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Classical simulation of noninteracting-fermion quantum circuits
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We show that a class of quantum computations that was recently shown to be efficiently simulatable on a
classical computer by Valiant@in Proceedings of the 33rd ACM Symposium on the Theory of Computing
~2001!, p. 114# corresponds to a physical model of noninteracting fermions in one dimension. We give an
alternative proof of his result using the language of fermions and extend the result to noninteracting fermions
with arbitrary pairwise interactions, where gates can be conditioned on outcomes of complete von Neumann
measurements in the computational basis on other fermionic modes in the circuit. This last result is in remark-
able contrast with the case of noninteracting bosons where universal quantum computation can be achieved by
allowing gates to be conditioned on classical bits@E. Knill, R. Laflamme, and G. Milburn, Nature~London!
409, 46 ~2001!#.

DOI: 10.1103/PhysRevA.65.032325 PACS number~s!: 03.67.Lx, 05.30.2d
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I. INTRODUCTION

To understand the power of a quantum computer, i
worthwhile to explore under what restrictions that power
weakened so as to make the computation efficiently simu
able with the use of a classical device. A nontrivial exam
is the Knill-Gottesman class of quantum computations@3#.
These have been shown, by the analysis of operator e
tions of motion ~the strategy we adopt below! to be effi-
ciently simulatable on a classical computer. The Kn
Gottesman quantum circuit only allows 1-qubit Hadama
transformations, one-qubitp/2 phase shifts, one-qubit Pau
rotations, two-qubit controlled-NOT ~CNOT! gates, and~as in
the circuits we study below!, measurements during th
course of the circuit operation, provided that these meas
ments are projections in the two eigenspaces of any sequ
of Pauli-matrix observables.

This question about restricted classes of quantum com
tation is also related to the question of universality of a qu
tum computation. What set of gates, or in more physi
terms, what physical system can be used to implement
versal quantum computation? Surprises have been foun
this direction; for example it was shown that the two-qu
exchange interaction is sufficient for universal computat
and, for example, that universal computation can be achie
with a network of phase shifters, beam splitters, and pho
counters, i.e., noninteracting bosons, where logical gates
be conditioned on previous measurement outcomes@2#.

In Ref. @1# a new class of quantum computations is intr
duced that is shown to be efficiently simulatable on a cla
cal device. The class includes a special set of unitary 2-q
gates on nearest-neighbor qubits. In this paper we will a
lyze this class of gates and show that it maps onto a sys
of noninteracting fermions~i.e., associated with Hamiltonia
interactions that are quadratic in fermion creation and an
hilation operators! in one dimension. The equivalence w
enable us to give a straightforward derivation of the class
simulation, as well as extend the class of quantum comp
tions to include~1! noninteracting fermions without neares
neighbor restrictions and~2! gates that are applied condition
ally on measurement outcomes. In particular, the sec
1050-2947/2002/65~3!/032325~10!/$20.00 65 0323
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result, when compared with the universal computation
linear optics in Ref.@2#, shows a fundamental difference b
tween bosons and fermions. One possible cause for the
ference is that the bosonic modes, unlike fermionic mod
can contain more than one particle, a feature that is e
ployed in the universality construction in Ref.@2#.

The class of gates that Valiant shows to be classic
simulatable is larger than the class that we start from
Theorem 1~see below!; his class includes nonunitary gate
and also some special sets of two-qubit~possibly nonunitary!
gates on the first two qubits. Knill has now shown@4# that
this entire class is~indeed! weaker than full quantum com
putation. Furthermore, Knill shows that the extensions t
we treat in this paper to non-nearest-neighbor interacti
and conditionally applied gates are in fact included in V
iant’s class of gates, albeit in a nonconstructive manner.

In Sec. II we establish the mapping from Valiant’s gate
to a system of fermions. In Sec. III we show how the cla
sical simulation comes about when we restrict ourselves
quadratic interactions that preserve the fermion number
in Sec. IV we handle the general case of noninteracting
mions. Finally, in Sec. V we show how classically cond
tioned gate operations can likewise by simulated with o
methods.

II. NONINTERACTING FERMIONS

Let us first state the main theorem of Ref.@1#; we will
give a slightly restricted version of the theorem that does
include the extra freedom of gate choice on the first t
qubits nor the possibility to do nonunitary gates:

Theorem 1 (Valiant [1]). Let M be the unitary transforma
tion representing a quantum circuit onn qubits that consists
of two-qubit gatesU on qubits xi and xi 11 , i 50, . . . ,n
21, whereeifU is of the form

eifU5S U11
1 0 0 U12

1

0 U11
2 U12

2 0

0 U21
2 U22

2 0

U21
1 0 0 U22

1

D , ~1!
©2002 The American Physical Society25-1
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whereU1 andU2 are arbitrary elements of SU~2! andf is an
arbitrary phase. There exist polynomial-time classical al
rithms that evaluate~1! z^yuM ux& z2 for arbitrary bitstringsx
and y, ~2! Tr^y* uM ux&^xuM†uy* & wherey* corresponds to
an assignment of an arbitraryk-bit subset for anyk, and~3!
sample, given an arbitrary input stringux&, the probability
distribution over outcomesy* of a measurement~in the com-
putational basis! on an arbitraryk-bit subset of the qubits.

