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Computable measure of entanglement
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We present a measure of entanglement that can be computed effectively for any mixed state of an arbitrary
bipartite system. We show that it does not increase under local manipulations of the system, and use it to obtain
a bound on the teleportation capacity and on the distillable entanglement of mixed states.
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[. INTRODUCTION computer. Consider a tripartite stdigagc). Some of its en-
tanglement properties depend on those of the two-party re-
In recent years it has been realized that quantum mechanuced density matrices, which are in a mixed state. For in-
ics offers unexpected possibilities in information transmis-stance, the relative entropy @f\g= trc|#¥asc)(¥asc has
sion and processing, and that quantum entanglement of corkeen used to prove that bipartite and tripartite pure-state en-
posite systems plays a major role in many of them. Sincdanglements are asymptotically inequival¢h@]. Thus, the
then, a remarkable theoretical effort has been devoted both {8ck of an entanglement measure that can be easily computed
classifying and quantifying entanglement. for bipartite ml_xed states is not only a serious dravyback_ in
Pure-state entanglement of a bipartite system is present he study of m!xed-staFe entanglement, but also a limitation
well understood, in that the relevant parameters for its opti!0"_understanding multipartite pure-state entanglement.
mal manipulation under local operations and classical The aim of this paper is to mtroducgc@mputablenea-
communication (LOCC) have been identified, in some sure of entanglemeiiil], and thereby fill an important gap

asymptotic sensfi] as well as for the single-copy caia). in the study of entanglement. It is based on the trace norm of

. . . . the partial transposg ' of the bipartite mixed state, a
Given an arbitrary bipartite pure stafigg), the entropy of quantity whose evaluation is completely straightforward us-
entanglement E/ag) [1], namely, the von-Neumann en-

X N ing standard linear algebra packages. It essentially measures
tropy of the reduced density matriga=Tre|/as)(¥asl.  the degree to which' fails to be positive, and therefore it
tells us exhaustively about the possibilities of transforming,.gn, pe regarded as a quantitative version of Peres’ criterion

using LOCC,|¢ag) into other pure states, in an asymptotic ¢, separability{ 12]. From the trace norm qf ', denoted by

sense. When manipulating a single copy ®fg), this infor- || ,7a||,, we will actually construct two useful quantities. The
mation is provided by then entanglement monotones, first one is thenegativity
=3\ (I=1, ... n) [2], where\; are the eigenvalues of
pa in decreasing order. lp™Al,—1
Many efforts have also been devoted to the study of the Np)= 2 ' @

mixed-state entanglement. In this case several measures have
been proposed. The entanglement of formati&y(p) [3]  which corresponds to the absolute value of the sum of nega-
—or, more precisely, its renormalized version, the entangletive eigenvalues op ' [13], and which vanishes for unen-
ment costEc(p) [4]— and the distillable entanglement tangled states. As we will prove her§{p) does not increase
En(p) [3] quantify, respectively, the asymptotic pure-stateunder LOCC, i.e., it is an entanglement monot§h4], and
entanglement required to cregpe and that which can be as such it can be used to quantify the degree of the entangle-
extracted fromp, by means of LOCC. The relative entropy ment in composite systems. We will also consider lthga-
of entanglemenf5] appears as a third, related measig rithmic negativity
that interpolates betweef: andE [7].
However, in practice, it is not known how to effectively Eyv (p)=log,||p"||1, (2
compute these measures, nor any other, for a generic mixed
state, because they involve variational expressions. To owhich again exhibits some form of monotonicity under
knowledge, the only exceptions are Wootter's closed expred-OCC (it does not increase during deterministic distillation
sion for the entanglement of formatidf:(p) [and concur-  protocols and is, remarkably, an additive quantity.
rence (p)] of two-qubit state$8], and its single-copy ana- The importance of\" and E,, is boosted, however, be-
log E,(p) also for two qubitg9]. yond their practical computability by two results that link
Multipartite pure-state entanglement represents the nexthese measures with relevant parameters characterizing en-
order of complexity in the study of entanglement, and is oftangled mixed states. The negativity will be shown to bound
interest, because one hopes to gain a better understandingtbg extent to which a single copy of the statean be used,
the correlations between different registers of a quantuntogether with LOCC, to perform quantum teleportatjds].
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In turn, the logarithmic negativity bounds the distillable en-

tanglemenEg, contained irp, that is, the amount of “almost lpTAll,=1+2
pure”-state entanglement that can be asymptotically distilled

from p®N, where “almost” means that some small deg@e Therefore1 the negat|V|W(p)_the Sum|2ilui| of the nega-
of imperfection is allowed in the output of the distillation tjye eigenvalueg:; of p"~—measures by how mugi' fails

process. _ ~ to be positive definite. Notice that for any separable or un-
Remarkably, this last result has already found an applicagntangled statp, [21],

tion in the context of asymptotic transformations of bipartite
entanglemenftl6], as a means to prove thigtositive partial
transposition(PPT)] bound entangled stat¢47] cannot be Ps:; Plex. (e, fil; DKBO,ZK =1, (9
distilled into entangled pure states even if loariee., sub-
sequently recovered for replacemempure-state entangle- its partial transposition is also a separable sfag
ment is used to assist the distillation process. In this way, the
bound on distillability implied byE,- has contributed to T
prove that, in a bipartite setting, as;A//mptotic local manipula- PsAzzk ple . fi(ek . fil=0, (6)
tion of the mixed-state entanglement is sometimes, in con-
trast to its pure-state counterpart, an inherently irreversiblgng thereford pZA”l:l and\{(pg)=0.
process.

