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How much state assignments can differ
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We derive necessary and sufficient conditions for a group of density matrices to characterize what different
people may know about one and the same physical system.
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I. INTRODUCTION

According to Peierls@1#,
@T#he most fundamental statement of quantum me-
chanics is that the wavefunction, or, more generally the
density matrix, represents ourknowledgeof the system
we are trying to describe.

In answer to the question ‘‘whose knowledge?’’ Peierls go
on to say:

@Density matrices# may differ, as the nature and
amount of knowledge may differ. People may have ob-
served the system by different methods, with more or
less accuracy; they may have seen part of the results o
another physicist. However, there are limitations to the
extent to which their knowledge may differ. This is
imposed by the uncertainty principle. For example, if
one observer has knowledge ofSz of our Stern-Gerlach
atom, another may not knowSx , since measurement of
Sx would have destroyed the other person’s knowledge
of Sz , and vice versa. This limitation can be compactly
and conveniently expressed by the condition that the
density matrices used by the two observers must com
mute with each other.

In another essay to which he refers the reader of Ref.@1#,
Peierls adds a corollary to his first condition@2#:

At the same time, the two observers should not contra
dict each other. This means the product of the two
density matrices should not be zero.
In discussing the extent to which density matrices

signed by observers with differing knowledge may differ,
is useful to define a set of density matrices to becompatible
when there could be circumstances under which they wo
represent the knowledge different people have of one and
same physical system.

Fuchs @3# has pointed out a simple counterexample
Peierls’ first compatibility condition, that density matrice
used by two different observers must necessarily comm
but one of us has argued@4# that Peierls’ second compatibi
ity condition remains a necessary constraint. The critique
Peierls’ conditions in Ref.@4# leaves open, however, th
question of what might constitute necessary and suffic
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conditions for several density matrices to be mutually co
patible. Here, we provide an answer for systems describe
a finite-dimensional Hilbert space.

In Sec. II, we show that if each of several different dens
matrices has a~not necessarily unique! expansion~in not
necessarily orthogonal states! of the form

r5(
i

pi uf i&^f i u, pi.0, ~1!

and there is at least one state common to every one of
expansions, then there are circumstances under which t
density matrices can represent the different knowledge av
able to different people about one and the same phys
system.

In Sec. III, we argue that if different density matrices d
represent the knowledge available to different people ab
one and the same physical system, then the supports of a
those density matrices must have at least one state in c
mon.@Thesupport S(r) of a density matrixr is the subspace
spanned by all its eigenvectors with nonzero eigenvalues#

In Sec. IV, we show that the supports of several differe
density matrices have at least one state in common if and~for
a finite-dimensional Hilbert space! only if each has an ex-
pansion of the form~1! with at least one state common to a
the expansions. Together with the results of Secs. II and
this shows that several density matrices are mutually co
patible if and only if the supports of all them have at lea
one state in common, or equivalently, if and only if all
them have expansions of the form~1! with at least one state
common to all expansions.

In Sec. V, we comment on these results.

II. A SUFFICIENT CONDITION FOR COMPATIBILITY

Let ra andrb be two@5# different assignments of densit
matrix to one and the same systemS. Let them have expan
sions~1! that share a common stateuf&,

ra5pauf&^fu1(
i>1

paiufai&^faiu,

rb5pbuf&^fu1(
i>1

pbiufbi&^fbiu, ~2!
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with all p non-negative andpa andpb both greater than zero
Then there are conditions under which the knowledge A
and Bob can each have ofS can be encapsulated in densi
matricesra andrb . Here is one way this can come abou

Let there be two more systemsSa andSb . Alice and Bob
both know that the composite systemSa1Sb1S is in the
pure stateuC& given ~to within an overall normalization con
stant! by

uC&5ua0&ub0&uf&1(
i>1

Apai /pa ua0&ubi&ufai&

1(
i>1

Apbi /pbuai&ub0&ufbi&, ~3!

where theuan& andubn& are orthonormal sets of states forSa
and Sb . Alice has access only toSa and Bob only toSb .
None of them have access toS, which neither they nor any
body else act upon. Both of them know all of this.

