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Classical analog of quantum search
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Quantum search is a quantum-mechanical technique for seafdifingsibilities in only/N steps. A similar
algorithm applies in a purely classical setting when thereMNmscillators, one of which is of a different
resonant frequency. We could identify which one this is by measuring the oscillation frequency of each
oscillator, a procedure that would take abdltycles. We show, how by coupling the oscillators together in a
very simple way, it is possible to identify the different one in orlfi) cycles. In case there are multiple
oscillators of a different frequency, we can estimate the number of these in a time which is the square root of
that required by the sampling method. The analog also leads to some energy routing algorithms for mechanical
systems.
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[. INTRODUCTION to find out which one this is. We are allowed to add on any
additional term to the Hamiltoniafprovided this does not
Quantum computing algorithms, such as quantum searcldlepend onw) and let the system evolve in any way we
make use of the fact that a quantum system is simultaneoustjhoose. The question is as to how rapidly can we idemiffy
in multiple states to carry out certain computations in parallel Any obvious technique will nee®(N) time. For ex-
in the same hardware. To implement the actual quantumample, if we examine each state separately by coupling it to
search algorithm one needs a quantum-mechanical systeam auxiliary state, it will takeD(1) time to examine each
where one can carry out certain elementary quantumstate and thu®(N) time in all. However, by using an anal-
mechanical operations in a controlled way, inist possible  ogy with the quantum-search algorithm, it is possible to de-
to implement the algorithm on classical hardware. Yet, in thisvise a scheme to identify that requires onlyO(y/N) time.
paper we show that a very similar algorithm works in a clas- The idea is to first add an additional term of N)(|1)
sical system. The difference is that in a classical system the----+|N))((1|+---+(NJ) to the given Hamiltonian. Then
hardware is proportional tb; whereas in the quantum sys- start the system from the superposition \(E))(|1>+...
tem, the hardware is only proportional to jdg +|N)), let it evolve for a timeO(y/N) and finally carry out
The algorithm of this paper is of interest, both in its own an observation—with a high probability the state observed
right as a classical algorithm and also for the insight it pro-after this will be|w). This technique is similar to the search
vides into quantum computing. For example, it is well estabg|gorithm in that it consists of a rotation of the state vector in
lished that the quantum-search algorithm, which can search two-dimensional vector space defined by and (1/
N possibilities in only/N steps, is the best possible algo- \/N)(|1)+---+|N>).
rithm for exhaustive searching. Yet there is no simple argu-  To simplify notation, assume that is the first of theN
ment as to why this is the best algorithm or why the algo-states, i.e.w=1. The total Hamiltonian then becomes
rithm should need/N steps. This paper gives an elementary
argument as to why it need&N cycles to identify the differ-

1
ent oscillator. H~ S D+ N (2] +(ND+[1)(L (D)

Writing this in the subspace spanned By and |B)
E(ll\/ﬁ)E}\LZU), and leaving out terms of orderN/ the
Any guantum-mechanical transformation is a rotation ofabove Hamiltonian becomes
the state vector irN-dimensional complex Hilbert space, 1
where N is the number of states. Therefore, any quantum- . o
mechanical algorithm too is a rotation of the state vector in H~([1)(1]+[B)(B])+ \/ﬁ(|l><B|)+|B><l|)' @
N-dimensional complex Hilbert space. The quantum-search
algorithm [1] is a special case since it is a rotation in a Thus the quantum dynamics of the system is essentially that
carefully defined two-dimensional vector space. This wa®f two degenerate levels with mixing amplitude of
first noticed by Farhi and Gutmann who used it to developO(1/VN). The initial state 1/N=].,|j)~|B) “rotates” to
the following variant of the search algorithf#]. |1) in a time inversely related to the mixing matrix element.
Consider arlN-state system, whose Hamiltonian is known Since this element i©(1/\/N), the time taken by this search
to be w) (w|. w is known to be a basis state, the problem isalgorithm isO(\/N).
The discrete quantum-search algorithm is very similar.
The main difference is that instead of having the Hamil-
*Email address: Ikgrover@bell-labs.com tonian be constant throughout, it is adjusted so that the item-
"Email address: anirvan@bell-labs.com specific portion acts separately from the mixing portion, i.e.,

IIl. BACKGROUND
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Lemgth of support penduinms L the Lagrangian of Eq(3) in terms of them's, I's, and g.

