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Classical analog of entanglement
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We show that quantum entanglement has a very close classical analog, namely, secret classical correlations.
The fundamental analogy stems from the behavior of quantum entanglement under local operations and
classical communication and the behavior of secret correlations under local operations and public communi-
cation. A large number of derived analogies follow. In particular, teleportation is analogous to the one time pad,
the concept of “pure state” exists in the classical domain, entanglement concentration and dilution are essen-
tially classical secrecy protocols, and single-copy-entanglement manipulations have such a close classical
analog that the majorization results are reproduced in the classical setting. This analogy allows one to import
questions from the quantum domain into the classical one, and vice versa, helping to get a better understanding
of both. Also, by identifying classical aspects of quantum entanglement, it allows one to identify those aspects
of entanglement that are uniquely quantum mechanical.
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[. INTRODUCTION Quantum entanglement Secret classical correlations
Quantum communication  Secret classical communication
In his pioneering paper of 1964], Bell pointed out the Classical communication  Public classical communication

nonlocal character of quantum-mechanical long-distance cok0cal actions Local actions

relations. Since then, many novel aspects of nonlocality have

been uncovered, such as teleportafidly superdense coding Thus, we suggest that a classical analog of a pair of en-
[3], and the capability to reduce the number of required bitdangled particles is that of one sample of two secret, corre-
of classical communication for implementing certain com-lated, random variable®ne at each remote paytyHere, by
munication tasks (in the so called “communication- S€Cret communication we mean communication through a
complexity scenariof [4]. Furthermore, entanglement and channel to which an eavesdropper has no access. By public
nonlocality are at the core of quantum computatishand communication we mean communication through a channel
its capability of performing computations faster than anyt© Which an eavesdropper has full accésan hear every-
classical computer. An enormous effort has been dedicateffind), but neither alter the messages sent, nor introduce new
during the last few years to understand the qualitative an{€ssages. F|_nally, in the quantum context, by I_ocal actions
quantitative properties of nonlocality. In effect, quantumwe mean subjecting the qubits to unitary evolutions as well

nonlocality has become to be considered one of, if not th&S to measurements and other nonunitary evolutions. The

. . . Classical analog of unitary transformations is that of replac-
most representative aspect of quantum mechanics. Quite S%'g the value of the original random variable by some new

alue related to the old one by a one-to-one function, while

tanglement, namelgecret classical correlations that of transformation by nonbijective functiohs.
Our motivation in looking for_a classical analog of quan-  The main idea of this analogy is that, similarly to quan-
tum entanglement is twofold. First, such an analogy allowgym entanglement, secret classical correlations act(fsa

us to identify aspects of quantum entanglement that wergjiple) resourceand obey a “second law of thermodynamics”
hitherto considered to be purely quantum but which are, in

fact, not quantum at all. Indeed, all those aspects of entangle=——

ment that are common with the classical analog, are not of a*Note that when we replace the original value of the random vari-
guantum nature. As a corollary, we also get a better underable by another via a nonbijective function, we consider that we
standing of what are the true quantum features of quanturactually erase the original information, so information is lost. This
entanglement. Second, this analogy allows one to transfés completely analogous to what happens in the quantum case. Of
questions from quantum entang'ement to the classical dg=ourse, Or.‘le may argue that i_n neither .Case information is lost. For
main (classical information cryptographgnd vice versa and example,_m the noncollapse interpretations of the quantym case all
thus lead to a better understanding of both subjects. In fach"a.h"’“’e 'S an. en_tanglement of the measureq system with the mea-
the inspiration for our paper stems from the work of Gisinsurlng device; this entanglement, however, involves so many de-

. . . . grees of freedom that it cannot be reversed. Similarly, erasing, say
and Wolf[6], which asked if there is a classical analog of pencil markings from a paper, still preserves the original informa-
bound entanglement.

) ) ) _tion in some subtle arrangement of the graphite granules mixed with
The analogy we suggest is summarized in the followingyjts of paper and erasing gum, but this involves so many degrees of

table: freedom that the original information cannot be recovered.
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principle—the amount of secrecy doesn't increase undechange ofn secret bits, the amount of secret correlations

LOPC (local actions and public communication between remote parties cannot be increased by morenthat
The modern paradigm is that of quantum nonlocality as ssecret correlation bits.”
resourceas we describe below. (vii) The remote parties can, by local actions and public

(i) Nonlocal correlations between two or more remoteCOmmunication, transform secret correlations from one form

parties can be created by quantum communication, i.e., bito another.

sending quantum particlégubit9 from a common source to (v_iii ) Analogous to entanglement, secret correlations are a
the parties, or from one party to another. fungible resource—they can be stored, transformed from one

(i) Second law of thermodynamics. The amount of nonform into another, and can be consumed to perform useful
sks, such as secret communication via the one-time pad

locality between the remote parties cannot be increased

: X . 0l.
local actions and/or classical communicatigrOCC). In- The possibility of transforming secret correlations from
deed, one can view this statement as the ignition of one form into another enables us, similarly to the case of

what nonlocality is. The above version of the second .laW.CaQ}uantum correlations, to obtaincuantitativedescription of
be further extended to allow for quantum communlcatlon,Secrecy

catalysis, etc. For examplg], “by local actions, classical In the bi-partite case, the analogy is now obvious, as fol-
communication, and exchange ofqubits, the amount of |5s:
nonlocality between remote parties cannot be increased bghared, undirected resources
more thatn ebits.”

(i) The remote parties can, by local actions and classical
communication, transform nonlocality from one form into Directed resources

another. qubity . secret bif .

e-bitag shared secret hijg

classical bit_. public classical bj_.g
The situation of multi-partite secret correlations is more
omplicated, as is the situation of multi-partite entanglement.
t is now clear that there are many different, irreducible,
types of multi-partite entanglemept1,12; this is also the
case for secret correlations.

