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Mutually unbiased binary observable sets onN qubits
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The Pauli operators~tensor products of Pauli matrices! provide a complete basis of operators on the Hilbert
space ofN qubits. We prove that the set of 4N21 Pauli operators may be partitioned into 2N11 distinct
subsets, each consisting of 2N21 internally commuting observables. Furthermore, each such partitioning
defines a unique choice of 2N11 mutuallyunbiasedbasis sets in theN-qubit Hilbert space. Examples for 2 and
3 qubit systems are discussed with emphasis on the nature and amount of entanglement that occurs within these
basis sets.
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I. INTRODUCTION

A pure quantum state of anN-qubit system is specified b
the eigenvalues ofN independent commuting binary obser
ables~‘‘ N qubits carryN bits of information’’ @1,2#!. In fact,
a complete set of 2N such states are so specified, each be
associated with a binary number consisting of theN eigen-
values. Of the many alternative choices of observable
that defineN-qubit basis sets, we are interested in those t
are maximally incompatible in the sense that a state prod
ing precise measurement results in one set produces m
mally random results in the other.

The Pauli operators@3# provide an explicit realization o
points raised above. First, they illustrate that although
greater number 2N21 of observables simultaneously tak
definite values, onlyN of these are required to define a pu
state, and in fact theseN generate all of the remaining com
patible observables through multiplication. On the oth
hand, all 4N21 Pauli operators are required in order to d
termine an arbitrary mixed state. In this connection, we s
show that the full set of these operators is exhausted in fo
ing 2N11 distinct subsets, each consisting of 2N21 inter-
nally commuting observables, and each defining its o
unique eigenbasis. Both the observable sets and the c
sponding basis sets are called mutually unbiased@4# ~and in
previous works the observable sets have also been c
mutually complementary@2#! because of the following
physical property: If anN qubit system is prepared in a join
eigenstate of one such observable set, then it has a uni
probability distribution over the joint eigenstates of any
the other sets. It follows that all 2N(2N21) observables out
side the original~maximal! set of 2N21 compatible observ-
ables will produce measurement results that are unifor
distributed over all possibilities. Since the Pauli operat
have binary spectra, it also follows that their dispersion
maximized.

The equivalence of unbiasedness of basis sets and o
tor sets may be understood from the formal definition
applied to basis sets, which may be summarized in gen
terms as follows: Let us denote basis sets byA51,2, . . . ,
and states within a basis byuA,a&, with a51,2, . . . ,d ~for
the moment, we consider a Hilbert space with general
mensiond, although our interest here is ind52N). Two
1050-2947/2002/65~3!/032320~5!/$20.00 65 0323
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basesA and B are said to be mutually unbiased@4,5# if a
system prepared in any element ofA ~such asuA,a&) has a
uniform probability distribution of being found in any ele
ment ofB,

u^A,auB,b&u25d21, ~AÞB!, ~1!

where individual bases are understood to be orthonorma

^A,auA,b&5dab . ~2!

Certainty of measurement outcomes for the operator set
fining the uA,a& ’s implies a uniform probability distribution
over statesuB,b&, and this in turn implies a uniform prob
ability distribution over all eigenvalue sets~and distinct mea-
surement outcomes! of operators defining theuB,b& ’s.

A particular motivation for considering unbiased bas
sets is that they provide for the most efficient determinati
using measurements alone, of a general~pure or impure!
quantum state@6#. In a d-dimensional Hilbert space, on
needsd221 real parameters to specify a general density m
trix r, which must be Hermitean and have Tr(r)51. Since
measurements within a particular basis set can yield onld
21 independent probabilities, one needsd11 distinct basis
sets to provide the required total number ofd221 indepen-
dent probabilities. Ivanovic´ @5# showed that the required
numberd11 of unbiased basis sets indeed exists ifd is a
prime number, and Wootters and Fields@6# showed that it
exists if d is any power of a prime number. Our proof is
based upon this theorem of Wootters and Fields.