Alice measures a nondegenerate observableA on Sa
whose eigenstates areua0&,ua1&,ua2&, . . . and finds the resul
associated withua0&, while Bob measures an observableB on
Sb , finding the result associated withub0&. This is a possible
set of joint outcomes, since the amplitude ofua0&ub0&uf& is
nonzero. Neither knows what, if anything, may have ha
pened to the subsystems accessible to the other.

Anybody informed of the results of both measureme
would conclude that the state ofS was nowuf&. But since
Alice does not know the results of Bob’s measurement,
even whether he undertook to perform any measureme
she can only reason as follows: immediately after her m
surement she assigns toSb1S the state~to within normal-
ization!

uCa&5ub0&uf&1(
i>1

Apai /paubi&ufai&. ~4!

Not knowing what, if anything, Bob may have done to h
own subsystem, Alice assigns toS the reduced density matri
obtained fromuCa&^Cau by taking the partial trace overSb .
This is preciselyra .

In the same way, knowing only the results of his ow
measurement, Bob will describeS with the reduced density
matrix rb .

This construction generalizes to any number of observ
For Alice, Bob, and Carol, for example, one would ha
additional subsystemsSa , Sb , and Sc , the joint state~3!
would become

uC&5ua0&ub0&uc0&uf&1(
i>1

Apai /paua0&ubi&uci&ufai&

1(
i>1

Apbi /pbuai&ub0&uci&ufbi&

1(
i>1

Apci /pcuai&ubi&uc0&ufci&, ~5!
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and the state~4! that Alice assigns to the other subsystem
after she measures her own to be in the stateua0& would
become

uCa&5ub0&uc0&uf&1(
i>1

Apai /paubi&uci&ufai&, ~6!

which again leads her, in the absence of any knowledge
what Bob and Carol may or may not have done, to assign
reduced density matrixra to the systemS.

III. A NECESSARY CONDITION FOR COMPATIBILITY

Suppose Alice, Bob, Carol, . . . describe a system with
density matricesra ,rb ,rc , . . . . Each of their different
density-matrix assignments incorporates some subset
valid body of currently relevant information about the sy
tem, all of which could, in principle, be known by a particu
larly well-informed Zeno@6#.

Let us say that a system isfound to be ina particular pure
state if the projection operator on that state is measured
the result is 1. We then refer to that state as theoutcomeof
the measurement@7#. The set of all states that a density m
trix r forbids to be outcomes of a measurement is called
null spaceof r. It is the subspace of all eigenvectors ofr
with zero eigenvalue, and the orthogonal complement of
supportS(r).

A necessary condition for the compatibility of these d
fering density-matrix assignments follows from these cons
erations:

~i! If anybody describes a system with a density matrixr,
then nobody can find it to be in a pure state in the null sp
of r. For although anyone can get a measurement outc
that everyone has assigned nonzero probabilities, nobody
get an outcome that anybody knows to be impossible.

~ii ! A system that cannot be found to be in either of tw
distinct states cannot be found to be in any superposition
those states. For any density matrix whatever that incor
rates the information that both outcomes are impossi
must also assign zero probability to any superposition
those outcomes@8#.

~iii ! There must be some states in which a system can
found.

It follows from ~i! and ~ii ! that when different people
assign different density matrices to one and the same ph
cal system, the union of all their different null spaces m
span a subspaceS0 of states in which the system cannot b
found. According to~iii ! there must then be statesuc& that
are not inS0. The projection of such auc& on the orthogonal
complement ofS0 lies in the support of every one of th
different density matrices. So for a collection of differe
state assignments to be compatible, the supports of all
different density matrices must have at least one state
common.

IV. EITHER CONDITION IS NECESSARY AND
SUFFICIENT

If the Hilbert space is finite dimensional, then the suppo
S(ra),S(rb), . . . of several different density matrice
5-2
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ra ,rb , . . . can have at least one state in common if a
only if each has an expansion of the form~1! with at least
one state common to all the expansions. To show this,
must show that a stateuc& can appear as one of theuf i& in an
expansion~1! of a density matrixr into not necessarily or-
thogonal states if and only ifuc& belongs to the support ofr
@9#.

