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Mutually unbiased binary observable sets orN qubits
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The Pauli operatoréensor products of Pauli matriggsrovide a complete basis of operators on the Hilbert
space ofN qubits. We prove that the set of'4 1 Pauli operators may be partitioned intd 21 distinct
subsets, each consisting of'21 internally commuting observables. Furthermore, each such partitioning
defines a unique choice of'a2 1 mutuallyunbiasedasis sets in thi-qubit Hilbert space. Examples for 2 and
3 qubit systems are discussed with emphasis on the nature and amount of entanglement that occurs within these

basis sets.
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I. INTRODUCTION basesA and B are said to be mutually unbiaséd,5] if a

system prepared in any elementAfsuch agA,«)) has a
A pure quantum state of ad-qubit system is specified by uniform probability distribution of being found in any ele-
the eigenvalues dfl independent commuting binary observ- ment of B,
ables(* N qubits carryN bits of information”[1,2]). In fact, N
a complete set of 2 such states are so specified, each being [(A,alB,B)[*=d"%, (A#B), @
associated with a binary numper cor_13|st|ng of theigen- where individual bases are understood to be orthonormal,
values. Of the many alternative choices of observable sets
that defineN-qubit basis sets, we are interested in those that (A alA,B)=5,p. 2)
are maximally incompatible in the sense that a state produc-
ing precise measurement results in one set produces maxtertainty of measurement outcomes for the operator set de-
mally random results in the other. fining the |A, a)’s implies a uniform probability distribution
The Pauli operatorg3] provide an explicit realization of over stategB,3), and this in turn implies a uniform prob-
points raised above. First, they illustrate that although aability distribution over all eigenvalue setand distinct mea-
greater number "—1 of observables simultaneously take surement outcomg®f operators defining thgB, 8)’s.
definite values, onI\N of these are required to define a pure A particular motivation for considering unbiased basis
state, and in fact these generate all of the remaining com- sets is that they provide for the most efficient determination,
patible observables through multiplication. On the otherusing measurements alone, of a gendmlre or impure
hand, all #—1 Pauli operators are required in order to de-quantum statg6]. In a d-dimensional Hilbert space, one
termine an arbitrary mixed state. In this connection, we shalheedsd®— 1 real parameters to specify a general density ma-
show that the full set of these operators is exhausted in formrix p, which must be Hermitean and have gy& 1. Since
ing 2V+1 distinct subsets, each consisting ¢f-21 inter-  measurements within a particular basis set can yield dnly
nally commuting observables, and each defining its own-1 independent probabilities, one neetis 1 distinct basis
unique eigenbasis. Both the observable sets and the correets to provide the required total numberdsf- 1 indepen-
sponding basis sets are called mutually unbiddédand in  dent probabilities. Ivanovid5] showed that the required
previous works the observable sets have also been callathmberd+ 1 of unbiased basis sets indeed existsl it a
mutually complementary[2]) because of the following prime number, and Wootters and Field® showed that it
physical property: If ariN qubit system is prepared in a joint exists if d is any power of a prime number. Our proof is
eigenstate of one such observable set, then it has a uniformsed upon this theorem of Wootters and Fields.
probability distribution over the joint eigenstates of any of The question of the existence and construction of unbi-
the other sets. It follows that al®Z2N—1) observables out- ased basis sets is interesting not only from a fundamental
side the originalmaxima) set of 2Y—1 compatible observ- point of view (e.g., in the formulation of “quantum mechan-
ables will produce measurement results that are uniformlycs without probability amplitudes”[4], and in the
distributed over all possibilities. Since the Pauli operatorsinformation-theoretic formulation of quantum mechanics
have binary spectra, it also follows that their dispersion ig2]), but also as an important ingredient in quantum-
maximized. information protocols(e.g., in the solution of “the mean
The equivalence of unbiasedness of basis sets and opetiéng’s problem” [7] and in quantum cryptograph8]). In
tor sets may be understood from the formal definition asarticular, it was found recently that key distributions based
applied to basis sets, which may be summarized in generan higher-dimensional quantum systems with larger numbers
terms as follows: Let us denote basis setsAy1,2,..., of unbiased basis sets can have certain advantages over those
and states within a basis B, «), with «=1,2,...d (for ~ based on qubitg9].
the moment, we consider a Hilbert space with general di- The present paper illustrates how the study of operator
mensiond, although our interest here is id=2"). Two relationships can provide a useful approach to the construc-
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tion of unbiased basis sets of entangled as well as produeind to define a set of operatcﬁé by their spectral decom-

