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Classical analog of entanglement
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We show that quantum entanglement has a very close classical analog, namely, secret classical correlations.
The fundamental analogy stems from the behavior of quantum entanglement under local operations and
classical communication and the behavior of secret correlations under local operations and public communi-
cation. A large number of derived analogies follow. In particular, teleportation is analogous to the one time pad,
the concept of ‘‘pure state’’ exists in the classical domain, entanglement concentration and dilution are essen-
tially classical secrecy protocols, and single-copy-entanglement manipulations have such a close classical
analog that the majorization results are reproduced in the classical setting. This analogy allows one to import
questions from the quantum domain into the classical one, and vice versa, helping to get a better understanding
of both. Also, by identifying classical aspects of quantum entanglement, it allows one to identify those aspects
of entanglement that are uniquely quantum mechanical.
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I. INTRODUCTION

In his pioneering paper of 1964@1#, Bell pointed out the
nonlocal character of quantum-mechanical long-distance
relations. Since then, many novel aspects of nonlocality h
been uncovered, such as teleportation@2#, superdense coding
@3#, and the capability to reduce the number of required b
of classical communication for implementing certain co
munication tasks ~in the so called ‘‘communication
complexity scenario’’! @4#. Furthermore, entanglement an
nonlocality are at the core of quantum computation@5# and
its capability of performing computations faster than a
classical computer. An enormous effort has been dedic
during the last few years to understand the qualitative
quantitative properties of nonlocality. In effect, quantu
nonlocality has become to be considered one of, if not
most representative aspect of quantum mechanics. Quite
prisingly we found, as we describe in the present paper,
there exists a quite close classical analog of quantum
tanglement, namely,secret classical correlations.

Our motivation in looking for a classical analog of qua
tum entanglement is twofold. First, such an analogy allo
us to identify aspects of quantum entanglement that w
hitherto considered to be purely quantum but which are
fact, not quantum at all. Indeed, all those aspects of entan
ment that are common with the classical analog, are not
quantum nature. As a corollary, we also get a better un
standing of what are the true quantum features of quan
entanglement. Second, this analogy allows one to tran
questions from quantum entanglement to the classical
main~classical information cryptography! and vice versa and
thus lead to a better understanding of both subjects. In f
the inspiration for our paper stems from the work of Gis
and Wolf @6#, which asked if there is a classical analog
bound entanglement.

The analogy we suggest is summarized in the follow
table:
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Quantum entanglement Secret classical correlations
Quantum communication Secret classical communicat
Classical communication Public classical communicat
Local actions Local actions

Thus, we suggest that a classical analog of a pair of
tangled particles is that of one sample of two secret, co
lated, random variables~one at each remote party!. Here, by
secret communication we mean communication throug
channel to which an eavesdropper has no access. By pu
communication we mean communication through a chan
to which an eavesdropper has full access~can hear every-
thing!, but neither alter the messages sent, nor introduce
messages. Finally, in the quantum context, by local acti
we mean subjecting the qubits to unitary evolutions as w
as to measurements and other nonunitary evolutions.
classical analog of unitary transformations is that of repl
ing the value of the original random variable by some n
value related to the old one by a one-to-one function, wh
the analog of the case of quantum nonunitary evolution
that of transformation by nonbijective functions.1

The main idea of this analogy is that, similarly to qua
tum entanglement, secret classical correlations act as a~fun-
gible! resourceand obey a ‘‘second law of thermodynamics

1Note that when we replace the original value of the random v
able by another via a nonbijective function, we consider that
actually erase the original information, so information is lost. T
is completely analogous to what happens in the quantum case
course, one may argue that in neither case information is lost.
example, in the noncollapse interpretations of the quantum cas
we have is an entanglement of the measured system with the
suring device; this entanglement, however, involves so many
grees of freedom that it cannot be reversed. Similarly, erasing,
pencil markings from a paper, still preserves the original inform
tion in some subtle arrangement of the graphite granules mixed
bits of paper and erasing gum, but this involves so many degree
freedom that the original information cannot be recovered.
©2002 The American Physical Society21-1
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principle—the amount of secrecy doesn’t increase un
LOPC ~local actions and public communication!.

The modern paradigm is that of quantum nonlocality a
resourceas we describe below.

~i! Nonlocal correlations between two or more remo
parties can be created by quantum communication, i.e.
sending quantum particles~qubits! from a common source to
the parties, or from one party to another.

~ii ! Second law of thermodynamics. The amount of no
locality between the remote parties cannot be increased
local actions and/or classical communication~LOCC!. In-
deed, one can view this statement as the verydefinition of
what nonlocality is. The above version of the second law
be further extended to allow for quantum communicatio
catalysis, etc. For example@7#, ‘‘by local actions, classica
communication, and exchange ofn qubits, the amount of
nonlocality between remote parties cannot be increased
more thatn ebits.’’

~iii ! The remote parties can, by local actions and class
communication, transform nonlocality from one form in
another.

For example, suppose two parties, Alice and Bob, hav
large number of pairs of particles, each pair in some pu
nonmaximally entangled state. By appropriate actions, t
can end up with a smaller number of pairs in maxima
entangled states@8,7#. In effect, at least in the case of bipa
tite pure states, nonlocality is absolutely fungible—any fo
can be transformed into any other, and the transformatio
reversible. Thus, it doesn’t really matter in which form t
parties are supplied with nonlocality, they can always c
vert it into the form that is required for implementing th
specific task~for example teleportation! they want to do.

~iv! Nonlocality is consumed for producing useful tas
~teleportation, superdense coding, remote implementatio
joint unitary transformations@9#, etc.!. As with quantum non-
local correlations, secret correlations are also a resource

~v! Secret correlations can be established between rem
parties by secret communication.

~vi! Second law of thermodynamics. The amount of sec
correlations cannot be increased by local actions and/or p
lic communication~LOPC!.2 In fact, as in the case of nonlo
cality, we can take this law to be the very definition of t
amount of secret correlations, i.e., the amount of secret
relations between remote parties is that part of their corr
tions that cannot be increased by local actions and pu
classical communication.

