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Lossless quantum data compression and variable-length coding

Kim Bostroem and Timo Felbinger
University of Potsdam, Potsdam, Germany

~Received 8 May 2001; published 20 February 2002!

In order to compress quantum messages without loss of information it is necessary to allow the length of the
encoded messages to vary. We develop a general framework for variable-length quantum messages in close
analogy to the classical case and show that lossless compression is only possible if the message to be com-
pressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below
by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a
quantum channel even below the von Neumann entropy by adding a classical side channel. We give an explicit
communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a
simple example. This protocol can be used for both online quantum communication and storage of quantum
data.

DOI: 10.1103/PhysRevA.65.032313 PACS number~s!: 03.67.Hk
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I. INTRODUCTION

Any physical system can be considered as a carrie
information because the state of that system could, in p
ciple, have been intentionally manipulated to represen
message. The state of a system composed from distingui
able subsystems forms a message of a certain length, w
each subsystem represents one letter. In quantum informa
theory, the systems are quantum and the system states r
sent quantum messages. A message is compressed if
mapped to a shorter message and if this map is revers
then no information has been lost. Schumacher was the
to present a method for quantum data compression@1#. It is
based on the concept of encoding only atypical subspace
spanned by the typical sequences emitted by a memory
source. Since then there have been further investigat
@2–8#, but all the considered compression methods are o
faithful in the limit of large block lengths. Now we ask: Is
possible to compress quantum messages withoutany loss of
information? To answer this question some basic concep
quantum information theory have to be revisited. In partic
lar, the requirement of a fixed block length for quantum m
sages has to be abandoned and must be replaced by a
general theory of quantum messages, which enables a
ible and easy treatment of quantum codes involving c
words of variable length. At first, we develop a gene
framework in close analogy to the classical case, based
previous work by one of us@9,10#. A different approach to
variable-length quantum messages~appearing as a specia
case in our formalism! has been worked out by Braunste
et al. @6# and Schumacher and Westmoreland@8#. We define
a measure of information quantifying the effort of commu
cation. Compression then means reducing this effort. We
gue that prefix codes are practically not very useful for qu
tum coding and suggest a different method involving
additional classical side channel. With the help of this ch
nel, certain problems of instantaneous quantum commun
tion can be avoided and, moreover, the quantum channe
be used with higher efficiency. At last, we present a comm
nication protocol that enables lossless and instantane
quantum data compression and we demonstrate its efficie
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by an explicit example. Let us start with reviewing the fu
damental notion of acode@17#.

II. CODES

Basically, when you have a set of things and you wan
give them a name, then this is a coding task. There is a c
for bank accounts, telephone devices, and inhabitants
country, there even is a code for living beings: the gene
code. Language is a code for thoughts, which are in t
codes for abstract ideas or concrete objects of human e
rience. A code givesmeaningto a message, it relates objec
to their description. Objects are encoded into messages c
posed from a basic alphabet. The number of letters tha
needed to describe a particular object is a good measur
the information contentgiven to the object by the code. Thi
is the key to data compression, which we will study in t
following with a focus on quantum codes.

Classically, acode is a mapc:V→M from a set of ob-
jects,V, to a set of messages,M ~see Fig. 1!. It is the mes-
sages that can be communicated and not the objects th
selves, so communication is always based on a co
Messages~or strings! are sequences of letters taken from
alphabetA and are denoted byxn

ªx1¯xn , xiPA. The

FIG. 1. A classical code is a map from a set of source obje
into a set of code words composed from an alphabet. An ensem
of source objects is mapped to an ensemble of code words.
variable-length codes, the length of the code words is allowed
vary.
©2002 The American Physical Society13-1
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empty messageis denoted byx0
ªB. All messages of length

n form the set

An
ª$xnuxiPA% ~1!

and the empty message forms the setA0
ª$B%. All strings

of finite length form the set of general messages over
alphabetA,

A1
ª ø

n50

`

An. ~2!

Every subsetM,A1 is a message set. Now we can pre-
cisely define a classicalk-ary codeas a mapc:V→A1 with
kªuAu. The setC5c(V) is thecode bookand each membe
of C is a code word. Being a subset ofA1, a code book is
also a message set~just like a nightingale is also a bird!. If
C,An for somenPN, thenc is called ablock code, other-
wise avariable-length code. There is another important clas
sification: losslessand lossy codes. A code is lossless~or
uniquely decodableor nonsingular!, if there are distinct code
words for distinct objects, i.e.,; x, yPV:xÞy⇒c(x)
Þc(y). In case of a lossy code, some objects are mappe
the same encoding. Lossy codes are used when it is m
important to reduce the size of the message than to en
the correct decoding~a fine example is theMP3 code for
sound data!. For a given probability distribution onV, lossy
codes can also be useful if thefidelity F, i.e., the probability
of correct decoding, is close to 1. For lossless codes
fidelity is exactly 1. In this paper, we only consider lossle
codes.

A. The general message space

The transition from classical to quantum information
simple. We just allow the elements of a source setV to be in
superposition. Precisely, we interpretV as an orthonorma
basis for a Hilbert spaceV and consider every normalize
vector ofV as a valid object. ThenV is the linear spanof V
and we writeV5Span(V) with dim V5uVu. The same goes
for the messages. We interpret a message setM as an ortho-
normal basis for a message spaceM5Span(M ) with
dim M5uM u and consider each element ofM as a valid
message. The mapc:V→M then represents aquantum code
with the spaceC5c(V) being thecode spaceand the ele-
ments ofC being the code words. In order to preserve line
ity, the code must be a linear map and in order to prese
norm, the code must be an isometric map. In the literatu
often the code spaceC rather than the mapc is called a code
@this is a bit like callingf (x) a function#. However, by saying
‘‘code’’ we will refer to the mapc here, in full analogy to the
classical case. Now let us find the general message s
corresponding to the classical general message setA1. In-
terpret the letters of aquantum alphabetQ as an orthonorma
basis for aletter spaceHªSpan(Q). A letter spaceH with
k5dimH5uQu is called ak-ary space. Quantum letters are
composed into messages by tensor multiplication, giv
03231
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product messagesuxn&ªux1& ^¯^ uxn& that form the set
Qn

ª$uxn&uuxi&PQ% and span the block spaceH^ n

ªSpan(Qn), giving

H^ n5 ^
i 51

n

H5H^¯^ H. ~3!