Note that~3!, which corresponds to the final simulation
a quantum computation, follows from~2! in a fairly straight-
forward manner~see Ref.@1#!, whereas~2! could be strictly
stronger than~1!.

A first observation about the class of allowed gates is t
they preserve the parity of an input bitstringux&, which is
expressed by the fact that the$u00&,u11&% sector is decoupled
from the$u01&,u10&% sector. Note that the overall phase fa
tor eif is irrelevant in the computation.

To make contact with physical models, we write a gateU
acting on nearest-neighbor qubitsi and i 11 as eiH . This
Hamiltonian H can be written as a sum of three types
interactions:

H15a1Zi ^ I i 111b1I i ^ Zi 11 , ~2!

H25a2Xi ^ Xi 111b2Yi ^ Yi 11 , ~3!

and

H35a3Xi ^ Yi 111b3Yi ^ Xi 11 , ~4!

wherea j ,b j are real, andX,Y,Z are the three Pauli matri
ces:

X5S 0 1

1 0D , Y5S 0 2 i

i 0D , Z5S 1 0

0 21D . ~5!

At this point we note that the gate set in Theorem 1 see
extremely close to a universal set of gates. It has been pro
@5# that universal quantum computation can be achieved
employingonly the XY interaction, i.e.,H}X^ X1Y^ Y, if
these gates can be applied on any pair of qubits.1 Since this
form of interaction is certainly allowed in Theorem 1, w
conclude that the nearest-neighbor constraint is crucial in
construction. Another observation is that adding arbitr
one-qubit gates to this gate-set would also result in univ
sality; it has been proved that universal quantum comp
tion can be obtained with a circuit with arbitrary one-qu
gates and only nearest-neighbor~one-dimensional! XY inter-
actions@6#.

Let us now consider the mapping onto a system of fer
ons. We can identify then-bit computational basis statesux&
with a state ofn fermionic modes, each of which can b

1Note that the gate that swaps pairs of qubits isnot included in the
set defined by Eq.~1!, because of the restriction to SU~2! @rather
than U~2!# submatrices; therefore, the distinction between near
neighbor and farther-neighbor gates that we make here is mea
ful.
03232
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occupied, corresponding to 1, or unoccupied, correspond
to 0. We have a set of operators, creation operatorsai

† and
~Hermitian conjugate! annihilation operatorsai associated
with each modei, which obey the anticommutation rules

$ai ,aj%[aiaj1ajai50, $ai
† ,aj

†%50, $ai ,aj
†%5d i j I .

~6!

The annihilation and creation operators act on computatio
basis states in the following manner, consistent with the
ticommutation relations:

ai ux0 , . . .xi , . . . ,xn21&

5dxi ,1
eip % m50

i 21 xiux0 , . . . ,x̄i , . . . ,xn21& ~7!

and

ai
†ux0 , . . .xi , . . . ,xn21&

5dxi ,0
eip % m50

i 21 xiux0 , . . . ,x̄i , . . . ,xn21&. ~8!

Given these definitions, we can transform the Pauli opera
in Eqs.~2!–~4! to creation and annihilation operators of fe
mions by a Jordan-Wigner transformation@7,8#. This is done
by first defining the operatorss i

65 1
2 (Xi6 iYi) that relate to

the annihilation and creation operators as

s j
15expS ip (

m50

j 21

am
† amD aj

†, s j
25expS ip (

m50

j 21

am
† amD aj .

~9!

With these rules, the three types of interactionsH1 , H2, and
H3 can be rewritten as~we omit terms that are proportiona
to I since they will only add irrelevant phase factors to t
quantum state of the computer!

H152a1ai
†ai12b1ai 11

† ai 11 , ~10!

H25a2~ai
†2ai !~ai 11

† 1ai 11!2b2~ai
†1ai !~ai 11

† 2ai 11!,
~11!

and

H352 ia3~ai
†2ai !~ai 11

† 2ai 11!

2 ib3~ai
†1ai !~ai 11

† 1ai 11!. ~12!

Thus we see that the total HamiltonianH5H11H21H3 is a
sum of nearest-neighbor fermionic interactions that are q
dratic in the fermion creation and annihilation operators, i
we can obtain any real linear combination of the Hermiti
operators ai

†ai , ai 11
† ai 11 , ai

†ai 112aiai 11
† , i (ai

†ai 11

1aiai 11
† ), ai

†ai 11
† 2aiai 11, and i (ai

†ai 11
† 1aiai 11). Fermi-

onic systems that evolve according to such a quadr
Hamiltonian are referred to as ‘‘noninteracting,’’ because
canonical transformation~change of basis! exists that brings
the Hamiltonian into a standard form involving a sum
terms each of which acts only on a single mode.