We have divided this paper into seven sections. In Sec. n
some properties of the negativity, such as its monotonicity t
under LOCC, and of the logarithmic negativity, are

Z Mi’EHZMp). (4)

The practical computation of(p) is straightforward, us-

g standard linear algebra packages for eigenvalue compu-
ation of Hermitian matrices. On the other hand, this repre-
; ) . sentation is not necessarily the best for proving estimates and
proved. We also discuss a more general construction Iead'n@eneral properties o¥/{p). To begin with a simple example,

to several othetnonincreasing under LOQQegativities. In : : :
; . consider the property that{p) does not increase under mix-
Secs. lll and IV we derive, respectively, the bounds on tele; property (p)

portation capacity and on asymptotic distillability. Then in
Sec. V we calculate the explicit expression/dfandE . for

pure states and for some highly symmetric mixed states, also

for Gaussian states of light field. In Sec. VI extensions of N(E pipi)$2 piMpi), (7)
these quantities to multipartite systems are briefly consid- ' '
ered, and Sec. VIl contains some discussion and ConCIUSiO”\ﬁrhenever thep,

Proposition 1.\ is a convex function, i.e.,

are Hermitian, ang);=0 with =;p;=1.
There is nothing to prove here, when we writgp)
Il. MONOTONICITY OF Af{p) UNDER LOCC =(llp"l1~1)/2, and observe thdjt |, as any norm, satis-
fies the triangle inequality and is homogeneous of degree 1
In this section we show that the negativity{p) is an  for positive factors, hence convex.
entanglement monotone. We first give a rather detailed proof However, the fact thalip|, is indeed a norm is not so
of this result. Then we sketch an argument extending thi®bvious, when it is defined in terms of the eigenvalues. This
observation to several other similarly constructedis shown best by rewriting it as a variational expression. Our
negativities—e.g., theobustness of entanglemdris]. reason for recalling this standard observation from the theory
of the trace norm is that the same variational expression will
be crucial for showing monotonicity under LOCC opera-
tions. The variational expression is simply the representation
From now on we will denote by a generic state of a of a general Hermitian matri® as adifferenceof positive
bipartite system with finite-dimensional Hilbert spagg, ~ operators: Since we are in finite dimension we can always
® Hg=C%e (% shared by two parties, Alice and Bop'A  write
denotes thepartial transposeof p with respect to Alice’s N B
subsystem, that is the Hermitian, trace-normalized operator A=a.p —a.p, @)
defined to have matrix elements

A. Definition and basic properties

wherep*=0 are density matrices ({tp*]=1) anda. =0
(in,iglp ks lg)=(Kla,igplialg) (3)  are positive numbers. Note that by taking the trace of this
equation we simply have[tA]=a, —a_.

. ) ) ~ Lemma 2For any Hermitian matripA there is a decom-
fpr a f|xeql but qtherwlse arbitrary orthonormal product basisyosition of the form(8) for which a, +a_ is minimal. For
lia.is)=[i)a®|j)ec Ha®Hg. Thetrace normof any Her-  this decomposition|A|,=a, +a_, anda_ is the absolute
mitian operator is || A|;=trVATA ([19] Sec.VI 6, whichis  sum of the negative eigenvalues A&f
equal to the sum of the absolute values of the eigenvalues Proof. Let P~ be the projector onto the negative eigen-
of A, when A is Hermitian[20]. For density matrices, all valued subspace &, and N'=—tr[AP~] the absolute sum
eigenvalues are positive and thjys|,=trp=1. The partial  of the negative eigenvalues. We can reverse the decomposi-
transpose "4 also satisfies ffp"A]= 1, but since it may have tion (8) to obtain thatA+a_p~ is positive semidefinite. This
negative eigenvalueg;<0, its trace norm reads in general implies that
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ostr[(A+a_p )P |=—N+a_tr[p P ]. 9 Now the most general local measurement is described by
a family M, of completely positive linear maps such that, in

But tf p~ P~ ]<1, that isa_=\. This bound can be satu- the notation used in the previous paragrapt,(p) = pip; .

rated with the choicea_p~=—P AP~ (corresponding to These maps satisfy the normalization condition
the Jordan decomposition & wherep~ andp® have dis- Ztr [M;(p)]=tr(p). This can be further simplified14]
joint suppor}, which ends the proof] when someM; can be decomposed further into completely
For the negativity we, therefore, get the formula positive maps, e.gM;=M/+ M. Then we may simply
consider the finer decomposition as a finer measurement,
MA)=infla_|ATa=a,p"—a_p}, (100 with the resulti replaced by two others! andi”. Using the

convexity already established it is clear that it suffices to

where the infimum is over all density matrices anda. prove Eq.(12) for the finer measurement. That is, we can
=0. assume that there are no proper decompositions ofvitie

Another remarkable property df{(p) is the easy way in or that M; is “pure.” This is equivalent toM; taking pure
which M(p,®p,) relates to the negativity g5, and that of states to pure states, or to the propdi@g] that it can be
p». This relationship is an important, but notoriously difficult written with a single Kraus summand. Taking into account
issue for discussing asymptotic properties of entanglemerthat this describes a local measurement by Bob, we can write
measuressee, e.g.[22] for a discussion and a counterexam-
ple to the conjectured additivity of the relative entropy of Mi(p)=(1@M)p(1,@M]), (13
entanglement

For the entanglement measure proposed in this paper wihere the Kraus operatok8; must satisfy the normalization
get additivity for free. We start from the identify,®p,|,  condition=;M/M;<Ig. For computing the right-hand side
=||p1/l1llp2ll1, which is best shown by using the definition of of Eq. (12) we need that
the trace norm via eigenvalues, and we observe that partial T T
transposition commutes with taking tensor products. After Mi(p) A=Mi(p'A), (14)

taking logarithms, we find for the logarithmic negativity which immediately follows from Eq(13) by expanding as

(11) a sum of(not necessarily positiyegensor products. A similar

formula holds for Alice’s local operations, but with a modi-
fied operationM; on the(rhs right-hand side, in which the
h(raus operators have been replaced by their complex conju-
gates. Consider the decomposition

Ex (p1®p2) =Ex (p1) +Ex (p2).

