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How much state assignments can differ
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[. INTRODUCTION conditions for several density matrices to be mutually com-
. . patible. Here, we provide an answer for systems described by
According to Peierl§1], a finite-dimensional Hilbert space.

[Tlhe most fundamental statement of quantum me- |, Sec || we show that if each of several different density
chanics is that the wavefunction, or, more generally the  5trices has dnot necessarily unigqleexpansion(in not
density matrix, represents oknowledgeof the system necessarily orthogonal stajesf the form

we are trying to describe.

In answer to the question “whose knowledge?” Peierls goes p=2i pil i) (il pi>0, @

on to say:
[Density matricef may differ, as the nature and and there is at least one state common to every one of the
amount of knowledge may differ. People may have ob- expansions, then there are circumstances under which those
served the system by different methods, with more or density matrices can represent the different knowledge avail-
less accuracy; they may have seen part of the results of able to different people about one and the same physical
another physicist. However, there are limitations to the ~ System. o ) )
extent to which their knowledge may differ. This is In Sec. lll, we argue that if different density matrices do
imposed by the uncertainty principle. For example, if represent the knowledge available to different people about
one observer has knowledge®fof our Stern-Gerlach one and the same physical system, then the supports of all of
atom, another may not kno,, since measurement of those density matrices must have at least one state in com-
Sy W(;uld have destroyed the ’other person’s knowledge mon.[Thesuppqrt $P) ofa den3|ty. matrbp Is the. subspace
of S, and vice versa. This limitation can be compactly spanned by all its eigenvectors with nonzero e|genva_]ues.

’ . ) o In Sec. IV, we show that the supports of several different

and conveniently expressed by the condition that the

densi ) d by th b density matrices have at least one state in common if{fmd
ensity matrices used by the two observers must com- 5 finite_dimensional Hilbert spagenly if each has an ex-
mute with each other.

pansion of the forn{l) with at least one state common to all
the expansions. Together with the results of Secs. Il and 11,
this shows that several density matrices are mutually com-
patible if and only if the supports of all them have at least
one state in common, or equivalently, if and only if all of

dict each other. This means the product of the two . ;
density matrices should not be zero. them have expansions of the forh) with at least one state
common to all expansions.

In discussing the extent to which density matrices as-

. : e ; . In Sec. V, we comment on these results.
signed by observers with differing knowledge may differ, it
is useful to define a set of density matrices togbenpatlble Il. A SUEEICIENT CONDITION FOR COMPATIBILITY
when there could be circumstances under which they would
represent the knowledge different people have of one and the Let p, andpy, be two[5] different assignments of density
same physical system. matrix to one and the same syst&nlLet them have expan-

Fuchs[3] has pointed out a simple counterexample tosions(1) that share a common stdié),
Peierls’ first compatibility condition, that density matrices
used by two different observers njust' necessarily commute, pa=Pal )| +2 Pail bai){ bail,
but one of us has argugd] that Peierls’ second compatibil- i=1
ity condition remains a necessary constraint. The critique of
Peierls’ conditions in Ref[4] leaves open, however, the _
: . . ’ e = + il Doi il 2
question of what might constitute necessary and sufficient Po=Pol #){ 4] .;1 Poil i) i @

In another essay to which he refers the reader of Réf.
Peierls adds a corollary to his first conditif:
At the same time, the two observers should not contra-
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with all p non-negative ang, andp,, both greater than zero. and the staté¢4) that Alice assigns to the other subsystems
Then there are conditions under which the knowledge Aliceafter she measures her own to be in the sfatp would
and Bob can each have 8fcan be encapsulated in density become
matricesp, andpy,. Here is one way this can come about.