We note that if the initial gate set in terms of Pauli mat
ces did not have the nearest-neighbor restriction, then

t-
g-
5-2
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CLASSICAL SIMULATION OF NONINTERACTING- . . . PHYSICAL REVIEW A 65 032325
corresponding fermion interaction would not have been q
dratic: this is due to the nonlocal ‘‘sign’’ part in the Jorda
Wigner transformation, Eq.~9!. It has been found that thes
nonlocal signs are not a problem when one considers
question of simulating the dynamics of fermionic systems
a quantum computer: fermion dynamics can be simula
efficiently on a quantum computer, see Refs.@9–11#. Fur-
thermore, it has been shown in Ref.@10# that universal quan-
tum computation can be obtained by fermionic interactio
that include Hamiltonians that arequartic in the annihilation
and creation operators. Terms with an odd number of
mion operators are unphysical~they could transform an iso
lated fermion into an isolated boson!, but they have some
interesting mathematical features; see the discussion,
VI.

III. PRESERVING THE NUMBER OF FERMIONS

Before we discuss how a fermionic circuit involvin
H1 , H2, andH3 can be simulated classically, we show ho
this simulation is done in the more restricted case when
gates preserve the number of fermions. Thus we consid
circuit on n fermionic modes where each elementary gateU
corresponds to an interaction between modesi andj, and can
be written asU5exp(iHg) where the gate Hamiltonian i
written generally as

Hg5bii ai
†ai1bj j aj

†aj1bi j ai
†aj1bi j* aj

†ai . ~13!

Note that the coefficientsbab form a 232 Hermitian matrix;
we will consider these coefficients to be part of ann3n
matrix b, which is only nonzero for matrix elements involv
ing modesi and j. Here and later in Sec. IV we impose n
restriction thati and j be nearest-neighbor modes, unlike t
case that Valiant introduced. We will abbreviate the vacu
state u00 . . . 0& as u0&. Let U5Upoly(n) . . . U2U1 be a se-
quence of two-qubit gates representing the quantum circ
We consider

Uai
†u0&5Uai

†U†Uu0&5Uai
†U†u0&, ~14!

sinceUu0&5u0& due to fermion number preservation.U acts
by conjugation as

Uai
†U†5(

m
Vimam

† . ~15!

WhenU corresponds to a gate operation as in Eq.~13!, the
matrix V is given byV5exp(ib). This result is proved by
making a canonical transformation that diagonalizesb. By
group composition, the matrixV for the entire circuitU is
given by matrix multiplication of theV’s for each gate. This
evaluation ofV is polynomially efficient inn if the circuit
contains poly(n) gates~in fact, we could replace the indi
vidual two-qubit gates by an arbitrary quadratic fermio
number-preserving Hamiltonian and the matrixV of the total
circuit could still be evaluated efficiently!.

We will first show how to evaluate efficiently the matr
element^yuUux& where ux& and uy& are arbitrary input and
output bitstrings. SinceU preserves the number of fermion
03232
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^yuUux&50 if x andy have different Hamming weight. LetU
act on a stateux& with k fermions in certain positions:

Uux&5Uai 1
† ai 2

† . . . ai k
† u0&, ~16!

where i 1, i 2,•••, i k by convention. Using Eqs.~14! and
~15!, we can write

Uux&5 (
p1 , . . . ,pk

Vi 1 ,p1
Vi 2 ,p2

. . . Vi k ,pk
ap1

† ap2

† . . . apk

† u0&.

~17!

The output state equalŝyu5^0ual k
. . . al 1

, where l 1, l 2

,•••, l k . Using the anticommutation rules Eq.~6!, we see
that contributions to the inner product^yuUux& only arise
when p1 . . . pk is some permutationp of the indices
l 1 . . . l k . Furthermore, we get an overall sign for every su
term corresponding to the number of interchanges of crea
operators that we have to perform in order to rewrite
state ap( l 1)

† . . . ap( l k)
† u0& as al 1

† . . . al k
† u0&. After this re-

ordering no more sign changes will take place, sin
^0ual k

. . . al 1
al 1

† . . . al k
† u0&5^0ual k

al k
† . . . al 1

al 1
† u0&51. Thus

^yuUux&5(
p

sgn~p!Vi 1 ,p( l 1)Vi 2 ,p( l 2) . . . Vi k ,p( l k) .

~18!

If Ṽ is defined as the matrixV where we have selected row
i 1 , . . . ,i k and columns l 1 , . . . ,l k , then we see tha

^yuUux&5det(Ṽ). The determinant of ak3k matrix,k<n, is
computable in polynomial time inn.

Simulating measurements

Next we consider how to simulate classically the o
comes of measurements on arbitrary subsets of qubits a
end of the computation. We will show how to calculate t
probability that a certain subset of qubits is in a particu
statey* @item ~2! in Theorem 1#. With those probabilities in
hand, one can sample the probability distribution as given
quantum mechanics@item ~3! of Theorem 1#.