The spaceH^ n is the quantum analog to the setAn of clas-
sical block messages given by Eq.~1!, and contains arbitrary
superpositions of product messages, which are calleden-
tangledmessages. Because superposition and entangle
have no classical interpretation, quantum information is tr
different from classical information. The empty message,
noted byux0&[uB&, forms the setQ05$uB&% and spans the
one-dimensional spaceH^ 0

ªSpan(Q0). Elements ofH^ n

for some nPN are calledblock messages. The set of a
product messages composed fromQ is denoted byQ1

ªøn50
` Qn. Now the general message spaceH% induced by

H can be defined byH%
ªSpan(Q1), giving

H% 5 %
n50

`

H^ n5H^ 0
% H% H^ 2

%¯ . ~4!

The spaceH% is the quantum analog to the setA1 of gen-
eral classical messages given by Eq.~2!. H% is a separable
Hilbert space with the countable basisQ1. The spaceH% is
similar to the Fock space in many-particle theory, except t
the particles are letters here, which must be distinguisha
so there is no symmetrization or antisymmetrization. T
general message space contains also superpositions of
sages of distinct length, for example,

1

&
~ u101&1u11100&)PH% ~5!

if u0&, u1&PH. Any block spaceH^ n is a subspace ofH%

and is orthogonal to any other block spaceH^ m with n
Þm. Elements with components of distinct length are cal
variable-length messages~or indeterminate-length mes
sages! to distinguish them from block messages. Any su
spaceM,H% is called amessage spaceand its elements
arequantum messages.

B. Length operator

Define the length operator inH% measuring the length o
a message as

L̂ª(
n50

`

nPn , ~6!

where Pn is the projector on the block spaceH^ n,H% ,
given by

Pn5 (
xnPQn

uxn&^xnu. ~7!

As L̂ is a quantum observable, the length of a messageux&
PH% is generally not sharply defined. Rather, the measu
3-2
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LOSSLESS QUANTUM DATA COMPRESSION AND . . . PHYSICAL REVIEW A65 032313
ment ofL̂ generally disturbs the message by projecting it
a block space of the corresponding length. The expec
length of a messageux&PH% is given by

L~x!ª^xuL̂ux&. ~8!

However, in H% there are also messages whose expec
length is infinite. Classical analogs are probability distrib
tions with nonexisting moments, e.g., the Lorentz distrib
tion. Block messages are eigenvectors ofL̂, that is, L̂ux&
5nux& for all ux&PH^ n.

The generalization to statistical ensembles is straight
ward. Consider an ensemble(5$p,X% of variable-length
messagesux&PX,Hw occurring with probabilityp(x).0 ;
ux&PX such that(xPX p(x)51. Then there is a density op
erator

s5 (
xPX

p~x!ux&^xu, ~9!

called a statistical quantum message, representing the en
semble(. The set of all such density operators is denoted
S(H% ). Vice versa, however, for a given density opera
sPS(H% ) there is, in general, a noncountable set of cor
sponding ensembles. In terms of information theory,s can-
not be regarded as a lossless code for the ensemble(. There
is more information in the ensemble than in the correspo
ing density operator. As we will see, this additionala priori
knowledge is in fact needed to make lossless compres
possible.

The expected length of an ensemble( or of the corre-
sponding statistical messagesPS(H% ) is defined as

L~S!5L~s!ªTr$sL̂%5 (
xPX

p~x!L~x!. ~10!

C. Base length

The expected length of a quantum messageux&, given by
Eq. ~8!, will, in general, not be the outcome of a leng
measurement. Every length measurement results in on
the length eigenvalues supported byux& and generally dis-
turbs the message. If there is a maximum value resul
from a length measurement of a stateux&, namely, the length
of the longest component ofux&, then let us call it thebase
lengthof ux&, defined as

LI ~x!ªmax$nPNu^xuPnux&.0%. ~11!

For example, the quantum message

ux&5
1

&
~ uabra&1ucadabra&) ~12!

has base length 7. Since the base length of a state is the
of its longest component, we have

LI ~x!>L~x!. ~13!
03231
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It is important to note that the base length is not an obse
able. It is only available if the messageux& is a priori known.

D. Quantum code

Now we can precisely define ak-ary quantum codeto be
a linear isometric mapc:V→H% , whereV is a Hilbert space
and H% is the general message space induced by a le
spaceH of dimensionk. The image ofV underc is thecode
spaceC5c(V) ~see Fig. 2!. Being a quantum analog to th
code book,C is the space of valid code words. The codec is
uniquely specified by the transformation rule

uv&°
c

ug&, ~14!

whereuv& are elements of a fixed orthonormal basisBV of V
andug&5uc(v)& are elements of an orthonormal basisBC of
C. Since c is an isometric map, i.e., ^vuv8&
5^c(v)uc(v8)&, this implies thatuc(v)&Þuc(v8)& for all
uv&Þuv8& in V, soc is a lossless code with an inversec21.
The quantum codec can be represented by the isomet
operator

Cª (
vPBV

uc~v!&^vu5 (
gPBC

ug&^c21~g!u ~15!

called the encoder ofc. Sincec is lossless, there is an invers
operator

D:5C215 (
gPBV

uv&^c~v!u5 (
gPBC

uc21~g!&^gu ~16!

called thedecoder. In practice, the source spaceV and the
code spaceC are often subspaces of one and the same ph
cal spaceR. SinceC is an isometric operator betweenV and
C, there is a~nonunique! unitary extension UC on R with

UCux&5Cux&, ; ux&PV,R, ~17!