The question of the existence and construction of un
ased basis sets is interesting not only from a fundame
point of view ~e.g., in the formulation of ‘‘quantum mechan
ics without probability amplitudes’’ @4#, and in the
information-theoretic formulation of quantum mechani
@2#!, but also as an important ingredient in quantu
information protocols~e.g., in the solution of ‘‘the mean
king’s problem’’ @7# and in quantum cryptography@8#!. In
particular, it was found recently that key distributions bas
on higher-dimensional quantum systems with larger numb
of unbiased basis sets can have certain advantages over
based on qubits@9#.

The present paper illustrates how the study of opera
relationships can provide a useful approach to the const
©2002 The American Physical Society20-1
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tion of unbiased basis sets of entangled as well as pro
character. TheN-qubit Hilbert space has dimensiond52N,
and operators on this space~which include the density ma
trix! live in their own vector space of dimension 4N. The
complete basis consisting of the Pauli operators@3# may be
written as follows: Starting with the usual 232 Pauli matri-
ces and the identityI that act on the spaces of individu
qubits,

sm5~sx ,sy ,sz ,I !, m5~1,2,3,4!, ~3!

we write the 4N tensor products~the Pauli operators an
identity I) that act on theN-qubit Hilbert space as

Oi5sm(1,i )
1 sm(2,i )

2
•••sm(N,i )

N 5)
k51

N

sm(k,i )
k , ~4!

wherek is the particle label andi distinguishes among the 4N

choices of theN subscriptsm(k,i ). This basis isorthonormal
@10#; the inner product of two operators is defined as
trace of their product,

Tr~OiOj !5)
k51

N

Tr~sm(k,i )
k sm(k, j )

k !5)
k51

N

2dm(k,i )m(k, j )

52Nd i j , ~5!

wherei 5 j means thatm(k,i )5m(k, j ) for every particlek.
Like the individual Pauli matrices, each tensor product
self-inverse,Oi

25I, and apart from the identity~for which
we reservei 54N so thatO4N5I 1I 2 . . . I N[I) they are all
traceless and have eigenvalues61.

The binary spectrum for each observableOi permits its
expression as a binary proposition: The two eigenvalues61
of the observableOi correspond to the values ‘‘true’’ o
‘‘false’’ of the proposition ‘‘The product of the spin projec
tionssm(1,i )

1 sm(2,i )
2

•••sm(N,i )
N is 11.’’ ~If a particularsm

k hap-
pens to be the identity, then no statement is made abou
kth qubit.!

II. GENERAL RESULTS FOR N QUBITS

We may now proceed to demonstrate the main form
points of the paper: First, that the set of 4N21 Pauli opera-
tors ~excluding the identity! may be partitioned into 2N11
subsets, each consisting of 2N21 internally commuting
members, and second, that every such partitioning defin
unique choice of unbiased basis sets~i.e., there is a one-to
one mapping from partitionings to choices of unbiased ba
sets!.

The first part makes use of the proven existence ofN

11 unbiased basis sets@6#. The projectors onto the unbiase
basis states,

Pa
A5uA,a&^A,au, ~6!

may be used to re-express the unbiasedness of basesAÞB
@Eq. ~1!# as

Tr~Pa
APb

B!522N, ~7!
03232
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and to define a set of operatorsOa
A by their spectral decom

positions

Oa
A5 (

a51

2N

«aaPa
A . ~8!

We define«aa as a 2N32N matrix consisting of orthogona
row vectors, one of whose entries are all11’s, and the re-
maining of whose entries are equal numbers of11’s and
21’s. There are exactly 2N such orthogonal vectors, th
components of each vectora being the eigenvalues ofOa

A .
One of these operators~say thea52Nth) is proportional to
the identity,O2N

A
5I. We include this to make Eq.~8! invert-

ible, which will be useful later. The columnsa label the joint
eigenstates of theOa

A (a51,2, . . . ,2N21), and comprise the
truth tables associated with the 2N21 corresponding propo
sitions. This labeling is redundant; clearly an appropri
subset of justN rows may be used to constructN-component
column vectors that define all 2N joint eigenstates unambigu
ously as binary numbers. This reflects a property of the P
operators mentioned earlier.