It might seem from this thaE ,, is a candidate for the much
sought for canonical measure of entanglement. However,
has other drawbacks. For instance, itnist convex, as is
already suggested by the combination of a convex functional Ta=(14+N)o"—Np~ 15
(the trace normwith the concave log function, which im- P ( )P P (19

an interesting, monotonic behavior during asymptotic distil-gecompose the partially transposed output states
lation (as shown in Sec. IV it does not correspond to the

entropy of entanglement for pure statese Sec. Y. pi(p ) TA= M;(p)Ta= M;(pT»)

=(1+N)Mi(p™) =NMi(p").
(16)

B. Negativity as a mixed-state entanglement monotone

By definition, a LOCC operatiofpossibly for many par-
ties) consists of a sequence of steps, in each of which one ividing by p; we get a decomposition of precisely the sort
the parties performs a local measurement and broadcasts t (10) defir|1in Mp!). The coefficiena_ = N/p; must be ’
result to all other parties. In each round the local measure- " ' g Api)- 1 ; - P' .
ment chosen is allowed to depend on the results of all prio rger than th.e mflmur_n, LeMop; )g!\'/p! ' Multlplymg by
measurements. If at the end of a LOCC operation with initiali and summing, we find the following inequality.
statep the classical information available is,” which oc- Proposition 3.
curs with probabilityp;, and final state conditional on this
occurrence ip| , we require of an entanglement monotone 2 piMp{ )=Mp), (17)
[14] E that !

i.e., M(p) is indeed an entanglement monotone.
E(p)=2 PE(P))- (12

C. Other negativities

It is clear by iteration that this may be proved by looking at  Both the proofs, of convexity and of monotonicity, are
just one round of a LOCC protocol, consisting of a singlebased on the variational representation of the trace norm in
local operation. In the present case, sitiéanakes no dis- lemma 2. The abstract version of this lemma is the definition
tinction between Alice and Bob, it suffices to consider justof the so-callecbase norm|-||s associated with a compact
one local measurement by Bob. setSin a real vector spaci24]. The negativity introduced
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above then corresponds to a special choic8§ @nd we can single copy of a mixed state (this section and of asymp-
easily find the property ofs required for proving LOCC totically many copies of itfollowing section).

monotonicity in the abstract setting. Other choicesSadien For a single copy of a bipartite staje acting on (%
lead to other entanglement monotones, some of which have (%, where we setl; =d,=m for simplicity, an important
been proposed in the literature. question in quantum-information theory is to what extent this

For our purposes, we can takeas an arbitrary compact state can be used to implement some given tasks requiring
convex subset of the Hermitian operators with unit traceentanglement, such as teleportation. The best approximation
whose real linear hull equals all Hermitian operators. Thenp,(p) to a maximally entangled state
in analogy to lemma 2, we define the associated base norm
and “S negativity” as T

. [DF)=— > |aa®ap) (21)
|Als=inf{a,+a_|A=a,p"—a_p ,a.=0, p* €S}, Jm =1

(18 that can be obtained from by means of LOCC is then
Ng(A)=infla_|A=a,p"—a_p ,a.=0p" €S}. interesting, because it determines, for instance, how useful
(190  the statep is to approximatelyteleport logm qubits of infor-
o mation. In this section we will show that the negativit§(p)
Note that once again, i has trace 1 we have thaAls  provides us with an explicit lower bound on how clgsean
=1+2Ns(A). Then norm and convexity properties 8fs  pe taken, by means of LOCC, to the stdté. From here a
and|-|s follow exactly as before. lower bound on the teleportation distan6ee., an upper

Taking S as the set of all density matrices, we 4&dls  pound on how good teleportation results frgi will also
=|All;, for all HermitianA, and a totally uninteresting en- fgllow.

tanglement quantity, a¥s(p) vanishes for all density matri-
ces. The negativity of the preceding section corresponds to
the choice ofS equal to the set of all matrices such that
A=A', trA=1, andATA=0 [additionally, we have replaced ~ In order to characterize the optimal st&g,(p) achiev-
ATa with A in the |hs of Eq.(10) A, so that we can write able fromp by means of LOCC, we need to quantify its
Mp) instead ofAV{(p"A)]. closeness to the maximally entangled sfte=|d " )(d*|.
We could have also take® as the subset of density ma- Léet p; and p, be two density matrices. The trace norm of
trices with positive partial transpose; =0 andp*"A=0.In  p1—p2, (Or absolute distanc¢26]), is a measure of the de-
this caseS corresponds to all states such that its partial transgree of distinguishability op, and p,, and it is, therefore,
pose is also a state. The resulting quantity we will denote byeasonable to use it to measure how mi{lp)—the state
Nppr. Even more restrictively, if we take foB the set of resulting from applying a local protocoP to state
separabledensity operators, i.e., we take" (and therefore p—resemblesP, . In what follows we will prove that the
alsop=TA) in Egs.(18) and(19) to be separable, the corre- negativity is a lower bound to thginglet distancef p,
sponding quantityVss amounts to theobustness of the en- .
tanglement originally introduced in[18] (see alsd25]) as AP .p)=infe||P,—P(p)||1, (22
the minimal amount of separable noise needed to destroy the

entanglement op. From the inclusions between the respec-\'\/h\(/a\;e th? |r;f|nk1)um IS ta|I|<_en O\t/ﬁrtloiﬁl pro:)ocﬁlls; dist
tive setsSwe immediately get the inequalities ¢ start Dy recafing tha € absolute distance

