
PHYSICAL REVIEW A, VOLUME 65, 032314
Computable measure of entanglement
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We present a measure of entanglement that can be computed effectively for any mixed state of an arbitrary
bipartite system. We show that it does not increase under local manipulations of the system, and use it to obtain
a bound on the teleportation capacity and on the distillable entanglement of mixed states.
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I. INTRODUCTION

In recent years it has been realized that quantum mec
ics offers unexpected possibilities in information transm
sion and processing, and that quantum entanglement of c
posite systems plays a major role in many of them. Si
then, a remarkable theoretical effort has been devoted bo
classifying and quantifying entanglement.

Pure-state entanglement of a bipartite system is prese
well understood, in that the relevant parameters for its o
mal manipulation under local operations and class
communication ~LOCC! have been identified, in som
asymptotic sense@1# as well as for the single-copy case@2#.
Given an arbitrary bipartite pure stateucAB&, the entropy of
entanglement E(cAB) @1#, namely, the von-Neumann en
tropy of the reduced density matrixrA[TrBucAB&^cABu,
tells us exhaustively about the possibilities of transformi
using LOCC,ucAB& into other pure states, in an asympto
sense. When manipulating a single copy ofucAB&, this infor-
mation is provided by then entanglement monotonesEl

5( i 5 l
n l i ( l 51, . . . ,n) @2#, wherel i are the eigenvalues o

rA in decreasing order.
Many efforts have also been devoted to the study of

mixed-state entanglement. In this case several measures
been proposed. The entanglement of formationEF(r) @3#
—or, more precisely, its renormalized version, the entang
ment cost EC(r) @4#— and the distillable entanglemen
ED(r) @3# quantify, respectively, the asymptotic pure-sta
entanglement required to creater, and that which can be
extracted fromr, by means of LOCC. The relative entrop
of entanglement@5# appears as a third, related measure@6#
that interpolates betweenEC andED @7#.

However, in practice, it is not known how to effective
compute these measures, nor any other, for a generic m
state, because they involve variational expressions. To
knowledge, the only exceptions are Wootter’s closed exp
sion for the entanglement of formationEF(r) @and concur-
rence C(r)# of two-qubit states@8#, and its single-copy ana
log E2(r) also for two qubits@9#.

Multipartite pure-state entanglement represents the n
order of complexity in the study of entanglement, and is
interest, because one hopes to gain a better understandi
the correlations between different registers of a quan
1050-2947/2002/65~3!/032314~11!/$20.00 65 0323
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computer. Consider a tripartite stateucABC&. Some of its en-
tanglement properties depend on those of the two-party
duced density matrices, which are in a mixed state. For
stance, the relative entropy ofrAB[ tr CucABC&^cABCu has
been used to prove that bipartite and tripartite pure-state
tanglements are asymptotically inequivalent@10#. Thus, the
lack of an entanglement measure that can be easily comp
for bipartite mixed states is not only a serious drawback
the study of mixed-state entanglement, but also a limitat
for understanding multipartite pure-state entanglement.

The aim of this paper is to introduce acomputablemea-
sure of entanglement@11#, and thereby fill an important gap
in the study of entanglement. It is based on the trace norm
the partial transposerTA of the bipartite mixed stater, a
quantity whose evaluation is completely straightforward
ing standard linear algebra packages. It essentially meas
the degree to whichrTA fails to be positive, and therefore
can be regarded as a quantitative version of Peres’ crite
for separability@12#. From the trace norm ofrTA, denoted by
uurTAuu1, we will actually construct two useful quantities. Th
first one is thenegativity

N~r![
irTAi121

2
, ~1!

which corresponds to the absolute value of the sum of ne
tive eigenvalues ofrTA @13#, and which vanishes for unen
tangled states. As we will prove here,N(r) does not increase
under LOCC, i.e., it is an entanglement monotone@14#, and
as such it can be used to quantify the degree of the entan
ment in composite systems. We will also consider theloga-
rithmic negativity

EN ~r![ log2uurTAuu1 , ~2!

which again exhibits some form of monotonicity und
LOCC ~it does not increase during deterministic distillatio
protocols! and is, remarkably, an additive quantity.

The importance ofN and EN is boosted, however, be
yond their practical computability by two results that lin
these measures with relevant parameters characterizing
tangled mixed states. The negativity will be shown to bou
the extent to which a single copy of the stater can be used,
together with LOCC, to perform quantum teleportation@15#.
©2002 The American Physical Society14-1



n
t
lle

n

ic
ite

-
th

la
o
ib

.

di

le
in

al
o

sid
io

ro
th
ed

at

si

lu
l

l

n-

pu-
re-
and
,
-

-
e 1

his
ur

ory
will
a-
tion

ays

his

n-

osi-
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In turn, the logarithmic negativity bounds the distillable e
tanglementED

e contained inr, that is, the amount of ‘‘almos
pure’’-state entanglement that can be asymptotically disti
from r ^ N, where ‘‘almost’’ means that some small degreee
of imperfection is allowed in the output of the distillatio
process.

Remarkably, this last result has already found an appl
tion in the context of asymptotic transformations of bipart
entanglement@16#, as a means to prove that@positive partial
transposition~PPT!# bound entangled states@17# cannot be
distilled into entangled pure states even if loaned~i.e., sub-
sequently recovered for replacement! pure-state entangle
ment is used to assist the distillation process. In this way,
bound on distillability implied byEN has contributed to
prove that, in a bipartite setting, asymptotic local manipu
tion of the mixed-state entanglement is sometimes, in c
trast to its pure-state counterpart, an inherently irrevers
process.

