
weakened so as to make the computation efficiently simulatcan contain more than one particle, a feature that is em-
able with the use of a classical device. A nontrivial exampleployed in the universality construction in R¢].
is the Knill-Gottesman class of quantum computati¢8k The class of gates that Valiant shows to be classically
These have been shown, by the analysis of operator equéimulatable is larger than the class that we start from in
tions of motion (the strategy we adopt belgwo be effi- ~ Theorem I1(see below; his class includes nonunitary gates
ciently simulatable on a classical computer. The Knill-and also some special sets of two-qupitssibly nonunitary
Gottesman quantum circuit only allows 1-qubit Hadamardgates on the first two qubits. Knill has now shoy] that
transformations, one-qubit/2 phase shifts, one-qubit Pauli this entire class igsindeed weaker than full quantum com-
rotations, two-qubit controlledloT (CNOT) gates, andas in putation. Furthermore, Knill shows that the extensions that
the circuits we study beloy measurements during the We treat in this paper to non-nearest-neighbor interactions
course of the circuit operation, provided that these measureand conditionally applied gates are in fact included in Val-
ments are projections in the two eigenspaces of any sequent@t’s class of gates, albeit in a nonconstructive manner.
of Pauli-matrix observables. In Sec. Il we establish the mapping from Valiant's gate set
This question about restricted classes of quantum compu© & system of fermions. In Sec. Il we show how the clas-
tation is also related to the question of universality of a quansical simulation comes about when we restrict ourselves to
tum computation. What set of gates, or in more physicafuadratic interactions that preserve the fermion number and
terms, what physical system can be used to implement unin Sec. IV we handle the general case of noninteracting fer-
versal quantum computation? Surprises have been found fiions. Finally, in Sec. V we show how classically condi-
this direction; for example it was shown that the two-qubittioned gate operations can likewise by simulated with our
exchange interaction is sufficient for universal computationmethods.
and, for example, that universal computation can be achieved
with a network of phase shifters, beam splitters, and photon II. NONINTERACTING FERMIONS

counters, i.e., noninteracting bosons, where logical gates can . . .
9 g g Let us first state the main theorem of REL]; we will

be lﬁoFr;g:‘U[olr}e: r? é’lwp(r:leglslgu; g‘f ;:t%rringirr]r:pouut;ctiocgmri];sis intro_give a slightly restricted version of the theorem that does not
duced that is shown to be efficiently simulatable on a classi'—nCIlee the exira freedom of gate choice on the first two

cal device. The class includes a special set of unitary 2-qubf11;Ut_|)_'rt1s nrornt1hle Q/OfiSIr?tlmly tE ?iﬂng)mtjhn'ta%tg?t?rs: nsform
gates on nearest-neighbor qubits. In this paper we will ana- eore .( aliant [1] Le ' be the unrtary transtorma-
lyze this class of gates and show that it maps onto a syste?ﬁm represgntmg a quantum .CII’CUIt onqubits 'ghat consists
of noninteracting fermion§.e., associated with Hamiltonian of two-qubit gatesU on qubitsx; and xj;,, 1=0,...n

_ Py i
interactions that are quadratic in fermion creation and anni- 1, wheree'®U is of the form

hilation operatorsin one dimension. The equivalence will ul o 0 ul

enable us to give a straightforward derivation of the classical e,

simulation, as well as extend the class of quantum computa- ” 0 Up U O

tions to include(1) noninteracting fermions without nearest- e’U= 0 U2 U2 o ' @)
neighbor restrictions an@) gates that are applied condition- . aomz N

ally on measurement outcomes. In particular, the second U3y 0 0 Ux
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whereU?! andU? are arbitrary elements of $p) and¢ isan  occupied, corresponding to 1, or unoccupied, corresponding
arbitrary phase. There exist polynomial-time classical algoto 0. We have a set of operators, creation opermérand
rithms that evaluatél) [(y|M|x)|? for arbitrary bitstringsx ~ (Hermitian conjugate annihilation operators; associated
andy, (2) Tr{y*|M|x)(x|MT|y*) wherey* corresponds to with each mode, which obey the anticommutation rules

an assignment of an arbitrakybit subset for ank, and(3)

sample, given an arbitrary input strifg), the probability  {ai.aj}=aa;+a,a=0, {al.a/}=0, {a;.a/}=g;l.
distribution over outcomeg* of a measuremergin the com- (6)

putational basjson an arbitrank-bit subset of the qubits. The annihilation and creation operators act on computational