The above definition provides 2N11 distinct sets~in-
dexed byA), each set containing 2N21 operators~fixed A
and running indexa51, . . . ,2N21), after discarding the
identity. Each of these operators has the spectrum61 and is
traceless, by construction. To show that they are unita
equivalent to the Pauli operators, we need only demonst
that they form an orthonormal set. For the caseAÞB,

Tr~Oa
AOb

B!5(
a,b

«aa«bb Tr~Pa
APb

B!50, ~9!

where Eq.~7! and the property(a«aa50 were used; then
for the caseA5B, using Eqs.~6! and ~2!,

Tr~Oa
AOb

A!5(
a,b

«aa«bb Tr~Pa
APb

A!5(
a

«aa«ba52Ndab .

~10!

Finally, this orthonormal set of 4N21 traceless operators i
completed by adding the identity, so indeed they have a r
resentation in the form given by Eq.~4!. This shows that the
Pauli operators may be partitioned accordingly.

We now show the second part, namely, thatanysuch par-
titioning of Pauli operators defines a unique choice of un
ased basis sets. Assuming such a partitioning, each subse~A!
of Pauli operators$O1

A ,O2
A , . . . ,O2N21

A % defines a unique
basis of 2N joint eigenstatesuA,a&, a51, . . . 2N. Thus, each
Oa

A operator may be expanded as in Eq.~8!, with «aa now
defined as the eigenvalue ofOa

A on the stateuA,a&, the lower
index taking the valuesa51, . . . ,2N21. The known spec-
trum of the Oa

A’s dictates that each row of the«aa matrix
must consist of an equal number of11’s and21’s, and the
identity TrOa

AOb
A52Ndab shows~note Eq. 10! that any two

rows a and b are orthogonal. Thus, by appending an ad
tional row (a52N) to the«aa matrix, we recover its previ-
0-2
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MUTUALLY UNBIASED BINARY OBSERVABLE SETS ON . . . PHYSICAL REVIEW A65 032320
ous form. The scaled matrix«aa /A2N is orthogonal, and,
therefore, we may invert Eq.~8! to yield the projection op-
erators

Pa
A522N(

a
«aaOa

A522NS I1(
a

8
«aaOa

AD . ~11!

In the second equality we write the identity contribution e
plicitly and delete thea52N term from the sum, as denote
by the prime.

We may now show that all of the basis sets are mutu
unbiased: Substituting Eq.~11! into Eq. ~7! yields

Tr~Pa
APb

B!522N142N(
a

8
(

b

8
«aa«bb Tr~Oa

AOb
B!,

~12!

since terms linear inOa
A have vanishing trace. It follows

immediately that ifA andB refer to different basis sets, the
Eq. ~7! is satisfied. IfA5B, then only thea5b term in the
sum survives and

Tr~Pa
APb

A!522NS 11(
a

8
«aa«baD 522N(

a
«aa«ba5dab ,

~13!

where the orthogonality of«aa /A2N was used. This estab
lishes that the 2N21 basis sets generated~uniquely! by the
commuting subsets of Pauli operators are in fact unbia
So there is a one-to-one correspondence between parti
ings of Pauli operators and choices of unbiased basis se

III. EXAMPLES FOR TWO AND THREE QUBITS

We now illustrate this correspondence for systems of t
and three qubits. To develop notation, the operator sub
for the one qubit case consist of single elements,sx , sy ,
and sz . Corresponding basis sets are denoted by (x), (y),
and (z), where each basis set consists of the two states ‘‘
and ‘‘down’’ along the indicated axis. The individual bas
states are denoted byunx&, uny&, andunz&, wherenx51 or 0
for spin ‘‘up’’ and ‘‘down,’’ respectively. The inner product
between any two states appearing in these basis sets
Eqs. ~1! and ~2!. Obviously, measurements by any of th
03232
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above operators on an eigenstate of any other will prod
perfectly random results~i.e., an average spin projection o
zero!.