We have divided this paper into seven sections. In Sec
some properties of the negativityN, such as its monotonicity
under LOCC, and of the logarithmic negativityEN are
proved. We also discuss a more general construction lea
to several other~nonincreasing under LOCC! negativities. In
Secs. III and IV we derive, respectively, the bounds on te
portation capacity and on asymptotic distillability. Then
Sec. V we calculate the explicit expression ofN andEN for
pure states and for some highly symmetric mixed states,
for Gaussian states of light field. In Sec. VI extensions
these quantities to multipartite systems are briefly con
ered, and Sec. VII contains some discussion and conclus

II. MONOTONICITY OF N„r… UNDER LOCC

In this section we show that the negativityN(r) is an
entanglement monotone. We first give a rather detailed p
of this result. Then we sketch an argument extending
observation to several other similarly construct
negativities—e.g., therobustness of entanglement@18#.

A. Definition and basic properties

From now on we will denote byr a generic state of a
bipartite system with finite-dimensional Hilbert spaceHA
^ HB[CdA^ CdB shared by two parties, Alice and Bob.rTA

denotes thepartial transposeof r with respect to Alice’s
subsystem, that is the Hermitian, trace-normalized oper
defined to have matrix elements

^ i A , j BurTAukA ,l B&[^kuA , j Bru i A ,l B& ~3!

for a fixed but otherwise arbitrary orthonormal product ba
u i A , j B&[u i &A^ u j &BPHA^ HB . The trace normof any Her-

mitian operatorA is iAi1[trAA†A ~ @19# Sec.VI 6!, which is
equal to the sum of the absolute values of the eigenva
of A, when A is Hermitian @20#. For density matrices, al
eigenvalues are positive and thusiri15trr51. The partial
transposerTA also satisfies tr@rTA#51, but since it may have
negative eigenvaluesm i,0, its trace norm reads in genera
03231
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irTAi15112U(
i

m iU[112N~r!. ~4!

Therefore, the negativityN(r)—the sumu( im i u of the nega-
tive eigenvaluesm i of rTA—measures by how muchrTA fails
to be positive definite. Notice that for any separable or u
entangled staters @21#,

rs5(
k

pkuek , f k&^ek , f ku; pk>0,(
k

pk51, ~5!

its partial transposition is also a separable state@12#

rs
TA5(

k
pkuek* , f k&^ek* , f ku>0, ~6!

and thereforeirs
TAi151 andN(rs)50.

The practical computation ofN(r) is straightforward, us-
ing standard linear algebra packages for eigenvalue com
tation of Hermitian matrices. On the other hand, this rep
sentation is not necessarily the best for proving estimates
general properties ofN(r). To begin with a simple example
consider the property thatN(r) does not increase under mix
ing

Proposition 1.N is a convex function, i.e.,

N S (
i

pir i D<(
i

piN~r i !, ~7!

whenever ther i are Hermitian, andpi>0 with ( i pi51.
There is nothing to prove here, when we writeN(r)

5(irTAi121)/2, and observe thati•i1, as any norm, satis
fies the triangle inequality and is homogeneous of degre
for positive factors, hence convex.

However, the fact thatiri1 is indeed a norm is not so
obvious, when it is defined in terms of the eigenvalues. T
is shown best by rewriting it as a variational expression. O
reason for recalling this standard observation from the the
of the trace norm is that the same variational expression
be crucial for showing monotonicity under LOCC oper
tions. The variational expression is simply the representa
of a general Hermitian matrixA as adifferenceof positive
operators: Since we are in finite dimension we can alw
write

A5a1r12a2r2, ~8!

wherer6>0 are density matrices (tr@r6#51) anda6>0
are positive numbers. Note that by taking the trace of t
equation we simply have tr@A#5a12a2 .

Lemma 2.For any Hermitian matrixA there is a decom-
position of the form~8! for which a11a2 is minimal. For
this decomposition,iAi15a11a2 , anda2 is the absolute
sum of the negative eigenvalues ofA.

Proof. Let P2 be the projector onto the negative eige
valued subspace ofA, andN52tr @AP2# the absolute sum
of the negative eigenvalues. We can reverse the decomp
tion ~8! to obtain thatA1a2r2 is positive semidefinite. This
implies that
4-2
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COMPUTABLE MEASURE OF ENTANGLEMENT PHYSICAL REVIEW A65 032314
0<tr @~A1a2r2!P2#52N1a2tr @r2P2#. ~9!

But tr@r2P2#<1, that isa2>N. This bound can be satu
rated with the choicea2r2[2P2AP2 ~corresponding to
the Jordan decomposition ofA, wherer2 andr1 have dis-
joint support!, which ends the proof.h

For the negativity we, therefore, get the formula

N~A!5 inf$a2uATA5a1r12a2r2%, ~10!

where the infimum is over all density matricesr6 and a6

>0.
Another remarkable property ofN(r) is the easy way in

which N(r1^ r2) relates to the negativity ofr1 and that of
r2. This relationship is an important, but notoriously difficu
issue for discussing asymptotic properties of entanglem
measures~see, e.g.,@22# for a discussion and a counterexam
ple to the conjectured additivity of the relative entropy
entanglement!.

For the entanglement measure proposed in this pape
get additivity for free. We start from the identityir1^ r2i1
5ir1i1ir2i1, which is best shown by using the definition
the trace norm via eigenvalues, and we observe that pa
transposition commutes with taking tensor products. Af
taking logarithms, we find for the logarithmic negativity

EN ~r1^ r2!5EN ~r1!1EN ~r2!. ~11!