The above version of the second law can be further exten
to allow for secret communication, catalysis, etc. For e
ample, ‘‘by local actions, public communication, and e

2In everyday practice, secret messages are exchanged by p
communication by so called ‘‘public-key-distribution’’ protocols
We do not consider here this case since these are only pseudo
messages—their secrecy is based on encoding that is difficu
decode due to computational complexity; in principle, however,
eavesdropper could decode the message.
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change ofn secret bits, the amount of secret correlatio
between remote parties cannot be increased by more thn
secret correlation bits.’’

~vii ! The remote parties can, by local actions and pub
communication, transform secret correlations from one fo
into another.

~viii ! Analogous to entanglement, secret correlations a
fungible resource—they can be stored, transformed from
form into another, and can be consumed to perform us
tasks, such as secret communication via the one-time
@10#.

The possibility of transforming secret correlations fro
one form into another enables us, similarly to the case
quantum correlations, to obtain aquantitativedescription of
secrecy.

In the bi-partite case, the analogy is now obvious, as
lows:
Shared, undirected resources

e-bitAB shared secret bitAB

Directed resources
qubitA→B secret bitA→B

classical bitA→B public classical bitA→B

The situation of multi-partite secret correlations is mo
complicated, as is the situation of multi-partite entangleme
It is now clear that there are many different, irreducib
types of multi-partite entanglement@11,12#; this is also the
case for secret correlations.

At this point it is legitimate to ask what is the role o
secrecy. That is, why do we considersecretclassical corre-
lations to be the analog of entanglement and not simplyany
classical correlations. There are two main reasons. The
reason is that while such an analogy is certainly possible
would be rather uninteresting. Indeed, one of the main
pects of manipulating entanglement is that there is a wa
which the different parties may communicate~classical com-
munication! which doesn’t increase the amount of entang
ment. Similarly in the case of secret classical correlatio
public communication doesn’t increase the amount of
crecy. In the case of arbitrary classical correlations howe
there is no way in which the remote parties could commu
cate and not increase the correlations. So when trying
build an LOCC~‘‘local operations and classical communic
tions’’! analog in the case of arbitrary classical correlatio
we have no choice but to completely eliminate the comm
nication, which leads to a very uninteresting situation.

The second reason is far more profound. Consider,
example, two parties, Alice and Bob who share a maxima
entangled stateuC&5(1/&)(u0&u0&1u1&u1&). Suppose now
that Alice and Bob ‘‘degrade’’ the state by ‘‘erasing’’ th
entanglement. They can do thisin a minimal wayby Alice
randomizing the phase of her basis state vectors$u0&,u1&%.
Then Alice and Bob will be left with a mixture o
(1/&)(u0&u0&1u1&u1&) and (1/&)(u0&u0&2u1&u1&) with
equal probabilities. This mixture contains no entanglem
~it is equivalent to an equal mixture ofu0& u0& andu1& u1&! but
contains secret correlations between Alice and Bob. T
secret correlations are, in fact, very closely related to
tanglement.

The analogies described above are the ‘‘fundamen
analogies. From them follow an entire set of derived ana
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CLASSICAL ANALOG OF ENTANGLEMENT PHYSICAL REVIEW A65 032321
gies. We would like to emphasize, however, that it is only
fundamental analogies~such as the behavior under LOCC
LOPC! that have truly deep significance and that o
shouldn’t expect the derived analogies to be very cl
~though many of them are!. Derived analogies are summa
rized in the following table:

Quantum Classical

Teleportation One time pad
Entanglement concentration Secret-correlation

concentration
Entanglement dilution Secret-correlation dilution
Entanglement purification Classical privacy amplificati
Single-copy transformations Single-copy transformations
Probabilistic single copy

transformations
Probabilistic single-copy

transformations
Catalytic transformations Catalytic transformations
Bound entanglement Bound information ?

II. QUANTUM STATES AND CLASSICAL ANALOGS

In the previous section, we suggested that classical se
correlations are a good analog for quantum entanglem
Again, the basis of the analogy is the similar behavior
secret correlation and quantum entanglement under LO
LOCC. To make the analogy more detailed and to obtain
‘‘derived’’ analogies mentioned above we need to defi
more precisely the analogy between quantum states and
cret correlations.

Consider two remote parties, Alice and Bob. A gene
quantum state is described by a density matrixrAB or,
equivalently, by a pure stateCABE in which A and B are
entangled with a third party, the ‘‘environment.’’ The class
cal equivalent of the general quantum state is a probab
distribution P(XA ,XB ,XE) whereXA , XB , andXE are ran-
dom variables known to Alice, Bob, and Eve~the eavesdrop-
per!, respectively. One copy of a quantum stateCABE corre-
sponds to one sample of the probability distributi
P(XA ,XB ,XE).

A quantum bipartite pure state can always be written
the Schmidt basis@13# as

uc&AB5(
i

Api u i &Au i &B . ~1!

If Alice and Bob measure their particles in the Schm
basis then they get correlated random variables,XA andXB ,
which come according to the distributionp(XA5 i ,XB5 j )
5d i j pi . In other words, they both get the same sample fr
a random variableX;$pi%. Furthermore, the values ofXA
and XB are secret—there is no third partyE who knows
them. We propose classical distributions of this form as
classical ‘‘pure’’ state. That is, a bipartite classical pure st
is a distribution

p~XA5 i ,XB5 j ,XE5k!5d i j pi P̃~Ek!, ~2!
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where P̃(Ek) is the distribution of the eavesdropper’s va
able XE and it is completely irrelevant, except for the fa
that it is completely uncorrected to the distribution ofXA and
XB .3 Strictly speaking, we propose Eq.~2! as the classica
analog of the pure-state Schmidt decomposition, and
classical state that is locally equivalent, i.e., can be tra
formed into the above form by local, one-to-one mappin
~the equivalent of local unitaries! we consider to be a pure
state.

Another interesting case is that of distributions of t
form p(XA5 i ,XB5 j ,XE5k)5P(XA5 i ,XB5 j ) P̃(Ek) in
which E is completely uncorrelated withA andB, but A and
B are not completely correlated with each other. Such a
tribution is obtained when Alice and/or Bob measure a qu
tum pure state in some other basis than the Schmidt o
Such a distribution has some characteristics of a pure s
and some characteristics of a mixed state. We will disc
this case in more detail in Sec. XI.