For example, suppose two parties, Alice and Bob, have a
large number of pairs of particles, each pair in some pure,
nonmaximally entangled state. By appropriate actions, the
can end up with a smaller number of pairs in maximally
entangled statg8,7]. In effect, at least in the case of bipar-

tite pure states, nonl_ocallty is absolutely fungible—any f_orm_ At this point it is legitimate to ask what is the role of
can bg transforme_d Into a,ny other, and the trar_lsformatlon I§ecrecy. That is, why do we considsgcretclassical corre-
revgrsmle. Thus, .|t doesnt really matter in which form the |ations to be the analog of entanglement and not sinaply
parties are supplied with nonlocality, they can always congjassical correlations. There are two main reasons. The first
vert it into the form that is required for implementing the reason is that while such an analogy is certainly possible, it
specific task(for example teleportatiorthey want to do. would be rather uninteresting. Indeed, one of the main as-
(iv) Nonlocality is consumed for producing useful tasks pects of manipulating entanglement is that there is a way in
(teleportation, superdense coding, remote implementation afhich the different parties may communicétéassical com-
joint unitary transformationf9], etc). As with quantum non-  munication which doesn't increase the amount of entangle-
local correlations, secret correlations are also a resource. ment. Similarly in the case of secret classical correlations,
(v) Secret correlations can be established between remofmiblic communication doesn'’t increase the amount of se-
parties by secret communication. crecy. In the case of arbitrary classical correlations however
(vi) Second law of thermodynamics. The amount of secrethere is no way in which the remote parties could communi-
correlations cannot be increased by local actions and/or pulsate and not increase the correlations. So when trying to
lic communication(LOPC).2 In fact, as in the case of nonlo- build an LOCC(“local operations and classical communica-
cality, we can take this law to be the very definition of thetions”) analog in the case of arbitrary classical correlations,
amount of secret correlations, i.e., the amount of secret cod€ have no choice but to completely eliminate the commu-
relations between remote parties is that part of their correla?ication, which leads to a very uninteresting situation.

tions that cannot be increased by local actions and public 1he second reason is far more profound. Consider, for
classical communication. example, two parties, Alice and Bob who share a maximally

entangled statpV') = (1A72)(]0)|0)+|1)|1)). Suppose now

) that Alice and Bob “degrade” the state by “erasing” the

The above version of the second law can be further extendegqtangmmem. They can do this a minimal wayby Alice

to allow for secret communication, catalysis, etc. For ex-randomizing the phase of her basis state vechs,|1)}.

ample, “by local actions, public communication, and ex-Then Alice and Bob will be left with a mixture of
(12)(10)[0)+|1)[1)) and (142)(|0)|0)—|1)[1)) with
equal probabilities. This mixture contains no entanglement

2In everyday practice, secret messages are exchanged by publidt is equivalent to an equal mixture (&) |0) and|1) |1)) but

communication by so called “public-key-distribution” protocols. contains secret correlations between Alice and Bob. Thus

We do not consider here this case since these are only pseudosecsetcret correlations are, in fact, very closely related to en-

messages—their secrecy is based on encoding that is difficult ttanglement.

decode due to computational complexity; in principle, however, an The analogies described above are the “fundamental”

eavesdropper could decode the message. analogies. From them follow an entire set of derived analo-
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gies. We would like to emphasize, however, that it is only thewhere P(E,) is the distribution of the eavesdropper’s vari-
fundamental analogiegsuch as the behavior under LOCC/ gble X¢ and it is completely irrelevant, except for the fact
LOPC) that have truly deep significance and that onethat itis completely uncorrected to the distribution¥gf and
shouldn't expect the derived analogies to be very closeg . Strictly speaking, we propose E®) as the classical
(though many of them ajeDerived analogies are summa- analog of the pure-state Schmidt decomposition, and any

rized in the following table: classical state that is locally equivalent, i.e., can be trans-

formed into the above form by local, one-to-one mappings
Quantum Classical (the equivalent of local unitarigsve consider to be a pure

state.

Teleportation One time pad Another interesting case is that of distributions of the

Entanglement concentration Secret-correlation form p(Xa=i,Xg=],Xe=k)=P(Xx=i,Xg=j)P(E,) in

concentration which E is completely uncorrelated with andB, but A and
Entanglement dilution Secret-correlation dilution B are not completely correlated with each other. Such a dis-

Entanglement purification ~ Classical privacy ampnﬁcationtribution is obtained when Alice and/or Bob measure a quan-

: i ; : _ : tum pure state in some other basis than the Schmidt one.
Single copy trgnsformanons Smglg_ cppy_transformanons Such a distribution has some characteristics of a pure state
Probabilistic single copy Probabilistic single-copy

and some characteristics of a mixed state. We will discuss

transformations transformations this case in more detail in Sec. XI.
Catalytic transformations Catalytic transformations For more than two parties the analog of a density matrix
Bound entanglement Bound information ? pagc--- IS a probability distributioP (X, Xg,X¢,...). Itis
not yet clear to us what the general analog of a multipartite
Il. QUANTUM STATES AND CLASSICAL ANALOGS pure state is. This is due, in part, to the fact that for multi-

partite states the analog of the Schmidt decomposition is far
In the previous section, we suggested that classical secretore complicated. We shall give some multipartite results in

correlations are a good analog for quantum entanglemengec. XII.
Again, the basis of the analogy is the similar behavior of
secret correlation and quantum entanglement under LOPC/ Il TELEPORTATION AND THE ONE TIME PAD
LOCC. To make the analogy more detailed and to obtain the The first “derived” analogy is probably the most striking
“derived” analogies mentioned above we need to defineof all. The fundamental quantum-communication protocol,
more precisely the analogy between quantum states and sérat is, teleportation turns out to be analogous to the funda-

cret correlations. mental secret communication protocol, the one time pad
Consider two remote parties, Alice and Bob. A genera|[14]._ _ . . .
guantum state is described by a density mapix or, Alice begins with the qubitsecret bit to be sent, which

equivalently, by a pure statd ,ge in which A andB are may be entangledsecretly-correlatedwith any number of
entangled with a third party, the “environment.” The classi- Other particlegbits). She does a Bell measuremeatidition
cal equivalent of the general quantum state is a probabilitnodulo 2 on the qubit(secret bit to be sent and the qubit
distribution P(X ,Xg ,Xg) whereX,, Xg, andXg are ran-  (it) of resource she holds. She then sends the outdoere
dom variables known to Alice, Bob, and Eite eavesdrop- sult) of this operation as a classical lfiublic bit) to Bob.

