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Classical analog of quantum search
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Quantum search is a quantum-mechanical technique for searchingN possibilities in onlyAN steps. A similar
algorithm applies in a purely classical setting when there areN oscillators, one of which is of a different
resonant frequency. We could identify which one this is by measuring the oscillation frequency of each
oscillator, a procedure that would take aboutN cycles. We show, how by coupling the oscillators together in a
very simple way, it is possible to identify the different one in onlyAN cycles. In case there are multiple
oscillators of a different frequency, we can estimate the number of these in a time which is the square root of
that required by the sampling method. The analog also leads to some energy routing algorithms for mechanical
systems.
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I. INTRODUCTION

Quantum computing algorithms, such as quantum sea
make use of the fact that a quantum system is simultaneo
in multiple states to carry out certain computations in para
in the same hardware. To implement the actual quant
search algorithm one needs a quantum-mechanical sy
where one can carry out certain elementary quantu
mechanical operations in a controlled way, it isnot possible
to implement the algorithm on classical hardware. Yet, in t
paper we show that a very similar algorithm works in a cl
sical system. The difference is that in a classical system
hardware is proportional toN; whereas in the quantum sys
tem, the hardware is only proportional to log2 N.

The algorithm of this paper is of interest, both in its ow
right as a classical algorithm and also for the insight it p
vides into quantum computing. For example, it is well est
lished that the quantum-search algorithm, which can sea
N possibilities in onlyAN steps, is the best possible alg
rithm for exhaustive searching. Yet there is no simple ar
ment as to why this is the best algorithm or why the alg
rithm should needAN steps. This paper gives an elementa
argument as to why it needsAN cycles to identify the differ-
ent oscillator.

II. BACKGROUND

Any quantum-mechanical transformation is a rotation
the state vector inN-dimensional complex Hilbert space
where N is the number of states. Therefore, any quantu
mechanical algorithm too is a rotation of the state vecto
N-dimensional complex Hilbert space. The quantum-sea
algorithm @1# is a special case since it is a rotation in
carefully defined two-dimensional vector space. This w
first noticed by Farhi and Gutmann who used it to deve
the following variant of the search algorithm@2#.

Consider anN-state system, whose Hamiltonian is know
to be uw& ^wu. w is known to be a basis state, the problem
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to find out which one this is. We are allowed to add on a
additional term to the Hamiltonian~provided this does no
depend onw! and let the system evolve in any way w
choose. The question is as to how rapidly can we identifyw?

Any obvious technique will needO(N) time. For ex-
ample, if we examine each state separately by coupling
an auxiliary state, it will takeO(1) time to examine each
state and thusO(N) time in all. However, by using an ana
ogy with the quantum-search algorithm, it is possible to d
vise a scheme to identifyw that requires onlyO(AN) time.

The idea is to first add an additional term of (1/N)(u1&
1¯1uN&)(^1u1¯1^Nu) to the given Hamiltonian. Then
start the system from the superposition (1/AN)(u1&1¯

1uN&), let it evolve for a timeO(AN) and finally carry out
an observation—with a high probability the state observ
after this will beuw&. This technique is similar to the searc
algorithm in that it consists of a rotation of the state vector
a two-dimensional vector space defined byuw& and (1/
AN)(u1&1¯1uN&).

To simplify notation, assume thatw is the first of theN
states, i.e.,w51. The total Hamiltonian then becomes

H'
1

N
~ u1&1¯1uN&)~^1u1¯1^Nu!1u1&^1u. ~1!

Writing this in the subspace spanned byu1& and uB&
[(1/AN)( j 52

N u j &, and leaving out terms of order 1/N, the
above Hamiltonian becomes

H'~ u1&^1u1uB&^Bu!1
1

AN
~ u1&^Bu!1uB&^1u!. ~2!

Thus the quantum dynamics of the system is essentially
of two degenerate levels with mixing amplitude of
O(1/AN). The initial state 1/AN( j 51

N u j &'uB& ‘‘rotates’’ to
u1& in a time inversely related to the mixing matrix elemen
Since this element isO(1/AN), the time taken by this searc
algorithm isO(AN).