The Hermitian operatorai
†ai counts the number of fermi

ons in modei. Thus its expectation value with respect to
density matrix r, Tr ai

†air, is the probability that mode
i is in state u1&. Similarly, the expectation value o
aiai

†5I 2ai
†ai is the probability that modei is in stateu0&.

So in order to evaluate the probability that, given an inp
state ux&, a certain subset ofk modes is in stateuy* & we
calculate

p~y* ux!5Tr aj 1
aj 1

† . . . aj k

† aj k
Uux&^xuU†

5^xu U†aj 1
aj 1

† . . . aj k

† aj k
Uux&, ~19!

with j 1Þ j 2Þ•••Þ j k and we useai
†ai or aiai

† when yi*
51 or 0, respectively.@Equation~19! illustrates a case wher
yj 1
* 50 andyj k

* 51.# Again we writeux&5ap1

† . . . apl

† u0&. We

have to evaluate the expression
5-3
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TABLE I. The matrix M ( i , j ) for i , j .
a
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ff
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not
p~y* ux!5 (
m1 ,n1 , . . . ,mk ,nk

Vj 1 ,m1

† Vn1 , j 1
. . . Vj k ,mk

† Vnk , j k

3^0uapl
. . . ap1

~an1
am1

† . . . amk

† ank
!ap1

† . . . apl

† u0&.

~20!

We will invoke Wick’s theorem@12~a!# ~described in quan-
tum many-body or quantum field theory textbooks such
Ref. @13#! to rewrite this formula@12~b!#. Wick’s theorem
states that we can rewrite a string of annihilation and crea
operatorsA1 . . . An as

A1 . . . An5:A1 . . . An :1 (
k51

bn/2c
Ck , ~21!

with

~22!

etc. Here :A1 . . . An : denotes the so-called normal order
form of the sequence of operatorsA1 . . . An . :A1 . . . An : is
equal to the reordered sequence of operatorsAp(1) . . . Ap(n)
where all the creation operators are moved to the left~but not
reordered among each other!, and the quantity is negate
when the number of interchanges of creation and annih
tion operators to achieve this form is odd. The obje

is called a contraction and is defined as

~23!

The termsCk in Eq. ~21! are each a sum over every possib
choice ofk contractions in the normal ordered product.

From the anticommutation rules for creation and ann
lation operators, it follows that

~24!

The normal-ordered form is extremely convenient wh
evaluating an object such aŝ0uA1 . . . Anu0& since the
03232
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vacuum expectation value of any normal-ordered seque
of operators vanisheŝ 0u:Ai 1

. . . Ai k
:u0&50. Therefore,

when we evaluate the vacuum expectation value of Eq.~22!,
the only terms that remain come fromCbn/2c (n even!, in
which every operatorAi is contracted~or matched! with an-
other operatorAj . The last step is to bring the fully con
tracted terms to a form in which contracted operators
adjacent; that is, we have

~25!

where sgn(p) is 21 ~1! when the number of crossings of th
contraction lines is odd~even!. Evidently, what emerges is
the Pfaffian Pf(M ) of M ( i , j ), ann3n antisymmetric matrix
@i.e., M ( i , j )52M ( j ,i )#. The Pfaffian Pf(M ) is 0 whenn is
odd, and for evenn it is defined as@18#

Pf~M !5(
p

sgn~p!Mp(1),p(2) . . . Mp(n21),p(n) , ~26!

where the sum overp is restricted to permutations on th
indices 1,2, . . .n such thatp(2k21),p(2k) and p(1)
,p(3),p(5) . . . . Equations~20!, ~25!, ~26! tell us that

p~y* ux!5Pf~M !, ~27!

whereM can be constructed from Eq.~20! and the contrac-
tion identities, Eq.~24!, in the following manner. The matrix
elementsM ( i , j ) for 1< i , j <2(k1 l ) are obtained from
Table I: The indicesi , j 51, . . . ,2(k1 l ) are assigned to the
ordered sequence of creation and annihilation operator
Eq. ~20!. To determineM ( i , j )( i , j ) we find what type of
operator the indicesi and j correspond to and then read o
the matrix elementM ( i , j ) from the table. We use unitarity
of V and the contraction rules to determine each entry of
table. The Xs in the table indicate that these entries do
occur.

The Pfaffian of ann3n antisymmetric matrixM can be
computed in poly(n) time, since Pf(M )25detM . The simu-
lation procedure that was formulated in Ref.@1# very simi-
5-4
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larly relies on the evaluation of a Pfaffian. At the momen
is not clear to us how the representation of the quan
circuit in Ref. @1# using matchgates corresponds to the f
mionic representation developed here.

IV. GENERAL NONINTERACTING FERMIONS

We are now ready to consider the classical simulation o
quantum circuit consisting of gates that are built from ge
eral quadratic fermionic interactions. These interactions o
preserve the parity of the fermion number. In order to d
with these general interactions, we transform the set of
mion annihilation and creation operators to a new set of H
mitian operators~associated with so-called Majorana ferm
ons @10,14#!:

c2i5ai1ai
† , c2i 1152 i ~ai2ai

†!, ~28!

wherei 50, . . . ,n21. The anticommutation relation for thi
new set of operators is

$ck ,cl%52dklI . ~29!