character. TheN-qubit Hilbert space has dimensiah=2N, positions

and operators on this spa¢ehich include the density ma-

trix) live in their own vector space of dimensior'4The 2N

complete basis consisting of the Pauli operaf@jsmay be O§= E Saapg_ (8)

written as follows: Starting with the usuab<2 Pauli matri- a=1

ces and the identity that act on the spaces of individual

qubits, We definee,, as a 2'x 2N matrix consisting of orthogonal

row vectors, one of whose entries are #ll’s, and the re-

0u=(0x,0y,02,1), r=(1,234, 3 maining of whose entries are equal numberst+df’s and

—1's. There are exactly " such orthogonal vectors, the

components of each vectarbeing the eigenvalues (@aA.

One of these operatofsay thea=2"th) is proportional to

we write the 4' tensor productgthe Pauli operators and
identity Z) that act on theN-qubit Hilbert space as

) , " N ; the identity,O/;N:I. We include this to make E@8) invert-
Oi= 010 u@i) * TuNi)= kl:[1 T (ki) s (4 ible, which will be useful later. The columnslabel the joint
eigenstates of th@{: (a=1,2,...,2—1), and comprise the

wherek is the particle label anddistinguishes among thé'4 ~ truth tables associated with thé'21 corresponding propo-
choices of theN subscriptsw(k,i). This basis ioorthonormal ~ Sitions. This labeling is redundant; clearly an appropriate

[10]; the inner product of two operators is defined as thesubset of jusN rows may be used to construdtcomponent
trace of their product, column vectors that define all'Joint eigenstates unambigu-

ously as binary numbers. This reflects a property of the Pauli
N . N operators mentioned earlier.

Tr(oioj):k[[l Tr(o'u(k,i)o-;/,(k,j)):kl:[l 20,k iyu(k.i) The above definition provides™2-1 distinct sets(in-
- - dexed byA), each set containing™2-1 operatorgfixed A
(5) and running indexa=1, ...,2—1), after discarding the

identity. Each of these operators has the specttumand is
wherei=] means tha(k,i)=u(k,]) for every particlek.  traceless, by construction. To show that they are unitarily
Like the individual Pauli matrices, each tensor product isequivalent to the Pauli operators, we need only demonstrate
self—inverse,Oiz=I, and apart from the identitffor which  that they form an orthonormal set. For the céséB,
we reserve =4N so thatO,n=1%12 ... IN=7) they are all
traceless and have eigenvalueg.

The binary spectrum for each observalile permits its Tr(O408) =2, eautip Tr(PLPR) =0, 9
expression as a binary proposition: The two eigenvattés “p
of the observableD; correspond to the values “true” or
“false” of the proposition “The product of the spin projec-

Ns.

N

ijo

where Eq.(7) and the property ,¢,,=0 were used; then

; ; " ) for the caseA=B, using Egs(6) and(2),

tlonSa'llt(lyi)O'i(z‘i.)- : '(_TE(N,i) is+1." (Ifa partl_cularai hap- g Eqs(6) and (2)

pens to be the identity, then no statement is made about the

kth qubit) THOZON =2 eacens THPAPR =2 aueba=2"0un-
Il. GENERAL RESULTS FOR N QUBITS (10

We may now proceed to demonstrate the main formakina|ly, this orthonormal set of™-1 traceless operators is
points of the paper: First, that the set df-41 Pauli opera-  completed by adding the identity, so indeed they have a rep-
tors (excluding the identity may be partitioned into 2+ 1 resentation in the form given by E¢). This shows that the
Subsets, each COHSIStIng O‘IN‘Zl |nterna”y Commut|ng Pauli Operators may be partitioned according|y_
members, and second, that every such partitioning defines a \ye now show the second part, namely, thay such par-
unique choice of unbiased basis s@ts., there is a one-to- titioning of Pauli operators defines a unique choice of unbi-
one mapping from partitionings to choices of unbiased basigsed basis sets. Assuming such a partitioning, each s#set
sety. _ of Pauli operator§0f,05, ..., O ,} defines a unique