The discrete quantum-search algorithm is very simi
The main difference is that instead of having the Ham
tonian be constant throughout, it is adjusted so that the it
specific portion acts separately from the mixing portion, i.
©2002 The American Physical Society19-1
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LOV K. GROVER AND ANIRVAN M. SENGUPTA PHYSICAL REVIEW A65 032319
there are alternate steps ofuw& ^wu and (1/N)(u1&1¯

1uN&)(^1u1¯1^Nu). This perspective is described in@3#.
Thus, at the heart of the search algorithm is a resona
phenomenon. In the following sections we discuss a class
analog of the same phenomenon involving coupled osc
tors. Variants of the quantum-search algorithm have pre
ously been proposed with classical waves@4–6#. Ours is
quite different in that it explicitly incorporates the couplin
between various modes.

III. CLASSICAL ANALOGY

The analysis and results of the following two sectio
hold for any system of classical oscillators, either mechan
or electrical. For concreteness we consider the oscillator
be pendulums.

The following is the problem. There areN pendulums—
one of which is slightly shorter than the rest. The problem
to identify which one this is. By carefully coupling them
together and letting them oscillate forO(AN) cycles, a sub-
stantial portion of the energy can be transferred to the sho
pendulum whose amplitude becomes very high. This is
complished by a resonance phenomenon very similar to
in quantum search. Using this, it is possible to identify t
different pendulum as described in Sec. V.

IV. N COUPLED PENDULUMS

We show that by suspending theN pendulums from a
bigger pendulum~Fig. 1! and adjusting the masses an
lengths of the bigger pendulum appropriately, it is possible
achieve a coupling similar to that of theN states in the
quantum-search algorithm as described in Sec. II. As in S
II we make the first pendulum special while the rest of t
(N21) of them are identical.

The Lagrangian of the system of Fig. 1 is given by

L5
1

2 H MẊ22KX21
1

N
@m1ẋ1

22k1~x12X!2#

1
1

N (
j 52

N

@mẋj
22k~xj2X!2#J ;

K[S M1
m

ND g

L
, k[m

g

l
, k1[m1

g

l 1
, ~3!

whereX is the displacement of the support pendulum,xj is
the displacement of thej th pendulum hanging from the sup
port; M,L are respectively, the mass and the length of
support pendulum,m1 /N, l 1 are respectively, the mass an
length of the first pendulum, andm/N, l are respectively, the
mass and the length of each of the other pendulums~g is the
acceleration due to gravity!. It was probably simpler to keep

FIG. 1. N pendulums are suspended from a single pendulum
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the Lagrangian of Eq.~3! in terms of them’s, l’s, and g.
However, as mentioned before, the framework of this pa
applies to any system of oscillators, electrical or mechani
In order to be able to quickly translate the results to ot
applications, we express the Lagrangian in Eq.~3! in a more
general notation in terms of the stiffnesses~k’s!.

Now we change variables so that we consider the cen
of-mass modexW of pendulums 2,...,N, and other modes o
excitation of the same pendulums orthogonal to the cen
of-mass mode, which we denote byyl , l 51,..,(N22). In
terms of these variables, the Lagrangian may be written

L5
1

2 H MẊ22KX21
1

N
@m1ẋ1

22k1~x12X!2#1S 12
1

ND
3@mxG 22k~ x̄2X!2#1

1

N (
l 51

N22

~mẏl
22kyl

2!J . ~4!

Note that they’s decouple from the rest of the variables.
we consider an initial condition where eachy is zero, they
will stay zero. Hence we can omit these variables and c
centrate on the three crucial ones:X, x1 , x̄. Defining j
[(1/AN)x1 , and ignoring some irrelevantO(1/N) terms,
the reduced Lagrangian~without they’s! may be written as

L red'
1

2 FMẊ22KX21m1j̇22k1S j2
1

AN
XD 2

1mxG 22k~ x̄2X!2G . ~5!