FIG. 2. A quantum code is a linear isometric map from a sou
space of quantum objects into a code space of code words c
posed from a quantum alphabet. Superpositions of source ob
are encoded into superpositions of code words. An ensembl
source objects is mapped to an ensemble of code words. F
variable-length quantum code, the length of the code words is
lowed to vary. Superpositions of code words of distinct length le
to code words of indeterminate length. Thebase lengthof a code
word is defined as the length of the longest component.
3-3
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UC
† uy&5C 21uy&, ; uy&PC,R. ~18!

However, usingC and distinguishing betweenV and C is
more convenient and more general. Codes withC,H^ n for
somenPN are called block codes, otherwise variable-leng
codes.

III. REALIZING VARIABLE-LENGTH MESSAGES

Variable-length messages could, in principle, directly
realized by a quantum system whose particle number is
conserved, for instance, an electromagnetic field. Each p
ton may carry letter information by its field mode, while th
number of photons may represent the length of the mess
The photons can be ordered either using their spacetime
sition ~e.g., single photons running through a wire! or some
internal state with many degrees of freedom~e.g., a photon
with frequencyv2 can be defined to ‘‘follow’’ a photon with
frequencyv1,v2!. The Hilbert space representing such
system of distinguishable particles with nonconserved p
ticle number simply is the message spaceH% . In case we
have only a system at hand where the number of particle
conserved, we can also realize variable-length message
embedding them into block spaces.

It is a good idea to distinguish between the mess
space, which is a purely abstract space, from its phys
realization. Let us call the physical realization of a mess
spaceM the operational spaceM̃. BetweenM and M̃,
there is an isometric map, so dimM5dim M̃. This is ex-
pressed byM>M̃. The operational spaceM̃ is the space of
physical states of a system representing valid code word
M. Often the operational space is a subspace of the t
space of all physical states of the system. Denoting the t
physical space byR we have

M>M̃,R. ~19!

A. Bounded message spaces

The general message spaceH% is the ‘‘mother’’ of all
message spaces induced by the letter spaceH. It contains
just abouteveryquantum message that can be composed
ing letters fromH and the laws of quantum mechanics. Ho
ever, it is an abstract space, i.e., independent from a par
lar physical implementation. It would be good to know
such a space can also physically be realized. It is clear th
you have a finite system you can only realize afinite-
dimensional subspaceof the general message space, who
dimension is infinite. So let us start with the physical re
ization of ther-bounded message space

H% r
ª%

n50

r

H^ n, ~20!

containing all superpositions of messages of maximal len
r.

Say you have a physical spaceR5D^ s representing a
register ~see Fig. 3! consisting ofs systems with dimD
5k. Each subspaceD represents onequantum digitin the
03231
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register. In the casek52 the quantum digits arequantum
bits, in short ‘‘qubits.’’ The physical spaceR represents the
space of all physical states of the register, while the mess
spaceH% r represents the space of valid code words that
be held by the register and it is isomorphic to a subsp
H̃% r of the physical spaceR. Let dim H5k, then you must
chooses such that

dim~Hi
% r !<dim~D^ s!, ~21!

⇒ (
n50

r

kn5
kr 1121

k21
<ks, ~22!

⇒s>r 11. ~23!

Thus you need a register of at least (r 11) digits to realize
the message spaceH% r . Choose the smallest possible reg
ter spaceR5D^ (r 11). Since at mostr digits are carrying
information, one digit can be used to indicate either the
ginning or the end of the message. Now you can con
niently usek-ary representations of natural numbersas code
words. Each natural numberi has a uniquek-ary representa-
tion Zk( i ). For instance,Z2(3)511 andZ16(243)5E3. All
k-ary representations have aneutral prefix‘‘0’’ that can pre-
cede the representation without changing its value, e
000011>11. For a natural numbern.0, defineZk

n( i ) as the
n-extendedk-ary representation ofi by

~24!

For example,Z2
6(3)5000011 andZ16

6 (243)50000E3. Let us
define that the message starts after the first appearanc
‘‘1,’’ e.g., 000102540>02540. Now define orthonormal vec
tors

~25!

where n.0 and 0< i<kn21. The n digits of Zk
n( i ) are

calledsignificant digits. The empty message corresponds
the unit vector

uB&ªue0
0&ªu0¯01&. ~26!

Obviously, uB& has no significant digits. Next, define ortho
normal basis sets

B̃ n
ª$ue0

n&,...,uekn21
n &%, 0<n<r , ~27!

which span the operational block spaces

FIG. 3. Realizing a general variable-length message.
3-4
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H̃^ n5Span~B̃ n!. ~28!

Note thatH̃^ n is truly different fromH^ n, becauseH̃^ n has
dimensionkr 11, while H̃^ n has dimensionkn. Next, define
an orthonormal basis

B̃1
ª ø

n50

r

B̃ n ~29!

and construct the operational spaceH̃% r,R as

H̃% r
ªSpan~B̃1!. ~30!

Altogether, the physical spaceR5D^ (r 11) is the space of all
physical states of the register, while the operational sp
H̃% r,R is the space of those register states that repre
valid code words, and it is isomorphic to the abstract m
sage spaceH% r .