For more than two parties the analog of a density ma
rABC ... is a probability distributionP(XA ,XB ,XC ,...). It is
not yet clear to us what the general analog of a multipar
pure state is. This is due, in part, to the fact that for mu
partite states the analog of the Schmidt decomposition is
more complicated. We shall give some multipartite results
Sec. XII.

III. TELEPORTATION AND THE ONE TIME PAD

The first ‘‘derived’’ analogy is probably the most strikin
of all. The fundamental quantum-communication protoc
that is, teleportation turns out to be analogous to the fun
mental secret communication protocol, the one time p
@14#.

Alice begins with the qubit~secret bit! to be sent, which
may be entangled~secretly-correlated! with any number of
other particles~bits!. She does a Bell measurement~addition
modulo 2! on the qubit~secret bit! to be sent and the qubi
~bit! of resource she holds. She then sends the outcome~re-
sult! of this operation as a classical bit~public bit! to Bob.
He then does a conditional unitary~bit flip! upon his part of
the ebit~shared secret bit!. Bob now holds the qubit~secret
bit! Alice was sending him.

The necessary and sufficient resources are given by

1ebitAB12classical bitsA→B⇒1qubitA→B , ~3!

1shared secret bitAB11public bitA→B⇒1secret bitA→B .
~4!

By necessary we mean that, if we were to try to do t
teleportation with less than one ebit—by using a less th
maximally entangled state, for example—the teleportat
will not give a perfect output, and the classical informati

3Note that, quantum mechanically, in order to say that the stat
Alice and Bob is pure we don’t need to specify that the state
Alice, Bob, and the Environment is of the formuc&ABE

5uc&ABuc̃&E , but it is enough to know the staterAB of Alice and
Bob alone. On the other hand, the classical correlations of Alice
Bob alone do not allow us to know if Eve is, or is not, correlat
with Alice and Bob, therefore, we must always describe the
state of Alice, Bob, and Eve.
1-3
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DANIEL COLLINS AND SANDU POPESCU PHYSICAL REVIEW A65 032321
will give some information about the qubit we are sending
we try to use a less than completely correlated shared se
bit to send a secret bit then Eve gets some information ab
the secret bit. The resources are sufficient since we
achieve the operations using them.

Note that the resources are used up in the process:
we have used an ebit~shared secret bit! to send a qubit
~shared secret bit! we cannot reuse it. Quantum mechanica
this is obvious, since the original maximally entangled st
is destroyed by Alice’s measurement. Classically, howe
Alice and Bob do not lose their correlated bits—Alice a
Bob need not erase or physically modify in any way th
original correlated bits but just use them for some ma
ematical operations. What is lost, however, is the secrec
these bits—they cannot be reused.

Furthermore, it is obvious to see that the one-time-p
secret communication can be used to implement the an
of teleportation of entangled states and of entanglem
swapping.

Finally, let us note an important fact. Quantitatively, t
amount of resources in the classical and quantum case
similar, but not identical: but we need two classical bitsA→B
to send one qubit, whereas only one public bitA→B to send
one secret bit.

IV. ENTANGLEMENT AND SECRET-CORRELATION
MANIPULATIONS—SINGLE COPY

The ability to manipulate entanglement, i.e., transform
entanglement from one form into another by local actio
and classical communications is one of the most impor
aspects of entanglement. This leads to elevating entan
ment to the status of a~fungible! resource: to a large extent
doesn’t matter in which form entanglement is supplied,
can transform it into the specific form we need for differe
applications, very much as say, transforming the chem
energy stored in coal into electrical energy for use in elec
engines. Similarly, one can imagine that Alice and Bob
supplied with secret correlations in some given form, i
according to some specific probability distribution, and th
want to obtain secret correlations obeying a different pr
ability distribution. We find that the quantum and classic
scenarios are in very close analogy.

In this section, we treat the case of bipartite pure-st
single-copy manipulations. In the quantum context t
means that the two parties, Alice and Bob, share a single
of particles in some pure stateuC&AB . In the classical con-
text, Alice and Bob share a single sample of a classical p
state~2!.

In the case of a single copy, entanglement is not a co
pletely interconvertible resource@as it is in the case of man
copies~see Sec. VIII!#, but many more restrictions apply.

For bipartite pure quantum states, it is possible to turn
state into anotherwith certaintyif and only if ~iff ! a certain
set of conditions, collectively known as majorization, hol
@15,16#. Here we show that for classical secret pure sta
the transformation is possible if and only if an analogo
condition holds.

Quantum mechanically, the majorization condition is t
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following. Consider two quantum pure statesuc&AB and
uf&AB , written in their Schmidt bases

uc&AB5(
i

Apiu i &Au i &B , ~5!

uf&AB5(
i

Aqi u i &Au i &B , ~6!

with the squared Schmidt coefficientspi andqi arranged in
decreasing order,p1>p2>¯ and q1>q2>¯. The vector
qW 5$qi% is said to majorize the vectorpW 5$pi% iff

(
i 51

k

qi>(
i 51

k

pi ;k. ~7!

uf&AB is said to majorizeuc&ABiff qW majorizespW . The trans-
formation uc&AB°uf&AB is possible with certainty if and
only if uf&AB majorizesuc&AB @16#. ~Note that it is the final
state that must majorize the starting one.!

For classical secret correlations, suppose Alice and B
begin with an arbitrary classical bipartite pure state, wh
we may write as

p~XA5 i ,XB5 j ,XE5k!5d i j pi P̃~Ek!. ~8!

Their task is to produce some other state,

p~YA5 i ,YB5 j ,YE5k!5d i j qi P̃8~Ek!. ~9!

We shall prove that they can do this iffqW majorizespW . How-
ever, to understand what is going on, let us first conside
simple example that has all the important features. The qu
tum version was first considered in Ref.@15#.

Suppose Alice and Bob share one sample of the class
pure stateX, where

p15p25p35 1
3 , ~10!

and they would like to turn it into a sample of the pure sta
Y, where

q15q25 1
2 . ~11!