Note that(3), which corresponds to the final simulation of basis states in the following manner, consistent with the an-
a quantum computation, follows frof@) in a fairly straight- ~ ticommutation relations:
forward mannelsee Ref[1]), whereag2) could be strictly

stronger thar(1). ailXo, -+ Xiy o Xnoa)
A first observation about the class of allowed gates is that =5 eiﬂ—e;im;loxi| X X X 1) @)
they preserve the parity of an input bitstrif), which is X1 R
expressed by the fact that thi@0),|11)} sector is decoupled nd
from the{|01),|10)} sector. Note that the overall phase fac-
tor €'¢ is irrelevant in the computation. allXg, .. Xy oo Xn_1)
To make contact with physical models, we write a ddte ' _
acting on nearest-neighbor qubitsandi+1 ase't'. This =5, oeiﬂﬂ?:{foquo, o ;. e Xn1)- (8)
HamiltonianH can be written as a sum of three types of "
interactions: Given these definitions, we can transform the Pauli operators
in Egs.(2)—(4) to creation and annihilation operators of fer-
Hi=a1Zi®lii1+ Bili®Ziiy, 2 mions by a Jordan-Wigner transformatiof8]. This is done
by first defining the operators;” = 3 (X; +iY;) that relate to
Ha=apXi®Xis1+ BaYi®Yisg, 3 the annihilation and creation operators as
and -1 j—1
+_ ; T t -_ ; t
Hz=asXi®Yi 1+ B3Y®X4q, 4 7] exp( IW”ZO amam) A ex;{ ! W"\ZO amam) %

9
wherea;,B; are real, andX,Y,Z are the three Pauli matri- . ) ®)
ces: With these rules, the three types of interactibhs H,, and

H5 can be rewritten aéve omit terms that are proportional
X 01 Y
\1 0/

0 —i 1 0 to | since they will only add irrelevant phase factors to the

| O)’ Z=<0 —1)' (5 quantum state of the computer

At this point we note that the gate set in Theorem 1 seems

extremely close to a universal set of gates. It has been provecf_|

[5] that universal quantum computation can be achieved by '2

employingonly the XY interaction, i.e. HxX®@ X+ Y®Y, if

these gates can be applied on any pair of qubiBnce this and

form of interaction is certainly allowed in Theorem 1, we

conclude that the nearest-neighbor constraint is crucial in the Hy=—ias(al—a;)(al,;—ai;1)

construction. Another observation is that adding arbitrary

one-qubit gates to this gate-set would also result in univer- —iBs(al +a)(al, +ai). (12

sality; it has been proved that universal quantum computa- o .

tion can be obtained with a circuit with arbitrary one-qubit Thus we see that the total Hamiltonie=H,+H,+Hs is a

gates and only nearest-neightione-dimensionalXY inter- ~ SUm of nearest-n.elghbor fermlomc mt_elrac.tlons that are qua-

actions[6]. dratic in the fermlon crea_tlon and an.n|h|!at|on operators,l ie.,

Let us now consider the mapping onto a system of fermiWe can obtaJ:n anyTreaI linear (T:ombmatan of the I;|erm|t|an

ons. We can identify the-bit computational basis stategy ~ OPerators a;ai, aj1ai+1, i di+1-&dj4+1, i(ajajsy

with a state ofn fermionic modes, each of which can be T&ais1), a/a).;—aai,1, andi(aja],;+aa; ). Fermi-
onic systems that evolve according to such a quadratic
Hamiltonian are referred to as “noninteracting,” because a

INote that the gate that swaps pairs of qubitsdsincluded in the ~ canonical transformatiotchange of basjsexists that brings
set defined by Eq(1), because of the restriction to 8 [rather ~ the Hamiltonian into a standard form involving a sum of
than U2)] submatrices; therefore, the distinction between nearestterms each of which acts only on a single mode.
neighbor and farther-neighbor gates that we make here is meaning- We note that if the initial gate set in terms of Pauli matri-
ful. ces did not have the nearest-neighbor restriction, then the

Hi=2aa]a+2p1a] 1.1, (10

=a,(al—a)(al, 1 +ai 1) - Ba(al +a)(al, ,—ai 1),
(1)
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corresponding fermion interaction would not have been qua¢y|U|x)=0 if x andy have different Hamming weight. L&t

dratic: this is due to the nonlocal “sign” part in the Jordan- act on a statéx) with k fermions in certain positions:
Wigner transformation, Eq9). It has been found that these

nonlocal signs are not a problem when one considers the Ulx)=Ua/a/ ...a|0), (16)

question of simulating the dynamics of fermionic systems on vz :

a quantum computer: fermion dynamics can be simulate¢yherei,<i,<---<i, by convention. Using Eqg14) and

efficiently on a quantum computer, see R¢B-11. Fur-  (15) we can write

thermore, it has been shown in REEQ] that universal quan-

tum computation can be obtained by fermionic interactions M- t

that include Hamiltonians that aggiartic in the annihilation U= 2 ) ViipVigps Vi @p,@p, - - - ap,|0)-

and creation operators. Terms with an odd number of fer- : (17)

mion operators are unphysicdhey could transform an iso-

lated fermion into an isolated bosgprbut they have some The output state equal{sy|=(0|a,k ...a, wherel;<l,

interesting mathematical features; see the discussion, Seg....<|, . Using the anticommutation rules E@), we see