A general message is represented by the vector

ux&5 (
n50

r

(
i 50

kn21

xn,i uei
n& ~31!

with (n50
r ( i 50

kn21uxn,i u251. The length operator introduced i
Sec. II B is here of the form

L̂ª(
n50

r

nPn , ~32!

because there are at mostr digits to constitute a messag
Now we need to know how the projectorsPn are constructed
in the operational spaceH̃% r . For a register state containin
a message of sharply defined length, the length eigenvaln
is given by thenumber of significant digitsin that register,

L̂uei
n&ªnuei

n&, ~33!

for 0< i<kn21. Each projector is then defined by

Pnª (
i 50

kn21

uei
n&^ei

nu ~34!

and projects onto the spaceH^ n,R. Note that thephysical
lengthof each message is always given by the fixed sizer
11) of the register. Only thesignificant lengthof a message
i.e., the number of digits that constitute a message conta
in the register, is, in general, not sharply defined. Note f
ther that the particular form of the length operator depe
on the realization of the message space.

In the limit of larger we have limr→` H% r5H% , but that
space can no longer be embedded into a physical spacR
5D^ `

ª limn→` D^ n, since the latter is no longer a sep
rable Hilbert space. However, we can think ofr as very large,
such that working inH% just means working with a quantum
computer having enough memory.
03231
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B. Realizing more message spaces

A code is a mapc:V→H% from source states inV to code
words in H% . The spaceC5c(V) of all code words is the
code space and as a subspace of the general message
H% it is just a special message space. In order to implem
a particular codec, it is, in practice, sufficient to realize only
the corresponding code spaceC by a physical system. Let u
realize some important code spaces now. However, we
not discuss the very important class oferror-correctingcode
spaces here, since this would go beyond the scope of
paper.

1. Block spaces

An important message space is the block spaceH^ n,
which contains messages of fixed lengthn. Block spaces are
the message spaces of standard quantum information the
They can directly be realized by a registerR5H^ n of n
digits, e.g.,n two-level systems representing one qubit ea

2. Prefix spaces

Another interesting message space is the space of p
code words of maximal lengthr. Such a space contains on
superpositions of prefix code words. A set of code words
prefix~or prefix-free!, if no code word is the prefix of anothe
code word. For example, the setP35$0,10,110,111% is a set
of binary prefix code words of maximal length 3. Prefix co
words have one significant advantage: Prefix code words
instantaneous, that is, sequences of prefix code words do n
need a word separator. The separator can be added w
reading the sequence from left to right. A sequence fromP3
can be separated as

110111010110°110,111,0,10,110. ~35!

However, there is also a drawback: Prefix code words are
general, not as short as possible. This is a consequence o
fact that there are, in general, less prefix code words t
possible code words. For example, if you want to enco
four different objects, you can use the prefix setP3 above
with maximal length 3. If you renounce the prefix proper
you can use the set$0, 1, 01, 10% with maximal length 2.

A prefix spacePr of maximal lengthr is given by the
linear span of prefix code words of maximal lengthr. For the
set P3 , the corresponding prefix space isP3
5Span$u0&,u10&,u110&,u111&%. The prefix spacePr,H% r

can physically be realized by a subspaceP̃r of the register
spaceR5D^ r spanned by the prefix code words that ha
been extended by zeros at the end to fit them into the regi
For example,P̃35Span$u000&,u100&,u110&,u111&%,D^ 3 is a
physical realization of the prefix spaceP3 . The length op-
erator measures the significant length of the code wo
given by the length of the corresponding prefix code wor

Schumacher and Westmoreland@8# as well as Braunstein
et al. @6# used prefix spaces for their implementation
variable-length quantum coding. However, we will sho
later on that the significant advantage of prefix code word
fact vanishes in the quantum case, whereas the disadvan
remains.
3-5
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3. Neutral-prefix space

A specific code space will be of interest, namely, t
space ofneutral-prefixcode words, which we define as fo
lows. Thek-ary representation of a natural numberi is de-
noted byZk( i ) ~see Sec. III A!. The empty messageB is
represented byZk(0)5B. Define an orthonormal basis

Brª$uZk~0!u,...,&Zk~kr21!&% ~36!

of variable-length messages of maximal lengthr. The length
of each basis messageuZk( i )& is given by

uZk~ i !u5 d logk~ i 11!e, ~37!

where dxe denotes the smallest integerd> ex. These basis
messages span ther-bounded neutral-prefix space

NrªSpan~Br !. ~38!

Note thatNr is not equal to ther-bounded message spa
H% r as you can see by comparing the dimension dimNr
5kr with dim H% r5(kr 1121)/(k21). Nr is smaller than
H% r because not all messages ofH% r are contained inNr .
For example, the messageu01& is in H% r but not in Nr ,
hence we have

Nr,H% r . ~39!

Now we want to find a physical realization ofNr . This turns
out to be quite easy~see Fig. 4!. As already noted in Sec
III A, the k-ary representationZk( i ) of any natural numberi
can be extended by adding leading zeros to ther-extended
k-ary representationZk

r ( i )ª 0¯0Zk( i ). Take a registerR
5D^ r of r digits with D5Ck. Then the set

BRª$uZk
r ~0!&,...,uZk

r ~kr21!&% ~40!

is an orthonormal basis for the register spaceR. At the same
time it can be regarded as an orthonormal basis for the
erational spaceÑr representing the neutral-prefix spaceNr .
While the physical length of each code word is constantlyr,
the significant length is measured by the length operator

L̂ª(
n50

r

nPn , ~41!

with mutually orthogonal projectors

Pnª (
i :uZk~ i !u5n

uZk
r ~ i !&^Zk

r ~ i !u. ~42!

FIG. 4. Realizing variable-length messages by neutral-pr
code words.
03231
p-

Note that the so-defined length operator looks different fr
that defined in Sec. III A. WhileL̂ is always of the same
form ~32!, the projectorsPn are different because the oper
tional spaces are different.

The empty message can be defined by

uB&ªuZk
r ~0!&5u0¯0&. ~43!