M (mass of support pendulum) However, as mentioned before, the framework of this paper

(length of first pendulum) l,:é) ?’ 1 " " dul . . . A
(reass of first penduium) m IV ¥ (length of each pendulum) applies to any system of oscillators, electrical or mechanical.
! mIN (mass of each pendulum) In order to be able to quickly translate the results to other

applications, we express the Lagrangian in &).in a more
general notation in terms of the stiffnesgk’s).

there are alternate steps ¢f) (w| and (IN)(|1)+--- Now we chénge variables so that we consider the center-
+[NY)((1]+---+(N]|). This perspective is described [ia]. of-mass modex of pendulums 2,.N, and other modes of
Thus, at the heart of the search algorithm is a resonanc@xcitation of the same pendulums orthogonal to the center-
phenomenon. In the following sections we discuss a classic&f-mass mode, which we denote by, 1=1,..,N—=2). In
analog of the same phenomenon involving coupled oscillatérms of these variables, the Lagrangian may be written as
tors. Variants of the quantum-search algorithm have previ-

FIG. 1. N pendulums are suspended from a single pendulum.

ously been proposed with classical waJds-6]. Ours is o , 1 - ) 1
quite different in that it explicitly incorporates the coupling L= 2 MX"— KX+ N[mlxl —ki(xa=X)7]+{ 1- N
between various modes.
N—2
. _ 1 .
lll. CLASSICAL ANALOGY ><[m>'<2—k(X—X)2]+N§1 (myuz—kmz)]- €)

The analysis and results of the following two sections
hold for any system of classical oscillators, either mechanicaNote that they's decouple from the rest of the variables. If
or electrical. For concreteness we consider the oscillators tee consider an initial condition where eaglis zero, they
be pendulums. will stay zero. Hence we can omit these variables and con-

The following is the problem. There aié pendulums—  centrate on the three crucial ones; x;, X. Defining &
one of which is slightly shorter than the rest. The problem isz(l/\/ﬁ)xl, and ignoring some irrelevar®(1/N) terms,
to identify which one this is. By carefully coupling them the reduced Lagrangiamwithout they's) may be written as
together and letting them oscillate fax(y/N) cycles, a sub-
stantial portion of the energy can be transferred to the shorter 1
pendulum whose amplitude becomes very high. This is ac- Lied™ =

2
MX2—KX2+ ml'gz—k1< - ix
N

complished by a resonance phenomenon very similar to that 2
in quantum search. Using this, it is possible to identify the
different pendulum as described in Sec. V. +mse—k(X=X)2|. (5)

IV. N COUPLED PENDULUMS
. The Lagrangiar,q represents two strongly coupled de-
We show that by suspending tti pendulums from a qgrees of freedomX andx, and a variablet that is weakly

bigger pendulum(Fig. 1) and adjusting the masses an . — S
lengths of the bigger pendulum appropriately, it is possible toC.OUpled [0 others. We first solve 1 x system. This gives

achieve a coupling similar to that of thid states in the fise to two modes with frequencies, which we denota-y

guantum-search algorithm as described in Sec. II. As in Seca.ndwb' Th? natural frequt_ancy of the degree —Of freed_om,
Il we make the first pendulum special while the rest of thecorrespondlng to the spgmal pendu_lumm§= ky /m; (ig-
(N—1) of them are identical. noring theO(1/y/N) couplingé has wrgh the other modgdf
The Lagrangian of the system of Fig. 1 is given by w4 is arranged to be very close to eithey or wy,, we get a
resonant transfer of energy between the two weakly coupled
] 1 systems. The number of cycles required for significant trans-
MXZ—KX2+ N[mlklz—kl(xl—X)z] fer of energy to the special pendulum varies inversely with
the coupling and will beD(y/N).*
} We next analyze the three-mode system defined by the