D(p1,p2)=||p1—p2||1 is @ convex functiorf26]

A. Singlet distance

Nsdp)=Nppi(p)=Np)=0. (20)

Ei piD(o,p;)=D a,Ei pipi), (23)

In general, all these inequalities are strict. For example,
Nsgp) vanishes only on separable stat3S, whereas
Npp1(p) and N(p) vanish for all PPT states. which confirms, as already assumed, that the optimal ap-

We claim that alsoVsgand Npprare entanglement mono- proximationP(p) to P, can always be chosen to be a single
tones. The proof is quite simple. An analysis of the argu-state—as opposed to a distribution of stafps,p;} corre-
ments given in the preceding section shows that we reallgponding to the output of a probabilistic transformation.
used only one property &, namely, for all operationgv; Therefore, in Eq(22) we need only considedeterministic
appearing in a LOCC protocol, we haw;(p) € SV, when-  protocolsP based on LOCC.
ever pe SV, where SV notes the cone generated & A second feature of the absolute distance that we need is
(equivalently the set okp with A\=0,p € S). But this is ob- that
vious for both separable states and PPT states.

D(Wps W', Wp, W) =D(py1,p2), (24)

Il UPPER BOUND TO TELEPORTATION CAPACITY for any unitary transformatioWV. Properties(23) and (24)

Sections Il and IV are devoted to discuss applications otogether imply that the best approximation to the maximally
the previous results. More specifically, we derive bounds tentangled stat®, can always be “twirled” without losing
some properties characterizing the entanglement both of aptimality. Consider the state
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- that is the application of an arbitrary unitddyto ¢ previous

f dU UaU*Py(p)U'@U™, (25 to the teleportation, followed by the application 0f after
the teleportation scheme. Indeed,

which the parties can locally obtain frof,,(p) by Alice

applying an arbitrary unitaryJ, by Bob applyingu*, and :J' t +

then by deleting the classical information concerning which d(A) AW DIWPoW!, A (WPW), 3D

unitary has been applied. It follows from the invariance of )
P, under UsU* and from property (24) that D(U for some reference sta@oz|¢p)(¢o|, and using property
S U* Popt(p)UT®UT*1P+):D(Popt(p)!P+) for any U. (24) of the trace norm, Eq31) is also equal to
Then property(23) implies that the mixture in Eq25) is not
further away fromP, than P,,(p). But Py (p) was al- f dW dWP,W" UTA(UWP,W'UT)U). (32)
ready minimizing Eq(22), and therefore stat®5) must also
be optimal.

We can then assume thg,(p) has already undergone a
twirling operation. This means that it isrisy single{27]

We can now average ovér to obtain

d(A)=f du f déD(p,UTA(Ug)U), (33

I®]l

Pp=PP.+ (1= p)F’ (26 where the right side of the equation corresponds to the tele-

portation distance of the twirled channel.

from which the absolute distance By, can be easily com- We next adapt a reasoning of the HorodelXr] to our

puted, D(P, ,pp)=2(1—p)(m’—1)/m?. Similarly, the present situation. It uses an isomorphism between states

trace norm OfogA reads |P;A||1= mp-+ (1—p)/m, and there-  and channels\ due to Jamiotkowski28] and first exploited

fore by Bennettet al.[3]. Let us ascribe the chann&lto the state
pa=({®A)P, . The statep, can be produced by sending

||pTA||1) Bob’s part of the bipartite system in sté®e down the chan-

P (27) nel A. Conversely, the standard teleportation protddd]
(or a slight and obvious modification of) iapplied to state

. g 2
The lower bound to the singlet distan¢22) follows now  Pa reproduces the channal with probability 1m”. How-
straightforwardly from the monotonicity of|p™||, [or  €VET |_f the statep, is a noisy S|_n_gletpp, then the corre-
Mp)] under LOCC, that iS,||PTA||1>||Popt(P)TAHL and sponding channel is the depolarizing channel

reads

D(P+,pp)=2(l—

|
Ae)=pe+(1-p)—, (34)

Ta
Il 2

A(P+,p)>2(l—
which the standard teleportation scheme reproduces with

. . . d _
Therefore, we have proved the following bound for the sin-Certainty using statep,. For this cased(A,*)=2(1

glet distance. —p)(m—1)/m. Therefore, there is a complete physical
Proposition 4. equivalence between noisy singlets and depolarizing telepor-
tation channels. In addition,
AP )>2(1 1+2N(p)) (29)
+,p)=2| 1 . m
m d(AG*D) = == D(P. .pp). (39
B. Teleportation distance Now, since both quantities andD are invariant under twirl-