VI. that contributions to the inner produ¢y|U|x) only arise

when p;...pyx is some permutationm of the indices

lll. PRESERVING THE NUMBER OF FERMIONS I, ...lg. Furthermore, we get an overall sign for every such

term corresponding to the number of interchanges of creation

H., H,, andH, can be simulated classically, we show how operatoTrs that v¥e have to pTerforme order to r(_awnte the
this simulation is done in the more restricted case when th&t&t€ 8z, - - -8xay0) as aj, .| |0). After this re-
gates preserve the number of fermions. Thus we consider @dering no more sign changes will take place, since
circuit on n fermionic modes where each elementary date (0| ay, .- .a|1afr1 . .61,Tk|0)=(0|a|kafrk .. .a|1a|T1|O):1. Thus
corresponds to an interaction between madasdj, and can

Before we discuss how a fermionic circuit involving

be written asU=exp(Hy) where the gate Hamiltonian is
written generally as (y|U|x>=§ Sgr(ﬂ-)vilv”(ll)visz(lz) - Vimy-
—h.at T T T (18)
Hg—biiaiai+bjjajaj+bijaiaj"r‘bﬁajai. (13)

If V is defined as the matri¥ where we have selected rows
i1, ...,k and columnsly, ... |, then we see that
(y|U|x)=det(V). The determinant of kX k matrix,k=n, is
computable in polynomial time in.

Note that the coefficients,; form a 2x2 Hermitian matrix;
we will consider these coefficients to be part of axn
matrix b, which is only nonzero for matrix elements involv-
ing modesi andj. Here and later in Sec. IV we impose no
restriction that andj be nearest-neighbor modes, unlike the
case that Valiant introduced. We will abbreviate the vacuum Simulating measurements

state[00...0) as|0). Let U=Upgyny - .- UoUg be a se- Next we consider how to simulate classically the out-
guence c_)f two-qubit gates representing the quantum circuigmes of measurements on arbitrary subsets of qubits at the
We consider end of the computation. We will show how to calculate the
probability that a certain subset of qubits is in a particular
Ua/|0)=Uau'u|0)=Ua/u'|0), (14) statey* [item (2) in Theorem 1. With those probabilities in
hand, one can sample the probability distribution as given by
guantum mechanidstem (3) of Theorem 1.
The Hermitian operatoaiTai counts the number of fermi-
ons in modei. Thus its expectation value with respect to a

sinceU|0)=|0) due to fermion number preservatidd.acts
by conjugation as

UaiTUT:% Vimag. (15  density matrixp, Tra'a;p, is the probability that mode
i is in state |[1). Similarly, the expectation value of
WhenU corresponds to a gate operation as in B@), the @& =!—a/a; is the probability that modeis in state|0).

matrix V is given byV=exp(b). This result is proved by SO in order to eyaluate the probability that, given an input
making a canonical transformation that diagonalipesBy ~ State|x), a certain subset ok modes is in statgy*) we
group composition, the matri¥ for the entire circuitU is ~ calculate
given by matrix multiplication of th&/’s for each gate. This

evaluation ofV is polynomially efficient inn if the circuit

contains pol ates(in fact, we could replace the indi- _ + +
vidual twg—q)(i(l;)itggates by an arbitrary qUZdratic fermion- = (x| UTajlajl e 'aikaiku|x>’ (19

number-preserving Hamiltonian and the mawiof the total L ) t t .
circuit could still be evaluated efficiently with jy#jo7# -+ - #jx and we useaja; or &;a; wheny;

We will first show how to evaluate efficiently the matrix =1 0r 0. res’Pectively{.Eguation(m) iIIustr?tes acase where
element(y|U|x) where|x) and|y) are arbitrary input and ¥j,=0 andyj =1.] Again we write|x)=a, ...a,|0). We
output bitstrings. Sinc& preserves the number of fermions, have to evaluate the expression

piy*[x)=Traya/ ...aja, Ux}(x/U"
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TABLE I. The matrixM(i,j) for i<j.