A probabilistic method ~analogous to the procustea
method for the quantum case@8#! is for Alice to send mes-
sagem1 ~which means ‘‘OK’’! if X is 1 or 2, and to send
messagem2 ~which means ‘‘not OK’’! if X is 3. If message
m1 is sent then Alice and Bob keep their sample, and th
now have a shared secret random variable of the formY.
Indeed, in this case Eve only knows that the value of
secret variable is either 1 or 2 but she doesn’t know wh
one—Alice and Bob’s data is, therefore, still perfectly secr
and it is now either 1 or 2 with probability 1/2. If messag
m2 is sent then the procedure failed and Alice and Bob h
to throw away their sample. The reason is that Eve, w
monitors the public communication, learns that Alice a
Bob’s variable is equal to 3, and there is no more Alice a
Bob can do.
1-4
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CLASSICAL ANALOG OF ENTANGLEMENT PHYSICAL REVIEW A65 032321
The above method works with probability23. Can Alice
and Bob do better? The second distribution majorizes
first, since 1

2 > 1
3 , 1

2 1 1
2 > 1

3 1 1
3 , and 1

2 1 1
2 10> 1

3 1 1
3 1 1

3 .
Thus, according to the majorization theorem we shall sho
prove, there exists a method that works with certainty. T
protocol for achieving this goes as follows. Alice reads t
value ofX. If it is 1, she flips an unbiased coin that tells h
to send messagem1 or m2 with equal probability. IfX52
she flips an unbiased coin to sendm2 or m3 , and ifX53 she
flips an unbiased coin to sendm1 or m3 . She then publicly
sends the message, so that everyone can read it. Ifm1 is sent,
Eve knows thatX is 1 or 3 with equal probability. Ifm2 is
sent, Eve knows thatX is either 1 or 2, with equal probabil
ity. And if m3 is sent, Eve knows thatX is 2 or 3 with equal
probability. Now Alice and Bob just have to do a simp
relabelling of X to produceY. If m1 is sent, they both do
1°1,3°2. If m2 was sent they do 1°1,2°2. If m3 is sent
they do 2°1,3°2. Whatever message was sent,Y is now a
shared random variable that is~as far as Eve is concerned! a
shared secret bit of the form~11!.

Now we shall look at the general case. For which pu
statesX andY is it possible to turn a single sample ofX into
a single sample ofY? Consider the most general possib
protocol. We assume that Alice, Bob, and Eve all know
protocol.4 Alice and Bob start by having a single sample
the pure stateX. They each have also access to some lo
source of secret randomness—they may each throw dice
course, Alice knows only the outcomes of her dice and B
of his. During the protocol Alice and Bob may publicly com
municate, perhaps in many rounds, with each message d
mined by X, the public messages already sent, and by
results of the local dice. At the end of the protocol there w
be some total public message that consists of all the m
sages that were exchanged by Alice and Bob. All three p
ties, Alice, Bob, and Eve know this total message. In ad
tion, Alice and Bob know the value ofX ~which is common
to both of them since the state is pure!, and each of them
knows the outcomes of his/her own dice. Based on all
knowledge Alice and Bob must decide on the values ofYA
andYB . Formally, we can write

YA5 f A~XA ,m,dA!, ~12!

YB5 f B~XB ,m,dB!, ~13!

where bym we denote the total message, and bydA anddB
we denote the outcome of all Alice’s and Bob’s dice.

The above procedure can be simplified. Since we be
with a pure state,XA5XB5X. Furthermore, since we wan
to end with a pure state, we requireYA5YB . This require-
ment implies thatYA andYB cannot depend on the outcom

4if Alice and Bob had a secret protocol, this would be like havi
an additional shared random variable, whose different outco
told them which protocol to use. Thus, they would have an ad
tional resource. Here we insist they have only one shared reso
X.
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of the dicedA anddB . Also given the initial valueX and the
messagem, Alice and Bob must perform the same functionf.
Thus we get

YA5YB5 f ~X,m!. ~14!

Furthermore, since Bob’s actions may not depend on
outcomes of his dice but only onX andm, for every proce-
dure that involves many rounds of communication betwe
Alice and Bob, we can formulate an equivalent procedure
which the total message is entirely generated by Alice—
could simply throw all dice herself—and then the messag
communicated in a single transmission to Bob. Let us n
formalize this procedure for turningX into Y.

Alice looks atX5xi , which occurs with probabilitypi .
She then throws a biased dice which tells her to send m
sagemj with some probabilityp(mj uxi) which depends upon
xi . She then publicly announcesmj . Alice and Bob now
follow the instructions in the message, which say to
xi°yk(xi ,mj ). Forgetting whatX is ~i.e., summing overxi!
this gives them some joint distribution foryk and mj ,
p(yk ,mj ). Since Alice and Bob wantyk to be secret from
Eve, who knows only the protocol and the message,
distribution must factorize:p(yk ,mj )5p(yk)p(mj ). p(yk)
is the final distribution, and so we wantp(yk)5qk ~the dis-
tribution of Y!.

This secrecy procedure can be thought of as a single-p
problem, which goes as follows. We begin with a sam
from X, which occurs with probabilitypi . We may look at
the sample, and then roll some dice, which gives outcomemj
with probability p(mj uxi). We then perform the map
xi°yk(xi ,mj ). We then forget whatX is, which gives some
joint distribution for yk and mj , p(yk ,mj ). We desire this
distribution to factorize,p(yk ,mj )5p(yk)p(mj ), and that
p(yk)5qk . Note that this single-party procedure is not
secrecy procedure, however, it is possible iff the above
crecy transformation is.

To find for which pi and qk this single-party problem is
possible, and thus to find for whichpi and qj the secrecy
transformation is possible, we shall look at the time-rever
problem. This goes as follows. We start with a sample fr
Y, which occurs with probabilityqk . We then roll dice,
which give outcomemj with probabilityp(mj ), independent
of the outcome of Y. This gives a joint distribution
p(yk ,mj )5qkp(mj ). Now we must do the inverse of th
mapxi°yk(xi ,mj ) to turn ourY into anX. If the map is one
to one, and hence invertible, this will give us a distributi
p(xi ,mj ). Like any joint distribution, this can be written a
p(xi ,mj )5p(xi)p(mj uxi). If we now forget the value ofY
and ofmk , we get a new distribution forX, p(xi). We desire
p(xi)5pi . If the map is many to one, then we can give it
probabilistic inverse, which is a ‘‘one-to-many’’ map whe
the probabilities of getting variousx’s, given any particular
yk , are given by the relative frequencies of thexi ’s whenyk
is produced in the forward-time protocol. This probabilis
one-to-many map can be replaced by a probabilistic cho
of several one-to-one maps, which will have the same ef
upon the protocol since we forget which map we did at
end. Thus in the reversed-time single-party problem, we n

es
i-
ce,
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only consider maps that are one-to-one. This also applie
the forward-time single-party problem, and to the forwa
time secrecy protocol: we only need consider maps that
one-to-one, i.e., permutations.