: He then does a conditional unitaflyit flip) upon his part of
pen, respectively. One copy of a quantum stdtggg corre- . . )
sponds to one sample of the probability distributionthe ebit(shared secret bitBob now holds the qubifsecret

bit) Alice was sending him.

P(Xa,Xg, Xg). - .
A quantum bipartite pure state can always be written in The necessary and sufficient resources are given by
the Schmidt basif13] as lebityg+ 2classical bitg .g=1qubity .5, (€)]

1shared secret Qg+ 1public bit,_g=1secret bit_g.

|¢>AB:Z Vpili)ali)e. (1) (4)
' By necessary we mean that, if we were to try to do the
teleportation with less than one ebit—by using a less than
If Alice and Bob measure their particles in the Schmidtmaximally entangled state, for example—the teleportation
basis then they get correlated random variab¥gsand X, will not give a perfect output, and the classical information
which come according to the distributign(X,=1,Xg=])
= §jjp; . In other words, they both get the same sample from . _ _
a random variableX~{p;}. Furthermore, the values of, Note that, quantum mechanically, in order to say that the state of
and Xg are secret—there is no third parf who knows Alice and Bob is pure we dpn‘t need t.o specify that the state of
them. We propose classical distributions of this form as thé\ice; Bob, and the Environment is of the forn)ge

classical “pure” state. That is, a bipartite classical pure state=|#)as/#)e, but it is enough to know the stateg of Alice and
is a distribution Bob alone. On the other hand, the classical correlations of Alice and

Bob alone do not allow us to know if Eve is, or is not, correlated
_ with Alice and Bob, therefore, we must always describe the full
P(Xa=1,Xg=],Xg=K)=8;p;P(Ey), (2)  state of Alice, Bob, and Eve.
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will give some information about the qubit we are sending. Iffollowing. Consider two quantum pure statég),g and

we try to use a less than completely correlated shared secrip) g, Written in their Schmidt bases

bit to send a secret bit then Eve gets some information about

the secret bit. The resources are sufficient since we can S

achieve the operations using them. |¢>AB:Z Vpili)alide,
Note that the resources are used up in the process: once

we have used an ebishared secret bitto send a qubit

(shared secret Bitve cannot reuse it. Quantum mechanically | ) ap= 2 \/a|i>A|i>Bv (6)

this is obvious, since the original maximally entangled state '

is destroyed by Alice’s measurement. Classically, however, . . - _ .
Alice and Bob do not lose their correlated bits—Alice andWIth the squared Schmidt coefficiers and; arranged in

. Iy . decreasing ordep,=p,=--- andq;=q,=---. The vector
Bob need not erase or physically modify in any way the|rq={qi} is said to majorize the vectqi={p, }iff

original correlated bits but just use them for some math-

ematical operations. What is lost, however, is the secrecy of k k

these bits—they cannot be reused. > =2 p Vk (7
Furthermore, it is obvious to see that the one-time-pad i=1 i=1

secret communication can be used to implement the analog . ) o oL

of teleportation of entangled states and of entanglemerMAB 1S said to major|z¢¢./;>AB|fr g majorizesp. ‘!’he trans-

swapping. formation |¢/>AB§|¢>AB is possible with certainty if .and
Finally, let us note an important fact. Quantitatively, the O if [¢)ag majorizes|i) a5 [16]. (Note that it is the final

amount of resources in the classical and quantum cases atEte that must majorize the starting one.

©)

similar, but not identical: but we need two classical pitg For classical secret correlations, suppose Alice and Bob
to send one qubit, whereas only one public, b to send begin with an arbitrary classical bipartite pure state, which
one secret bit. we may write as

P(Xa=1,Xg=],Xe=k) = &;piP(Ey). ®

IV. ENTANGLEMENT AND SECRET-CORRELATION
MANIPULATIONS—SINGLE COPY Their task is to produce some other state,

The ability to manipulate entanglement, i.e., transforming
entanglement from one form into another by local actions

and classical communications_ is one of the most importanfye shall prove that they can do this @fmajorizess. How-
aspects of entanglement. This leads to elevating entanglgyey 1o understand what is going on, let us first consider a
ment to the status of dungible) resource: to a large extentit gjmhje example that has all the important features. The quan-
doesn’t matter in which form _e_ntanglement is suppl!ed, Wem version was first considered in RE5].
can Frar!sform it into the specific form we nged for d|fferqnt Suppose Alice and Bob share one sample of the classical
applications, very much as say, transforming the Chem'cjkure stateX. where
energy stored in coal into electrical energy for use in electri ’
engines. Similarly, one can imagine that Alice and Bob are P1=P,=Ps=13, (10)
supplied with secret correlations in some given form, i.e.,
according to some specific probability distribution, and theyand they would like to turn it into a sample of the pure state
want to obtain secret correlations obeying a different probsy, where
ability distribution. We find that the quantum and classical
scenarios are in very close analogy. q1=0>=3. (11)
In this section, we treat the case of bipartite pure-state
single-copy manipulations. In the quantum context this A probabilistic method(analogous to the procustean
means that the two parties, Alice and Bob, share a single painethod for the quantum ca$8]) is for Alice to send mes-
of particles in some pure staf#),g. In the classical con- sagem; (which means “OK”) if X is 1 or 2, and to send
text, Alice and Bob share a single sample of a classical purenessagen, (which means “not OK’) if X is 3. If message
state(2). m, is sent then Alice and Bob keep their sample, and they
In the case of a single copy, entanglement is not a comrow have a shared secret random variable of the f¥rm
pletely interconvertible resourdas it is in the case of many Indeed, in this case Eve only knows that the value of the
copies(see Sec. VIIi], but many more restrictions apply.  secret variable is either 1 or 2 but she doesn’t know which
For bipartite pure quantum states, it is possible to turn on@ne—Alice and Bob’s data is, therefore, still perfectly secret,
state into anothewith certaintyif and only if (iff) a certain ~ and it is now either 1 or 2 with probability 1/2. If message
set of conditions, collectively known as majorization, holdsm, is sent then the procedure failed and Alice and Bob have
[15,16. Here we show that for classical secret pure stateso throw away their sample. The reason is that Eve, who
the transformation is possible if and only if an analogousmonitors the public communication, learns that Alice and
condition holds. Bob’s variable is equal to 3, and there is no more Alice and
Quantum mechanically, the majorization condition is theBob can do.