J

¥ ¥
p, an, @y, ap,
¥
a, 0 0 Vi S
i
— _ + My _
a, X E Vn 2 Vn L ighn 9n =0 E V" W VJ Jmn G _5“’[3 VP o
a ning ala "BIg Ta TR N g aa Jgs Mg g Mg Brla
i g T t t Tt
Ay X E VJ ,m Vn L ig%n Gn =0 E VJ ,m VJ O G =0 0
a g ng = Bl My Mg g e g g My Mg
aj b¢ b¢ b¢ 0

vacuum expectation value of any normal-ordered sequence
ply*[x)= > VjTl,lenl,j1 . -Vka,mkVnk,jk of operators vanishe0[:A; ...A; :[0)=0. Therefore,
T when we evaluate the vacuum expectation value of(E),
x(Oay, - - -ap (an,ah - --ana,)ay .. .ap[0).  the only terms that remain come fro, (n even, in
which every operatoA; is contractedor matcheg with an-
(20 other operatorA;. The last step is to bring the fully con-

We will invoke Wick's theorem{12(a)] (described in quan- tracted terms to a form in which contracted operators are

tum many-body or quantum field theory textbooks such a@diacent; that is, we have
Ref. [13]) to rewrite this formula[12(b)]. Wick's theorem

states that we can rewrite a string of annihilation and creation h’:'j—‘ —
operatorsA; . . . A, as (0]:A1A,A3AAs . . A; .. A, 1A,:|0)
I s | —
n/2] =sgn(m){(0:A1A3A,A5ALA; ... A,_1A,:|0)
Al A=A ... A+ Cy, (21) — M —
k=1 =Sgn(1T)A1A3A2A5A4A,- . 'An—lAn N
(29
with
where sgnfr) is —1 (1) when the number of crossings of the
_ .M L ) contraction lines is oddevern. Evidently, what emerges is
Ci=:Aidy . Api A dpAy At e, the Pfaffian Pfi1) of M(i,j), annXxn antisymmetric matrix
1 [i.e., M(i,j)=—M(j,i)]. The Pfaffian Pfi#) is 0 whenn is

Co=iA1AAAMs . A A AAAMAs L Apit ey odd, and for evem it is defined ag18]
(22)
Pi(M)=>, SgN( ™M 21y, 2) - - - Mzn—1),m(n)» (26)
etc. Here A, .. .A,: denotes the so-called normal ordered w
form of the sequence of operatoks . . . A,. (A ... A, IS
equal to the reordered sequence of operadyg, - . . A
where all the creation operators are moved to thekeft not

where the sum ovetr is restricted to permutations on the
indices 1,2...n such that7(2k—1)<w(2k) and (1)

reordered among each otheand the quantity is negated <m(3)<m(5) ... . Equationg20), (25), (26) tell us that
when the number of interchanges of creation and annihila- p(y* [x)=Pf(M), 27)
tion operators to achieve this form is odd. The object

14'—ij4j is called a contraction and is defined as whereM can be constructed from E¢0) and the contrac-

tion identities, Eq(24), in the following manner. The matrix
| elementsM(i,j) for 1<i<j<2(k+I) are obtained from
AA=AA—AA; (23)  Table I: The indices,j=1,...,2k+I) are assigned to the
ordered sequence of creation and annihilation operators in
The termsCy in Eq. (21) are each a sum over every possible g (20). To determineM(i,j)(i<j) we find what type of

choice ofk contractions in the normal ordered product.  gperator the indices andj correspond to and then read off
From the anticommutation rules for creation and annihi-tne matrix elemenM(i,j) from the table. We use unitarity
lation operators, it follows that of V and the contraction rules to determine each entry of the
e - table. The Xs in the table indicate that these entries do not
a,-Taj=a,-a;=a,-aj=0, a,-ajT-=5,-j. (24)  occur.

The Pfaffian of amXn antisymmetric matrixM can be
The normal-ordered form is extremely convenient whencomputed in polyg) time, since Pfi1)?=detM. The simu-
evaluating an object such a&|A;...A,|0) since the lation procedure that was formulated in REE] very simi-
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larly relies on the evaluation of a Pfaffian. At the moment ith’ and b” are given by the real orthogonal transformation
is not clear to us how the representation of the quantuni14(b)]

circuit in Ref.[1] using matchgates corresponds to the fer-

mionic representation developed here. bg Co
bg c
IV. GENERAL NONINTERACTING FERMIONS 0 !
, ) , , =W| i : (33
We are now ready to consider the classical simulation of a ,
guantum circuit consisting of gates that are built from gen- n-1 Can-2
eral quadratic fermionic interactions. These interactions only (- Con_1

preserve the parity of the fermion number. In order to deal

with these general interactions, we transform the set of ferThe 2nx 2n orthogonal matrixW diagonalizesa into 2x 2
mion annihilation and creation operators to a new set of Herplocks:

mitian operatorgassociated with so-called Majorana fermi-

ons[10,14): 0 ¢
Chi=a+al, Cui=—i(g—a), (28) —€ 0
WaW'= . (39
wherei =0, ... n—1. The anticommutation relation for this 0 E
new set of operators is n-1
—€n-1 O