As explained above, if we find the conditions for whic
the reversed-time single-party problem is possible, we w
have the conditions for which the forward time-secre
transformation is possible. Physically, this time-revers
single-party problem goes as follows. We begin with a bal
some box according to the distributionqi . We do not know
which box the ball is in, and are not allowed to look to s
where it is. We then apply some shuffle~one-to-one relabel-
ling! to the boxes, choosing which shuffle to make accord
to a distribution,p(mj ), which we may choose. We the
forget which shuffle we did, and look at the new distributi
of the balls,pi . The question is for whichqi and pi is this
possible? Clearlypi should be more random thanqi . This is
a well-known problem, and is the context in which majoriz
tion appears in classical physics. The answer is that i
possible iffpW majorizesqW . Intuitively, this is easy to see, an
the proof can be found, for example, in Ref.@17#.

Above, we have proved the majorization result in the cl
sical context by using arguments referring solely to the c
sical context. We could have used, however, the known
sults for quantum-entanglement manipulation to prove
classical ones. The reason is as follows. On one hand, it
found out that transforming pure quantum states~with cer-
tainty! from one into another involves only actions and me
surements in the Schmidt decomposition basis. These ac
do not involve phases, but are simply classical actions u
the basis, which are performed coherently to make a qu
tum evolution. One could, however, imagine starting by m
suring the quantum state in the Schmidt basis, and then
forming the corresponding classical actions a
measurements upon the state. This transforms one clas
state into another, and will not give Eve any knowled
about the state since the quantum procedure did not enta
the quantum state with the environment. Thus, if we c
transorm with certainty a quantum pure stateuC& ~5! into a
quantum pure stateuF& ~6!, we can also transform with cer
tainty X ~8!, the classical pure state equivalent ofuC&, into Y
~9!, the classical pure state equivalent ofuF&.

To prove the reverse, that is, thatX can be transform with
certainty intoY only if the quantum analogs can be tran
formed from one into the other, we note that we can turn a
classical transformation of pure states into a quantum o
simply by applying the classical operations coherently, a
performing the quantum actions in the Schmidt basis. Th
there cannot be any classical procedure that does better
the optimal quantum one. So the classical transformatio
possible iff the quantum one is.5

5Note, however, that although we can use the quantum resu
prove the classical one, we cannot use the classical result to p
the quantum result. The reason is that although we can turn
classical transformation into a quantum one, we cannot gene
this way all possible quantum protocols—indeed, they may invo
phases outside the Schmidt basis.
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V. PROBABILISTIC SINGLE-COPY MANIPULATIONS

It may not be possible to transform a single copy of
resource from one form into another with certainty, but
may be possible to do it with some probability. What is t
largest probability with which this can be done? For quant
states, the problem was considered in Refs.@15,18#, and the
general answer is given@18# in the simple form,

min
k

12( i 51
k pi

12(k51
k qi

. ~15!

We shall now show that for classical secret states, the ans
is the same.

As for the nonprobabilistic transformations, we may sim
plify the most general protocol, which then goes as follow
Alice first looks at her sample that comes according to
distributionp(xi). She then chooses a messagemj according
to p(mj uxi). Most of the possible messages will be ones
which the transformation succeeds: these must say to d
one-to-one map6 X°Y. The other messages say ‘‘fail’’: fo
these it does not matter what transformation we do, an
does not help to send more than one ‘‘fail’’ message. So
may assume we have only one ‘‘fail’’ message,mfail , which
says to doxi°y1 . Alice and Bob then doxi°yk(xi ,mj )
according to the message. This gives them a distribu
p(yk ,mj ). In the case they succeed, this distribution m
factorize,

p~yk ,mj !5H p~yk!p~mj ! for j Þfail

d~yk51!p~mfail! for j 5fail.
~16!

By defining p(success)5l, so that p(mj )
5lp(mj usuccess) forj Þ ‘ ‘ fail’ ’ and p(mfail)512l and by
requiring p(yk)5qk ~so that the protocol succeeds! we ob-
tain

p~yk ,mj !5H lqkp~mj usuccess! for j Þfail,

~12l!d~yk51! for j 5fail.
~17!

The time-reversed, single-party version of this problem
to start by flipping a coin (H/T) with probabilities (l,1
2l). We look at the result, and if it isT we start withyk
51, send a messagemfail , and are allowed to do anythin
~including probabilistic things! to transformY°X. If the
coin isH we get a sampleyk according top(yk)5qk , but do
not know which sample we get. We then pick some mess
according to p(mj ), and do the corresponding shuffl
yk°xi . This gives some distributionp(xi ,mj ). Finally, we
forget whether the coin wasH or T, and also which messag
was sent. This then gives usp(xi), which we would like to
bepi . Our aim is, for a givenqk andpi , to find the maximal
l for which this is possible. This problem is closely relat
to the one where majorization first appeared in class
physics, and the maximal value ofl is as given at the start o

to
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ny
te

e 6There is no loss in generality in forgetting about the many-to-o
maps, for the same reasons as in the nonprobabilistic manipulat
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CLASSICAL ANALOG OF ENTANGLEMENT PHYSICAL REVIEW A65 032321
this section. Once again the quantum and classical pure-
manipulations are possible under the same conditions.

VI. CATALYSIS OF SINGLE-COPY TRANSFORMATIONS

There is an interesting entanglement transformation ca
catalysis@19# that transfers easily to the classical case. S
pose we begin with some pure state

uc&AB5(
i

Api u i i &AB , ~18!

and wish to produce, using LOCC, the state

uf&AB5(
j

Aqj u j j &AB . ~19!

This is possible@16# iff qj majorizespi . There are, however
states whereqj does not majorizepi , but where catalysis is
possible. That is, where Alice and Bob cannot perform

uc&°uf&, ~20!

but if Alice and Bob share an additional pure state,

ux&AB(
k

Ar kukk&AB , ~21!

then they are able to perform, with certainty, the transform
tion

uc&ux&°uf&ux&. ~22!