In the case of two qubits, the dimension of the Hilbe
space isd54, so that five unbiased basis sets exist. Fig
shows these together with the five corresponding oper
sets, each consisting of three compatible operators. S
scripts indicate three product bases, (zz)p , (xy)p , and
(yx)p , whose individual states are denoted in the (zz)p case,
for example, byunz

1 ,nz
2&. There are two Bell bases, (zx)B and

(yz)Bi , and the states belonging to each of these may
written, respectively, as

unz
1 ,nx

2 ;6&5
1

A2
~ unz

1 ,nx
2&6un̄z

1 ,n̄x
2&), ~14!

uny
1 ,nz

2 ;6 i &5
1

A2
~ uny

1 ,nz
2&6 i un̄y

1 ,n̄z
2&), ~15!

where bars denote spin flips; ie, ifnx51 or 0, thenn̄x50 or
1, respectively. Thus, the four individual basis states are
plicitly enumerated@in Eq. ~15!, for example# by u1y ,1z ;
6 i & and u1y ,0z ;6 i &. The factor of i @as denoted by the
subscript in the basis label (yz)Bi# is not arbitrary; its pres-
ence is dictated by the operators that define the basis
equivalently by the requirement that the two Bell bases
mutually unbiased. It is a property of Bell bases that they c

FIG. 1. Five unbiased bases sets and corresponding Pauli o
tor sets. Each operator set consists of three commuting mem
any two of which determine the corresponding basis set as t
joint eigenbasis.
ng
7
r
r-
.

FIG. 2. Listing of nine unbi-
ased basis sets and correspondi
operator sets, each consisting of
commuting members. Particula
subsets of three determine the co
responding basis sets completely
0-3
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appear equally simple if other quantization axes are cho
in appropriate combinations. For example, the Bell base
and 5 in Fig. 1 may be written as (yy)B and (xx)B , respec-
tively. While these are simply different ways of writing th
same basis sets, truely different alternatives involving
five-basis sets exist for two qubits~see Refs.@11# and @12#!.
These alternatives also consist of three product bases
two Bell bases.

The three-qubit Hilbert space hasd58, and thus nine
unbiased basis sets. One choice contains three product b
(xyz)p , (yzx)p , and (zxy)p ; and six bases consisting o
maximally entangled states, (xxx)Gi , (yyy)G , (zzz)G ,
(xzy)G , (yxz)G , and (zyx)G . The nine basis sets are liste
in Fig. 2 and represented graphically in Fig. 3. The entang
basis sets are labeled by coordinate axes in which the s
reduce to the familiar Greenberger-Horne-Zeilinger@13#
~GHZ! form. For example, all of the states belonging to t
basis set (zyx)G may be written as

unz
1 ,ny

2 ,nx
3 ;6&5

1

A2
~ unz

1 ,ny
2 ,nx

3&6un̄z
1 ,n̄y

2 ,n̄x
3&); ~16!

these would require more complicated expressions if refe
to other coordinate axes. Fig. 2 lists the seven-member
erator sets that correspond uniquely to each basis set. A
the two-qubit case, the operators involving only a sin
Pauli matrix are exhausted within the product basis sets

It is striking that in the progression from one to two
three qubits, the number of totally entangled bases can g
from none to two to six, while the number of product bas

FIG. 3. Schematic of unbiased basis sets listed in Fig. 2—th
product and six GHZ bases. The three particles in the circle
maximally entangled~in a GHZ state!.
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remains fixed at three. It is easy to convince onesself that
maximum number of product bases remains fixed at three
all numbersN of qubits.

To show that the structure is more flexible with three q
bits than with two, we describe now a different choice
unbiased basis sets for three qubits, one that cannot be
tained from the previous choice by local unitary transform
tions. In this choice~Fig. 4!, there are no product states, an
no states with three-particle entanglement. Every basis c
sists of states that are products of one-particle states
Bell states; one particle is unentangled while the other t
are totally entangled, as depicted in Fig. 5. The basis
form groupings of three: (x1)(yz)Bi , (y1)(zx)B ,
(z1)(xy)B , then (x2)(xy)B , (y2)(yz)Bi , (z2)(zx)B , and fi-
nally (x3)(zx)B , (y3)(xy)B , (z3)(yz)Bi , in which a differ-
ent particle is factored out within each group. Coordina
axes are permuted within each group, but not from group
group. Factors ofi appear once within each group.