A quantum statg shared by Alice and Bob can be used ing, and any channéktate can be taken into the depolariz-
as a teleportation channal [15]. That is, given the shared ing (noisy singlet form, this equality holds for any channel
statep and a classical channel between the parties, Alice cait and statep, . o .
transmit an arbitraryunknown state ¢ C™ to Bob with Lemma 5.(adapted from[27]). The minimal distance
some degree of approximation. L&t ,(¢) be the state that dmin(p) that can be achieved when using the bipartite giate
Bob obtains when Alice sends usingp and some protocol 0 construct an arbitrary teleportation channel is given by
T involving LOCC only. The teleportation distance

dmin(p) = A(PL,p). (36)

dn)=[ dg DA (30) md

Proof. d,in(p)<mA(P,,p)/(m+1), because a possible
where D(¢,A(¢))=|||d){(d|—A(¢)||1, can be used to way to usep as a teleportation channel is by using a twirled
quantify the degree of performance of the channel. The mearersion of an optimal statB(p) and the standard teleporta-
sured¢ is consistent with the Haar measwt® in SU(m),  tion scheme, which produces a depolarizing teleportation
and thusd(A) is invariant under the twirling of the channel, channel withd=mD(P_. ,P(p))/(m+1) [recall Eq.(35)].

032314-5



G. VIDAL AND R. F. WERNER PHYSICAL REVIEW A65 032314

On the other hand,,,;(p) is at leastmA(P, ,p)/(m+1). ants of this definition are available in the literature, which are
Indeed, we take an optimal teleportation scheme employinfowever, equivalent to the one given here. In particular, we
the statep and LOCC only. It will produce some optimal may replace A—0" by “fidelity —1,” and we may con-
teleportation channel, that we can turn into a depolarizing sider selective protocols, in which operations produce vari-
channel without inCI’eaSing(Agep)dein(p), Then we can able numbers of output systems on the same input, and the
send half ofP . through the channel to obtain a noisy singlet €xpected rate is optimized. Of course, restricting the amount
pp that satisfies E(35). The desired inequality follows then of classical communication between Alice and Bob will in
from the fact thaD (P ,p,)=D(P. ,Popd(p))- general change the rate.

Therefore, using Eq28) we can announce the following The above definition requires that the errors go to zero,

upper bound to the optimal teleportation distartbg,(p)  butin many applications one can live with a small but finite
achievable with statp and LOCC error level. Therefore, we introdudeg(p), the distillable

Proposition 6. entanglement at error level, which is defined exactly as
above, but Eq(41) is replaced by

2
dmin(p)= 7 [M—1+2Mp)]. (37) lim sup A(Y #"a, p®Me) <. (42)

The two results of this section can also be derived in terms Obf course.E

0 _ € : _
fidelities (the so-called singlet and channel fidelities, see, for_ ="~ & D_I(_ﬁ)_EE_J(p)u all’ld ?TFD(’J) isa nohnd]?cllrea$
instance[27]). The upper bounds one obtains read ing function. The main result of this section is the following

bound.
1+2Mp) Proposition 7.
FoptEma)<®+|P(p)|q)+>$T; (38)
i E5(p)<Ex (p), (43)
2d(Mp)+1)
fopi(p)=max| de(BA(Ig)(¢)g)=— ———.  forall0<e<i.
Ay Proof. The only property of LOCC operations used in the

(39 proof is that for any such operatid®, there is anothe®’
such thatP(p) "A=P’(p'4). We denote by 4 the maximally
IV. UPPER BOUND TO DISTILLATION RATES entangled state on a pair dfdimensional spaces. Then, as

T ..
: C shown below, we havgY #|;=d. In some sense this is the
We now move to consider a second application of the i d s ..
orst case: for general Hermitian operators we have

previous measures, namely, a bound on the asymptotic dig- "7
tillability of a mixed statep in terms ofE,, (p). A Al =dAll;. , ) ,

The distillation rate of a bipartite stageis the best rate at . _NOW suppose thak is t_he transformatlon for which the
which we can extract near-perfect singlet states from mu|1nf|mum (40) for A(Yq,p) is attained. Then
tiple copies of the state by means of LOCC. The asymptotic
(in the number of copigsdistillation rate is the so-called lp™A:=[IP" (™1 =IIP(p) A1, (44)
entanglement of distillation § p) [3], one of the fundamen-
tal measures of the entanglement. In this section we willvhere the first estimate holds, becaude as a bona fide
show that the logarithmic negativify, is always at least as LOCC operation, does not increase the trace noecall the
great as the entanglement of distillatigf (p), wheree de-  monotonicity ofAV{p)]. On the other hand,
notes the degree of imperfection allowed in the distilled sin-
glets. Tall =Y Al — _ TAll, =d—

Let Y denote a maximally entangled state of two qubits, IP(o) ™Al ”Yd =Y a=P(p)] A1 =d—~dA(Yq.p).

and consider, for some numbey, of copies ofp, the best (49
approximation tam, copies ofY that can be obtained from Taking the | ith s
p®"« by means of LOCC. As in the preceding section, we aking the logarithm, we find
defi
sine Ev (p)=logy(d) +logs[1-A(Yq.p)].  (46)

A(Y #Me, pNe) =infp[ Y “Me—P(p®"e)[|y,  (40)
Now let n,,m, be diverging integer sequences as in the
where P runs over all deterministic protocols built from definition of achievable rate. Then, using the additivity of
LOCC. We say that is an achievable distillation rate far, E,, and the last inequality witd=2"«, we find
if for any sequences,,m,—c of integers such that
limsup,(n,/m,)=<c we have