This is, quite simply, because for the tensor-product syst
the majorization condition holds.ux& acts as a catalyst. I
enables the transformation ofuc& into uf&, but is not con-
sumed in the process. One example of such a catalys
transforming the quantum state whose squared Schmidt
efficients are

p150.4; p250.4; p350.1; p450.1, ~23!

into the quantum state

q150.5; q250.25; q350.25, ~24!

using the catalyst

r 150.6; r 250.4. ~25!

The classical analog of this process follows immediate
That is, Alice and Bob may wish to turn the classical pu
state defined bypi into the classical pure state defined byqj ,
using LOPC. This is only possible, as we showed in Sec.
whenqj majorisespi . However, there are cases when this
not possible, but if they also have a sample of the class
pure stater k , then they can achieve the transformation

P^ R°Q^ R, ~26!

with certainty. The sampleR is not revealed or altered by thi
process, and can be subsequently used independently
03232
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where. As far as we know, this classical secret correlat
catalysis has not been previously considered.

VII. SHUFFLING WITH CATALYSIS

Another classical catalysis problem that has not~to our
knowledge! been considered before is the single-party, tim
reversed version7 of the classical pure-state catalysis d
cussed in the previous section. We call this ‘‘shuffling cata
sis.’’ We emphasize that this shuffling catalysis has, in its
nothing to do with secrecy or secret correlations. Howeve
is possible to perform this shuffling catalysis iff the classic
pure-state catalysis is possible. Recalling~from Sec. IV! that
the majorization conditions are easier to prove in the sh
fling scenario than in the classical secret-correlation scena
studying shuffling catalysis may help in finding exactly wh
classical secret correlation~and, by analogy, entanglemen!
catalysis is possible.

We state the problem of shuffling catalysis to make
idea clear. Suppose we have a sample from a distributioqj
and wish to turn it into a sample from a distributionpi . We
are not allowed to look at the sample to see what it is, we
only throw dice whose probabilities~which we choose! are
independent of which sample we have. We then make so
permutation~shuffle! upon the outcomes, which suffle de
cided by the dice, and finally forget which one we did. A
mentioned in Sec. IV, this ‘‘shuffling’’ is possible iffqj ma-
jorizes pi . There are, however, distributions whereqj does
not majorizepi , and so cannot be turned into it directly, b
where we can perform catalysis. This means that we can
a sample from a third distributionr k , such thatqj ^ r k ma-
jorizes pi ^ r k , and then roll an independent dice and p
mute the possible outcomes of the tensor-product distribu
to turn qj ^ r k into pi ^ r k . This catalysis is possible iff we
can user k to turn the shared secret-correlation pure-statepi
into to the pure stateqj . Thus, an example of this shufflin
catalysis is the example given in Sec. VI.

VIII. PURE-STATE CONCENTRATION AND DILUTION

For many copies of a bipartite pure state, entanglemen
a completely fungible resource. It can be converted from o
form to another reversibly. Thus, we can quantify the amo
of entanglement by a single number, the entropy of entan
ment. We shall show that the same is true for classical p
bipartite states. That is, for such states, secret correlation
a completely fungible resource. They can be converted fr
one form to another reversibly, and can be quantified b
single number, the entropy of secrecy.

We define the entropy of entanglement for a quantum p
state,E(uc&AB) as

E~ uc&AB)52(
i

p log2 pi , ~27!

7See Sec. IV for the meaning of the single-party, time-rever
version of the classical pure-state transformation.
1-7
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DANIEL COLLINS AND SANDU POPESCU PHYSICAL REVIEW A65 032321
wherepi are the squares of the Schmidt coefficients.
The physical meaning of the entropy of entanglemen

the following. When Alice and Bob share a large numberN
of copies of some arbitrary pure stateuc&AB , they can con-
vert them, in areversible way, using only local operations
and classical communication into a numberK of copies of
the maximally entangled state

ucs&AB5
1

&
~ u11&AB1u22&AB), ~28!

where

K

N
→E~ uc&AB), ~29!

asN→`. That is, the entropy of entanglement represents
yield of singlets per copy of the original stateuc&AB . The
operation of converting the statesuc&AB into maximally en-
tangled states is called entanglement concentration@8# and
the reverse operation is called entanglement dilution.

Since entanglement cannot increase under LOCC,
above procedures are optimal, in the sense that concentr
and dilution cannot produce more copies: if they could,
would be able to produce entangled states from nothing.8 We
can thus quantify the amount of entanglement in a state b
entropy of entanglement. Any state is worth that many ma
mally entangled states, since it can be reversibly conve
into that many states. We call one of these maximally
tangled states an ebit, and shall say that other states ha
entanglement ofE ebits. Note that this quantity is additive
That is, if we have two states that individually have entang
mentE1 andE2 , together they have entanglementE11E2 .

The quantum procedure of entanglement concentra
can directly be mapped into an equivalent classical ana
The reason for this is that all the quantum actions used
entanglement concentration take place in the Schmidt
composition bases, i.e., the unitary actions are all perm
tions in the Schmidt basis while the measurements are
operators whose eigenstates are direct products in
Schmidt basis. Hence all these actions are essentially cl
cal. Furthermore, the quantum procedure does not req
communication, so is completely secure.

The quantum-dilution protocol also has a classical ana
Indeed, the quantum dilution@8# involves only Schumache
compression of quantum information and teleportation. B
these protocols have classical analogs: Schumacher com
sion maps into Shannon data compression and teleporta
is replaced by the one-time-pad secret communication.

Since secret correlations cannot increase under LO
these procedures are optimal. They allow us to revers
convert N copies of the classical pure stateX;pi into K
copies of the shared secret bitY;qj ,

P~YA51,YB51!5P~YA52,YB52!5 1
2 , ~30!

8It would be like the Carnot cycle for a perpetual motion machi
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K

N
52(

i
p log2 pi . ~31!

We can thus quantify the amount of secret correlations by
entropy of secrecy, which is defined as the number of sha
secret bits that can be produced per copy of the original s
X. We note that this amount is equal to the mutual entro
betweenXA andXB , and is also equal to the local entropy
XA , and to the local entropy ofXB .