{Ckacl}:25k||- (29)
Theb’’'s andb”’s have the same anticommutation relations

Note that operators,; andc,;.; are in some sense the fer- as the original Majorana fermion operators. Note thag;
mionic version of conjugate variablgsand q that are ob- are the eigenvalues of the matiiet. We now write Eq.{(31)
tained from linearly combining bosonic annihilation and cre-using the canonical transformation
ation operators. It is clear that the Hamiltoniads, H,,
andH; of Egs.(2)—(4) will be quadratic in these new opera- 1 o ,
tors. LetU be a sequence of two-qubit gates each composed Uciu'= 2 exp( 2 % Embmbm) (Way,ibj
of interactions that are quadratic in the operatoys i.e.,
each of the gates corresponds to a Hamiltorian

n 1 ! n
+W,; 1 1;b])ex 5% embibil. (35

i
H= 1 > @G - (30 o ) )
k#1 Because the Hamiltonian in this canonical form is a sum of

commuting terms, the exponentials here can be factorized;

We again have omitted any term proportional téiermitic-  the factors withm#j commute through and disappear, and
ity of H requires only that Img,)=Im(«). It is conven- e obtain

tional to choose thex matrix to be real and antisymmetric,
so thati e is a HermitiannX n matrix. For the interactions

we have introduced, the matrix will only be nonzero in a UcUT=2 exp(— 5 €b/b})(W,; ib/
4X 4 subblock, but this restriction is not necessary for the '
following procedure to work. Similar to the number- +Waj 1b))exp s e b/bl). (36)

conserving case, a sequence of gafesU o - . - UoU;

acts by conjugation as The remaining exponential factors can be expanded and sim-

plified:
UcU™=2 Rjcj, (3D)
]
exp(3eb/b) = Z (e J 2" — (b b))
whereR e SO(2n). We will establish this important result by =0
explicitly computing the matrixR for a single gatdJ =e' /2 2k o [2)2k+1
The result is not so well known as for the number-conserving 2 (€/2) ke S (/27"
case(although it has been mentioned [ih0]), so we will k=0 2k! K=o (2k+1)!
give some of the details of the derivation. We follow the Kb’ b’
notation off 14(a)]. First, the Hamiltonian of Eq:30), with X(=1)"bjbj
chosep to be a real antisymmetric matrix, can be brought into = Cog €;/2) + b b sin(;/2). (37)
canonical form
1 Plugging this form into Eq(36) and simplifying, we obtain
He D &b!b! 32  Eq.(31), whereRis given byR=WTMW, with the matrixM
2 =0 having the 2<2 block form
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CoSey —Sineg TABLE Il. The matrix N(i,j) for i<j.
Sineg  COSegg i
M=
cose,_; —Sine,_; " Cp Covg
. Cm, (THT"); ig (THT");_ ig (TH); 2,
Siney_1 COS€j—1 (38) i Cn, (T*HTTT)ja Js (T*HTT)ja Ja (T*H)ja,Zpﬁ
C2p, (HT )2p, . (HTT)z,,m,,»‘i Sap

As before, given a quantum circuit with polyY two-mode
noninteracting fermion gates, that is, involving four Majo-
rana fermions per gate, we can construct the totak 2n
matrix R in polynomial time by straightforward matrix mul-
tiplication of the individualR matrices corresponding to the
gates. 1 T P s R oy

We again consider the probabilities with which certain CriCrje1=—i(aa;—a,a}+ala;—ala
measurement outcomes are obtained, pgy*|x) in Eq.
(19), and show that as before these quantities are equal to t
Pfaffian of some antisymmetric matrix.

As before, we consider an input std=aj . ..a}[0), brir1bo= =18y, Coyy=loiiibyyui=8y.  (44)
which we will now write ascy, . . .Czp|0) with p;<p;

survive. All of these fully contracted terms are generated by
contractions directly over the Majorana operators, defined by
linear extension:

ﬁ-)é]d similarly,

) Here we have used Eq24). Then, the vacuum expectation
<---<p;. Thus we would like to evaluate value is written as the sum of all fully contracted expressions
*ly) — ta F1 + over the Majorana operators, with the usual fermionic sign.
P(Y* |x) <0|C2F>| -+ -Cop,UTa;, UU ale U Thus, we can say that Wick's theorem applies in the same
way to the Majorana fermion operators as it does to ordinary
fermion creation and annihilation operators; we emphasize