That anyuc& occurring in~1! must be in the support ofr
follows directly from the fact that everyuf i& in ~1! must be
orthogonal to any vectorul& in the null space ofr, since

^lurul&50 ~7!

and everypi in ~1! is strictly greater than zero.
Conversely, to see that any vector inS(r) can appear in

some expansion of the form~1!, consider an expansion ofr
in orthonormal projections onto its eigenvectors,

r5(
i

r i uc i&^c i u. ~8!

The positiver i in Eq. ~8! are all bounded away from zero
the dimension ofS(r) is finite. ~This is the only place where
we appeal to the finite dimensionality of the Hilbert spac!
Let r 0 be the least value of any of ther i and define non-
negativesi by

si5r i2r 0 . ~9!

Then

r5(
i

si uc i&^c i u1r 0P, ~10!

where the sum is over the nonzerosi andP is the projection
operator ontoS(r). If uc& is any unit vector inS(r), then
one can find an orthonormal basisuh i& for S(r) with uh0&
5uc&. Since

P5(
i

uh i&^h i u, ~11!

Eqs. ~10! and ~11! do indeed give a decomposition ofr in
which uc& appears:

r5r 0uc&^cu1(
i .0

r 0uh i&^h i u1(
i

si uc i&^c i u. ~12!

V. DISCUSSION

~1! The density matrix for a pure state has the on
dimensional space spanned by that state alone as its sup
So a special case of our condition is that two pure-state d
sity matrices are compatible if and only if they are identic
This includes the example given by Peierls in the first q
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tation above, but it provides a rather different explanati
Peierls would say that the reason why Alice cannot kn
that a spin-1/2 particle is up alongz while Bob knows at the
same time that it is up alongx is that the process by which
one of them acquires his or her knowledge necessarily
ders obsolete the knowledge of the other. From our persp
tive, however, the question of how the knowledge mig
have been acquired does not enter, provided nothing
been done that renders the knowledge of either invalid. T
two state assignments are incompatible, because if A
knew that nobody could find the particle to be down alongz,
and Bob knew that nobody could find it to be down alongx,
then sinceu↓z& and u↓x& span the whole space, the imposs
bility of superpositions of impossible outcomes would r
quire all outcomes to be impossible.

~2! One could argue that nobody can ever know with c
tainty that any outcome of any measurement is strictly i
possible. The support of any realistic density matrix wou
then be the entire Hilbert space, and our condition would
vacuous—any set of density matrices would be mutua
compatible, though the probability of an outcome leading
such state assignments in the manner of Sec. II could
minuscule. On the other hand, although the quantum the
is famously probabilistic, one should not lose sight of t
fact that thetheoryis also capable of deterministic assertion
which strictly prohibit certain measurement outcomes un
certain ideal conditions. It is surely a significant feature
the theory that consideration of impossible outcomes
very little else leads, without any invocation of ‘‘the unce
tainty principle’’ or ‘‘maximal information,’’ to the fact that
pure-state assignments must be unique, as well as the m
general constraint on mixed-state assignments.

~3! We have limited the density matrices under consid
ation in Sec. III to those based on a currently relevant sub
of a body of information that could, in principle, all hav
been acquired by a single observer through measuremen
the systemSor on other systems correlated withS in known
ways. If we were to expand the set of density matrices
include guesses, or forms incorporating data based on b
designed measurements or rendered obsolete by subse
measurements, then, of course, our necessary condition
not apply.

~4! Peierls’ second condition that the product of two de
sity matrices be nonzero, is implied by our condition th
their supports have at least one state in common, but
weaker because it takes into account only point~i! of Sec. III
but not point~ii !. @It too is subject to the reservation in poin
~3! above.#
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@6# Section II gives an example of such a body of information a
how partial information might be acquired.

@7# This does not, of course, imply anything about the state of
system prior to the measurement.
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@9# This point was first made by Schro¨dinger, Proc. Cambridge
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