1
Ex(p)=—Ex (p“™)

|i£nA(Y®n“,p®m“)=0. (47 My
The distillable entanglemerti(p) corresponds then to the = i{n +1ogy[ 1— A(Y ©Ma, pMa) ]}
supremum of all achievable distillation rates. Several vari- m, ¢
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We now go to the limit superior with respect &g observing B. States with symmetry

that the errorA is uniformly bounded away from 1, and  aj| entanglement measures can be computed more easily
m,— 2. HenceE \(p)=c for every achievable rate which {4 states that are invariant under some large group of local
concludes the proof. unitary transformation§22,29. The negativity is no excep-
tion. The main gain from local symmetries is that the partial
transpose lies in a low-dimensional algebra, and is hence
easily diagonalized. For this background we refer to Ref.
In this section, we display explicit expressions for the[22]. But often a direct computation is just as easy.
negativity for some particular classes of bipartite states, Consider, for example, the statgson ¢ (9, which

namely, for arbitrary pure states, for mixed states with a hightommute with all unitaries of the ford®U, whereU is
degree of symmetry, and finally also for Gaussian states of gea| orthogonal. These can be written as

light field.

V. EXPLICIT EXAMPLES

p=ad® " Wd*|+bF+cl, (50)
A. Pure states d ) ] )
. where|®")=(29_,|a®a))//d is again the standard maxi-
. Al enta.\ng.lement measures based on asympto'qc dIStIIIa|'”nally entangled vector, and,b,c are suitable real coeffi-
tion and dilution of pure-_state entanglemer_n, in particular, thE‘cients. This family includes both the so-called Werner states
entanglement of formatiokr and the distillable entangle- [21] with a=0 and, withb=0, the so-called isotropic states
mentEp [3], but also the relative entropy of entanglement 30] [or noisy singlets, compare E(6) abovd. The three
[5] agree on pure states, where they give the von Neumang,o aiors in ‘this expansion commute, so all operators of the

entropy of the restricted states. Negativity gives a Iarge'form (50) can be diagonalized simultaneously, with spectral
value: Letp=|®)(®| be a pure state, and write the wave

P . " projections
vector in its Schmidt decompositiod== e ®¢€’,
wherec,>0 are the Schmidt coefficients df, and thee! Po=|® W DT,
are suitable orthonormal basis. Then we get the following
result. p=(1-F)/2,

Proposition 8.
po=(1+F)2— DT} (D*|.

(47)  We parametrize the states of the fof&0) by the two expec-
tation valuesf =dtr(p|® *){®*|) and g=tr(pF), the third

This is preciselyNsd2, i.e., half of the robustness of the parameter for determining,b,c being given by the normal-

entanglement, as computed|[ibg]. ization. Then the states correspond to the triangtef &d,
Proof. Introducing the operators “flip”Fe,®@ej=e, —1<g<l,f<d(l+g)2. =

®e’, andC'=3,c,|e.)(e’|, and a similacC” for the sec- Since partial transposition simply swaps the operakors

ond tensor facto? \C;vec?inda and d|®*){®™*|, leaving I unchanged, we can apply the

same method to compute the trace norm of the partial trans-

, and henc&/(p). Explicitly, t
(PNPNTA=D cochle;@ep)(esoe,|=F(C'ac). pose. and hencalp). Explicily, we ge
p

1 1 1 1
(48 —T11—fl+= _ - _z
Mop) 4|1 f|+4|1+f Zg/d|+2|g/d| 5 (51)

From the trace nornfX|,=tryX"X we may omit unitary _ _
factors, such a§, so the trace norm is equal to the trace ofIt turns out[22] that in this class of states the Peres-
the positive operatorG’ ®C"), namely, £,c,)2. Horodecki separability criterion holdsn spite of the arbi-
SinceE, is an upper bound on the distillation rate, and trary dimensiord), i.e., the set of PPT states is the same as
that rate is known to b&(p), the von Neumann entropy of the set of separable states, and in the parametrization chosen
the restricted state, we know that, (p)=E(p). But, of ~ €qual to the squaré,ge[0,1]. Hence Nsqp)=Nepi(p).
course, we can get this more directly: using the concavity offvaluating a simple variational expression, we get
the logarithm, we get

1
1 ./\/ss(p)=Emax{|2f—1|—1,|29—1|—1,0}. (52)
E<p>=2§ c2 Iogz(c—)sz Iogz(g ca) —Ey (p).

(49 C. Gaussian states

This derivation also allows the characterization of the cases Gaussian states frequently occur in applications in quan-
of equality: Since the logarithm is strictly concave, we gettum optics, where they describe the light field. Alice’s and

equality if and only if all nonzere, are equal. Hence equal- Bob’s systems are then described by a certain number of
ity for pure states holds exactly for maximally entangledcanonical degrees of freedom, such as field quadratures of
states(which may have been expanded by zeros to live on &uitable modes. However, the same formalism applies when
larger Hilbert space the canonical operators are positions and momenta of a cer-
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tain number of harmonic oscillators. Gaussian states are thahe c,. The smallest value allowed by uncertainty ds
defined as thosepossibly mixed states with Gaussian =1/2, which gives the oscillator ground state.