Note that operatorsc2i andc2i 11 are in some sense the fe
mionic version of conjugate variablesp and q that are ob-
tained from linearly combining bosonic annihilation and c
ation operators. It is clear that the HamiltoniansH1 , H2,
andH3 of Eqs.~2!–~4! will be quadratic in these new opera
tors. LetU be a sequence of two-qubit gates each compo
of interactions that are quadratic in the operatorsci ; i.e.,
each of the gates corresponds to a HamiltonianH

H5
i

4 (
kÞ l

aklckcl . ~30!

We again have omitted any term proportional toI. Hermitic-
ity of H requires only that Im(akl)5Im(a lk). It is conven-
tional to choose thea matrix to be real and antisymmetric
so thati a is a Hermitiann3n matrix. For the interactions
we have introduced, thea matrix will only be nonzero in a
434 subblock, but this restriction is not necessary for
following procedure to work. Similar to the numbe
conserving case, a sequence of gatesU5Upoly(n) . . . U2U1
acts by conjugation as

UciU
†5(

j
Ri j cj , ~31!

whereRPSO(2n). We will establish this important result b
explicitly computing the matrixR for a single gateU5eiH .
The result is not so well known as for the number-conserv
case~although it has been mentioned in@10#!, so we will
give some of the details of the derivation. We follow th
notation of@14~a!#. First, the Hamiltonian of Eq.~30!, with a
chosen to be a real antisymmetric matrix, can be brought
canonical form

H5
i

2 (
j 50

n21

e jbj8bj9 . ~32!
03232
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b8 and b9 are given by the real orthogonal transformati
@14~b!#

S b08

b09

A

bn218

bn219

D 5WS c0

c1

A

c2n22

c2n21

D . ~33!

The 2n32n orthogonal matrixW diagonalizesa into 232
blocks:

WaWT5S 0 e0

2e0 0

�

0 en21

2en21 0

D . ~34!

The b8’s andb9’s have the same anticommutation relatio
as the original Majorana fermion operators. Note that6e j
are the eigenvalues of the matrixi a. We now write Eq.~31!
using the canonical transformation

UciU
†5(

j
expS 2

1

2 (
m

embm8 bm9 D ~W2 j ,ibj8

1W2 j 11,ibj9!expS 1

2 (
m

embm8 bm9 D . ~35!

Because the Hamiltonian in this canonical form is a sum
commuting terms, the exponentials here can be factoriz
the factors withmÞ j commute through and disappear, a
we obtain

UciU
†5(

j
exp~2 1

2 e jbj8bj9!~W2 j ,ibj8

1W2 j 11,ibj9!exp~ 1
2 e jbj8bj9!. ~36!

The remaining exponential factors can be expanded and
plified:

exp~ 1
2 e jbj8bj9!5 (

k50

`
~e j /2!k

k!
~bj8bj9!k

5 (
k50

`
~e j /2!2k

2k!
~21!k1 (

k50

`
~e j /2!2k11

~2k11!!

3~21!kbj8bj9

5cos~e j /2!1bj8bj9 sin~e j /2!. ~37!

Plugging this form into Eq.~36! and simplifying, we obtain
Eq. ~31!, whereR is given byR5WTMW, with the matrixM
having the 232 block form
5-5
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BARBARA M. TERHAL AND DAVID P. DIVINCENZO PHYSICAL REVIEW A 65 032325
M5S cose0 2sine0

sine0 cose0

�

cosen21 2sinen21

sinen21 cosen21

D .

~38!

As before, given a quantum circuit with poly(n) two-mode
noninteracting fermion gates, that is, involving four Majo
rana fermions per gate, we can construct the total 2n32n
matrix R in polynomial time by straightforward matrix mul
tiplication of the individualR matrices corresponding to th
gates.

We again consider the probabilities with which certa
measurement outcomes are obtained, i.e.,p(y* ux) in Eq.
~19!, and show that as before these quantities are equal to
Pfaffian of some antisymmetric matrix.

As before, we consider an input stateux&5ap1

† . . . apl

† u0&,

which we will now write asc2p1
. . . c2pl

u0& with p1,p2

,•••,pl . Thus we would like to evaluate

p~y* ux!5^0uc2pl
. . . c2p1

U†aj 1
UU†aj 1

† U . . . U†

3aj k

† UU†aj k
Uc2p1

. . . c2pl
u0&, ~39!

The pattern ofa anda† is again determined by the stateuy* &.
We need a formula for how our general~non-number con-
serving! U acts by conjugation on the creation and destru
tion operators. We can use Eq.~31!:

U†aiU5
1

2
U†~c2i1 ic2i 11!U5

1

2 (
j

~R2i , j
T 1 iR2i 11,j

T !cj

5(
j

Ti j cj , ~40!

and similarly

U†ai
†U5(

j
Ti j* cj . ~41!

This defines then32n matrix T. We then obtain for the
measurement probability

p~y* ux!