IX. ENTANGLEMENT PURIFICATION AND PRIVACY
AMPLIFICATION

An important procedure in quantum information is e
tanglement purification@20#, which turns mixed states into
pure states, at the many copy level. The number of p
states produced per input mixed state is the yield.

Analogous procedures for turning classical mixed sta
into classical pure states exist, though are usually subdivi
into two stages. The first stage takes the mixed s
P(XA ,XB ,XE) and turns it into a mixed state where Alic
and Bob hold the same value, i.e., of the formP( i , j ,k)
5d i j P( i ,i ,k). The stage is known as information reconci
ation @21#, because Alice and Bob are agreeing on a comm
value. The second stage takes the output of the first st
and factors out Eve, to give a state of the formd i j pi P̃(k). In
other words, it produces a pure state. This stage is know
privacy amplification@21#, because Alice and Bob are in
creasing the secrecy of their key by reducing~to 0! Eve’s
knowledge of it.

In general, it is not known what the optimal protocol i
and there may be different optimal protocols for differe
states. There are a few different schemes for the quantum
classical cases, but we do not wish to discuss the details h
just to draw the analogy. First, any information
reconciliation/privacy-amplification protocol may be used
an entanglement-purification protocol. Second, a
entanglement-purification protocol may be used as
information-reconciliation/privacy-amplification protoco
We hope that a detailed study of the two problems toget
will yield better understanding and new protocols in both t
classical and the quantum case.

X. BOUND ENTANGLEMENT

One of our motivations for this work was a paper@6# by
Gisin and Wolf, suggesting a classical analog of bound
tanglement. A bound entangled state is a bipartite mix
quantum state that cannot be created locally~without any
prior entanglement!, but from which no maximally entangled
states can be distilled, even if there are many copies of
bound entangled state. It is as if the entanglement is ‘‘bou
inside the state, and cannot be released. They propose
classical analog to be a sample from a probability distrib
tion on Alice, Bob, and Eve,P(XA ,XB ,XC), in which Alice.
1-8
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CLASSICAL ANALOG OF ENTANGLEMENT PHYSICAL REVIEW A65 032321
and Bob have strictly positive intrinsic information,9 but
from which they cannot distill shared secret bits und
LOPC, even if they have many samples from the distrib
tion. Though it is not yet known if such a classical sta
exists, there is strong evidence that, by starting with a bo
entangled staterAB , taking a natural purification,ucABE&,
and measuring it in natural bases, we may produce a clas
bound state. Here we simply note that bound information
into our framework as a derived analogy, and is another c
sequence of the deeper analogy between entanglemen
secret classical correlations.

XI. PURE OR MIXED?

We have mentioned in Sec. II that it is not clear wheth
to classify classical states of the formP(XA ,XB)P(XE)
whereXA is not completely correlated withXB as pure or as
mixed. Such a distribution resembles a pure state becau
is not correlated with Eve: this is like a pure state not be
entangled with the environment. It also resembles a p
state because we can optimally distill shared secret bits f
many copies of such a state at a rate equal to the na
measure of shared correlations, the mutual information@22#;
this is the analog of pure-state entanglement concentra
However, it is not known whether such a distillation is r
versible. That is, given the shared secret bits, can we prod
the original states? If the answer is no, this would be typi
behavior of a mixed state. Furthermore, a definite simila
to mixed states is that there is no Schmidt decomposition
such states: in other words, there is no way, using local
versible transformations, to make Alice and Bob have
same values for their samples.

Another similarity to mixed states is that it is not possib
even probabilistically, to use LOPC to produce a pure s
from one copy of such a distribution. For example, consi
the bipartite, two-dimensional case, where Alice and B
both receive either a 0 or a 1, with probabilities
p00,p10,p01,p11. We can assume that at least the first th
probabilities are nonzero~otherwise they have a pure state!.
They wish to use LOPC to make a classical ‘‘entangle
pure state, i.e., whereP(00).0, P(11).0, P(01)5P(10)
50. As discussed in Sec. IV, the most general thing they
do is to first communicate publicly, resulting in some to
public message,mi , where i may depend upon their loca
dice and upon their samples. They may then change t
samples according to some map that is specified by the m
sage. For example, the message could tell Alice to flip
bit, and Bob to leave his alone. Note that the message ha
tell them what to do locally: it cannot tell them to look at th
other person’s bit to decide what they will do. Now, to ma
a pure state with any probability they need at least one m
that is local in the sense described above and which prod

9A classical measure, which, loosely speaking, is designed to
whether or not Alice and Bob share some information that Eve d
not have and which they can use. The hope was that, if posi
they would have something useful, and if zero, they would h
nothing.
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both 00 and 11, and nothing else. We shall show that no s
map exists.

Assume that such a map exists. Without loss of genera
we may assume the map does

00°00. ~32!

Since Bob has to act locally, this means that if he starts w
a 0, he has to finish with a 0. Since they must finish with
same thing, this implies

10°00. ~33!

Since they are symmetric, similar reasoning gives

01°00. ~34!

Because they have to act locally, we now know that if Ali
or Bob sees a 1, they have to finish with a 0. Thus

11°00. ~35!

And so the map takes everything to 00, which is no go
For classical states in higher dimensions, the same typ
reasoning shows that we cannot produce a classical
state from a single copy of such a state.

So, as we have shown, classical states of the fo
P(XA ,XB)P(XE) have some characteristics in common w
pure quantum states, and some in common with mixed qu
tum states.

XII. MULTIPARTITE RESULTS

It is well known that entanglement is much more comp
cated for multipartite systems than for bipartite syste
@11,12,23#. In particular, already in the case of three partie
it is known that tripartite entanglement is fundamentally d
ferent than the bipartite entanglement, even in the ma
copy scenario. Furthermore, there might even exist m
different inequivalent forms of tripartite entanglement. A
more systems are added, the problem becomes vastly m
complicated, but we have a few results to guide us, such
the fact that there is genuine entanglement at every le
~again, even in the many-copy scenario!. Here we show that
many of these features have classical analogs.

First, we shall look at the tripartite case. We propose t
the classical equivalent of the Greenberger-Horne-Zeilin
~GHZ! state,

uGHZ&ABC5
1

)
~ u000&1u111&), ~36!

is a probability distribution of the form

P~XA ,XB ,XC ,XE!5P~XA ,XB ,XC!P̃~XE!, ~37!

whereP(XA ,XB ,XC) is given by

P~0,0,0!5P~1,1,1!5 1
2 . ~38!