Wigner function. In this contexttranspositionis best identified with time
For simplicity we denote the full collection of canonical reversal. Indeed, in the general scheme we can choose a basis
operators byR,,a=1, ..., A, where Alice holdsn, oscil-  in which the transpose is computed, but all these choices are

lators and Bob holdsiz, andn=n,+ng. These are either equivalent via a local unitary transformation. In this case we
position or momentum operators, whose commutation relachoose the position representation, in which transposition is

tions are of the form the same as reversing all momenta, keeping all positions, and
) to lift this to products by observing that transposition re-
[Re . Rpl=ioal, (53 verses operator products. Partial transposiffonis com-

pletely analogous. Only in this case just Alice’'s momenta are
reversed and Bob’s are left unchanged. On the level of
Wigner functions and covariance matrices of Gaussians, we

with an antisymmetric scalar matrix, called the symplectic
matrix, which has the block matrix decomposition

0 just have to apply the corresponding linear transformations
A:(UA ) (54) on phase space. That ig/A, the covariance matrix of the
0 op partial transpose of a Gaussian state with covariance matrix

. N o v is constructed by multiplying by-1 all matrix elements,
with respect to a decomposition of the set of indices intowhich connect one of Alice’s momenta to either a position,
Alice’s and Bob's. This form expresses the fact that all vari-or a degree of freedom belonging to Bob, and leaving all

ables of Alice commute with all of Bob's. other matrix elements unchanged_
A Gaussian state is determined by its first two moments The point is, of course, that while this transformation pre-
m,=tr(pR,) and serves the positive definiteness pf and hence we get an-

) other Gaussian Wigner function, it doast respect the un-
_ ! certainty relation, so the partially transposed operator may
Yap=W(PRRE) =5 0ap, (55) fail to be positive. However, the whole formalism of the
normal-mode decomposition for works exactly as before:
where the subtraction is chosen as the antisymmetric part afe get a representation of the partial transpose as a tensor
tr(pR,Rp), which is fixed by the commutation relations, in- product of (not necessarily positivetrace class operators.
dependently of the state: is then a real symmetric matrix. The trace norm of this operator is just the product of the trace
Since the meamm, can be made zero by a local unitary norms, so we have completely reduced the computation of
transformation(a translation in phase spacé is irrelevant  the trace norm to the single-mode case. To summarize the
for entanglement, and we choose it to be zero. The secon@sults so far, we proceed as follows.
momenty is then the same as tle®variance matrixof the Let p be a Gaussian density operator with covariance
state. The uncertainty relation, the universal lower bound ofnatrix y, and let(c,, . . . .c,) be the symplectic spectrum of
variances, is then expressed as the positive definiteness gfa Then
Yapt (i12)o,s. It will be crucial for the later that for a
classical Gaussian it is only necessary théiiself is positive

definite. Hence we can have nonpositive operators, whose _ n ~
Wigner function is an ordinary, if somewhat sharply peaked EN(P)_QZl F(Ca), (56)
Gaussian.

In order to compute the trace norm of such an operator or,
more generally, to compute the spectrum or other charactewhere Fc)=log,|pl;, and p. is the operator whose Wigner
istics not depending on the Alice-Bob partition of the systemfunction is a Gaussian with covariance digg,c).
we can bringy into a standard form by a process known as  Of course, the functioff vanishes foc=(1/2). It is eas-
symplectic diagonalization onormal-mode decomposition ily determined by looking at Gaussian states for oscillators as
This means choosing a suitable canonical linear transformahe temperature states of the oscillator. Withe ™ #, and|n)
tion (i.e., a transformation leaving the symplectic fowm the nth eigenstate of the oscillator, a general Gaussian is of
invariany, which can be implemented on the Hilbert spacethe form
level by unitary operator¢known as the metaplectic repre-
sentation. Assumingo to be in standard form, i.e., block
diagonal withn 22 blocks of the form ?1’01) this results in p=(1-2) 2 Z"n)(n|, (57)
a diagonaly, with equal eigenvalues for each block, i.g., n=0
=diag(c4,€1,C5,Cy, ... ,Cy,Cy). We call (cq,Cs, ...,Cp)
the symplectic spectrurof . The fast way to compute it is
via the eigenvalues of the matrix~ 'y, which are
*icq, ...,xic,. At the Hilbert space level the normal-
mode decomposition transforms the state into a tensor pro
uct of independent harmonic oscillators, each of which is in
a thermal oscillator state, the temperature being a function of leli=(1—2)(1—|z))~ 1

where z=0 corresponds to density operators, and <z
<0 to Gaussians whose Wigner functions have sub-
O||—|eisenberg variance. Then we get
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) 1, parameters related to the negativity that can be associated to
c=tr(pP%)=tr p5(P*+Q%) (58 a multipartite state to make quantitative statements about its
entanglement.

. 1
=(1- Z)Eﬂ: Zin+3 A. Multipartite negativities
Consider a quantum system consisting of, say, three parts,
—(1-7)"1- E (59) associated to Alice, Bob, and Charlie. L@tz be the(either
2’ pure or mixed state of the system. A possible way to classify

) o ) the entanglement properties of such a state is by looking at
Solving Eq.(59) for zand substituting into Eq58) we find  the different bipartite splittingg32] of the system.
0 f First, we can join two of the three parts, say those of Alice
or 2c=1 ; .
(60) and Bob, and compute the sum of negative eigenvalues of
—logy(2¢c) for 2c<1. 0,8, Niap)c(paso)- This is automatically an entanglement
monotone[33], which quantifies the strength of quantum
correlations between Charlie and the other two parties. Simi-
larly, the negativitiesViac)-s(pasc) andNgcy-a(pasc) are
gwo other monotonic functions under LOCC with analogous
eaning.