A general message inÑr is given by

ux&5 (
i 50

kr21

xi uZk
r ~ i !&. ~44!

We have realized the neutral-prefix spaceNr by exhausting
the entire register spaceR so that the quantum resources a
optimally used. In other words all messages inNr are as
short as possible. Remember that the physical realizatio
H% r requires one additional digit to represent the beginn
or the end of a message. This digit does not contain
message information, it is sort of wasted. For quantum c
ing, the additional digit may really count, since it would ha
to be added each time a code word is stored or transmit
Also the prefix space considered in Sec. III B 2 contains m
sages that are not as short as possible. You can enco
spaceV of dimension dimV54 by a prefix space spanned b
$u000&,u100&,u110&,u 111&% with corresponding lengths$1, 2, 3,
3%, but then you need a register of three qubits. In contras
that,V can be encoded by a neutral-prefix space spanne
the basis$u00&, u01&, u10&, u11&% with corresponding lengths
$0, 1, 2, 2%, and you need a register of only two qubits. In t
operational spaceÑr , the basis messages reveal their leng
information by simply discarding leading zeros. That wa
not all variable-length messages can be realized, but we
one register digit, soNr is a good candidate for variable
length quantum coding.

IV. DATA COMPRESSION

A. Classical data compression

Intuitively, compression is achieved when the effort
store or communicate the code words is minimized. But h
can we precisely define that ‘‘effort?’’ The key idea is th
concept of araw code. One can always construct a code f
V by inventing a new letter for each single object. Such
classical raw code is a codec:V→A for some alphabetA of
the same size asV. The chinese writing is a fairly good
illustration of a raw code. There are up to 50 000 lette
representing a manifold of abstract and concrete things,
the ‘‘noise of a running horse.’’ The length of the code
minimized to 1, but the encoding and decoding machin
will need a large memory to remember all the letters. Ob
ously, a raw code does not compress at all, so it is a g
idea to set the effort of communication in relation to the ra
information content ofV ~similar to the notion in@14#, p. 71
and interestingly similar also to the Boltzmann entropy o
microcanonical ensemble!, defined by

I 0~V!ª log2uVu. ~45!

x

3-6
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I 0(V) represents the number of binary digits~bits! needed to
enumerate the elements ofV. This motivates the following
definition. Thecode information contentof an individual ob-
ject in an arbitrary setV for a givenk-ary codec:V→A1 is
defined as

I c~x!ª log2~k!Lc~x!, xPV, ~46!

where Lc(x) denotes the length of the code wordc(x)
PA1. I c(x) represents the number of bits needed to
scribe the objectx by the codec. For a raw codec:V→A,
definition ~46! gives the raw information content for ever
objectxPV. A few remarks about the code information a
as follows.

~1! The code information is defined for things, not f
strings. Of course, things may sometimes also be string
so, one can define thedirect informationof a stringxn over
an alphabetA as

I ~xn!ªn log2uAu. ~47!

~2! The code informationI c is code dependent, reflectin
the philosophy that there is no information contained in
object without a code giving it some meaning. The co
word ‘‘XWF$%&$ FggHz~~’’ may be a random sequence o
letters or may in a certain code represent the first digits op
or in another code the beginning of a Mozart symphony.

Now let there be a probability distributionp on V. We can
define the code information of the ensembleS5$p,V% as
the average of Eq.~46!,

I e~S!ª log2 k (
xPV

p~x!Lc~x!. ~48!

Compression means reducing the code information of
ensemble. We can define the compression rate achieved
codec on the ensembleS by

Rc~S!ª
I c~S!

I 0~V!
. ~49!

A codec:V→C is compressive onS if and only if

Rc~S!,1, i.e., I c~S!,I 0~V!. ~50!

B. Quantum data compression

Now that we have a classical definition of compressi
the next step is to translate these concepts to the quan
case. Again, the key is the raw information, i.e., the size o
noncompressed message, so let us look for its quantum
log. The raw information~45! of a setV is I 0(V)5 log2uVu
because we needuVu distinct letters to encode each eleme
of V by a raw code. InterpretingV as an orthonormal basi
for a Hilbert spaceV, the raw information ofV is also
log2uVu, because we still needuVu distinguishable letters to
represent each element of the spaceV. SinceuVu5dimV, we
define the quantum raw information of a spacerV as

I 0~V!ª log2~dimV!. ~51!
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So the quantum raw informationI 0 corresponding to a spac
V equals the fixed number of qubits needed to represen
states inV.

Now, for a givenk-ary codec:V→H% represented by an
encoderC, the code information operator can be defined

Î cª log2~k!L̂c , ~52!

where L̂cªC21L̂C is the length operator measuring th
length of the code word for a source vector inV. If the code
is based on a qubit alphabet,Î c measures the number o
qubits forming the code message, hence the measuring
of Î c is ‘‘1 qubit.’’ In analogy to Eq. ~47!, we define the
direct information operator acting on the message spaceH%

by

Îª log2~k!L̂. ~53!

In short, the code information operator is defined in an ar
trary Hilbert spaceV and depends on a quantum co
c:V→H% , while the direct information operator is defined
a message spaceH% without referring to a quantum code
For a given code, the relation between both operators is

Î c5C21Î C. ~54!

Now one compresses a code word by removing redund
quantum digits. The number of quantum digits carrying
formation is given by the base length of the code word.
other digits are redundant and can be removed without
of information. This motivates the definition of thecode in-
formationof a stateux&PV respecting a codec by

IIc~x!ª log2~k!LI c~x!, ~55!

whereLI c(x)5LI „c(x)… is the base length of the code wor
for ux&. IIc(x) represents the number of qubits needed to
scribe the stateux& by the codec. This value must be distin-
guished from the expected number of qubits I c(x)
5^xu Î cux&, which is found by performing a length measur
ment on the code word forux&. In the classical case, thi
difference vanishes.