The first part makes use of the proven existence "f 2 basis of ? joint eigenstatefA, a), a=1 N Thus. each
+ 1 unbiased basis s€t8]. The projectors onto the unbiased o/; operator may be expanded as in E8), with ¢, now

basis states, defined as the eigenvalue Of on the statéA, «), the lower
PA=|A,a)A,a, (6)  index taking the valuea=1, ... ,2'—1. The known spec-
trum of the O%’s dictates that each row of the,, matrix
may be used to re-express the unbiasedness of Bas&  must consist of an equal number 6fl’'s and—1's, and the
[Eq.(1)] as identity TrO505 =26, shows(note Eq. 10 that any two
AB N rows a and b are orthogonal. Thus, by appending an addi-
Tr(PLPg =277, (7)  tional row (@=2V) to thee,, matrix, we recover its previ-
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ous form. The scaled matrix,, /2" is orthogonal, and, 1 (ZZ) Gl ) clo?
therefore, we may invert Eq48) to yield the projection op- Tf z z
erators 2 1 2 1 2
(), |o, o, G,0,
’
3 1 2 1 2
PA=27NY £,,05=2"N 7+ saao{;). (11) 0x), |o, |o= Oy0sx
a a
4 1.2 1.2 1.2
. . . . X X (Zx)B Gy y Gz x Gx z
In the second equality we write the identity contribution ex- 3 T T )
plicitly and delete thea=2N term from the sum, as denoted (¥2)p |0, 0; 6,0, (0.0,
by the prime.
We may now show that all of the basis sets are mutually FiG. 1. Five unbiased bases sets and corresponding Pauli opera-
unbiased: Substituting E@11) into Eq.(7) yields tor sets. Each operator set consists of three commuting members,

any two of which determine the corresponding basis set as their
joint eigenbasis.

(PGP =27+ 47N X o402 TH(OZ00),
a
(12) above operators on an eigenstate of any other will produce
perfectly random resulté.e., an average spin projection of
since terms linear ir04 have vanishing trace. It follows zero.
immediately that ifA andB refer to different basis sets, then In the case of two qubits, the dimension of the Hilbert
Eq. (7) is satisfied. IfA=B, then only thea=b term in the  space isd=4, so that five unbiased basis sets exist. Fig. 1
sum survives and shows these together with the five corresponding operator
sets, each consisting of three compatible operators. Sub-
' N scripts indicate three product basez?(., (xy),, and
1+§a: €aafpa| =2 za: €aaf pa= Oap (yx) ., whose individual states are denoted in the (az)se,
(13  forexample, byin;,nZ). There are two Bell basezX)g and
(y2)gi, and the states belonging to each of these may be
where the orthogonality oéaa/\/EN was used. This estab- written, respectively, as
lishes that the ®—1 basis sets generatédniquely by the

Tr(PLPR=2"N

commuting subsets of Pauli operators are in fact unbiased. 1
So there is a one-to-one correspondence between partition- |n§,n)2(;i = —(|n§ ,ni im% E§>), (14)
ings of Pauli operators and choices of unbiased basis sets. V2
. EXAMPLES FOR TWO AND THREE QUBITS |n§ ,n§ ; ii>= i(|n>l, ,n§>ii|ﬁly ,Hﬁ)), (15)
We now illustrate this correspondence for systems of two V2
and three qubits. To develop notation, the operator subsets o
for the one qubit case consist of single elemenis,, o, where bars denote spin flips; ie,rif=1 or 0, thenn,=0 or

and o,. Corresponding basis sets are denoted Yy (y), 1, respectively. Thus, the four individual basis states are ex-
and (z), where each basis set consists of the two states “upbplicitly enumeratedin Eq. (15), for examplé by [1,,1;;

and “down” along the indicated axis. The individual basis *i) and |1y,02;ri>. The factor ofi [as denoted by the
states are denoted Bm,), [ny), and|n,), wheren,=1 or 0  subscript in the basis labey £)g;] is not arbitrary; its pres-

for spin “up” and “down,” respectively. The inner products ence is dictated by the operators that define the basis, or
between any two states appearing in these basis sets obeguivalently by the requirement that the two Bell bases be
Egs. (1) and (2). Obviously, measurements by any of the mutually unbiased. It is a property of Bell bases that they can