It might seem from this thatEN is a candidate for the muc
sought for canonical measure of entanglement. Howeve
has other drawbacks. For instance, it isnot convex, as is
already suggested by the combination of a convex functio
~the trace norm! with the concave log function, which im
plies that it increases under some LOCC. And although it
an interesting, monotonic behavior during asymptotic dis
lation ~as shown in Sec. IV!, it does not correspond to th
entropy of entanglement for pure states~see Sec. V!.

B. Negativity as a mixed-state entanglement monotone

By definition, a LOCC operation~possibly for many par-
ties! consists of a sequence of steps, in each of which on
the parties performs a local measurement and broadcast
result to all other parties. In each round the local measu
ment chosen is allowed to depend on the results of all p
measurements. If at the end of a LOCC operation with ini
stater the classical information available is ‘‘i ,’’ which oc-
curs with probabilitypi , and final state conditional on thi
occurrence isr i8 , we require of an entanglement monoto
@14# E that

E~r!>(
i

piE~r i8!. ~12!

It is clear by iteration that this may be proved by looking
just one round of a LOCC protocol, consisting of a sing
local operation. In the present case, sinceN makes no dis-
tinction between Alice and Bob, it suffices to consider ju
one local measurement by Bob.
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Now the most general local measurement is described
a family Mi of completely positive linear maps such that,
the notation used in the previous paragraph,Mi(r)5pir i8 .
These maps satisfy the normalization conditi
( i tr @Mi(r)#5tr(r). This can be further simplified@14#
when someMi can be decomposed further into complete
positive maps, e.g.,Mi5Mi81Mi9 . Then we may simply
consider the finer decomposition as a finer measurem
with the resulti replaced by two others,i 8 and i 9. Using the
convexity already established it is clear that it suffices
prove Eq.~12! for the finer measurement. That is, we c
assume that there are no proper decompositions of theMi ,
or thatMi is ‘‘pure.’’ This is equivalent toMi taking pure
states to pure states, or to the property@23# that it can be
written with a single Kraus summand. Taking into accou
that this describes a local measurement by Bob, we can w

Mi~r!5~ I A^ Mi !r~ I A^ Mi
†!, ~13!

where the Kraus operatorsMi must satisfy the normalization
condition ( iM i

†Mi<I B . For computing the right-hand sid
of Eq. ~12! we need that

Mi~r!TA5Mi~rTA!, ~14!

which immediately follows from Eq.~13! by expandingr as
a sum of~not necessarily positive! tensor products. A similar
formula holds for Alice’s local operations, but with a mod
fied operationMi on the~rhs! right-hand side, in which the
Kraus operators have been replaced by their complex co
gates. Consider the decomposition

rTA5~11N!r12Nr2 ~15!

with density operatorsr6 andN5N(r). Then we can also
decompose the partially transposed output states

pi~r i8!TA5Mi~r!TA5Mi~rTA!

5~11N!Mi~r1!2NMi~r2!.

~16!

Dividing by pi we get a decomposition of precisely the so
Eq. ~10!, definingN(r i8). The coefficienta25N/pi must be
larger than the infimum, i.e.,N(r i8)<N/pi . Multiplying by
pi and summing, we find the following inequality.

Proposition 3.

(
i

piN~r i8!<N~r!, ~17!

i.e., N(r) is indeed an entanglement monotone.

C. Other negativities

Both the proofs, of convexity and of monotonicity, a
based on the variational representation of the trace norm
lemma 2. The abstract version of this lemma is the definit
of the so-calledbase normi•iS associated with a compac
set S in a real vector space@24#. The negativity introduced
4-3
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G. VIDAL AND R. F. WERNER PHYSICAL REVIEW A65 032314
above then corresponds to a special choice ofS, and we can
easily find the property ofS required for proving LOCC
monotonicity in the abstract setting. Other choices ofS then
lead to other entanglement monotones, some of which h
been proposed in the literature.

For our purposes, we can takeS as an arbitrary compac
convex subset of the Hermitian operators with unit tra
whose real linear hull equals all Hermitian operators. Th
in analogy to lemma 2, we define the associated base n
and ‘‘S negativity’’ as

iAiS5 inf$a11a2uA5a1r12a2r2,a6>0, r6PS%,

~18!

NS~A!5 inf$a2uA5a1r12a2r2,a6>0,r6PS%.
~19!

Note that once again, ifA has trace 1 we have thatiAiS
5112NS(A). Then norm and convexity properties ofNS
and i•iS follow exactly as before.

Taking S as the set of all density matrices, we getiAiS
5iAi1, for all HermitianA, and a totally uninteresting en
tanglement quantity, asNS(r) vanishes for all density matri
ces. The negativity of the preceding section correspond
the choice ofS equal to the set of all matricesA such that
A5A†, trA51, andATA>0 @additionally, we have replace
ATA with A in the lhs of Eq.~10! A, so that we can write
N(r) instead ofN(rTA)#.

We could have also takenS as the subset of density ma
trices with positive partial transpose,r6>0 andr6TA>0. In
this caseScorresponds to all states such that its partial tra
pose is also a state. The resulting quantity we will denote
NPPT. Even more restrictively, if we take forS the set of
separabledensity operators, i.e., we taker6 ~and therefore
alsor6TA) in Eqs.~18! and ~19! to be separable, the corre
sponding quantityNSS amounts to therobustness of the en
tanglement, originally introduced in@18# ~see also@25#! as
the minimal amount of separable noise needed to destroy
entanglement ofr. From the inclusions between the respe
tive setsS we immediately get the inequalities

NSS~r!>NPPT~r!>N~r!>0. ~20!

In general, all these inequalities are strict. For examp
NSS(r) vanishes only on separable states~SS!, whereas
NPPT(r) andN(r) vanish for all PPT states.