The LagrangianL red represents two strongly coupled d
grees of freedom,X and x̄, and a variablej that is weakly
coupled to others. We first solve theX, x̄ system. This gives
rise to two modes with frequencies, which we denote byva
andvb . The natural frequency of thej degree of freedom,
corresponding to the special pendulum, isv15Ak1 /m1 ~ig-
noring theO(1/AN) couplingj has with the other modes!. If
v1 is arranged to be very close to eitherva or vb , we get a
resonant transfer of energy between the two weakly coup
systems. The number of cycles required for significant tra
fer of energy to the special pendulum varies inversely w
the coupling and will beO(AN).1

We next analyze the three-mode system defined by
reduced Lagrangian~5! by writing its equations of motion, in
matrix form these are

1Clearly, when the deviation of the length of the pendulum a
proaches zero, there should be no energy transfer to this pendu
Yet the previous analysis seems to suggest that the time wil
O(AN) cycles irrespective of the deviation. The reason for t
becomes clear by examining the frequency diagram of Fig. 2 w
the deviation betweenv1 and v̄ becomes zero. Then whateve
value we choose forvc , it will result in an order one difference
betweenv1 andva , i.e., we will never be able to satisfy the res
nance condition.
9-2



n-
at

-

r-o

n

e

ve

ort
i-
i-

ir
s

er-
ce
h
the

om

g a
to

ma-
w

ich

me

the

n of

ci-

ns
the

the
the
tion
en
n of

en

CLASSICAL ANALOG OF QUANTUM SEARCH PHYSICAL REVIEW A65 032319
M̂XẄ ~ t !52K̂XW ~ t !, ~6!

where the displacement vectorXW , the mass matrixM̂ , and
the stiffness matrixK̂, are defined as follows:

XW ~ t ![S X~ t !
xW~ t !
j~ t !

D , M̂[S M 0 0

0 m 0

0 0 m1

D ,

K̂[S K1k1
k1

N
2k 2

k1

AN

2k k 0

2
k1

AN
0 k1

D .

Solving Eq.~6! by assuming a solution with time depe
denceeirt, it follows after some straightforward analysis th
r2 is given by the eigenvalues of the matrixL as

L[M̂ 21/2K̂M̂ 21/25S vc
2 2l 2

k1

ANMm1

2l v̄2 0

2
k1

ANMm1

0 v1
2

D .

~7!

Herevc
2[(1/M )@K1k1(k1 /N)# ~vc corresponds to the

frequency of thecoupling degree of freedom, i.e., the fre
quency of the large pendulum!, v̄2[k/m ~v̄ is the frequency
of the center-of-mass mode!, v1

2[k1 /m1 ~v1 corresponds to
the frequency of the different pendulum!, l[(k/AMm) ~l is
the coupling between the large pendulum and the cente
mass mode!.

Inspecting the matrixL makes it clear that the first two
modes are strongly coupled, whereas the first mode is o
weakly coupled to the third mode by a term of order 1/AN.
We can thus change basis so that the~1, 2! block is diago-
nalized. The corresponding frequencies are given by the
genvalues of the~1, 2! block

va,b
2 5 1

2 @vc
21v̄26A~vc

22v̄2!214l2#. ~8!

FIG. 2. The center-of-mass modev̄ and the coupling modevc

interact to produce two new modes~va andvb!. One of these,va,
is resonantly coupled to the oscillation mode of the different p
dulum v1 with an O(1/AN) coupling.
03231
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In the rotated basis, each of the first two modes will ha
O(1/AN) coupling with the third mode; the matrixL gets
transformed into a matrixL̃ of the following form:

L̃[S va
2 0 2

a

AN

0 vb
2

2
b

AN

2
a

AN
2

b

AN
v2

D ;

~a,b are of order 1!. ~9!

We start this system by giving a push to the large supp
pendulum, delivering order-1 energy. This energy will in
tially be in the~1,2! subsystem. However, under the cond
tion of resonance, inO(AN) cycles, the special pendulum
will swing with an amplitude of order 1. All the other (N
21) identical pendulums would move in lock step; the
total energy would be of order 1, but individual pendulum
will have energy ofO(1/N), and their amplitudes would be
O(1/AN).