Now one wants to encode an ensembleS5$p,X % of
statesux&PX that span the source spaceV. Each individual
messageux& can be compressed toIIc(x) qubits, so the entire
ensembleS will on the average be compressed to the co
information

IIc~S!ª log2 k (
xPX8

p~x!LI c~x!. ~56!

The compression rate can then be defined by

Rc~S!ª
IIc~S!

I 0~V!
. ~57!

A codec is compressive on the ensembleS, if and only if

Rc~S!,1, i.e., IIc~S!,I 0~V!. ~58!
3-7
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Note that these definitions only apply to lossless codes.
lossy case is not considered here.

V. NO-GO THEOREMS

Of course, lossy compression is always possible. But
us look for some statements about lossless codes. The
three of the following no-go theorems are also known
classical information theory and are easily transferred to
quantum case by general reasoning. However, we show t
by applying the tools developed in this paper. The last th
rem is genuinely quantum with no classical analog.

A. No lossless compression by block codes

A code is a block code if all code words have the sa
length, else it is a variable-length code. Unfortunately, lo
less block codes do not compress. Take an arbitrary
sembleS5$p,X% with X,V and any losslessk-ary block
codec:V→H^ n. Let BV andBn be orthonormal basis sets o
V and H^ n, respectively. In order to find for every bas
vector uv&PBV a code basis vectoruc(v)&PBn , the code
must fulfill dimV<dimH^ n5kn. For everyux&PX, the cor-
responding code worduc(x)& has sharp lengthL(x)5n,
hence

IIc~S!5 log2 k(
xPX

p~x!Lc~x!5 log2~k!n5 log2~kn!

~59!

> log2~dim V!5I 0~V!, ~60!

which violates condition~58!. This implies that there is no
lossless compressing block code. By choosing mutually
thogonal source states one can derive the analog state
for the classical case.

For long strings emitted by a memoryless source, blo
codes can achieve almost lossless compression by enco
only typical subspaces. The quantum code performing
type of lossy compression is known as the Schumacher c
@3#. The only way to compress messages without loss
information is by use of a variable-length code. In order
achieve compression, more frequent objects must be enc
by shorter messages, less frequent objects by longer m
sages, so that the average length of the codes is minim
This is the general rule of lossless data compression.

B. No lossless compression by changing the alphabet

Trying to achieve compression by using a different alp
bet does not work.

A code c:HA
^ n→HB

^ m that transforms messages ov
some letter spaceHA into messages over some letter spa
HB is lossless only if dimHA

^ n<dimHB
^ n , which implies

that

I 0~V!5n log2~dimHA! ~61!

<m log2~dimHB!5IIc~x!
~62!
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for every ux&PHA . So for every ensembleS5$p,X% of
messagesux&PHA

m , we haveIIc(S)5IIc(x)>I 0(V), which
violates condition~58!. By choosing mutually orthogona
source states, one can derive the analog statement fo
classical case. The present paper would probablylook much
shorter when written in Chinese symbols. However the eff
of communication that is expressed by the code informat
I c would not be reduced.

C. No universal lossless compression

We have seen that it is not possible to compress mess
without loss of information by using a block code or b
using a different letter space. Now we will see that no co
can compressall messages without loss of information.

Say you have a spaceH^ n of block messages of fixed
length r and you want to compress all of them by use o
variable-length codec:H^ r→H% s with s,r . The code can
only be lossless if

dimH^ r<dimH% s. ~63!

But since dimH^ r5kr and dimH% s5(ks1121)/(k21),
we have

kr<
ks1121

k21
~64!

⇒kr 11<ks111k21, ~65!

which is wrong forr>s andk.1, so you cannot compres
all block messages of a given length. Now say you hav
spaceH% r of variable-length messages with maximal leng
r. Assume that there is a universal lossless codec that re-
duces the length of all messages inH% r . The code can only
be lossless if dimH% r<dimH% s, which is obviously wrong
for r .s, so you cannot compress all variable-length m
sages with a given maximal length. Concluding, there is
universal lossless compression that reduces the size o
messages. Some messages are unavoidably lengthened
lossless code. By choosing mutually orthogonal sou
states, one can derive the analog statement for the clas
case.

D. No lossless compression of unknown messages

Now we come to a no-go theorem that is typically qua
tum. In quantum mechanics there is a profound differen
between aknown and anunknownstate. For example, a
known state can be cloned~by simply preparing anothe
copy of it!, whereas an unknown state cannot be cloned.

Assume that there is a lossless quantum compression
gorithm c:H^ r→H% s that compresses messages of fix
lengthr to variable-length messages of maximal lengths. As
we have seen in the preceding section, a lossless code ca
compressall messages, sos.r . Now there is an oracle tha
hands you an arbitrary messageux&5( i 51

n xi uv i&, where the
uv i&PH% r are mutually orthogonal states. The algorithm e
codes the messageux& into uc(x)&5( i 51

n xi uc(v i)&. Even if
3-8
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LOSSLESS QUANTUM DATA COMPRESSION AND . . . PHYSICAL REVIEW A65 032313
all the code-word componentsuc(v i)& have determinate
length Lc(v i), the total code worduc(x)& has, in general,
indeterminate length. If you want to remove redundant dig
without loss of information, you must know at least an upp
bound for its base length, i.e., the length of its longest co
ponent. Since you do not know the source messageux&, you
do not know the base length of its encodinguc(x)&, so you
have to assume the maximal lengths. Sinces.r , no com-
pression is achieved. The same argument applies to quan
compression algorithmsc:H% r→H% s compressing variable
length messages of maximal lengthr to variable-length
messages of maximal lengths.