. . . that this is only true for the vacuum expectation value, it is
T l
The pattern ofianda’ is again determined by the stdse ). not true as an operator identifypormal ordering is not de-
We need a formula for how our gener@on-number con- fined for the Majorana operators

s_erving U acts by conjugation on the creation and destruc-m We can summarize these contraction rules by writing
tion operators. We can use E@1): ¢ic; =Hjj whereH is a 2nX2n Hermitian matrix consisting
of 2X2 blocks:

xa] UUTa Ucyy, ... Cp0), (39)

1 . 1 .
Utau= EUT(CZi_HCZHl)U:E EJ: (Rg j+iRZ 1 1))Cj

=3 Tye;, (40 H= . (45)

and similarly

UTaiTUZ; Ti*i Cj- (41) Applying Wick's theorem again leads to a Pfaffian expres-
sion. In Table Il we give entries that permit thel2(k)
This defines thenx2n matrix T. We then obtain for the Xx2(+k) matrix N to be constructed such tha(y*|x)
measurement probability =Pf(N). Again, the entire evaluation is clearly doable in
polynomial time.
p(y*[x)
V. INTERMEDIATE MEASUREMENTS AND

= > T m Tin T T CLASSICALLY CONDITIONED OPERATIONS

Jpng IPRUPRS PRI

We now extend our quantum circuit of noninteracting fer-

X<0|CZP| +++C2p,Cm,Cn, - - Cn Cm C2p, - - 'CZP||0>' mions by allowing intermediate complete von Neumann
(42) measurements in the computational basis on subset of qubits,
which then determine the subsequent choices of unitary gates

Again we can use Wick's theorem to evaluate the vacuunand measurements on the remaining qubits. We will show
matrix element. This is done by writing the Majorana opera-here that a fermionic circuit with these resources can still be

tors in terms of the fermion creation and annihilation operasimulated efficiently with a classical algorithm. Care has to
tors. Expanding gives a large number of terms, to each olbe taken in specifying which intermediate and final measure-
which Wick’s theorem applies. Each term normal orders dif-ments are allowed in our model; we restrict ourselves to
ferently, but in every case only the fully contracted termscomplete von Neumann measurement in the computational
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— = classical bits

= = quantum bits

*

=
)+ ]
—

FIG. 1. A quantum circuit with classically conditioned gates.

basis; i.e., the outcomes of the measurement are either “nemaining qubits are in the state
fermion present in this mode” or “one fermion present in

this mode.” A lot of added power can be hidden in the kind Uz(Y’f)Py;U1|X><X|UJ1FPy*l*U2(Y’I)T

of measurement that one is allowed to do; for example, it has pr= , (46)

been shown in Ref.10] that universal quantum computation Tr PyIU1|X<X|UJ{

can be achieved by noninteracting fermion gates plus a non-

destructive eigenvalue measurement of the quartic operat@jhere the projectoP,s« is of the form ajlaj‘rl N _ajT‘S‘ s,
1 1 1

CiCKC/Cs-
jkbris ) ) . . . +
A general quantum circuit employing our set of resourcesVhere j1, ... .jis €S, and whether the factoa; a; or
is depicted in Fig. 1. Every time a measurement is made oaj‘t_aji appears depends on whethgf‘l‘Iji is 0 or 1, respec-

a subset of qubits, these qubits are no longer used in any latg{ely. Let us assume that we have sampled the measurement
steps of the computation. Our classical simulation will bep ohapility distribution at time; and have found a particular
constructed in the following manner. Measurementsyicomey* . To sample from the probability distribution of

My, ..M on subsetsS,, ... .S will take place at noa5 rementt,, we will have to be able to evaluate
times” ty, ... tc. The total unitary evolution until the

measuremenM ; is denoted adJ,, the conditional unitary
evolution between M, and My,; is denoted as
Ur1(YT Y5, - .. y§) where the labelg? ,y5 , ... .y§ cor-
respond to the outcomes of the measurembhis. .. ,My.
The choice of measurements themselves may depend on eaperators; e.g.aflail . 'ai\sz\ai\sz\

lier measurement outcomes, i.¥;=M(y1....¥{“1).-  and the pattern of creation and annihilation operators de-
Even though the later time-evolution operators will not aCtpends on the bits of% . The denominator in Eq46) is

on the qubits that are already measured, we keep the dimeQyea4y determined when simulating the first measurement,
sion of these matrices the same as the initial matrixi.e., g5 we will focus on calculating

these are 2x2" matrices when the total number of fermi-
onic modes .

We can calculate the probability that at timesubsetS;
is in the statdy}) (and sample from this probability distri-
bution by the methods that we have developed in Secs. Il
and IV. If the quantum measurement givgg ), then the (48)

POY3 YT . X)=Tr Pyspo. (47)

Py, like Pyx, is again a product of creation and annihilation
2 1

T whereiy, ... i €S,

P(YT Y3 %) =Tr Pys Us(y)Pys U|x)(x|UIPy: Us(yT)'

= (x|UIPyxUa(y) "PysUa(y]) Py Uy ).