P(Ya=i,Ys=],Ye=Kk)=&;q;P'(Ey). (9)
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The above method works with probabili§y Can Alice  of the diced, anddg . Also given the initial valueX and the
and Bob do better? The second distribution majorizes thgnessagen, Alice and Bob must perform the same function
first, since5=3, 5+3=35+3, and 5+5+0=35+3+3. Thus we get
Thus, according to the majorization theorem we shall shortly
prove, there exists a method that works with certainty. The Ya=Yg=f(X,m). (14
protocol for achieving this goes as follows. Alice reads the
value of X. If it is 1, she flips an unbiased coin that tells her ~ Furthermore, since Bob’s actions may not depend on the
to send message, or m, with equal probability. IfX=2  outcomes of his dice but only ax andm, for every proce-
she flips an unbiased coin to semg or m3, and ifX=3 she dure that involves many rounds of communication between
flips an unbiased coin to semd, or m;. She then publicly Alice and Bob, we can formulate an equivalent procedure in
sends the message, so that everyone can readhii.i sent,  which the total message is entirely generated by Alice—she
Eve knows thaiX is 1 or 3 with equal probability. Im, is  could simply throw all dice herself—and then the message is
sent, Eve knows thaX is either 1 or 2, with equal probabil- communicated in a single transmission to Bob. Let us now
ity. And if my is sent, Eve knows that is 2 or 3 with equal  formalize this procedure for turning into Y.
probability. Now Alice and Bob just have to do a simple Alice looks atX=x;, which occurs with probabilityp; .
relabelling of X to produceY. If m; is sent, they both do She then throws a biased dice which tells her to send mes-
1—1,3-2. If m, was sent they do+3»1,2->2. If mz is sent ~ sagem; with some probabilityp(m;|x;) which depends upon
they do 2-1,3—2. Whatever message was senis now a  X;. She then publicly announces;. Alice and Bob now
shared random variable that(iss far as Eve is concernead  follow the instructions in the message, which say to do
shared secret bit of the foriid1). Xi—Yi(X; ,m;). Forgetting whai is (i.e., summing ovek;)

Now we shall look at the general case. For which purethis gives them some joint distribution foy, and m;,
statesX andY is it possible to turn a single sample Xfinto ~ p(yx.m;). Since Alice and Bob wany, to be secret from
a single sample off? Consider the most general possible Eve, who knows only the protocol and the message, this
protocol. We assume that Alice, Bob, and Eve all know thedistribution must factorizep(y,,m;) = p(yi) p(m;). p(Yy)
protocol? Alice and Bob start by having a single sample of is the final distribution, and so we wapty,) =g (the dis-
the pure statéX. They each have also access to some localribution of ).
source of secret randomness—they may each throw dice. Of This secrecy procedure can be thought of as a single-party
course, Alice knows only the outcomes of her dice and Botproblem, which goes as follows. We begin with a sample
of his. During the protocol Alice and Bob may publicly com- from X, which occurs with probabilityp; . We may look at
municate, perhaps in many rounds, with each message deténe sample, and then roll some dice, which gives outcome
mined by X, the public messages already sent, and by thavith probability p(m;|x;). We then perform the map
results of the local dice. At the end of the protocol there willx;—y(x;,m;). We then forget whakK is, which gives some
be some total public message that consists of all the megeint distribution fory, andm;, p(yx,m;). We desire this
sages that were exchanged by Alice and Bob. All three pardistribution to factorize,p(yy,m;)=p(y,)p(m;), and that
ties, Alice, Bob, and Eve know this total message. In addip(y,)=q,. Note that this single-party procedure is not a
tion, Alice and Bob know the value of (which is common  secrecy procedure, however, it is possible iff the above se-
to both of them since the state is pyrand each of them crecy transformation is.
knows the outcomes of his/her own dice. Based on all this To find for which p; and gy this single-party problem is
knowledge Alice and Bob must decide on the value¥'gf  possible, and thus to find for which; and g; the secrecy

andYg. Formally, we can write transformation is possible, we shall look at the time-reversed
problem. This goes as follows. We start with a sample from
Ya=fa(Xa,m,dy), (12) Y, which occurs with probabilityq,. We then roll dice,

which give outcomen; with probability p(m;), independent
of the outcome ofY. This gives a joint distribution
Yg=fg(Xg,m,dp), (13 p(y,,m)=ap(m;). Now we must do the inverse of the

mapx;—Y(X; ,m;) to turn ourY into anX. If the map is one
where bym we denote the total message, anddayanddg to one, and hence invertible, this will give us a distribution
we denote the outcome of all Alice’s and Bob's dice. p(x;,m;). Like any joint distribution, this can be written as

The above procedure can be simplified. Since we begi®(x; ,m;)=p(x;)p(m;|x;). If we now forget the value o¥

with a pure stateX,=Xg=X. Furthermore, since we want and ofm,, we get a new distribution fox, p(x;). We desire
to end with a pure state, we requive,=Yg. This require-  P(X;)=p; . If the map is many to one, then we can give it a

ment implies thatY, and Yy cannot depend on the outcome probabilistic inverse, which is a “one-to-many” map where
the probabilities of getting variouss, given any particular