It must be noted that precise information about the diff
ent oscillator is required in order to satisfy the resonan
condition—we would have to know precisely how muc
longer or shorter this pendulum was as compared with
remaining pendulums. This would determine the value ofM
and L ~the mass and length of the support pendulum fr
which the rest of the pendulums are suspended!.

V. THE ALGORITHM

As described above, we have a means for transferrin
large portion of the energy from the support pendulum in
an aberrant pendulum, assuming we have precise infor
tion about the length of this pendulum but do not kno
which this is. This procedure can be used to identify wh
pendulum this is~as in the quantum-search algorithm!. In
order to better define the problem, it is important to list so
of the associated constraints.

A. Rules of the game

~1! The system is started by giving a single push to
support pendulum.

~2! We can redesign parameters and observe the motio
a constant number of pendulums.

~3! Observations can only be resolved with a finite pre
sion that is independent ofN.

These constraints are meant to reflect realistic limitatio
on the system. Also, these constraints are what make
problem interesting. For example, if we could observe
system with arbitrary precision, then we could deduce
presence of the short pendulum just by observing the mo
of any pendulum in only a constant number of cycles, ev
without any resonance. However, this demands a precisio
O(1/N).

-

9-3
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LOV K. GROVER AND ANIRVAN M. SENGUPTA PHYSICAL REVIEW A65 032319
B. Algorithm

The following procedure ascertains whether or not ther
a special pendulum in the set that is connected to the sup
pendulum. Once we have a procedure for identifying
presence~or absence! of a desired item in a specified set, it
possible to identify precisely which one this is by log2 N
repetitions of the identification procedure in a binary sea
fashion.

Select any one of the pendulums and shorten its lengt
that it is of the same length as the short pendulum~assuming
it is not already a short pendulum!. It is assumed that we
know the length of the short pendulums. Set the system
motion by giving a push to the support. Observe the cyc
variation in the amplitude of the shortened pendulum
O(AN) cycles.

In case the set of pendulums connected to the sup
originally had a short pendulum then, including the one
had shortened, it will have two short pendulums. If it did n
originally have a short pendulum, then it will have just o
short pendulum. An analysis similar to the preceding sec
shows that the resonant coupling transfers a large fractio
the energy to and from the short pendulums with a period
ity of O(AN/t) cycles, wheret is the number of short pen
dulums. Thus there will be a difference of a factor of& in
the periodicity, depending on whether there are one or
short pendulums. This periodicity is inferred from the cyc
variations in the amplitude of the shortened pendulum.

VI. WHY DOES IT TAKE O„AN… CYCLES?

The quantum-search algorithm has been rigorou
proved to be the best possible algorithm for exhaus
search, i.e., no other algorithm can carry out an exhaus
search ofN items in fewer thanO(AN) steps. The proof for
this is complicated and based on subtle properties of uni
transformations@7#. Fortunately, in the classical analog, the
is a simple argument as to why it needsO(AN) cycles to
transfer the energy to the desired pendulum.

As described in Sec. IV, the oscillation mode of the sin
pendulum is resonantly coupled to one of the two mo
arising out of the interaction of the center-of-mass mo
@which has a massO(N) times that of the single pendulum#
with the mode of the coupling pendulum@which too has a
massO(N) times that of the single pendulum#. Therefore,
the modes that arise out of this interaction also behave
oscillators with a massO(N) times that of the single pendu
lum.

The question is as to how rapidly can we transfer ene
from a pendulum of massO(N) to that of a pendulum with a
mass of order 1 through a resonant coupling. Assume b
pendulums to have an energy of order 1. Then the amplit
of the larger pendulum isO(1/AN) times that of the smalle
pendulum. Since they have the same frequencies, the
velocity of the larger pendulum is alsoO(1/AN) times that
of the smaller pendulum.