TABLE Ill. The matrix O(i,j) for i<j.

J
lalg Civlg)g Cdy Cep Copg
T 1 1% T 1 12% 1
Calp, (T'HTY), (THT™; (T'HT'®), i, (T'HT™Y; ., (T'H), 2,
T + T +
Cirg), (Tl *pr! )ja,jﬂ (TI*HT”)ja,jﬂ (TI*HTIZ )ja,iﬂ (TI*HTIZI)ja,iﬂ (TI*H)ja,Zpﬂ
i cq (T2HT", | s (TRHTY, ;) (T12HT12T)ia,iﬂ (TRHT,; (TPH); 5,
¢, (T>*HTY, (T*HT', ;. (r'=gr'?y, | (T*HT™, (T*H); oy,
(24 a ﬂ . a a’ ﬂ " a’ a’
Cap. (HTIT)zpa,jﬂ (HT)z i, (HTIZT)Zpa,iﬂ (HT),, i, Oa,p
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This equation has basically the same form as B9), LetUz(yl) U,, P *—Pl, andP *—Pz We put inU, U]
except that(l) we have more annihilation and creation op-

and U,U
erators and2) we conjugate different sets of operators bySO that o erators in the firstfrom the lefy P, get
different unitary matrices. The important fact here is that we P t 19
can again express the probability as the Pfaffian of Somgonjugateg byU;, operators inP; get conjugated by
antisymmetric matrix. Let us see how we construct thisU1,=U7U}, and the lasP; gets conjugated bwl again.
matrix. Let T% k=1,12, be defined byUlaU,==;Tic;. We

At this point we simplify the notation somewhat. obtain

, terms in the appropriate places in E@9),

* * 1% 1% 1 12% 12 12% 12 1
Y5 |X) = T T N i i g T i T:
P(YT Y3 (%) a b fege. .. fa 1 bis, sy 01y jp.agigb IisPls) " Iis,+@ys,| 1081 11:01 i|s,[ €5, T|s,|dIs,| 11:f1
dyeq, ... d‘sz‘ ,e‘sz‘
1% 1%
le g1 " T]‘Sl‘ g|51|TJ\51 f‘s ‘<O| C2p| C2pl(Calcbl Cblsllcalsll)(celcdl Ce‘sz‘cd‘sz‘)
X(cq Cq, - - .cg‘sﬂcf‘sﬂ)czpl -+ Cp |0). (49
|

In Table Il we show how to construct the mat® of di- (v) Lety’ be the outcome of the measurembht and let

mension 2(+2|S;|+[S,|) for which p(y7 ,y3|x)=Pf(0).  Uj be the corresponding unitary evolution, possibly also de-
The notatiorr:(a,f)a indicates that the operator can be either pending on the first outcomg . CalculateT?® correspond-
ac, orac ;the reason is that these operators have idening to UJUJU].
tical T prefactors. (vi) Simulate measuremem ;: sample from the proba-

It is clear that we can extend this procedure to the case dfility  distribution  p(y3|y7.y3 . X)=[p(Y7.Y5.Y3|X) 1/
a circuit that containk= poly(n) instances of measurements [p(y7 ,y3|x)], where we use the fact that we can evaluate
on subsets that determine the next choice of unitary evquP(y*1c Y3 ,y5|x)=Pf(O3). O; depends o128 T2 gndT?,
tion. In general, when we express a probability such as Eq. (vii) Repeat stepév) and (vi) for the subsequent evolu-
(48), we see thaP; gets conjugated by, P,byUi,, P3  tions U, ... U,, finding expressions for T123:-k
by Uizs, ..., andP by UlZ...ka the total unitary evolution. and finally simulate the last measurememM, by
When we writep(y? ,y5 - yk|X) Pf(X), the dimension sampling from the distributiorp(y|ys ,y5, ... .yi_ 1.X)
of the matrixX is 2(I +|Sk|+22 £|Si]). The entries of this =p(YE e, YED)IP(YE L YE L L yEx).
matrix can be determined by calculatlng particular matrix |t is evident that this procedure is polynomial when the
elements(specified by the measured sets of qubité at  number of stagek of the compute/measure procedure of Fig.
most (% +1)* matrices of the fornil'HT/", etc., wherei 1 is poly(n): the largest matrix whose Pfaffian must be com-
andj are labels that can be 1,12,123.,123 .. k. puted has dimension bounded bl

Let us summarize the simulation algorithm.