We conclude that lossless compression of unknown qu
tum messages is, in general, impossible. This statement i
true for the classical case. A classical message is not
turbed by a length measurement, so it can, in principle,
compressed without loss of information. It would have be
nice to compress a quantum hard disk without loss of inf
mation just like a classical hard disk, but this cannot,
general, be accomplished.

Now that we have found a lot of impossible things to
with quantum messages, it is time to look for the possi
things.

VI. LOSSLESS COMPRESSING CODES

The intention of using compressing codes is to minim
the effort of communication between two parties: one w
prepares, encodes, compresses, and sendsthe messages an
one whoreceives, decompresses, decodes, and possiblyreads
them. So it is time for Alice and Bob to enter the scene. Al
is preparing source messagesux&PV and encodes them int
code wordsuc(x)&PH% r by applying the encoderC. She
compresses the code words by removing redundant quan
digits and sends the result to Bob, who receives them
decompresses them by appending quantum digits. After
he can decode the messages by applying the decoderD and
read them or use them as an input for further computatio
The communication has been lossless if the decoded m
sage equals the source message. Note that it is not req
for Bob to read the message he received. In fact, if Bo
wants to use the message as an input for a quantum c
puter, he even must not do that, else he will potentially lo
information. We require Alice to know which source me
sages she prepares, otherwise no lossless compression i
sible, as we have seen in the preceding section.

A. Why prefix quantum codes are not very useful

In classical information theory, prefix codes are favor
for lossless coding. The reason is that they areinstantaneous,
which means that they carry their own length informati
~see Sec. III B 2!. Prefix code words can be sent or stor
without a separating signal between them. The decoder
add word separators~commas! while reading the sequenc
from left to right. Whenever a string of letters yields a va
code word, the decoder can add a comma and proceed.
all, a continuous stream of letters is separated into valid c
words.
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Prefix code words can be separated while reading the
quence, but in the quantum case this is potentially a very
thing to do. Reading a stream of quantum letters means
general, disturbing the message all the time. Therefore,
length information is generally not available. Furthermo
prefix code words are, in general, longer than nonprefix c
words, because there are less prefix code words of a g
maximal length than possible code words. Hence, by us
prefix code words, qubits are wasted to encode length in
mation, which is unavailable anyway. We conclude that p
fix quantum codes are practically not very useful for lossl
coding.

B. A classical side channel

One could try to encode length information in a differe
quantum channel, as proposed by Braunsteinet al. @6# ~un-
necessarily they used prefix code words anyhow!. But that
does not fix the problem. Whatever one does, reading
length information about different components of a variab
length code word equals a length measurement and h
means disturbing the message. There should besomeway to
make sure where the code words have to be separated,
the message cannot be decoded at all. Here is an idea: U
classical side channelto inform the receiver where the cod
words have to be separated. This has two significant adv
tages:~i! If the length information equals the base length
the code word, the message is not disturbed and can be
lessly transmitted and decoded;~ii ! abandoning the prefix
condition, shorter code words can be chosen, such that
quantum channel is used with higher efficiency.

Let us give an example~see Fig. 5!. Alice wants to send a
messageux1&, which is encoded into the code worduc(x1)&
5(1/))(u1001101&1u1101&1u10&). The base length of
uc(x1)& is 7, so she submits that information through t
classical channel. Dependent on which realization
variable-length messages Alice and Bob have agreed to
Alice sends enough qubits~at least 7! representing the code
word uc(x1)& through the quantum channel. The next co
word is uc(x2)&5(1/))(u11&1u1011&1u11101&). The base
length of uc(x2)& is 5, so Alice sends the length informatio
‘‘5’’ through the classical channel and enough qubits~at least
5! representing the code worduc(x2)& through the quantum
channel. She proceeds like that with all following messag
On Bob’s side, there is a continuous stream of qubits com
through the quantum channel and a continuous stream
classical bits coming through the classical channel. Bob
read out the classical length information, separate the qu
into the specified blocks and apply the decoder to each c
word. In this way, Bob obtains all source messages with
loss of information.

FIG. 5. Storing length information in a classical side channel
3-9
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C. How much compression?

1. Lower bound

How much compression can maximally be achieved
using the method sketched in Sec. VI B? Say Alice has
ensemble S5$p,X % of m5uX u messages, uxi&PX, i
51, . . . ,m that she wants to encode byk-ary code words.
The source spaceV is spanned by the elements ofX, thus
VªSpan(X) and has dimensiondªdimV. Alice fixes a ba-
sis setBV of d orthonormal vectorsuv i&, i 51, . . . ,d. The
ensembleS corresponds to the message matrix

sª(
i 51

m

p~xi !uxi&^xi u5 (
i , j 51

d

s i j uv i&^v j u, ~66!

with s i jª^v i usuv j& and ( i 51
d s i i 51. The source message

are encoded by the isometric mapc: V→H% , defined by

uv i&°
c

uc~v i !&, i 51, . . . ,d. ~67!

The code space isk-ary, which means thatk5dimH. Let
each code worduc(v i)& have determinate lengthLc(v i)
such that the code-length operatorL̂c on V is orthogonal in
the basisBV and reads

L̂c5(
i 51

d

Lc~v i !uv i&^v i u. ~68!

The code wordsuc(v i)& are not necessarily prefix, becau
Alice can encode the length information about each c
word in a classical side channel. In order for the transmiss
to be lossless, she has to transmit the base lengthLI c(xi) of
each code word corresponding to the source messageuxi&.
The base length is at least as long as the expected
length of the code word, hence

LI c~xi !>^xi uL̂cuxi&. ~69!

Now we are interested in the average base length, since
determines the compression rate. The average base len
bounded from below by

LI c~S!5(
i 51

m

p~xi !LI c~xi ! ~70!

>(
i 51

m

p~xi !^xi uL̂cuxi&5Tr$sL̂c% ~71!

5(
i 51

m

s i i Lc~v i !. ~72!