We claim that alsoNSS andNPPT are entanglement mono
tones. The proof is quite simple. An analysis of the arg
ments given in the preceding section shows that we re
used only one property ofS, namely, for all operationsMi
appearing in a LOCC protocol, we haveMi(r)PS~, when-
ever rPS~, where S~ notes the cone generated byS
~equivalently the set oflr with l>0,rPS). But this is ob-
vious for both separable states and PPT states.

III. UPPER BOUND TO TELEPORTATION CAPACITY

Sections III and IV are devoted to discuss applications
the previous results. More specifically, we derive bounds
some properties characterizing the entanglement both
03231
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single copy of a mixed stater ~this section! and of asymp-
totically many copies of it~following section!.

For a single copy of a bipartite stater acting on Cd1

^ Cd2, where we setd15d2[m for simplicity, an important
question in quantum-information theory is to what extent t
state can be used to implement some given tasks requ
entanglement, such as teleportation. The best approxima
Popt(r) to a maximally entangled state

uF1&[
1

Am
(
a51

m

uaA^ aB& ~21!

that can be obtained fromr by means of LOCC is then
interesting, because it determines, for instance, how us
the stater is to approximatelyteleport log2m qubits of infor-
mation. In this section we will show that the negativityN(r)
provides us with an explicit lower bound on how closer can
be taken, by means of LOCC, to the stateF1. From here a
lower bound on the teleportation distance~i.e., an upper
bound on how good teleportation results fromr) will also
follow.

A. Singlet distance

In order to characterize the optimal statePopt(r) achiev-
able from r by means of LOCC, we need to quantify i
closeness to the maximally entangled stateP1[uF1&^F1u.
Let r1 and r2 be two density matrices. The trace norm
r12r2, ~or absolute distance@26#!, is a measure of the de
gree of distinguishability ofr1 and r2, and it is, therefore,
reasonable to use it to measure how muchP(r)—the state
resulting from applying a local protocolP to state
r—resemblesP1 . In what follows we will prove that the
negativity is a lower bound to thesinglet distanceof r,

D~P1 ,r![ infPuuP12P~r!uu1 , ~22!

where the infimum is taken over local protocolsP.
We start by recalling that the absolute distan

D(r1 ,r2)[uur12r2uu1 is a convex function@26#

(
i

piD~s,r i !>DS s,(
i

pir i D , ~23!

which confirms, as already assumed, that the optimal
proximationP(r) to P1 can always be chosen to be a sing
state—as opposed to a distribution of states$pi ,r i% corre-
sponding to the output of a probabilistic transformatio
Therefore, in Eq.~22! we need only considerdeterministic
protocolsP based on LOCC.

A second feature of the absolute distance that we nee
that

D~Wr1W†,Wr2W†!5D~r1 ,r2!, ~24!

for any unitary transformationW. Properties~23! and ~24!
together imply that the best approximation to the maxima
entangled stateP1 can always be ‘‘twirled’’ without losing
optimality. Consider the state
4-4
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E dU U^ U* Popt~r!U†
^ U†* , ~25!

which the parties can locally obtain fromPopt(r) by Alice
applying an arbitrary unitaryU, by Bob applyingU* , and
then by deleting the classical information concerning wh
unitary has been applied. It follows from the invariance
P1 under U ^ U* and from property ~24! that D„U
^ U* Popt(r)U†

^ U†* ,P1…5D„Popt(r),P1… for any U.
Then property~23! implies that the mixture in Eq.~25! is not
further away fromP1 than Popt(r). But Popt(r) was al-
ready minimizing Eq.~22!, and therefore state~25! must also
be optimal.

We can then assume thatPopt(r) has already undergone
twirling operation. This means that it is anoisy singlet@27#

rp5pP11~12p!
I ^ I

m2
, ~26!

from which the absolute distance toP1 can be easily com-
puted, D(P1 ,rp)52(12p)(m221)/m2. Similarly, the
trace norm ofrp

TA readsuurp
TAuu15mp1(12p)/m, and there-

fore

D~P1 ,rp!52S 12
uurp

TAuu1
m

D . ~27!

The lower bound to the singlet distance~22! follows now
straightforwardly from the monotonicity ofuurTAuu1 @or
N(r)# under LOCC, that is,uurTAuu1>uuPopt(r)TAuu1, and
reads

D~P1 ,r!>2S 12
uurTAuu1

m D . ~28!

Therefore, we have proved the following bound for the s
glet distance.

Proposition 4.

D~P1 ,r!>2S 12
112N~r!

m D . ~29!

B. Teleportation distance

A quantum stater shared by Alice and Bob can be use
as a teleportation channelL @15#. That is, given the share
stater and a classical channel between the parties, Alice
transmit an arbitrary~unknown! statefPC m to Bob with
some degree of approximation. LetLT,r(f) be the state tha
Bob obtains when Alice sendsf usingr and some protoco
T involving LOCC only. The teleportation distance

d~L![E df D„f,L~f!…, ~30!

where D„f,L(f)…[uuuf&^fu2L(f)uu1, can be used to
quantify the degree of performance of the channel. The m
suredf is consistent with the Haar measuredU in SU(m),
and thusd(L) is invariant under the twirling of the channe
03231
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that is the application of an arbitrary unitaryU to f previous
to the teleportation, followed by the application ofU† after
the teleportation scheme. Indeed,

d~L!5E dW D„WP0W†,L~WP0W†!…, ~31!

for some reference stateP0[uf0&^f0u, and using property
~24! of the trace norm, Eq.~31! is also equal to

E dW d„WP0W†,U†L~UWP0W†U†!U…. ~32!