Let there be two more systenSg andS, . Alice and Bob W =b-Yc I 5 To.lb)lc _ 6
both know that the composite syste®y+S,+S is in the [¥a)=Bo)lco)l ) ;1 Pai/Palbp)|Ci)l fai).  (6)

pure statg¢'¥') given (to within an overall normalization con- _ . _
stani by which again leads her, in the absence of any knowledge of

what Bob and Carol may or may not have done, to assign the
reduced density matrig, to the systent.
|‘I'>:|ao>|bo>|<l5>+izl VPai/Palao)|bi)| ¢ai)

Ill. ANECESSARY CONDITION FOR COMPATIBILITY

Suppose Alice, Bob, Carpl.. describe a system with
+ VPbi/Polai)|b i), 3 ) ] youe
igl Poi /Po|i) Do)l i) ® density matricesp,,pp.pc, ... . Each of their different

density-matrix assignments incorporates some subset of a
where thea,) and|b,,) are orthonormal sets of states fyy ~ Valid body of currently relevant information about the sys-

and S,. Alice has access only t8, and Bob only toS, . tem, all of which could, in principle, be known by a particu-

None of them have access $which neither they nor any- larly well-informed Zeno[6]. _ _

body else act upon. Both of them know all of this. Let us say that a systemfisund to be ira particular pure
Alice measures a nondegenerate observablen S,  State if the projection operator on that state is measured and

whose eigenstates dm,),|a;),|a,), . .. and finds the result the result is 1. We then refer to that state asdahecomeof

associated witha,), while Bob measures an observaBlen the measuremen]. The set of all states that a density ma-
S, , finding the result associated withy). This is a possible trix p forbids to be outcomes of a measurement is called the
set of joint outcomes, since the amplitude|ag)|bo)| #) is null spaceof p. It is the subspace of all eigenvectors mf
nonzero. Neither knows what, if anything, may have hap-W'th zero eigenvalue, and the orthogonal complement of the
pened to the subsystems accessible to the other. supportS(p). . o .
Anybody informed of the results of both measurements A necessary condition for the compatibility of these dif-
would conclude that the state 6fwas now| ). But since fering density-matrix assignments follows from these consid-
Alice does not know the results of Bob’s measurement, of'ations: . . _ _
even whether he undertook to perform any measurements, (1) If anybody describes a system with a density magix
she can only reason as follows: immediately after her meat€n nobody can find it to be in a pure state in the null space

surement she assigns 8+ S the state(to within normal- ~ ©f p. For although anyone can get a measurement outcome
ization) that everyone has assigned nonzero probabilities, nobody can

get an outcome that anybody knows to be impossible.
(i) A system that cannot be found to be in either of two
|W )= b0 )+ >, VPai/Palbi}| dai). (4)  distinct states cannot be found to be in any superposition of
=1 those states. For any density matrix whatever that incorpo-
rates the information that both outcomes are impossible,
Not knowing what, if anything, Bob may have done to hismust also assign zero probability to any superposition of
own subsystem, Alice assigns$dhe reduced density matrix those outcomef3].
obtained from W ,){(\V,| by taking the partial trace oves, . (iii) There must be some states in which a system can be
This is preciselyp, . found.

In the same way, knowing only the results of his own It follows from (i) and (ii) that when different people
measurement, Bob will descril@with the reduced density assign different density matrices to one and the same physi-
matrix py, . cal system, the union of all their different null spaces must

This construction generalizes to any number of observersspan a subspac®, of states in which the system cannot be
For Alice, Bob, and Carol, for example, one would havefound. According to(iii) there must then be statég) that
additional subsystemsS,, S,, andS., the joint state(3)  are not inS,. The projection of such ) on the orthogonal
would become complement ofS, lies in the support of every one of the

different density matrices. So for a collection of different
state assignments to be compatible, the supports of all the

|\If)=|a0>|bo>|c0>|¢>+z VPai/Palao) b ci)| dai) different density matrices must have at least one state in
=1 common.
+ 2, \Poi/Pylai)|bo)|Ci)| iy IV. EITHER CONDITION IS NECESSARY AND
=1 SUFFICIENT
+E /pci/pc|ai>|bi>|co>|¢ci>a (5) If the Hilbert space is finite dlmen3|onal, then the supports
=1 S(p.),S(pp), - .. of several different density matrices