5 (
m1 ,n1 , . . . ,mk ,nk

Tj 1 ,m1
Tj 1 ,n1

* . . . Tj k ,nk
* Tj k ,mk

3^0uc2pl
. . . c2p1

cm1
cn1

. . . cnk
cmk

c2p1
. . . c2pl

u0&.

~42!

Again we can use Wick’s theorem to evaluate the vacu
matrix element. This is done by writing the Majorana oper
tors in terms of the fermion creation and annihilation ope
tors. Expanding gives a large number of terms, to each
which Wick’s theorem applies. Each term normal orders d
ferently, but in every case only the fully contracted term
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survive. All of these fully contracted terms are generated
contractions directly over the Majorana operators, defined
linear extension:

~43!

and similarly,

~44!

Here we have used Eq.~24!. Then, the vacuum expectatio
value is written as the sum of all fully contracted expressio
over the Majorana operators, with the usual fermionic si
Thus, we can say that Wick’s theorem applies in the sa
way to the Majorana fermion operators as it does to ordin
fermion creation and annihilation operators; we emphas
that this is only true for the vacuum expectation value, it
not true as an operator identity~normal ordering is not de
fined for the Majorana operators!.

We can summarize these contraction rules by writ
5Hi j whereH is a 2n32n Hermitian matrix consisting

of 232 blocks:

H5S 1 i

2 i 1

�

1 i

2 i 1

D . ~45!

Applying Wick’s theorem again leads to a Pfaffian expre
sion. In Table II we give entries that permit the 2(l 1k)
32(l1k) matrix N to be constructed such thatp(y* ux)
5Pf(N). Again, the entire evaluation is clearly doable
polynomial time.

V. INTERMEDIATE MEASUREMENTS AND
CLASSICALLY CONDITIONED OPERATIONS

We now extend our quantum circuit of noninteracting fe
mions by allowing intermediate complete von Neuma
measurements in the computational basis on subset of qu
which then determine the subsequent choices of unitary g
and measurements on the remaining qubits. We will sh
here that a fermionic circuit with these resources can still
simulated efficiently with a classical algorithm. Care has
be taken in specifying which intermediate and final measu
ments are allowed in our model; we restrict ourselves
complete von Neumann measurement in the computati

TABLE II. The matrix N( i , j ) for i , j .
5-6
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FIG. 1. A quantum circuit with classically conditioned gates.
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basis; i.e., the outcomes of the measurement are either
fermion present in this mode’’ or ‘‘one fermion present
this mode.’’ A lot of added power can be hidden in the ki
of measurement that one is allowed to do; for example, it
been shown in Ref.@10# that universal quantum computatio
can be achieved by noninteracting fermion gates plus a n
destructive eigenvalue measurement of the quartic oper
cjckcrcs .

A general quantum circuit employing our set of resourc
is depicted in Fig. 1. Every time a measurement is made
a subset of qubits, these qubits are no longer used in any
steps of the computation. Our classical simulation will
constructed in the following manner. Measureme
M1 , . . . ,Mk on subsetsS1 , . . . ,Sk will take place at
‘‘times’’ t1 , . . . ,tk . The total unitary evolution until the
measurementM1 is denoted asU1, the conditional unitary
evolution between Mk and Mk11 is denoted as
Uk11(y1* ,y2* , . . . ,yk* ) where the labelsy1* ,y2* , . . . ,yk* cor-
respond to the outcomes of the measurementsM1 , . . . ,Mk .
The choice of measurements themselves may depend on
lier measurement outcomes, i.e.,Ml5Ml(y1* , . . . ,yl 21* ).
Even though the later time-evolution operators will not a
on the qubits that are already measured, we keep the dim
sion of these matrices the same as the initial matrixU1; i.e.,
these are 2n32n matrices when the total number of ferm
onic modes isn.

We can calculate the probability that at timet1 subsetS1

is in the stateuy1* & ~and sample from this probability distri
bution! by the methods that we have developed in Secs
and IV. If the quantum measurement givesuy1* &, then the
03232
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remaining qubits are in the state

r25
U2~y1* !Py

1*
U1ux&^xuU1

†Py
1*
U2~y1* !†

Tr Py
1*
U1ux^xuU1

†
, ~46!

where the projectorPy
1*

is of the formaj 1
aj 1

† . . . aj uS1u

† aj uS1u

where j 1 , . . . ,j uS1uPS1, and whether the factoraj i
aj i

† or

aj i

† aj i
appears depends on whether (y1* ) j i

is 0 or 1, respec-

tively. Let us assume that we have sampled the measurem
probability distribution at timet1 and have found a particula
outcomey1* . To sample from the probability distribution o
measurementM2, we will have to be able to evaluate

p~y2* uy1* ,x!5Tr Py
2*
r2 . ~47!