Classical simulation of a quantum circuit with noninter-

acting fermions and fermion counting measurements; see VI. DISCUSSION
Fig. 1 . . .
(i) Compute thenx 2n matrix T! corresponding ta! The present work opens a set of very interesting questions

concerning the boundary between classical and quantum
computation. For fermionic quantum circuits we may ask,
what is the effect of adding circuit elements beyond those
considered abovéhose associated with a noninteracting fer-

Eq. (40).

(ii) Simulate measuremeM ;: sample from the probabil-
ity distribution p(y7 |x) using the measurement theorem in
Ref.[1] and the fact thap(y*|x) =Pf(Oy) = VdetO; where o mode)? Three outcomes are possibld) the circuit
Oy is a 2( +k)x2(I+k) matrix with k equal to the Ham- .4y herform universal quantum computatié®) the circuit
ming Wi'ght of input stringc and| equal to the number of o mains efficiently simulatable by a classical computation, or
bits iny7 . (3) some intermediate case. For example, one could explore

(iii) Lety] be the outcome of this measureméht, and  the effect of adding(unphysical linear terms to the gate
let U, be the corresponding unitary evolution. Complité  Hamiltonians. These terma;+al and i(a;—a) will be
corresponding tdJjU]. somewhat similar, but not identical to one-qubit gates in

(iv) Simulate measuremeht,: sample from the probabil- terms of Pauli matrices; they are nonlocal gates, as can be
ity distribution p(y3|yy ,.X)=p(y:.y5|X)/p(yi|x), where seen from the Jordan-Wigner transformation, E9j. It can
we use the fact that we can evalugty/y ,y3 [x) =Pf(O,). in fact be shown4] that these linear interactions can be
0, depends om*? and T as in Table IIl. incorporated in purely quadratic fermion interactions by add-
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ing a new fermionic mode, which we may labet‘1,” and We would like to emphasize again that this quantum/
changing the linear interactions on, say, mode quadratic  classical distinction may not be perfectly sharp; being able to
interactions between modeand mode— 1. Another line of  efficiently compute some properties of a circuit classically
investigation could be into some known physical modelsdoes not mean that every aspect of the quantum dynamics of
(e.g., the Anderson model and the Kondo moddd]) that  this circuit is also efficiently computable. This is shown
involve more general fermionic interactions at a single sitewhen we try to carry out the analysis in Secs. Il and IV for
(meaning two fermionic modgsmany of whose properties bosons, to see where the parallels between the two cases

are computable. break down. In fact, one can go surprisingly far before any
Valiant's work shows that some terms added to the ferdifferences appear. An equation of the form of ELH) still
mion model(or some gates added to the circuit modstlll applies for bosons, wheié can be shown to be any element

result in a classically simulatable system; these new termg U(n) [16]. That is, a canonical transformation exists in
are to act on the first two fermionic modes only. These newboth the boson and fermion cases that permits a representa-
gates(if they exisy do not preserve the parity of the number tion of the system as a set of noninteracting particles.
of fermions, and thus involve either linear or cubic terms in It might have been thought that this easy diagonalization
the annihilation and creation operatof$his follows from leads to an easy computation of all possible properties, but
the fact that any gate that obeys the five matchgate identitiethis does not appear to be the case. An essential difference is
in Ref.[1] and preserves the parity of the number of fermi-that no sign changes occur when we interchange the bosonic
ons is automatically quadratic in the number of fermipns. creation operators among each other. This causes an expres-
See Ref[4] for a more extensive treatment of these addi-sion such agy|U|x) in Sec. Ill to be equivalent to thger-
tional gates. manentof some matrix, if we analyze the case wHap and

The case of adding power by intermediate measurementy) both contain no more than one boson per mode. The
is also quite interesting: between the case of complete vopermanent is a much harder object to calculate exactly than
Neumann measurements that are classically simulatable, atide determinant of the fermion case; in fact, this has been
the quartic-operator basis measurements of Bravyi and Kiproved to be a B-complete probleni17]. Our methods will
taev[10], which give universal quantum computation, theretherefore fail to evaluate these bosonic matrix elements
are many possible positive operator valued measure meafficiently.
surement scenarios that have not been analyzed. We are In summary, our results on the classical simulatability of
hopeful that further analysis will be able to identify more noninteracting fermions leave some interesting questions un-
scenarios as definitely classical or definitely quantum. answered about the computational power of various physical

This classical-quantum boundary is remarkably differentmodels of quantum computation. While Valiant's analysis
for fermionic and bosonic systems. A model quadratic inturns out to conform largely to a “known” area of physics,
bosonic operators describes the “linear optics” scenario ohis work shows that mathematical approaches to these prob-
quantum computation; formally, this model only differs from lems are possible that have never been envisioned in many-
the noninteracting-fermion model in that bosons are charadsody physics.
terized by commutation rather than anticommutation rela-
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