032315-2



HOW MUCH STATE ASSIGNMENTS CAN DIFFER PHYSICAL REVIEW A5 032315

Pa.Pps - - - Can have at least one state in common if andation above, but it provides a rather different explanation.
only if each has an expansion of the fof) with at least Peierls would say that the reason why Alice cannot know
one state common to all the expansions. To show this, wéhat a spin-1/2 particle is up alormwhile Bob knows at the
must show that a stat¢/) can appear as one of thg;) inan  same time that it is up along is that the process by which
expansion(1) of a density matrixp into not necessarily or- one of them acquires his or her knowledge necessarily ren-
thogonal states if and only i) belongs to the support g¢f  ders obsolete the knowledge of the other. From our perspec-
[9]. tive, however, the question of how the knowledge might
That any|#) occurring in(1) must be in the support of  have been acquired does not enter, provided nothing has
follows directly from the fact that everlyp;) in (1) must be  been done that renders the knowledge of either invalid. The

orthogonal to any vectdiA ) in the null space op, since two state assignments are incompatible, because if Alice
knew that nobody could find the particle to be down alang
(\|p|\)=0 (7) ~ and Bob knew that nobody could find it to be down along

then sincd | ,) and||,) span the whole space, the impossi-
bility of superpositions of impossible outcomes would re-
quire all outcomes to be impossible.

(2) One could argue that nobody can ever know with cer-
tainty that any outcome of any measurement is strictly im-
possible. The support of any realistic density matrix would
then be the entire Hilbert space, and our condition would be
p:z rlw) (. (8  vacuous—any set of density _matrices would be mu_tually

i compatible, though the probability of an outcome leading to
such state assignments in the manner of Sec. Il could be

The positiver; in Eq. (8) are all bounded away from zero if minuscule. On the other hand, although the quantum theory

the dimension oB(p) is finite. (This is the only place where 1S famously probabilistic, one should not lose sight of the
we appeal to the finite dimensionality of the Hilbert space. fact that theheoryis also capable of deterministic assertions,
Let r, be the least value of any of the and define non- which strictly prohibit certain measurement outcomes under

certain ideal conditions. It is surely a significant feature of
the theory that consideration of impossible outcomes and
very little else leads, without any invocation of “the uncer-
tainty principle” or “maximal information,” to the fact that
pure-state assignments must be unique, as well as the more
Then general constraint on mixed-state assignments.
(3) We have limited the density matrices under consider-
ation in Sec. Il to those based on a currently relevant subset
p:Z Sil i) (il +ToP, 10 of 4 body of information that could, in principle, all have
been acquired by a single observer through measurements on
the systents or on other systems correlated wi#in known
ways. If we were to expand the set of density matrices to
include guesses, or forms incorporating data based on badly
designed measurements or rendered obsolete by subsequent
measurements, then, of course, our necessary condition need
not apply.

(4) Peierls’ second condition that the product of two den-
sity matrices be nonzero, is implied by our condition that
their supports have at least one state in common, but it is
weaker because it takes into account only p@inof Sec. Il
but not point(ii). [It too is subject to the reservation in point
(3) above]

and everyp; in (1) is strictly greater than zero.

Conversely, to see that any vector$(p) can appear in
some expansion of the foriid), consider an expansion pf
in orthonormal projections onto its eigenvectors,

negatives; by

Si=ri—rg. (9)

where the sum is over the nonzes;candP is the projection
operator ontdS(p). If |) is any unit vector inS(p), then
one can find an orthonormal bagig;) for S(p) with | 7o)

=|4). Since

P=§i: | 70) (7l (11

Egs. (10) and(11) do indeed give a decomposition pfin
which | ¢) appears:

p:r0|d/><dl|+i20 r0|77i><7]i|+zi Si|l//i><dji|' (12) ACKNOWLEDGMENTS
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