Py
2*
, like Py

1*
, is again a product of creation and annihilatio

operators; e.g.,ai 1
† ai 1

. . . ai uS2u

† ai uS2u
where i 1 , . . . ,i uS2uPS2

and the pattern of creation and annihilation operators
pends on the bits ofy2* . The denominator in Eq.~46! is
already determined when simulating the first measurem
so we will focus on calculating

p~y1* ,y2* ux!5Tr Py
2*
U2~y1* !Py

1*
U1ux&^xuU1

†Py
1*
U2~y1* !†

5^xuU1
†Py

1*
U2~y1* !†Py

2*
U2~y1* !Py

1*
U1ux&.

~48!
TABLE III. The matrix O( i , j ) for i , j .
5-7
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This equation has basically the same form as Eq.~39!,
except that~1! we have more annihilation and creation o
erators and~2! we conjugate different sets of operators
different unitary matrices. The important fact here is that
can again express the probability as the Pfaffian of so
antisymmetric matrix. Let us see how we construct t
matrix.

At this point we simplify the notation somewha
r
en

e
ts
ol
E

rix

r-
se

-
in

f

-
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Let U2(y1* )5U2 , Py
1*
5P1, andPy

2*
5P2. We put inU1U1

†

and U2U2
† terms in the appropriate places in Eq.~48!,

so that operators in the first~from the left! P1 get
conjugated byU1

† , operators in P2 get conjugated by
U12

† [U1
†U2

† , and the lastP1 gets conjugated byU1
† again.

Let Tk, k51,12, be defined byUk
†aiUk5( jTi j

k cj . We
obtain
p~y1* ,y2* ux!5 (
a1 ,b1 , f 1 ,g1 , . . . ,auS1u ,buS1u , f uS1u ,guS1u

d1 ,e1 , . . . ,duS2u ,euS2u

Tj 1 ,a1

1 Tj 1 ,b1

1* . . . Tj uS1u ,buS1u

1* Tj uS1u ,auS1u

1 Ti 1 ,e1

12* Ti 1 ,d1

12 . . . Ti uS2u ,euS2u

12* Ti uS2u ,duS2u

12 Tj 1 , f 1

1

3Tj 1 ,g1

1* . . . Tj uS1u ,guS1u

1* Tj uS1u , f uS1u

1 ^0uc2pl
. . . c2p1

~ca1
cb1

. . . cbuS1u
cauS1u

!~ce1
cd1

. . . ceuS2u
cduS2u

!

3~cf 1
cg1

. . . cguS1u
cf uS1u

!c2p1
. . . c2pl

u0&. ~49!
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In Table III we show how to construct the matrixO of di-
mension 2(l 12uS1u1uS2u) for which p(y1* ,y2* ux)5Pf(O).
The notationc(a/ f )a

indicates that thec operator can be eithe
a caa

or a cf a
; the reason is that these operators have id

tical T prefactors.
It is clear that we can extend this procedure to the cas

a circuit that containsk5poly(n) instances of measuremen
on subsets that determine the next choice of unitary ev
tion. In general, when we express a probability such as
~48!, we see thatP1 gets conjugated byU1 , P2 by U12, P3
by U123, . . . , andPk by U12 . . .k , the total unitary evolution.
When we writep(y1* ,y2* . . . yk* ux)5Pf(X), the dimension
of the matrixX is 2(l 1uSku12( i 51

k21uSi u). The entries of this
matrix can be determined by calculating particular mat
elements~specified by the measured sets of qubits! of at
most (2k11)2 matrices of the formTiHTj †, etc., wherei
and j are labels that can be 1,12,123, . . . ,123 . . .k.

Let us summarize the simulation algorithm.
Classical simulation of a quantum circuit with noninte

acting fermions and fermion counting measurements;
Fig. 1:

~i! Compute then32n matrix T1 corresponding toU1
† ,

Eq. ~40!.
~ii ! Simulate measurementM1: sample from the probabil

ity distribution p(y1* ux) using the measurement theorem
Ref. @1# and the fact thatp(y* ux)5Pf(O1)5AdetO1 where
O1 is a 2(l 1k)32(l 1k) matrix with k equal to the Ham-
ming weight of input stringx and l equal to the number o
bits in y1* .

~iii ! Let y1* be the outcome of this measurementM1, and
let U2 be the corresponding unitary evolution. ComputeT12

corresponding toU1
†U2

† .
~iv! Simulate measurementM2: sample from the probabil

ity distribution p(y2* uy1* ,x)5p(y1* ,y2* ux)/p(y1* ux), where
we use the fact that we can evaluatep(y1* ,y2* ux)5Pf(O2).
O2 depends onT12 andT1 as in Table III.
-

of

u-
q.

e

~v! Let y2* be the outcome of the measurementM2 and let
U3 be the corresponding unitary evolution, possibly also
pending on the first outcomey1* . CalculateT123 correspond-
ing to U1

†U2
†U3

† .
~vi! Simulate measurementM3: sample from the proba

bility distribution p(y3* uy1* ,y2* ,x)5@p(y1* ,y2* ,y3* ux)#/
@p(y1* ,y2* ux)#, where we use the fact that we can evalua
p(y1* ,y2* ,y3* ux)5Pf(O3). O3 depends onT123, T12 andT1.