=
"2

reduced Lagrangia(b) by writing its equations of motion, in

1 .
+3 > [m¥2—k(x;—X)?]
matrix form these are

j=2

M—I—m
N

g, kEm9 klzmlg, 3
L Iy

K= I

IClearly, when the deviation of the length of the pendulum ap-

. . . proaches zero, there should be no energy transfer to this pendulum.
whereX is the displacement of the support penduluqis  vet the previous analysis seems to suggest that the time will be

the displacement of thigh pendulum hanging from the sup- o(/N) cycles irrespective of the deviation. The reason for this
port; M,L are respectively, the mass and the length of the,ecomes clear by examining the frequency diagram of Fig. 2 when
support pendulumm, /N, I, are respectively, the mass and the deviation betweem,; and @ becomes zero. Then whatever
length of the first pendulum, and/N, | are respectively, the value we choose fow,, it will result in an order one difference
mass and the length of each of the other pendul(giis the  betweenw; andw,, i.e., we will never be able to satisfy the reso-
acceleration due to gravitylt was probably simpler to keep nance condition.
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V In the rotated basis, each of the first two modes will have

W, %1 O(1/yN) coupling with the third mode; the matrix gets
JO(1VN) coupling __— 7% O(IyN) resonaht  transformed into a matri of the following form:
.......... g form:
™\ strong coupling
/0 @) coupling (A1) a
0 e e w? 0 -
*0, N
FIG. 2. The center-of-mass modeand the coupling mode, A= 0 wp - ﬁ .
interact to produce two new modés, and w,). One of thesegw,, \/N '
is resonantly coupled to the oscillation mode of the different pen-
dulum w; with an O(1/4/N) coupling. @ _ﬁ 2
NN
MX(t) = —KX(1), (6) (a,B are of order 1. (9)
where the displacement vect®; the mass matrbM, and We start this system by giving a push to the large support
the stiffness matriX, are defined as follows: pendulum, delivering order-1 energy. This energy will ini-
tially be in the(1,2) subsystem. However, under the condi-
X(t) M 0 O tion of resonance, iO(y/N) cycles, the special pendulum
X(t)=| Xt |, Mm=[ 0 m 0 |, will swing with an amplitude of order 1. All the otheiN(
&(t) 0 0 m —1) identical pendulums would move i_n_Iock step; their
1 total energy would be of order 1, but individual pendulums
will have energy ofO(1/N), and their amplitudes would be
Kike @ ok O(14N). o |
N JN It must be noted that precise information about the differ-
. ent oscillator is required in order to satisfy the resonance
condition—we would have to know precisely how much
Ky longer or shorter this pendulum was as compared with the
- \/_N 0 Ky remaining pendulums. This would determine the valudof

andL (the mass and length of the support pendulum from

Solving Eq.(6) by assuming a solution with time depen- which the rest of the pendulums are suspended

dencee'”!, it follows after some straightforward analysis that

p? is given by the eigenvalues of the matrixas V. THE ALGORITHM
As described above, we have a means for transferring a
2 Ky large portion of the energy from the support pendulum into
w e N — gep gy fron pport pendulu
VNMmy an aberrant pendulum, assuming we have precise informa-
A=N1-12R - 12— \ 22 0 tior_l abo.ut.the Igngth of this pendulum but _do not knqw
which this is. This procedure can be used to identify which
kq 5 pendulum this is(as in the quantum-search algorithnin
- YNMm, 0 @1 order to better define the problem, it is important to list some
1

7) of the associated constraints.