We can now average overU to obtain

d~L!5E dU E dfD„f,U†L~Uf!U…, ~33!

where the right side of the equation corresponds to the t
portation distance of the twirled channel.

We next adapt a reasoning of the Horodecki@27# to our
present situation. It uses an isomorphism between staterL

and channelsL due to Jamiołkowski@28# and first exploited
by Bennettet al. @3#. Let us ascribe the channelL to the state
rL5(I ^ L)P1 . The staterL can be produced by sendin
Bob’s part of the bipartite system in stateP1 down the chan-
nel L. Conversely, the standard teleportation protocol@15#
~or a slight and obvious modification of it! applied to state
rL reproduces the channelL with probability 1/m2. How-
ever, if the staterL is a noisy singletrp , then the corre-
sponding channel is the depolarizing channel

Lp
dep~% !5p%1~12p!

I

m
, ~34!

which the standard teleportation scheme reproduces
certainty using state rp . For this cased(Lp

dep)52(1
2p)(m21)/m. Therefore, there is a complete physic
equivalence between noisy singlets and depolarizing tele
tation channels. In addition,

d~Lp
dep!5

m

m11
D~P1 ,rp!. ~35!

Now, since both quantitiesd andD are invariant under twirl-
ing, and any channel~state! can be taken into the depolariz
ing ~noisy singlet! form, this equality holds for any channe
L and staterL .

Lemma 5.~adapted from@27#!. The minimal distance
dmin(r) that can be achieved when using the bipartite statr
to construct an arbitrary teleportation channel is given by

dmin~r!5
m

m11
D~P1 ,r!. ~36!

Proof. dmin(r)<mD(P1 ,r)/(m11), because a possibl
way to user as a teleportation channel is by using a twirl
version of an optimal stateP(r) and the standard teleporta
tion scheme, which produces a depolarizing teleportat
channel withd5mD„P1 ,P(r)…/(m11) @recall Eq. ~35!#.
4-5
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On the other handdmin(r) is at leastmD(P1 ,r)/(m11).
Indeed, we take an optimal teleportation scheme employ
the stater and LOCC only. It will produce some optima
teleportation channelL, that we can turn into a depolarizin
channel without increasingd(Lp

dep)5dmin(r). Then we can
send half ofP1 through the channel to obtain a noisy sing
rp that satisfies Eq.~35!. The desired inequality follows the
from the fact thatD(P1 ,rp)>D„P1 ,Popt(r)….

Therefore, using Eq.~28! we can announce the followin
upper bound to the optimal teleportation distancedmin(r)
achievable with stater and LOCC

Proposition 6.

dmin~r!>
2

m11
@m2112N~r!#. ~37!

The two results of this section can also be derived in term
fidelities ~the so-called singlet and channel fidelities, see,
instance,@27#!. The upper bounds one obtains read

Fopt[max
P

^F1uP~r!uF1&<
112N~r!

m
; ~38!

f opt~r![max
Lr

E df^fuL~ uf&^fu!uf&<
2d~N~r!11!

m11
.

~39!

IV. UPPER BOUND TO DISTILLATION RATES

We now move to consider a second application of
previous measures, namely, a bound on the asymptotic
tillability of a mixed stater in terms ofEN (r).

The distillation rate of a bipartite stater is the best rate a
which we can extract near-perfect singlet states from m
tiple copies of the state by means of LOCC. The asympt
~in the number of copies! distillation rate is the so-called
entanglement of distillation ED(r) @3#, one of the fundamen
tal measures of the entanglement. In this section we
show that the logarithmic negativityEN is always at least as
great as the entanglement of distillationED

e (r), wheree de-
notes the degree of imperfection allowed in the distilled s
glets.

Let Y denote a maximally entangled state of two qub
and consider, for some numberna of copies ofr, the best
approximation toma copies ofY that can be obtained from
r ^ na by means of LOCC. As in the preceding section,
define

D~Y ^ ma,r ^ na![ infPiY ^ ma2P~r ^ na!i1 , ~40!

where P runs over all deterministic protocols built from
LOCC. We say thatc is an achievable distillation rate forr,
if for any sequencesna ,ma→` of integers such tha
limsupa(na /ma)<c we have

lim
a

D~Y ^ na,r ^ ma!50. ~41!

The distillable entanglementED(r) corresponds then to th
supremum of all achievable distillation rates. Several va
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ants of this definition are available in the literature, which a
however, equivalent to the one given here. In particular,
may replace ‘‘D→0’’ by ‘‘fidelity →1,’’ and we may con-
sider selective protocols, in which operations produce v
able numbers of output systems on the same input, and
expected rate is optimized. Of course, restricting the amo
of classical communication between Alice and Bob will
general change the rate.

The above definition requires that the errors go to ze
but in many applications one can live with a small but fin
error level. Therefore, we introduceED

e (r), the distillable
entanglement at error levele, which is defined exactly as
above, but Eq.~41! is replaced by

lim sup
a

D~Y ^ na,r ^ ma!<e. ~42!

Of course,ED
0 (r)5ED(r), ande°ED

e (r) is a nondecreas
ing function. The main result of this section is the followin
bound.

Proposition 7.

ED
e ~r!<EN ~r!, ~43!

for all 0<e,1.
Proof. The only property of LOCC operations used in th

proof is that for any such operationP, there is another,P8
such thatP(r)TA5P8(rTA). We denote byYd the maximally
entangled state on a pair ofd-dimensional spaces. Then, a
shown below, we haveiYd

TAi15d. In some sense this is th
worst case: for general Hermitian operators we ha
iATAi1<diAi1.