1 2 3 1.2.3 1.2 1.3 2.3
I{ (o2), |o! c, o) 60,0, |60, |06,6; |0,0;
1 2 3 123 1_2 1.3 2.3
2| (yzx), c, o, o, 60,0, |0,0, |6,5, |00,
3 (zxp) o! Jup o’ s’ lols? |lols? |ois?
n . . . .
: — ’1’ — ': — j "2 "; : ’; j "; ’; ’3’ FIG. 2. Listing of nine unbi-
4 (oxx) 66,0, (0,0,6, |00, 0, |O,0,0, |00, |00, [0,0, ased basis sets and corresponding
5 Gy clo’? lolo®s?® |slo%? |oiot? |6l6? |6ls? |63 operator sets, each consisting of 7
s T xzx xx = rzz Yy y'y y'y commuting members. Particular
1_2_3 1_2_3 1,213 1 _2_3 1_2 1_3 2_3 H
6| (zz2) co0,0, |o,0.0,|0,0,0,|0,0,0, |00, |00, [0.0; subsetz'of threg determine the cor-
responding basis sets completely.
1.2 _3 1._2_3 123 123 1_2 1.3 2_3
7| (x2v)s |ools) |o,00] |o0l0] |o0i0l |o6! |o0) |ols]
1.2.3 1.2_3 1.2.3 123 1.2 1.3 2.3
8| (2)s |ololsl |ools) |osle) |o0ls) |00 |o)0) |olo]
123 1.2 _3 1_2_3 1213 1_2 1.3 2.3
9 (mx)s |o,0l0) |o,0k] |owio, |o,0lc] |o6) |olo) |olo)
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2 remains fixed at three. It is easy to convince onesself that the
® maximum number of product bases remains fixed at three for
1 3 all numbersN of qubits.
® O To show that the structure is more flexible with three qu-

bits than with two, we describe now a different choice of
unbiased basis sets for three qubits, one that cannot be ob-
tained from the previous choice by local unitary transforma-

FIG. 3. Schematic of unbiased basis sets listed in Fig. 2—thre&ions. In this choic&Fig. 4), there are no product states, and
product and six GHZ bases. The three particles in the circle ar&0 states with three-particle entanglement. Every basis con-
maximally entangledin a GHZ statg sists of states that are products of one-particle states with
Bell states; one particle is unentangled while the other two
?jre totally entangled, as depicted in Fig. 5. The basis sets

3 product bases 6 GHZ-type bases

appear equally simple if other quantization axes are chose . A 1
in appropriate combinations. For example, the Bell bases rlm groupings P of threez. )()(yZ)Bé’ (v )(ZX)B.’
and 5 in Fig. 1 may be written agy)gs and xX)g, respec- ‘- I?(Xy)f’ then ?),(Xy)B’ (y e?(yz)Bi’ (z )(f‘?()ﬁ’ ao??f fi-
tively. While these are simply different ways of writing the naty (Xt.)(IZX)B’f (yt)(Xg)B,t(Z .)tﬁyZ)Bi’ Ln whic aC ! %r.- ¢
same basis sets, truely different alternatives involving alfnt partcle 1s ?cdore_th_ou er1 In eacb ?routpf. oor mate
five-basis sets exist for two qubifsee Refs[11] and[12]). axes arg p?rmu ? within eac g_rt(;]l_Jp, uhno rom group to
These alternatives also consist of three product bases a@joup. mactors of appear once within €ach group.

Note that within each grouping, we firtthree unbiased

two Bell bases. : .
The three-qubit Hilbert space hak=8, and thus nine Bell-type bases—a feature that was not seen in the two-qubit
unbiased basis sets. One choice contains three product bas stem_. Indeed, if one were to begin with three u_nblased Bell

(xy2., (yz9., and @xy).: and six bases consisting of ases in a two-qubit system, one could thest find two
maxinqz,all entha’n led statgé e (VYY) (222 additional basis sets. This can be understood in terms of the
y 9 ! ci» Y¥Ya, G operator decomposition: The nine operators exhausted by

(x2Y)c, (yX2dg, and €yXc. The nine basis sets are listed {hree Bell bases do not leave six operators that are decom-
in Fig. 2 and represented graphically in Fig. 3. The entangle , ;
Bgsable into two commuting subsets.

basis sets are labeled by coordinate axes in which the stat We also note that the choices of unbiased basis sets given

reduce to the familiar Greenberger-Horne-Zeilindds3] . : oo
. for the three qubit case are not obtained from the algorithmic
(GHZ) form. For example, all of the states belonging to the . : : h inted
basis set £yX) may be written as construction given in Ref6]. Wootters has pointe .OEI14] _
G that this construction produces another choice which consists
of two product, four GHZ, and three “product-Bell” bases.
1 In the case of two qubits, not surprisingly, the same construc-
ninZ nd;+)=-"—(|nl,n2 nd iﬁi ﬁg ji)); (16)  tion produces three product and two Bell bakb4.