Yk, are given by the relative frequencies of this wheny,
4f Alice and Bob had a secret protocol, this would be like havingiS Produced in the forward-time protocol. This probabilistic

an additional shared random variable, whose different outcome@ne-to-many map can be repla(;ed b)/ a probabilistic choice
told them which protocol to use. Thus, they would have an addi-Of several one-to-one maps, which will have the same effect

tional resource. Here we insist they have only one shared resourcgpon the protocol since we forget which map we did at the
X. end. Thus in the reversed-time single-party problem, we need
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only consider maps that are one-to-one. This also applies to V. PROBABILISTIC SINGLE-COPY MANIPULATIONS
the forward-time single-party problem, and to the forward-

time secrecy protocol: we only need consider maps that alfssource from one form into another with certainty, but it

one-to-one,_i.e., permuta}tions.. n . may be possible to do it with some probability. What is the
As explained above, if we find the conditions for which |5gest probability with which this can be done? For quantum

the reversed-time single-party problem is possible, we Wi"states, the problem was considered in REFS, 18, and the
have the conditions for which the forward time-secrecyégenem answer is givefi8] in the simple form,

transformation is possible. Physically, this time-reverse

It may not be possible to transform a single copy of a

single-party problem goes as follows. We begin with a ball in 1-3Kp
some box according to the distributiop. We do not know mk'n 135 g (15

which box the ball is in, and are not allowed to look to see

vyhere itis. We then app!y some shuffiene-to-one relabel-' We shall now show that for classical secret states, the answer
ling) to the boxes, choosing which shuffle to make accordingg the same.

to a distribution,p(m;), which we may choose. We then
forget which shuffle we did, and look at the new distribution
of the balls,p;. The question is for whicly; and p; is this
possible? Clearlyp; should be more random thap. This is

a well-known problem, and is the context in which majoriza-
tion appears in classical physics. The answer is that it i

possible iffp majorizesq. Intuitively, this is easy to see, and one-to-one mabX—Y. The other messages say “fail”: for

the proof can be found, for example, in REE7]. these it does not matter what transformation we do, and it
Above, we have proved the majorization result in the clasyjag not help to send more than one “fail” message. So we

s!cal context by using arguments referring solely to the Clasfnay assume we have only one “fail” messaga,;, which
sical context. We could have used, however, the known reg

; - says to doxj—y;. Alice and Bob then dosi—y(x;,m;)
sults for quantum-entanglement manipulation to prove th(:étccording to the message. This gives them a distribution
classical ones. The reason is as follows. On one hand, it w

X . ,m;). In the case they succeed, this distribution must
found out that transforming pure quantum stafeith cer- aﬁ(yk i) y

. . ' ! factorize,
tainty) from one into another involves only actions and mea-

surements in the Schmidt decomposition basis. These actions

do not ipvolvg phases, but are simply classical actions upon p(yk,mj)=| s
the basis, which are performed coherently to make a quan- (
tum evolution. One could, however, imagine starting by mea- -
suring the quantum state in the Schmidt basis, and then peEy)\ de|>f|n|ng pf(sicc?s?)\ d S0 _thlai)\ p((rjng

forming the corresponding classical actions and p(my succeis) of h "’:' h an a(mfﬁlﬂ')_ dzn by
measurements upon the state. This transforms one classit{glf:r']u'”ng P(y) =0« (so that the protocol succegdse ob-

state into another, and will not give Eve any knowledge

As for the nonprobabilistic transformations, we may sim-
plify the most general protocol, which then goes as follows.
Alice first looks at her sample that comes according to the
distributionp(x;). She then chooses a messageaccording
to p(m;|x;). Most of the possible messages will be ones for
Which the transformation succeeds: these must say to do a

Py p(m;) for j+fail
Yi=1)p(Mzi) for j=fail.

about the state since the quantum procedure did not entangle NG p(mi|success  for j#fail

the quantum state with the environment. Thus, if we can P(Yy,m; =| ) ) h a7
transorm with certainty a quantum pure sta® (5) into a : (1=M)é(y=1) for j=fail.

quantum pure stat@) (6), we can also transform with cer- , ) ) . )
tainty X (8), the classical pure state equivalent¥p, into Y The time-reversed, single-party version of this problem is
(9), the classical pure state equivalent®}. to start by flipping a coin Ki/T) with probabilities {,1

To prove the reverse, that is, thétcan be transform with —X). We look at the result, and if it i§ we start withy
certainty intoY only if the quantum analogs can be trans- =1, Sénd a message;, and are allowed to do anything
formed from one into the other, we note that we can turn anyincluding probabilistic thingsto transformY—X. If the
classical transformation of pure states into a quantum oné&0in isH we get a samplg, according top(y,) =y, but do
simply by applying the classical operations coherently, and’0t know which sample we get. We then pick some message
performing the quantum actions in the Schmidt basis. Thusaccording to p(m;), and do the corresponding shuffle
there cannot be any classical procedure that does better th¥e—Xi - This gives some distributiop(x; ,m;). Finally, we

the optimal quantum one. So the classical transformation i§rget whether the coin wad or T, and also which message
possible iff the quantum one Ts. was sent. This then gives ygx;), which we would like to

bep;. Our aim is, for a givem, andp;, to find the maximal
\ for which this is possible. This problem is closely related

SNote, however, that although we can use the quantum result t& the one where majorization first appeared in classical
prove the classical one, we cannot use the classical result to prowysics, and the maximal value pfis as given at the start of
the quantum result. The reason is that although we can turn any
classical transformation into a quantum one, we cannot generate
this way all possible quantum protocols—indeed, they may involve ®There is no loss in generality in forgetting about the many-to-one
phases outside the Schmidt basis. maps, for the same reasons as in the nonprobabilistic manipulations.
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this section. Once again the quantum and classical pure-statehere. As far as we know, this classical secret correlation
manipulations are possible under the same conditions. catalysis has not been previously considered.