Now suppose thatP is the transformation for which the
infimum ~40! for D(Yd ,r) is attained. Then

irTAi1>iP8~rTA!i15iP~r!TAi1 , ~44!

where the first estimate holds, becauseP8, as a bona fide
LOCC operation, does not increase the trace norm@recall the
monotonicity ofN(r)#. On the other hand,

iP~r!TAi1>iYd
TAi12i@Yd2P~r!#TAi1>d2dD~Yd ,r!.

~45!

Taking the logarithm, we find

EN ~r!> log2~d!1 log2@12D~Yd ,r!#. ~46!

Now let na ,ma be diverging integer sequences as in t
definition of achievable ratec. Then, using the additivity of
EN , and the last inequality withd52na, we find

EN~r!5
1

ma
EN ~r ^ ma!

>
1

ma
$na1 log2@12D~Y ^ na,r ^ ma!#%.
4-6
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We now go to the limit superior with respect toa, observing
that the errorD is uniformly bounded away from 1, an
ma→`. HenceEN(r)>c for every achievable ratec, which
concludes the proof.

V. EXPLICIT EXAMPLES

In this section, we display explicit expressions for t
negativity for some particular classes of bipartite stat
namely, for arbitrary pure states, for mixed states with a h
degree of symmetry, and finally also for Gaussian states
light field.

A. Pure states

All entanglement measures based on asymptotic dist
tion and dilution of pure-state entanglement, in particular,
entanglement of formationEF and the distillable entangle
ment ED @3#, but also the relative entropy of entangleme
@5# agree on pure states, where they give the von Neum
entropy of the restricted states. Negativity gives a lar
value: Letr5uF&^Fu be a pure state, and write the wav
vector in its Schmidt decompositionF5(acaea8 ^ ea9 ,
whereca.0 are the Schmidt coefficients ofF, and theea

( i )

are suitable orthonormal basis. Then we get the follow
result.

Proposition 8.

N~r!5
1

2 F S (
a

caD 2

21G . ~47!

This is preciselyNSS/2, i.e., half of the robustness of th
entanglement, as computed in@18#.

Proof. Introducing the operators ‘‘flip’’ Fea8 ^ eb95eb8
^ ea9 , andC85(acauea8 &^ea8 u, and a similarC9 for the sec-
ond tensor factor, we find

~ uF&^Fu!TA5(
ab

cacbuea8 ^ eb9 &^eb8 ^ ea9 u5F~C8^ C9!.

~48!

From the trace normiXi15trAX†X we may omit unitary
factors, such asF, so the trace norm is equal to the trace
the positive operator (C8^ C9), namely, ((aca)2.

SinceEN is an upper bound on the distillation rate, a
that rate is known to beE(r), the von Neumann entropy o
the restricted state, we know thatEN (r)>E(r). But, of
course, we can get this more directly: using the concavity
the logarithm, we get

E~r!52(
a

ca
2 log2S 1

ca
D<2 log2S (

a
caD 5EN ~r!.

~49!

This derivation also allows the characterization of the ca
of equality: Since the logarithm is strictly concave, we g
equality if and only if all nonzeroca are equal. Hence equa
ity for pure states holds exactly for maximally entangl
states~which may have been expanded by zeros to live o
larger Hilbert space!.
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B. States with symmetry

All entanglement measures can be computed more ea
for states that are invariant under some large group of lo
unitary transformations@22,29#. The negativity is no excep
tion. The main gain from local symmetries is that the part
transpose lies in a low-dimensional algebra, and is he
easily diagonalized. For this background we refer to R
@22#. But often a direct computation is just as easy.

Consider, for example, the statesr on Cd
^ Cd, which

commute with all unitaries of the formU ^ U, whereU is
real orthogonal. These can be written as

r5aduF1&^F1u1bF1cI, ~50!

whereuF1&5((a51
d ua ^ a&)/Ad is again the standard max

mally entangled vector, anda,b,c are suitable real coeffi-
cients. This family includes both the so-called Werner sta
@21# with a50 and, withb50, the so-called isotropic state
@30# @or noisy singlets, compare Eq.~26! above#. The three
operators in this expansion commute, so all operators of
form ~50! can be diagonalized simultaneously, with spect
projections

p05uF1&^F1u,

p15~I2F!/2,

p25~I1F!/22uF1&^F1u.

We parametrize the states of the form~50! by the two expec-
tation valuesf 5dtr(ruF1&^F1u) and g5tr(rF), the third
parameter for determininga,b,c being given by the normal-
ization. Then the states correspond to the triangle 0< f <d,
21<g<1, f <d(11g)/2.

Since partial transposition simply swaps the operatorF
and duF1&^F1u, leaving I unchanged, we can apply th
same method to compute the trace norm of the partial tra
pose, and henceN(r). Explicitly, we get

N~r!5
1

4
u12 f u1

1

4
u11 f 22g/du1

1

2
ug/du2

1

2
. ~51!

It turns out @22# that in this class of states the Pere
Horodecki separability criterion holds~in spite of the arbi-
trary dimensiond), i.e., the set of PPT states is the same
the set of separable states, and in the parametrization ch
equal to the squaref ,gP@0,1#. HenceNSS(r)5NPPT(r).
Evaluating a simple variational expression, we get

NSS~r!5
1

2
max$u2 f 21u21,u2g21u21,0%. ~52!

C. Gaussian states

Gaussian states frequently occur in applications in qu
tum optics, where they describe the light field. Alice’s a
Bob’s systems are then described by a certain numbe
canonical degrees of freedom, such as field quadrature
suitable modes. However, the same formalism applies w
the canonical operators are positions and momenta of a
4-7
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tain number of harmonic oscillators. Gaussian states are
defined as those~possibly mixed! states with Gaussian
Wigner function.