yriixor— \/5 yriix

IV. CONCLUSIONS

these would require more complicated expressions if referred The two- and three-qubit cases illustrate general points
to other coordinate axes. Fig. 2 lists the seven-member opnade at the beginning. First, with regard to state preparation,
erator sets that correspond uniquely to each basis set. As one can see thadtl observables suffice to define any of the
the two-qubit case, the operators involving only a singlelisted basis states completely, representing these states as bi-
Pauli matrix are exhausted within the product basis sets. nary numbers. In the two-qubit case, any two of the three
It is striking that in the progression from one to two to compatible observables within a subset may be chosen. In
three qubits, the number of totally entangled bases can grothe three-qubit case, there are many choices of three observ-
from none to two to six, while the number of product basesables that sufficd 15]—for example, the first three listed

| &2y |0, |0l0r |o)0; |ole, |o0le] |0,0)0] |0,00s,
2l 3" )=zx)p |0, |020) |olol |0k |o,0k) |00k} |00k
3| (2)(); |0, |oe; |60, |o)o; |oi5ie; |o0)0, |00)0;
4 6@ |0l ok [ols) |oi0l [olla? [siols) [o)0lo: Fig, 3 but all bases are partally
5| 002y [0l |00 |o6) |o) |ooisl |06k} |o0ls) entangled. In each of three groups
6 (z)(z); |o? |olo® |olo? |ols! |ola’e’ |alsls! |olots: o e o 1 e stndled
7 (&*)zx); |o) | 0,02 |o,6! |06l |o,0l0) |olols? |o0ls]
8 (*)®); o) |05 |62 |06l |o5ks) |00k, |o,0k5]
N (2)32)y |0. |o0; |00 |05, |00, |o,000] |00)0!
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2 has a uniform probability distribution over the joint eigen-

® states of any other observable set in the partitioning. As a
® @ .3 result, all observables outside the original maximal commut-
1 ing subset yield minimal information—measurement out-
3 bases 3 bases 3 bases comes are uniformly distributed over all possibilities.

) ) ) ) o The concept of unbiasedness between observable sets ex-
FIG. 5. Schematic of unbiased basis sets listed in Fig. 4, allenys the idea of complementarity of two individual observ-
par_tlally entangled. One par_tlcle is unentangled with the other tWOsples that fail to commute. Clearly two such observables
which are totally entangled in Bell states. must always belong to different mutually unbiased subsets
within any partitioning. However, as the two-and three-qubit
within each subset. In thie-qubit case, we introduced ag,  examples show, two commuting observables may belong to
matrix in which an appropriate choice bfrows (represent- the same or to different unbiased subsets. Their compatibility
ing N operatory describe all 2 basis states as binary nun- is dependent upon the partitioning.
bers. Note addedAfter this work was completed, an e-print
Second, with regard to the determination of a general[12] appeared reporting work which is related to this work,
possibly mixed state, recall that'4 1 real parameter§l5  but complementary in several respects. R&2] obtained a
for two qubits and 63 for three qubjtare required to specify general relationship between complete bases of unitary op-
the N-qubit density matrix completely4,5]. And exactly this  erators(belonging to the general Pauli grougnd unbiased
number is provided, either by the expectation values of thdasis sets, for any power-of-prime dimension. In this paper,
operators themselves, or by all the independent probabilitiegre considered the many-qubit case. We expanded upon the
associated with the unbiased basis states. As we have provphysical interpretation of the concept of complementarity.
for the general case, thé'4 1 Pauli operators can be parti- We showed that many alternative partionings are possible
tioned into 2'+1 subsets, each consisting of21 inter- and, most importantly, entanglement is distributed among
nally commuting observables. The set of all such partition-unbiased basis sets in a partition-dependent manneN for
ings has a one-to-one correspondence with choicesNof 2>2.
+1 unbiased basis sets in tiNequbit Hilbert space. There
are many such choices, and fde>2 the entanglement may
be distributed over basis sets in many different ways. The
maximum number of product bases is fixed at three for any We would like to thank W. K. Wootters for insightful and
N. informative discussions..B. has been supported by the Aus-
The correspondence between basis sets and observabtean Science FoundatiofiFWF), Project No. F1506, and by
makes it possible to regard all Pauli operator subsets within the QIPC Program of the European Union. J.L. thanks the
given partitioning as being mutually unbiased: If the systemErwin Schralinger Institute for its hospitality during the pe-
is prepared in a joint eigenstate of one observable set, thenritod when this work was carried out.
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