Here w2=(1/M)[K +k+ (k;/N)] (o, corresponds to the A. Rules of the game

frequency of thecoupling degﬂaze of freedom, i.e., the fre- (1) the system is started by giving a single push to the
quency of the large pendulymw =k/m (o is the frequency support pendulum.

of the center-of-mass moHeo;=k; /m; (w; corresponds to ~(2) e can redesign parameters and observe the motion of
the frequency of the different pendulim = (k/YMm) (N is 3 constant number of pendulums.

the coupling between the large pendulum and the center-of- (3) Observations can only be resolved with a finite preci-
mass mode sion that is independent of.

Inspecting the matrix\ makes it clear that the first two  These constraints are meant to reflect realistic limitations
modes are strongly coupled, whereas the first mode is onlyn the system. Also, these constraints are what make the
weakly coupled to the third mode by a term of orde(l/  problem interesting. For example, if we could observe the
We can thus change basis so that the?2) block is diago-  system with arbitrary precision, then we could deduce the
nalized. The corresponding frequencies are given by the epresence of the short pendulum just by observing the motion
genvalues of thél, 2) block of any pendulum in only a constant number of cycles, even

without any resonance. However, this demands a precision of

02 p= 0+ %= (Wi —w?) 2+ a0, ®  O(IN).
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B. Algorithm Mass = N

. . . Mass = 1
The following procedure ascertains whether or notthere is  veocity = 14/N 23 Velocity = v

a special pendulum in the set that is connected to the support
pendulum. Once we have a procedure for identifying the [
presencéor absenckof a desired item in a specified set, it is
possible to identify precisely which one this is by Jdg
repetitions of the identification procedure in a binary search

(v<l)

fashion.
Select any one of the pendulums and shorten its length SO veiocity = 14N O——— Velocity =~ V42NN
that it is of the same length as the short pendu{assuming

it is not already a short pendulymit is assumed that we ) ) ) ) )
know the length of the short pendulums. Set the system in FIG. 3._ When a sphere of unit mass moving _W|th unit ve_Iocny
motion by giving a push to the support. Observe the cycliccou'des_Wlth alarger sphere O_f mass equaNtthat_ Is moving with
variation in the amplitude of the shortened pendulum for® velocity of 1N, the magnitude of the velocity of the smaller
O(VN) cycles sphere can change by at most/®.

In case the set of pendulums connected to the support

originally had a short pendulum then, including the one wel" Fig. 3, in the center-of-mass frame, the larger sphere is
had shortened, it will have two short pendulums. If it did not@/most stationary and the smaller sphere bounces off the
originally have a short pendulum, then it will have just onelarger sphere._The speed oflth_e smaller sphere stays_una_lltered
short pendulum. An analysis similar to the preceding sectio@nd the velocity changes sigm order to conserve kinetic
shows that the resonant coupling transfers a large fraction N€rgy. Translating back to the original frame, we see that
the energy to and from the short pendulums with a periodic{h® magnitude of the velocity of the smaller sphere has in-
ity of O(yN/7) cycles, wherer is the number of short pen- creased by 2/N. Therefore, it will takeO(yN) such inter-
dulums. Thus there will be a difference of a factorn@fin actions for the velocity of the smaller sphere to be able to
the periodicity, depending on whether there are one or twéiSe from 0 to 1(or equivalently to transfer an energy of
short pendulums. This periodicity is inferred from the cyclic °rder 3.

variations in the amplitude of the shortened pendulum.

VI. WHY DOES IT TAKE O(+/N) CYCLES? VII. APPLICATIONS AND EXTENSIONS

The quantum-search algorithm has been rigorously A. Counting
proved to be the best possible algorithm for exhaustive Estimating the number of occurrences is an important
search, i.e., no other algorithm can carry out an exhaustivproblem in statistics and computer science. The first exten-
search ol items in fewer tharO(\/N) steps. The proof for sion of the original quantum-search algorithm was to the
this is complicated and based on subtle properties of unitargroblem of counting where it gave a square-root advantage
transformation$7]. Fortunately, in the classical analog, there over the best possible classical algorith@). Our classical
is a simple argument as to why it nee@§/N) cycles to  analog too gives a square-root advantage over the standard
transfer the energy to the desired pendulum. estimation technique.