VI. CATALYSIS OF SINGLE-COPY TRANSFORMATIONS VII. SHUEELING WITH CATALYSIS

There is an interesting entanglement transformation called
catalysis[19] that transfers easily to the classical case. SuDkn
pose we begin with some pure state

Another classical catalysis problem that has (totour
owledge been considered before is the single-party, time-
reversed versidnof the classical pure-state catalysis dis-
cussed in the previous section. We call this “shuffling cataly-
|1,0>AB=E Vpilii ) ag. (18)  sis.” We emphasize that this shuffling catalysis has, in itself,
: nothing to do with secrecy or secret correlations. However, it
is possible to perform this shuffling catalysis iff the classical
pure-state catalysis is possible. Recallifrpm Sec. IV} that
the majorization conditions are easier to prove in the shuf-
| ) A= E \/q_j|jj YAB - (19 fling scenario than in the classical secret-correlation scenario,
) studying shuffling catalysis may help in finding exactly when
classical secret correlatiof@and, by analogy, entanglemgnt
catalysis is possible.
We state the problem of shuffling catalysis to make the
idea clear. Suppose we have a sample from a distribatjon

and wish to produce, using LOCC, the state

This is possiblg 16] iff q; majorizesp; . There are, however,
states wherg; does not majorize;, but where catalysis is
possible. That is, where Alice and Bob cannot perform

|y)—| &), (20) and wish to turn it into a sample from a distributipp. We
are not allowed to look at the sample to see what it is, we can
but if Alice and Bob share an additional pure state, only throw dice whose probabilitieavhich we chooseare
independent of which sample we have. We then make some
permutation(shuffle upon the outcomes, which suffle de-
[X0as2 VridkK)as, (@D Gided by the dice, and finally forget which one we did. As

mentioned in Sec. 1V, this “shuffling” is possible iff; ma-
then they are able to perform, with certainty, the transformajorizes p; . There are, however, distributions whegedoes
tion not majorizep;, and so cannot be turned into it directly, but
where we can perform catalysis. This means that we can take
W x)—=> 1) x)- (22) a sample from a third distribution,, such thatg;®r, ma-
n{'orizes pi®r,, and then roll an independent dice and per-

This is, quite simply, because for the tensor-product syste rmute the possible outcomes of the tensor-product distribution

the majorization condition holddy) acts as a catalyst. It o turn g, into p;®r,.. This catalysis is possible iff we

enables the transformation ¢f) into |¢), but is not con- :
. . can user to turn the shared secret-correlation pure-sfate
sumed in the process. One example of such a catalysis I§

transforming the quantum state whose squared Schmidt cdpto to .‘h‘? pure statg . Th'us, an example of this shuffling
officients are Catalysis is the example given in Sec. VI.

p1=04; p,=0.4; p;=0.1; p,=01, (23 VIIl. PURE-STATE CONCENTRATION AND DILUTION

into the quantum state For many copies of a bipartite pure state, entanglement is
_ _ a completely fungible resource. It can be converted from one
9:=0.5; @,=0.25 q3=0.25, (249 form to another reversibly. Thus, we can quantify the amount

of entanglement by a single number, the entropy of entangle-
ment. We shall show that the same is true for classical pure
r,=0.6; r,=0.4. (25) bipartite states. That is, for such states, secret correlations are
a completely fungible resource. They can be converted from
The classical analog of this process follows immediatelyone form to another reversibly, and can be quantified by a
That is, Alice and Bob may wish to turn the classical puresingle number, the entropy of secrecy.
state defined by, into the classical pure state defineddgy We define the entropy of entanglement for a quantum pure
using LOPC. This is only possible, as we showed in Sec. IVstate,E(| ) ap) as
wheng; majorisesp; . However, there are cases when this is
not possible, but if they also have a sample of the classical
pure state, then they can achieve the transformation E(|¢)pp)= —2 plog, p;, (27

using the catalyst

PRR—>Q®R, (26)

with certainty. The samplR s not revealed or altered by this “See Sec. IV for the meaning of the single-party, time-reversed
process, and can be subsequently used independently elsersion of the classical pure-state transformation.
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wherep; are the squares of the Schmidt coefficients. where
The physical meaning of the entropy of entanglement is

the following. When Alice and Bob share a large numbler

of copies of some arbitrary pure stdig) gz, they can con- — = _2 plog, p; . (31)

vert them, in areversible way using only local operations i

and classical communication into a numbérof copies of

the maximally entangled state

Z| X

We can thus quantify the amount of secret correlations by the
entropy of secrecy, which is defined as the number of shared
1 secret bits that can be produced per copy of the original state
|¢S>AB:5(|11>AB+|22>AB)’ (28) X. We note that this amount is equal to the mutual entropy
betweenX, andXg, and is also equal to the local entropy of

where Xa, and to the local entropy ofg.

K

IX. ENTANGLEMENT PURIFICATION AND PRIVACY
S —E(|¥)ap), (29
N AMPLIFICATION

An important procedure in quantum information is en-
nglement purificatioi20], which turns mixed states into
pure states, at the many copy level. The number of pure
states produced per input mixed state is the yield.
Analogous procedures for turning classical mixed states
ié'ItO classical pure states exist, though are usually subdivided

above procedures are optimal, in the sense that concentrati t(;( tv)v(o )s(tages.d 'tl'he f'.:S.t tstage .taléest tthe rr?|xedA|§tate
and dilution cannot produce more copies: if they could, we dAé g’hEI)datrr: urns | |n|o a mixe fstha efw ere K ice
would be able to produce entangled states from nothive. and bob ho e same value, i.e., of the foRi,j,k)

can thus quantify the amount of entanglement in a state by its, 4 P(i,i,k). The stage is known as information reconcili-

entropy of entanglement. Any state is worth that many maxi-at'on[21]' because Alice and Bob are agreeing on a common

mally entangled states, since it can be reversibly converte}ﬂalue' The second stage takes the output of t['e first stage,
into that many states. We call one of these maximally enand factors out Eve, to give a state of the fofyp;P(k). In
tangled states an ebit, and shall say that other states have @#er words, it produces a pure state. This stage is known as
entanglement of ebits. Note that this quantity is additive. Privacy amplification[21], because Alice and Bob are in-
That is, if we have two states that individually have entanglereasing the secrecy of their key by reduciftg 0) Eve’s
mentE, andE,, together they have entanglemdijt+E,.  knowledge of it. _ _
The quantum procedure of entanglement concentration !n general, it is not known what the optimal protocol is,

can directly be mapped into an equivalent classical analoga"d there may be different optimal protocols for different
The reason for this is that all the quantum actions used foptates. There are a few different schemes for the quantum and

entanglement concentration take place in the Schmidt declassical cases, but we do not wish to discuss the details here,