We shall call this theC-GHZ ~classical GHZ!, and the clas-
sical singlet~i.e., the bipartite shared secret bit! we shall call

st
s

e,
e
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DANIEL COLLINS AND SANDU POPESCU PHYSICAL REVIEW A65 032321
the classical Einstein-Podolsky-Rosen(C-EPR! Is is easy to
see that out of 1 GHZ copy we may generate oneC-EPR,
i.e.,

C-GHZ°C-EPR. ~39!

Clare simply forgets her bit. This may sound unsatisfact
since in the quantum case Alice and Bob end with an E
which Clare has no control over, whereas here Clare co
always later remember her bit, and so one may argue tha
have not really performed the classical transformation. Ho
ever, since Alice, Bob, and Clare all begin with the sa
information and communicate only publicly, it is impossib
for Alice and Bob to agree upon anything without Cla
knowing it. Thus the ‘‘stronger’’ form of the transformatio
is impossible, and the best we can do is this weak form, w
Clare forgetting her bit.

The above transformation is irreversible: i.e., given o
C-EPR it is impossible to make aC-GHZ @11#. This is be-
cause the bipartite entropy of secrecy can only decrease
der LOPC, and viewing the system as~AB! vs C a C-EPRAB
will have 0 entropy, whereas theC-GHZABC has entropy of
1 ~and is symmetric with respect to all the parties!. It is
possible, however, to do

C-EPRAB1C-EPRBC°C-GHZ. ~40!

This is done as it would be in the quantum case: Bob ma
a joint measurement on his bits~addition modulo 2!, and
publicly announces the result. Bob now forgets his sec
bit, and if the public message was 1, Clare flips her bit. Th
are then done. This procedure can be viewed as Bob u
the C-EPRBC as a one time pad to send Clare the value
theC-EPRAB . It is again clear that we cannot do the rever
transformation: viewing the system as~AC! vs B, theC-GHZ
has an entropy of secrecy of 1, whereas the twoC-EPR’s
together have an entropy of 2.

The entropy of secrecy can be used to show that th
exists more than just bipartite secrecy, even in the ma
copy case. Specifically, the four-party cat state, which
distributionP(XA ,XB ,XC ,XD) given by

P~0,0,0,0!5P~1,1,1,1!5 1
2 ~41!

~where Eve factors out! cannot be converted reversibly int
C-EPR pairs. The proof of this is exactly the proof used
the analogous quantum problem@11#, and is done by parti-
tioning the four parities into pairs in various ways, and loo
ing at the entropy of entanglement, which must be asym
totically conserved under reversible transformations.

Suppose that we could reversibly convert asymptotical
single four-party cat state intoC-EPR pairs:nAB betweenA
and B, nAC betweenA and C, etc. Partitioning the system
into ~A! vs ~BCD! we get the equation

nAB1nAC1nAD51. ~42!

Partitioning the system as~B! vs ~ACD!, ~C! vs (ABD), and
~D! vs ~ABC! gives

nAB1nBC1nBD51, ~43!
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nAC1nBC1nCD51, ~44!

nAD1nBD1nCD51. ~45!

On the other hand, partitioning the system as~AB! vs ~CD!,
~AC! vs ~BD!, and~AD! vs ~BC! gives

nAC1nAD1nBC1nBD51, ~46!

nAB1nAD1nBC1nCD51, ~47!

nAB1nAC1nBD1nCD51. ~48!

Summing the first four equations together gives

2 (
all pairs

ni j 54. ~49!

while summing together the next three gives

2 (
all pairs

ni j 53. ~50!

Thus the transformation is impossible, and the four pa
classical cat state really is more than just bipartite sha
secret correlations.

We thus conclude that there are different types of mu
partite secret correlations.

XIII. CONCLUSION

We have described a fundamental analogy between
tanglement and secret classical correlations. The analog
quite simple to state. Both are resources, and the main
jects involved in the study of such resources have a one
one correspondence, as given in the first table of Sec. I.
to this basic analogy, many derived analogies follow. In p
ticular, we have shown that teleportation and the one ti
pad are deeply connected, that the concept of ‘‘pure sta
exists in the classical domain, that entanglement concen
tion and dilution are essentially classical secrecy manipu
tions, and that the single-copy entanglement manipulati
have such a close classical analog that the majorization
sults are reproduced in the classical setting. We have poi
out that entanglement purification is analogous to class
privacy amplification, and hope that the search for be
protocols in the two areas can go hand in hand. We fina
showed that, as with entanglement, one can look at multip
tite shared secret correlations, and gave a flavor of how
sults in the quantum setting easily transfer into the class
world. Despite all these useful derived analogies, our m
point is the fundamental one: entanglement and shared s
correlations are deeply related, and one should never
viewed without the other.

We want to emphasize that by no means do we claim
quantum entanglement is a fundamentally classical effec
that there exists a classical explanation of entanglement.
classical analog of entanglement is nothing more or less t
a simple analog, and has a value of its own. On the ot
hand, all the aspects of quantum entanglement that are c
1-10
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mon with the classical analog cannot be considered to
quantum. Thus, many aspects that were hitherto consid
to be genuinely quantum lose their status.

The main thrust of this paper was to identify the comm
aspects of quantum entanglement and classical secret c
lations. An even more interesting question is to find tho
aspects which arenot common. For example, we have n
found any ~and believe there is no! analog of superdens
coding. It is not the case that by having one secr
correlation bit and by sending one secret bit, Alice can tra
mit to Bob two public bits. The lack of superdense codi
manifests itself, implicitly, also by a difference in the qua
titative descriptions of teleportation and one-time-pad se
, a

m

nt
N

n

. V

an

03232
e
ed

re-
e

t-
s-

et

communication: in the case of teleportation Alice has to se
Bob two classical bits while in the one time pad Alice has
send only one public bit. It is only such aspects that are
common to the two settings that are genuinely quantum.
hope that getting rid of those aspects that were believed t
quantum but are not, and identifying the genuine quant
ones will lead to a better understanding of quantum entan
ment, and of secret communication.
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