As described in Sec. 1V, the oscillation mode of the single We are giverN pendulums; a small fraction of the(may
pendulum is resonantly coupled to one of the two modes) are shorter than the rest. The problem is to estiraaléne
arising out of the interaction of the center-of-mass modestandard sampling technique is to pick a certain number of
[which has a mas®(N) times that of the single pendulym pendulums at random and measure their oscillation fre-
with the mode of the coupling pendulufwhich too has a quency. Since the probability of getting a shorter pendulum
massO(N) times that of the single pendulyniTherefore, in each sample is, it will take about 1£ samples before we
the modes that arise out of this interaction also behave aget a single occurrence of a shorter pendulum. Since it takes
oscillators with a mas®(N) times that of the single pendu- O(1) cycles to estimate the oscillation frequency of a pen-
lum. dulum, it will take O(1/e) cycles to be able to derive any

The question is as to how rapidly can we transfer energyeasonable estimate ef On the other hand, by extending the
from a pendulum of mas®(N) to that of a pendulum with a technique of the preceding section, it is possible to estimate
mass of order 1 through a resonant coupling. Assume botm only O(1/\/e) cycles.
pendulums to have an energy of order 1. Then the amplitude The approach is to suspend Bllpendulums from a single
of the larger pendulum i©(1/{/N) times that of the smaller pendulum as in Sec. IV thus coupling them. Now, as before,
pendulum. Since they have the same frequencies, the peakresonant coupling is designed between the shorter pendu-
velocity of the larger pendulum is al$d(1/y/N) times that lums and the rest of the system. The strength of this coupling
of the smaller pendulum. is O(\/e). This causes energy to flow back and forth from

Consider an elastic collision between a sphere of mass dhe shorter pendulums with a periodicity ©{1/\€) cycles.

N, traveling with a velocity o (1/y/N), with another sphere As in Sec. V we design the first pendulum to be a short
of unit mass traveling with a velocity less than 1. As shownpendulum. By following its amplitude fo®(1/\/€) cycles,
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we will observe a cyclic variation. The length of this cycle C. Quantum-mechanical applications
will immediately identify e.
In quantum-mechanical settings there are several applica-
B. Mechanical applications tions where various modes of oscillation are (_:oupled through
) o the center-of-mass modd-or example, consideN atoms
Consider an application v_vhere we need to t_ransfer energ¥oupled resonantly to a photon mode in an optical cd@ty
to one ofN subsystems. This can be accomplished by couThe atoms are trapped in the cavity by some kind of electro-
pling the subsystems as described in this paper and mak'”grﬁagnetic fields. The photon mode plays the role of the sup-
slight perturbation to the subsystem into which we want theport pendulum through which the particles are coupled. Con-
energy to flow into. AfterO(VN) cycles, a large fraction of sider the basis statg) to be the state where the photon
the energy will flow into the selected subsystem. Alterna-excitation is localized on thith atom. Due to the coupling
tively, if we want to transfer energy from one subsystem tothere is a certain amplitude for the excitation to transfer to
another, this can be similarly accomplished by a two-stegynother atom. Since the atoms are close together in the cav-
process. First, make a perturbation to the subsystem frorﬁy, this amplitude is the same between any two atoms.
which the energy is coming. If the system is now allowed toTherefore, the Hamiltonian is of the formas,;|i )i
oscillate forO(+/N) cycles, the energy transfers into the SUP-+ b3, i[i)(j|. This is exactly the kind of Hamiltonian that
port structure. Now, if the perturbation is removed from themotivated our analysis in Sec. II. A similar analysis applies
source subsystem and made in the destination subsystem, tfgethe case of an ion trapl0] or in the case of Josephson

energy will flow from the support into the destination sub- junctions[11] coupled through a mutual inductance.
system. By proper design it is possible to accomplish a loss-

less transfer of energy from one to another subsystem. This

type of scheme would be especially useful in an application ACKNOWLEDGMENTS
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