Consider an elastic collision between a sphere of mas
N, traveling with a velocity ofO(1/AN), with another sphere
of unit mass traveling with a velocity less than 1. As sho
03231
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in Fig. 3, in the center-of-mass frame, the larger sphere
almost stationary and the smaller sphere bounces off
larger sphere. The speed of the smaller sphere stays unal
and the velocity changes sign~in order to conserve kinetic
energy!. Translating back to the original frame, we see th
the magnitude of the velocity of the smaller sphere has
creased by 2/AN. Therefore, it will takeO(AN) such inter-
actions for the velocity of the smaller sphere to be able
rise from 0 to 1~or equivalently to transfer an energy o
order 1!.

VII. APPLICATIONS AND EXTENSIONS

A. Counting

Estimating the number of occurrences is an import
problem in statistics and computer science. The first ext
sion of the original quantum-search algorithm was to
problem of counting where it gave a square-root advant
over the best possible classical algorithm@8#. Our classical
analog too gives a square-root advantage over the stan
estimation technique.

We are givenN pendulums; a small fraction of them~say
e! are shorter than the rest. The problem is to estimatee. The
standard sampling technique is to pick a certain numbe
pendulums at random and measure their oscillation
quency. Since the probability of getting a shorter pendul
in each sample ise, it will take about 1/e samples before we
get a single occurrence of a shorter pendulum. Since it ta
O(1) cycles to estimate the oscillation frequency of a pe
dulum, it will take O(1/e) cycles to be able to derive an
reasonable estimate ofe. On the other hand, by extending th
technique of the preceding section, it is possible to estimae
in only O(1/Ae) cycles.

The approach is to suspend allN pendulums from a single
pendulum as in Sec. IV thus coupling them. Now, as befo
a resonant coupling is designed between the shorter pe
lums and the rest of the system. The strength of this coup
is O(Ae). This causes energy to flow back and forth fro
the shorter pendulums with a periodicity ofO(1/Ae) cycles.
As in Sec. V we design the first pendulum to be a sh
pendulum. By following its amplitude forO(1/Ae) cycles,

FIG. 3. When a sphere of unit mass moving with unit veloc
collides with a larger sphere of mass equal toN that is moving with
a velocity of 1/AN, the magnitude of the velocity of the smalle
sphere can change by at most 2/AN.
9-4
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CLASSICAL ANALOG OF QUANTUM SEARCH PHYSICAL REVIEW A65 032319
we will observe a cyclic variation. The length of this cyc
will immediately identifye.

B. Mechanical applications

Consider an application where we need to transfer ene
to one ofN subsystems. This can be accomplished by c
pling the subsystems as described in this paper and mak
slight perturbation to the subsystem into which we want
energy to flow into. AfterO(AN) cycles, a large fraction o
the energy will flow into the selected subsystem. Altern
tively, if we want to transfer energy from one subsystem
another, this can be similarly accomplished by a two-s
process. First, make a perturbation to the subsystem f
which the energy is coming. If the system is now allowed
oscillate forO(AN) cycles, the energy transfers into the su
port structure. Now, if the perturbation is removed from t
source subsystem and made in the destination subsystem
energy will flow from the support into the destination su
system. By proper design it is possible to accomplish a lo
less transfer of energy from one to another subsystem.
type of scheme would be especially useful in an applicat
where we need the flexibility of transferring energy to a
one ofN components with minimal changes in hardware
mechanical router.
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C. Quantum-mechanical applications

In quantum-mechanical settings there are several app
tions where various modes of oscillation are coupled throu
the center-of-mass mode. For example, considerN atoms
coupled resonantly to a photon mode in an optical cavity@9#.
The atoms are trapped in the cavity by some kind of elec
magnetic fields. The photon mode plays the role of the s
port pendulum through which the particles are coupled. C
sider the basis stateui& to be the state where the photo
excitation is localized on thei th atom. Due to the coupling
there is a certain amplitude for the excitation to transfer
another atom. Since the atoms are close together in the
ity, this amplitude is the same between any two atom
Therefore, the Hamiltonian is of the formaS i u i &^ i u
1bS i , j u i &^ j u. This is exactly the kind of Hamiltonian tha
motivated our analysis in Sec. II. A similar analysis appl
in the case of an ion trap@10# or in the case of Josephso
junctions@11# coupled through a mutual inductance.
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