Note that within each grouping, we findthree unbiased
Bell-type bases—a feature that was not seen in the two-q
system. Indeed, if one were to begin with three unbiased B
bases in a two-qubit system, one could thennot find two
additional basis sets. This can be understood in terms of
operator decomposition: The nine operators exhausted
three Bell bases do not leave six operators that are dec
posable into two commuting subsets.

We also note that the choices of unbiased basis sets g
for the three qubit case are not obtained from the algorith
construction given in Ref.@6#. Wootters has pointed out@14#
that this construction produces another choice which cons
of two product, four GHZ, and three ‘‘product-Bell’’ base
In the case of two qubits, not surprisingly, the same constr
tion produces three product and two Bell bases@14#.

IV. CONCLUSIONS

The two- and three-qubit cases illustrate general po
made at the beginning. First, with regard to state preparat
one can see thatN observables suffice to define any of th
listed basis states completely, representing these states a
nary numbers. In the two-qubit case, any two of the th
compatible observables within a subset may be chosen
the three-qubit case, there are many choices of three obs
ables that suffice@15#—for example, the first three listed

e
re
y
s

d

FIG. 4. Same structure as in
Fig. 3, but all bases are partiall
entangled. In each of three group
a different particle must be single
out as unentangled.
0-4
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within each subset. In theN-qubit case, we introduced an«aa
matrix in which an appropriate choice ofN rows ~represent-
ing N operators! describe all 2N basis states as binary nun
bers.

Second, with regard to the determination of a gene
possibly mixed state, recall that 4N21 real parameters~15
for two qubits and 63 for three qubits! are required to specify
theN-qubit density matrix completely@4,5#. And exactly this
number is provided, either by the expectation values of
operators themselves, or by all the independent probabil
associated with the unbiased basis states. As we have pr
for the general case, the 4N21 Pauli operators can be part
tioned into 2N11 subsets, each consisting of 2N21 inter-
nally commuting observables. The set of all such partitio
ings has a one-to-one correspondence with choices ofN

11 unbiased basis sets in theN-qubit Hilbert space. There
are many such choices, and forN.2 the entanglement ma
be distributed over basis sets in many different ways. T
maximum number of product bases is fixed at three for
N.

The correspondence between basis sets and observ
makes it possible to regard all Pauli operator subsets with
given partitioning as being mutually unbiased: If the syst
is prepared in a joint eigenstate of one observable set, th

FIG. 5. Schematic of unbiased basis sets listed in Fig. 4,
partially entangled. One particle is unentangled with the other t
which are totally entangled in Bell states.
o

A

gn
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has a uniform probability distribution over the joint eige
states of any other observable set in the partitioning. A
result, all observables outside the original maximal comm
ing subset yield minimal information—measurement o
comes are uniformly distributed over all possibilities.

The concept of unbiasedness between observable set
tends the idea of complementarity of two individual obse
ables that fail to commute. Clearly two such observab
must always belong to different mutually unbiased subs
within any partitioning. However, as the two-and three-qu
examples show, two commuting observables may belon
the same or to different unbiased subsets. Their compatib
is dependent upon the partitioning.

Note added.After this work was completed, an e-prin
@12# appeared reporting work which is related to this wo
but complementary in several respects. Ref.@12# obtained a
general relationship between complete bases of unitary
erators~belonging to the general Pauli group! and unbiased
basis sets, for any power-of-prime dimension. In this pap
we considered the many-qubit case. We expanded upon
physical interpretation of the concept of complementar
We showed that many alternative partionings are poss
and, most importantly, entanglement is distributed amo
unbiased basis sets in a partition-dependent manner foN
.2.
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