~vii ! Repeat steps~v! and ~vi! for the subsequent evolu
tions U4 , . . . ,Uk , finding expressions for T123 . . .k,
and finally simulate the last measurementMk by
sampling from the distributionp(yk* uy1* ,y2* , . . . ,yk21* ,x)
5p(y1* ,y2* , . . . ,yk* ux)/p(y1* ,y2* , . . . yk21* ux).

It is evident that this procedure is polynomial when t
number of stagesk of the compute/measure procedure of F
1 is poly(n): the largest matrix whose Pfaffian must be co
puted has dimension bounded by 4kn.

VI. DISCUSSION

The present work opens a set of very interesting quest
concerning the boundary between classical and quan
computation. For fermionic quantum circuits we may a
what is the effect of adding circuit elements beyond tho
considered above~those associated with a noninteracting fe
mion model!? Three outcomes are possible:~1! the circuit
can perform universal quantum computation,~2! the circuit
remains efficiently simulatable by a classical computation
~3! some intermediate case. For example, one could exp
the effect of adding~unphysical! linear terms to the gate
Hamiltonians. These termsai1ai

† and i (ai2ai
†) will be

somewhat similar, but not identical to one-qubit gates
terms of Pauli matrices; they are nonlocal gates, as can
seen from the Jordan-Wigner transformation, Eq.~9!. It can
in fact be shown@4# that these linear interactions can b
incorporated in purely quadratic fermion interactions by ad
5-8
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ing a new fermionic mode, which we may label ‘‘21,’’ and
changing the linear interactions on, say, modei to quadratic
interactions between modei and mode21. Another line of
investigation could be into some known physical mod
~e.g., the Anderson model and the Kondo model@15#! that
involve more general fermionic interactions at a single s
~meaning two fermionic modes!, many of whose propertie
are computable.

Valiant’s work shows that some terms added to the f
mion model~or some gates added to the circuit model! still
result in a classically simulatable system; these new te
are to act on the first two fermionic modes only. These n
gates~if they exist! do not preserve the parity of the numb
of fermions, and thus involve either linear or cubic terms
the annihilation and creation operators.~This follows from
the fact that any gate that obeys the five matchgate ident
in Ref. @1# and preserves the parity of the number of ferm
ons is automatically quadratic in the number of fermion!
See Ref.@4# for a more extensive treatment of these ad
tional gates.

The case of adding power by intermediate measurem
is also quite interesting: between the case of complete
Neumann measurements that are classically simulatable
the quartic-operator basis measurements of Bravyi and
taev @10#, which give universal quantum computation, the
are many possible positive operator valued measure m
surement scenarios that have not been analyzed. We
hopeful that further analysis will be able to identify mo
scenarios as definitely classical or definitely quantum.

This classical-quantum boundary is remarkably differ
for fermionic and bosonic systems. A model quadratic
bosonic operators describes the ‘‘linear optics’’ scenario
quantum computation; formally, this model only differs fro
the noninteracting-fermion model in that bosons are cha
terized by commutation rather than anticommutation re
tions:

@ai ,aj #[aiaj2ajai50, @ai
† ,aj

†#50, @ai ,aj
†#5d i j I .

~50!

Nevertheless, the exact parallel to the model we analy
above, in which quadratic Hamiltonians can be intersper
with complete von Neumann measurements, is fully ‘‘qua
tum’’ in the bosonic case@2# despite being ‘‘classical’’ for
fermions.
he

-
s

B.
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We would like to emphasize again that this quantu
classical distinction may not be perfectly sharp; being able
efficiently compute some properties of a circuit classica
does not mean that every aspect of the quantum dynamic
this circuit is also efficiently computable. This is show
when we try to carry out the analysis in Secs. III and IV f
bosons, to see where the parallels between the two c
break down. In fact, one can go surprisingly far before a
differences appear. An equation of the form of Eq.~15! still
applies for bosons, whereV can be shown to be any eleme
in U(n) @16#. That is, a canonical transformation exists
both the boson and fermion cases that permits a represe
tion of the system as a set of noninteracting particles.

It might have been thought that this easy diagonalizat
leads to an easy computation of all possible properties,
this does not appear to be the case. An essential differen
that no sign changes occur when we interchange the bos
creation operators among each other. This causes an ex
sion such aŝyuUux& in Sec. III to be equivalent to theper-
manentof some matrix, if we analyze the case whenux& and
uy& both contain no more than one boson per mode. T
permanent is a much harder object to calculate exactly t
the determinant of the fermion case; in fact, this has b
proved to be a #P-complete problem@17#. Our methods will
therefore fail to evaluate these bosonic matrix eleme
efficiently.

In summary, our results on the classical simulatability
noninteracting fermions leave some interesting questions
answered about the computational power of various phys
models of quantum computation. While Valiant’s analys
turns out to conform largely to a ‘‘known’’ area of physic
his work shows that mathematical approaches to these p
lems are possible that have never been envisioned in m
body physics.
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