For simplicity we denote the full collection of canonic
operators byRa ,a51, . . . ,2n, where Alice holdsnA oscil-
lators and Bob holdsnB , andn5nA1nB . These are eithe
position or momentum operators, whose commutation r
tions are of the form

@Ra ,Rb#5 isabI, ~53!

with an antisymmetric scalar matrixs, called the symplectic
matrix, which has the block matrix decomposition

D5S sA 0

0 sB
D ~54!

with respect to a decomposition of the set of indices i
Alice’s and Bob’s. This form expresses the fact that all va
ables of Alice commute with all of Bob’s.

A Gaussian state is determined by its first two mome
ma5tr(rRa) and

gab5tr~rRaRb!2
i

2
sab , ~55!

where the subtraction is chosen as the antisymmetric pa
tr(rRaRb), which is fixed by the commutation relations, in
dependently of the state.g is then a real symmetric matrix
Since the meanma can be made zero by a local unita
transformation~a translation in phase space!, it is irrelevant
for entanglement, and we choose it to be zero. The sec
momentg is then the same as thecovariance matrixof the
state. The uncertainty relation, the universal lower bound
variances, is then expressed as the positive definitenes
gab1( i /2)sab . It will be crucial for the later that for a
classical Gaussian it is only necessary thatg itself is positive
definite. Hence we can have nonpositive operators, wh
Wigner function is an ordinary, if somewhat sharply peak
Gaussian.

In order to compute the trace norm of such an operator
more generally, to compute the spectrum or other charac
istics not depending on the Alice-Bob partition of the syste
we can bringg into a standard form by a process known
symplectic diagonalization ornormal-mode decomposition.
This means choosing a suitable canonical linear transfor
tion ~i.e., a transformation leaving the symplectic forms
invariant!, which can be implemented on the Hilbert spa
level by unitary operators~known as the metaplectic repre
sentation!. Assumings to be in standard form, i.e., bloc
diagonal withn 232 blocks of the form (10

021) this results in
a diagonalg, with equal eigenvalues for each block, i.e.,g
5diag(c1 ,c1 ,c2 ,c2 , . . . ,cn ,cn). We call (c1 ,c2 , . . . ,cn)
the symplectic spectrumof g. The fast way to compute it is
via the eigenvalues of the matrixs21g, which are
6 ic1 , . . . ,6 icn . At the Hilbert space level the norma
mode decomposition transforms the state into a tensor p
uct of independent harmonic oscillators, each of which is
a thermal oscillator state, the temperature being a functio
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the ca . The smallest value allowed by uncertainty isca
51/2, which gives the oscillator ground state.

In this contexttranspositionis best identified with time
reversal. Indeed, in the general scheme we can choose a
in which the transpose is computed, but all these choices
equivalent via a local unitary transformation. In this case
choose the position representation, in which transpositio
the same as reversing all momenta, keeping all positions,
to lift this to products by observing that transposition r
verses operator products. Partial transpositionTA is com-
pletely analogous. Only in this case just Alice’s momenta
reversed and Bob’s are left unchanged. On the level
Wigner functions and covariance matrices of Gaussians,
just have to apply the corresponding linear transformati
on phase space. That is,gTA, the covariance matrix of the
partial transpose of a Gaussian state with covariance ma
g is constructed by multiplying by21 all matrix elements,
which connect one of Alice’s momenta to either a positio
or a degree of freedom belonging to Bob, and leaving
other matrix elements unchanged.

The point is, of course, that while this transformation p
serves the positive definiteness ofg, and hence we get an
other Gaussian Wigner function, it doesnot respect the un-
certainty relation, so the partially transposed operator m
fail to be positive. However, the whole formalism of th
normal-mode decomposition forg works exactly as before
we get a representation of the partial transpose as a te
product of ~not necessarily positive! trace class operators
The trace norm of this operator is just the product of the tr
norms, so we have completely reduced the computation
the trace norm to the single-mode case. To summarize
results so far, we proceed as follows.

Let r be a Gaussian density operator with covarian

matrix g, and let( c̃1 , . . . ,c̃n) be the symplectic spectrum o
gTA. Then

EN ~r!5 (
a51

n

F~ c̃a!, ~56!

where F(c)5 log2irci1, andrc is the operator whose Wigne
function is a Gaussian with covariance diag(c,c).

Of course, the functionF vanishes forc>(1/2). It is eas-
ily determined by looking at Gaussian states for oscillators
the temperature states of the oscillator. Withz5e2b, andun&
the nth eigenstate of the oscillator, a general Gaussian is
the form

r5~12z! (
n50

znun&^nu, ~57!

where z>0 corresponds to density operators, and21,z
,0 to Gaussians whose Wigner functions have s
Heisenberg variance. Then we get

iri15~12z!~12uzu!21
4-8
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c5tr~rP2!5trFr 1

2
~P21Q2!G ~58!

5~12z!(
n

znS n1
1

2D
5~12z!212

1

2
. ~59!

Solving Eq.~59! for z and substituting into Eq.~58! we find

F~c!5H 0 for 2c>1

2 log2~2c! for 2c,1.
~60!

Together with Eq.~56! and the process of normal-mode d
composition this is an efficient procedure for determini
EN(r).