composition bases, i.e., the unitary actions are all permutdUst to draw the analogy. First, any information-
tions in the Schmidt basis while the measurements are dconciliation/privacy-amplification protocol may be used as
operators whose eigenstates are direct products in thi@" entanglement-purification protocol. ~Second, any
Schmidt basis. Hence all these actions are essentially clas§ntanglement-purification protocol may be used as a
cal. Furthermore, the quantum procedure does not requir@formation-reconciliation/privacy-amplification  protocol.
communication, so is completely secure. We hope that a detailed study of the two problems together
The quantum-dilution protocol also has a classical analog/ill yield better understanding and new protocols in both the
Indeed, the quantum dilutiof8] involves only Schumacher classical and the quantum case.
compression of quantum information and teleportation. Both
these protocols have classical analogs: Schumacher compres-
sion maps into Shannon data compression and teleportation
is replaced by the one-time-pad secret communication. One of our motivations for this work was a pagéi by
Since secret correlations cannot increase under LOPGsisin and Wolf, suggesting a classical analog of bound en-
these procedures are optimal. They allow us to reversiblyanglement. A bound entangled state is a bipartite mixed
convertN copies of the classical pure state-p; into K quantum state that cannot be created locé&ljthout any

asN— . That is, the entropy of entanglement represents th?
yield of singlets per copy of the original staté),g. The a
operation of converting the stateg),g into maximally en-
tangled states is called entanglement concentrd&)rand
the reverse operation is called entanglement dilution.
Since entanglement cannot increase under LOCC, th

X. BOUND ENTANGLEMENT

copies of the shared secret bit-q;, prior entanglement but from which no maximally entangled
states can be distilled, even if there are many copies of the
P(Ya=1Yg=1)=P(Yo=2Yg=2)=3, (300  bound entangled state. It is as if the entanglement is “bound”

inside the state, and cannot be released. They proposed the
classical analog to be a sample from a probability distribu-
81t would be like the Carnot cycle for a perpetual motion machine.tion on Alice, Bob, and EveR(X,,Xg,Xc), in which Alice
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and Bob have strictly positive intrinsic informatiSnbut  both 00 and 11, and nothing else. We shall show that no such
from which they cannot distill shared secret bits undermap exists.

LOPC, even if they have many samples from the distribu- Assume that such a map exists. Without loss of generality,
tion. Though it is not yet known if such a classical statewe may assume the map does

exists, there is strong evidence that, by starting with a bound

entangled state,g, taking a natural purification,agg), 00-00. (32

and measuring it in ”"’“Wa' bases, we may pro'duce a glass.lcggnce Bob has to act locally, this means that if he starts with
bound state. Here we simply note that bound information fits L ) : L _

. ; . a 0, he has to finish with a 0. Since they must finish with the
into our framework as a derived analogy, and is another con- me thing. this implies

sequence of the deeper analogy between entanglement and 9 P

secret classical correlations. 10—00. (33

Since they are symmetric, similar reasoning gives
Xl. PURE OR MIXED?

We have mentioned in Sec. Il that it is not clear whether 01~00. (34

to classify classical states of the forf(Xs,Xg)P(Xg)  Because they have to act locally, we now know that if Alice

whereX, is not completely correlated witig as pure or as  or Bob sees a 1, they have to finish with a 0. Thus
mixed. Such a distribution resembles a pure state because it

is not correlated with Eve: this is like a pure state not being 11~00. (35

entangled with the environment. It also resembles a pure ) o
state because we can optimally distill shared secret bits frofAnd so the map takes everything to 00, which is no good.

many copies of such a state at a rate equal to the naturkor cla_ssical states in higher dimensions, the same type of
measure of shared correlations, the mutual informataa; reasoning shqws that we cannot produce a classical pure
this is the analog of pure-state entanglement concentratio§tate from a single copy of such a state.
However, it is not known whether such a distillation is re- S0, as we have shown, classical states of the form
versible. That is, given the shared secret bits, can we produd®(Xa,Xg) P(Xg) have some characteristics in common with
the original states? If the answer is no, this would be typicaPureé quantum states, and some in common with mixed quan-
behavior of a mixed state. Furthermore, a definite similaritytum states.
to mixed states is that there is no Schmidt decomposition for
such states: in other words, there is no way, using local re- XIl. MULTIPARTITE RESULTS
versible transformations, to make Alice and Bob have the
same values for their samples.

Another similarity to mixed states is that it is not possible,
even probabilistically, to use LOPC to produce a pure state

from one conv of such a distribution. For examole. considet is known that tripartite entanglement is fundamentally dif-
; copy . ; ’ Pie, ferent than the bipartite entanglement, even in the many-
the bipartite, two-dimensional case, where Alice and Bob

copy scenario. Furthermore, there might even exist many

hath receive ecvh: czn (;S;)Jm: thgt \;thtlheasptrct)r?:?illglte;reedifferent inequivalent forms of tripartite entanglement. As
Poo; P10, Po1,P11- . more systems are added, the problem becomes vastly more
probabilities are nonzer@therwise they have a pure state

They wish to use LOPC to make a classical ,,emangled,,complicated, but we have a few results to guide us, such as
pure state, i.e., wherB(00)>0, P(11)>0, P(01)= P(10) the fact that there is genuine entanglement at every level

=0. As discussed in Sec. IV, the most general thing they caéﬁgam’ even in the many-copy scenaridere we show that

4o is to first cat blicl lting i total any of these features have classical analogs.
0 1S to Tirst communicate pubiicly, resulling in some tota First, we shall look at the tripartite case. We propose that
public messagem;, wherei may depend upon their local

. . he classical ivalent of the G b -H -Zeili
dice and upon their samples. They may then change thetg eH%)aztS:t:: equivaient of the reenberger-norne-~efinger

samples according to some map that is specified by the me
sage. For example, the message could tell Alice to flip her 1
bit, and Bob to leave his alone. Note that the message has to |GHZ)pgc=—(]000) +|111)), (36)
tell them what to do locally: it cannot tell them to look at the V3

other person’s bit to decide what they will do. Now, to make.
a pure state with any probability they need at least one mal:?‘
that is local in the sense described above and which produces