F(c)=[

Together with Eq(56) and the process of normal-mode de-
composition this is an efficient procedure for determining
Exp).

In the simplest case of one oscillator each for Alice an

Bob we may go even further, by expressing the symplectiéh Wi | ider th tanal i " fo
spectrum of the partial transpose directly in terms of the € can also consider the entangiement properties ot two-
covariance matrix. Suppose that party reduced density matrices. Suppose, for instance, that

Charlie decides not to cooperate with the two other parties in

A C the manipulation of the tripartite system according to LOCC.
y:(cT 5l (61  Alice a_nd qu’s effective den'si.ty matrixsag=Trc[ pascls

may still retain some of the original entanglement. The nega-

with 2x 2 matricesA,B,C. Then, as shown in Ref31], the ~ tVity of oas, Napc(pasc), can be used to quantify this
numbers deA,detB,detC, and dey are a complete set of residual entanglement. Analogous quantities can be used to

invariants fory with respect to local symplectic transforma- quantify the entanglement @f,c andogc.
tions. Moreover, when passing from to y™» only detC Thus, altogether we have obtained six computable func-

changes sign, and the others remain unchanged. Pure stafids to quantify the entanglement of any state of a tripartite
are characterized by the conditions get1/16, and def system. In a four-partite setting the number of possible split-

+detB+2detC=1/2, and can be brought into the normal ingS is much greatefsee[32] for a more detailed descrip-
form tion), and thus, we obtain up to 26 inequivalent measures,

namely: (i) Magco(pagco) and the corresponding permuta-

a c 0 tions, i.e., four inequivalent measure#;) Mag.co(pPascop)

0 0 —c and permutationgfour measures (i) Nagc.p(pascp) and
y= ' (62) permutations(12 measures (iv) Nag.¢cn(pasco) and per-

c 0 a O mutations(six measures

0 —-c 0 a

B. Hierarchy
wherea?=c2+1/4.

Coming back to the general case of &), the charac- Notice that although all these measures are independent

o ] C1Ta . ~ functions of the multipartite state, there is a strength hierar-
teristic equation ol “y'#, whose solutions are thec,,  chy between them when corresponding to related bipartite
takes the form splittings with different number of parties. In the four-party

£4+ (detA+ detB— 2detC) £2+ dety=0. (63  casewe have that, for instance,

Together with Eq(56) this amounts to an explicit formula. Nasco=Nasco=Nasieo (65

For the particular case of a pure state we find which follows from the fact that to trace out a part of a local

__ B 1/9— Jara/o system is an operation of the set LOCC, under which the
Exip) 2log(va-1/2-va+1/2), 64 negativity can only decrease. Of course, the same inequali-
which is readily seen to agree with E@7). ties hold for the corresponding logarithmic negativities, and
thus also for the several bounds on distillability—of different
VI. MULTIPARTITE SYSTEMS kinds of multipartite entanglement—implied by the later.

It should be noted, however, that in this way one can

As argued in the Introduction, a computable measure ofjuantify only some aspects of the multiparticle entangle-
the entanglement for bipartite mixed states is also very conment: there are tripartite states that are separable with respect

venient for the quantification of the multipartite entangle-to every splitting of the system, but are nevertheless not a

ment. In this section we describe a whole set of computableonvex combination of triple tensor products of density op-
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erators[32,34). States that have positive partial transposetion (or the related concurrencE8]. This choice of measure
with respect to every subsystem satisfy a large class of Bebf the entanglement is somehow arbitrary—it is often forced
inequalities[35]. simply by the lack of an alternative measure that can also be
computed for two-qubit mixed states—, because it does not
reflect in anyway the entanglement cost of formation of the
] N-qubit state. We envisage that in these and similar contexts

In this paper we have presented a computable measure gf\il| pay off to use a computable entanglement measure,
the entanglement for bipartite mixed states, the negativity,ch as the negativity, whose evaluation is not restricted to
M(p). which we have proved not to increase under LOCC ywo-qubit mixed states. The negativity will allow, for in-
Although it lacks a direct physical interpretation, we havegtance, to generalize the previous investigations to analogous
shown that it bounds two relevant quantities characterizinggnstructions witH-level systemsI(>2) instead of qubits,
the entanglement of mixed states: the channel capacity angs aiso to analyze quantitatively the entanglement between
the distillable entanglemerty, . subsets of thesklevel systems.

IdeaIIy, quantum correlations would be best quantified by Fina”y' in a similar way as the negativity has recenﬂy
measures with a given physical meaning. Which measure afglayed a role in proving the irreversibility of asymptotic lo-
to be used, would depend on which question we want t@al manipulation of bipartite mixed-state entanglenids,
answer. For instance, if we want to know how much puree hope that this computable measure will also be a useful
state entanglement the parties can extract farfinitely)  tool to answer other fundamental questions of the entangle-
many copies of the state, then the proper measure to be ment theory.
used is the entanglement of the distillatiBg(p).

In practice, however, the value of these measures is not
known. Recent studies of entangled systems, such as those of
entangled chains, entanglement molecules, entangled rings, G. V. acknowledges from the European Community for
entangled Heisenberg modelndcluster state$36], which  financial supporttHPMF-CT-1999-00200 This work was
are N-qubit systems in some global entangled state, are foalso supported by the project EQUIEontract No. IST-
cused on the two-qubit quantum correlations associated t9999-11053 the European Science Foundation, and the
the global state, as measured by the entanglement of form&®FG (Bonn).

VII. DISCUSSION AND CONCLUSIONS
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