In the simplest case of one oscillator each for Alice a
Bob we may go even further, by expressing the symple
spectrum of the partial transpose directly in terms of
covariance matrix. Suppose that

g5S A C

CT BD , ~61!

with 232 matricesA,B,C. Then, as shown in Ref.@31#, the
numbers detA,detB,detC, and detg are a complete set o
invariants forg with respect to local symplectic transform
tions. Moreover, when passing fromg to gTA only detC
changes sign, and the others remain unchanged. Pure s
are characterized by the conditions detg51/16, and detA
1detB12detC51/2, and can be brought into the norm
form

g5S a 0 c 0

0 a 0 2c

c 0 a 0

0 2c 0 a

D , ~62!

wherea25c211/4.
Coming back to the general case of Eq.~61!, the charac-

teristic equation ofs21gTA, whose solutions are the6 c̃a ,
takes the form

j41~detA1detB22detC!j21detg50. ~63!

Together with Eq.~56! this amounts to an explicit formula
For the particular case of a pure state we find

EN~r!522log2~Aa21/22Aa11/2!, ~64!

which is readily seen to agree with Eq.~47!.

VI. MULTIPARTITE SYSTEMS

As argued in the Introduction, a computable measure
the entanglement for bipartite mixed states is also very c
venient for the quantification of the multipartite entang
ment. In this section we describe a whole set of computa
03231
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parameters related to the negativity that can be associate
a multipartite state to make quantitative statements abou
entanglement.

A. Multipartite negativities

Consider a quantum system consisting of, say, three p
associated to Alice, Bob, and Charlie. LetrABC be the~either
pure or mixed! state of the system. A possible way to class
the entanglement properties of such a state is by lookin
the different bipartite splittings@32# of the system.

First, we can join two of the three parts, say those of Al
and Bob, and compute the sum of negative eigenvalue
rABC

TC , N(AB)-C(rABC). This is automatically an entangleme
monotone@33#, which quantifies the strength of quantu
correlations between Charlie and the other two parties. S
larly, the negativitiesN(AC)-B(rABC) andN(BC)-A(rABC) are
two other monotonic functions under LOCC with analogo
meaning.

We can also consider the entanglement properties of t
party reduced density matrices. Suppose, for instance,
Charlie decides not to cooperate with the two other partie
the manipulation of the tripartite system according to LOC
Alice and Bob’s effective density matrix,sAB[TrC@rABC#,
may still retain some of the original entanglement. The ne
tivity of sAB , NA-B;C” (rABC), can be used to quantify thi
residual entanglement. Analogous quantities can be use
quantify the entanglement ofsAC andsBC .

Thus, altogether we have obtained six computable fu
tions to quantify the entanglement of any state of a tripar
system. In a four-partite setting the number of possible sp
tings is much greater~see@32# for a more detailed descrip
tion!, and thus, we obtain up to 26 inequivalent measur
namely:~i! NA-BCD(rABCD) and the corresponding permuta
tions, i.e., four inequivalent measures;~ii ! NAB-CD(rABCD)
and permutations~four measures!; ~iii ! NA-BC;D” (rABCD) and
permutations~12 measures!; ~iv! NA-B;C” D” (rABCD) and per-
mutations~six measures!.

B. Hierarchy

Notice that although all these measures are indepen
functions of the multipartite state, there is a strength hie
chy between them when corresponding to related bipa
splittings with different number of parties. In the four-par
case we have that, for instance,

NA-BCD>NA-BC;D” >NA-B;C” D” , ~65!

which follows from the fact that to trace out a part of a loc
system is an operation of the set LOCC, under which
negativity can only decrease. Of course, the same inequ
ties hold for the corresponding logarithmic negativities, a
thus also for the several bounds on distillability—of differe
kinds of multipartite entanglement—implied by the later.

It should be noted, however, that in this way one c
quantify only some aspects of the multiparticle entang
ment: there are tripartite states that are separable with res
to every splitting of the system, but are nevertheless no
convex combination of triple tensor products of density o
4-9
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erators @32,34#. States that have positive partial transpo
with respect to every subsystem satisfy a large class of
inequalities@35#.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a computable measu
the entanglement for bipartite mixed states, the negati
N(r), which we have proved not to increase under LOC
Although it lacks a direct physical interpretation, we ha
shown that it bounds two relevant quantities characteriz
the entanglement of mixed states: the channel capacity
the distillable entanglementED

e .
Ideally, quantum correlations would be best quantified

measures with a given physical meaning. Which measure
to be used, would depend on which question we wan
answer. For instance, if we want to know how much pu
state entanglement the parties can extract from~infinitely!
many copies of the stater, then the proper measure to b
used is the entanglement of the distillationED(r).

In practice, however, the value of these measures is
known. Recent studies of entangled systems, such as tho
entangled chains, entanglement molecules, entangled ri
entangled Heisenberg models, andcluster states@36#, which
are N-qubit systems in some global entangled state, are
cused on the two-qubit quantum correlations associate
the global state, as measured by the entanglement of fo
ch
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tion ~or the related concurrence! @8#. This choice of measure
of the entanglement is somehow arbitrary—it is often forc
simply by the lack of an alternative measure that can also
computed for two-qubit mixed states—, because it does
reflect in anyway the entanglement cost of formation of
N-qubit state. We envisage that in these and similar conte
it will pay off to use a computable entanglement measu
such as the negativity, whose evaluation is not restricted
two-qubit mixed states. The negativity will allow, for in
stance, to generalize the previous investigations to analog
constructions withl-level systems (l .2) instead of qubits,
as also to analyze quantitatively the entanglement betw
subsets of thesel-level systems.

Finally, in a similar way as the negativity has recen
played a role in proving the irreversibility of asymptotic lo
cal manipulation of bipartite mixed-state entanglement@16#,
we hope that this computable measure will also be a us
tool to answer other fundamental questions of the entan
ment theory.
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