It is well known that entanglement is much more compli-
cated for multipartite systems than for bipartite systems
11,12,23. In particular, already in the case of three parties,

a probability distribution of the form
P(Xa.Xg . Xc  Xe) =P(Xa,Xg Xc)P(Xg),  (37)

whereP(Xa,Xg,Xc) IS given by
9A classical measure, which, loosely speaking, is designed to test
whether or not Alice and Bob share some information that Eve does P(0,0,0=P(1,1,1)=3. (39
not have and which they can use. The hope was that, if positive,
they would have something useful, and if zero, they would haveée shall call this theC-GHZ (classical GHZ, and the clas-
nothing. sical singlet(i.e., the bipartite shared secret)hite shall call
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the classical Einstein-Podolsky-RosEREPR Is is easy to Nac+Ngct+Nep=1, (44)

see that out of 1 GHZ copy we may generate GiEPR,

i.e., nAD+nBD+nCD:1. (45)
C-GHZ—C-EPR. (39  On the other hand, partitioning the system(a8) vs (CD),

. , _ . (AC) vs (BD), and(AD) vs (BC) gives
Clare simply forgets her bit. This may sound unsatisfactory

since in the quantum case Alice and Bob end with an EPR, Nac+Nap+NgctNep=1, (46)
which Clare has no control over, whereas here Clare could
always later remember her bit, and so one may argue that we Nag+Nap+NgctNep=1, (47
have not really performed the classical transformation. How-
ever, since Alice, Bob, and Clare all begin with the same Nagt NactNegptNcp=1. (48

information and communicate only publicly, it is impossible
for Alice and Bob to agree upon anything without Clare Summing the first four equations together gives
knowing it. Thus the “stronger” form of the transformation
is impossible, and the best we can do is this weak form, with 2 n.=4. (49)
Clare forgetting her bit. all‘pairs
The above transformation is irreversible: i.e., given one
C-EPR it is impossible to make @GHZ [11]. This is be-  Wwhile summing together the next three gives
cause the bipartite entropy of secrecy can only decrease un-

der LOPC, and viewing the system @sB) vs C aC-EPRyg 2> n =3 (50)
will have 0 entropy, whereas th@-GHZ,gc has entropy of ali‘pairs 0
1 (and is symmetric with respect to all the parjiek is
possible, however, to do Thus the transformation is impossible, and the four party
classical cat state really is more than just bipartite shared
C-EPRyg+ C-EPRyc—C-GHZ. (400 secret correlations.

o ) ) We thus conclude that there are different types of multi-
This is done as it would be in the quantum case: Bob makegartite secret correlations.

a joint measurement on his bitaddition modulo 2, and
publicly announces the result. Bob now forgets his second
bit, and if the public message was 1, Clare flips her bit. They
are then done. This procedure can be viewed as Bob using We have described a fundamental analogy between en-
the C-EPRs¢ as a one time pad to send Clare the value oftanglement and secret classical correlations. The analogy is
the C-EPRyg. It is again clear that we cannot do the reversequite simple to state. Both are resources, and the main ob-
transformation: viewing the system &C) vs B, theC-GHZ  jects involved in the study of such resources have a one-to-
has an entropy of secrecy of 1, whereas the W&PR’s  one correspondence, as given in the first table of Sec. I. Due
together have an entropy of 2. to this basic analogy, many derived analogies follow. In par-
The entropy of secrecy can be used to show that therticular, we have shown that teleportation and the one time

exists more than just bipartite secrecy, even in the manypad are deeply connected, that the concept of “pure state”
copy case. Specifically, the four-party cat state, which hagxists in the classical domain, that entanglement concentra-

XIlll. CONCLUSION

distribution P(X,,Xg,Xc,Xp) given by tion and dilution are essentially classical secrecy manipula-
. tions, and that the single-copy entanglement manipulations
P(0,0,00=P(1,1,1,)=3 (4)  have such a close classical analog that the majorization re-

sults are reproduced in the classical setting. We have pointed
out that entanglement purification is analogous to classical
privacy amplification, and hope that the search for better
protocols in the two areas can go hand in hand. We finally
showed that, as with entanglement, one can look at multipar-
tite shared secret correlations, and gave a flavor of how re-
sults in the quantum setting easily transfer into the classical
Qvorld. Despite all these useful derived analogies, our main
point is the fundamental one: entanglement and shared secret
correlations are deeply related, and one should never be
viewed without the other.

(42) We want to emphasize that by no means do we claim that
quantum entanglement is a fundamentally classical effect or
Partitioning the system a®) vs (ACD), (C) vs (ABD), and  that there exists a classical explanation of entanglement. The
(D) vs (ABC) gives classical analog of entanglement is nothing more or less than
a simple analog, and has a value of its own. On the other

Nag+Ngct+Negp=1, (43 hand, all the aspects of quantum entanglement that are com-

(where Eve factors owfcannot be converted reversibly into
C-EPR pairs. The proof of this is exactly the proof used for
the analogous quantum probldril], and is done by parti-
tioning the four parities into pairs in various ways, and look-
ing at the entropy of entanglement, which must be asymp
totically conserved under reversible transformations.

Suppose that we could reversibly convert asymptotically
single four-party cat state intG-EPR pairsn,g betweenA
and B, npc betweenA and C, etc. Partitioning the system
into (A) vs (BCD) we get the equation

nAB+ nAc+ nAD: 1.
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mon with the classical analog cannot be considered to beommunication: in the case of teleportation Alice has to send
guantum. Thus, many aspects that were hitherto considerdgbb two classical bits while in the one time pad Alice has to
to be genuinely quantum lose their status. send only one public bit. It is only such aspects that are not
The main thrust of this paper was to identify the commoncommon to the two settings that are genuinely quantum. We
aspects of quantum entanglement and classical secret corigape that getting rid of those aspects that were believed to be
lations. An even more interesting question is to find thoseqguantum but are not, and identifying the genuine quantum
aspects which areot common. For example, we have not ones will lead to a better understanding of quantum entangle-
found any(and believe there is naanalog of superdense ment, and of secret communication.
coding. It is not the case that by having one secret-
correlation bit and by sending one secret bit, Alice can trans-
mit to Bob two public bits. The lack of superdense coding
manifests itself, implicitly, also by a difference in the quan- We thank C. H. Bennett, N. Gisin, N. Linden, and S.
titative descriptions of teleportation and one-time-pad secrefassar for very helpful discussions.
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