Now we perform the following trick. As already stated, no
prefix code words can be chosen shorter than~or at most as
long as! prefix code words. Consider an arbitrary prefix co
c8, then

Lc8~v i !5Lc~v i !1 l c8~v i !>Lc~v i !, ~73!
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wherel c8(v i)>0 is the length difference between the pre
and the nonprefix code word foruv i&. Prefix codes, just like
all uniquely decodable symbol codes, have to fulfill the Kr
inequality @11,12#

(
i 51

d

k2Lc8~v i !<1. ~74!

Since the code-length operatorL̂c8 is orthogonal in the basis
BV , we can express the above condition by the quant
Kraft inequality

TrV$k2L̂c8%<1, ~75!

whereL̂c8ªL̂c1 l̂ c8 and

l̂ c8ª(
i 51

d

l c8~v i !uv i&^v i u. ~76!

The quantum Kraft inequality was derived for the first tim
by Schumacher and Westmoreland@8#. Here, the quantum
Kraft inequality requires that

Qª(
i 51

d

k2Lc~v i !2 l c8~v i !<1. ~77!

Now define implicit probabilities

q~v i !ª
1

Q
k2Lc~v i !2 l c8~v i !, ~78!

which can be rewritten as

Lc~v i !52 logk q~v i !2 logk Q2 l 8~v i !. ~79!

Summing overs i i yields

(
i 51

d

s i i Lc~v i !52(
i 51

d

s i i logk q~v i !2 logk Q2 l 8, ~80!

where

l 8ª(
i 51

d

s i i l c8~v i !5Tr$s l̂ c8% ~81!

is the average additional length. The inequality~72! can now
be expressed by

LI c~S!>2(
i 51

d

s i i logk q~v i !2 logk Q2 l 8. ~82!

Gibbs’ inequality implies that

LI c~S!>2(
i 51

d

s i i logk s i i 2 logk Q2 l 8. ~83!

The von Neumann entropy of the message matrixs cannot
decrease by a nonselective projective measurement in
basisBV , hence
3-10
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S~s!<S~s8!, ~84!

where

s8ª(
i 51

d

uv i&^v i usuv i&^v i u5(
i 51

d

s i i uv i&^v i u. ~85!

Since

S~s8!52(
i 51

d

s i i log2 s i i 52 log2 k(
i 51

d

s i i logk s i i ,

~86!

relation ~84! states that

2(
i 51

d

s i i logk s i i >
1

log2 k
S~s!. ~87!

Using Eq.~87! together with the Kraft inequalityQ<1, re-
lation ~83! transforms into

log2~k!$LI c~S!1 l 8%>S~s!2 logk Q>S~s!. ~88!

Recalling the definition of the code information~56! and
defining the length information that can be drawn into t
classical side channel by

I 8ª log2~k!l 8, ~89!

we finally arrive at the lower-bound relation

IIc~S!1I 8>S~s!. ~90!

If c is a uniquely decodable symbol code, e.g., a prefix co
we haveI 850. Inequality~90! states that the ensembleS can
be losslessly compressed not belowS(s) qubits. However,
by drawing length information into a classical side chann
it is possible to reduce the average number of qubits pas
through the quantum channelbelow the von Neumann en
tropy. We will give an example later on where this rea
happens.

2. Upper bound

Let us look for an upper bound for the compression t
can be achieved. In order to encode every source vectorV
by a k-ary code, we need at most

LI c~x!< d logk~dimV!e< logk~dimV!11 ~91!

digits. Using loga x5logab•logb x, we have

IIc~S!< log2~dimV!1 log2 k. ~92!

This upper bound is neither very tight nor is it related to t
von Neumann entropy. However, our efforts to find a mo
interesting upper bound were not successful. It remains
open question to find such a bound and hence a quan
mechanical generalization to Shannon’s theorem@15#,

H~S!<I c~S!<H~S!1 log2 k, ~93!
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which looks more familiar fork52, such that log2 k51 and
I c(S)5Lc(S).

D. Quantum Morse codes

One way to avoid a classical side channel is to leav
pausebetween the quantum code words, which equals
additional orthogonal ‘‘comma state.’’ Such a code is a qu
tum analog to the Morse code, where the code words are
separated by a pause, in order to avoid prefix code words
course, the code wordsplus the pause are prefix. Due to th
close analogy one could speak of quantum Morse cod
Here, the informationI 8 needed for the comma state is ind
pendent of the statistics, because the comma state mu
sent after each letter code word, no matter which one
contrast to that,I 8 is, in general, dependent on the statistic
If one transmits the length of each code word through
classical side channel, one can use a Huffman code to
shorter code words for more frequent length values. Thi
done in the following compression scheme.

VII. A LOSSLESS COMPRESSION SCHEME

Let us construct an explicit coding scheme that reali
lossless quantum compression.

A. Preparations

Alice and Bob have a quantum computer on both sides
the channel. They both allocate a register ofr k-ary quantum
digits, whose physical space is given byR5D^ r with D
5Ck. They agree to use neutral-prefix code words~see Sec.
III B 3 ! to implement variable-length coding, hence the m
sage space isNr of dimensionkr and is physically realized
by the operational spaceÑr5R. Alice is preparing source
messagesuxi&, i 51, . . . ,m from a setX. The space spanne
by these messages is the source spaceV5Span(X ). Alice
prepares each messageux&PX with probability p(x), which
gives the ensembleSª$p,X %. She encodes the source me
sages into variable-length code wordsuc(x)&PNr of maxi-
mal lengthr. If the dimension ofV is given bydªdimV,
then the length of the register must fulfill

r> d logk de. ~94!

If the setX is linearly dependent, Alice creates a setX̃5X,
removes the most probable message fromX̃ and puts it into
a list M . Next, she removes again the most probable mess
from X̃, appends it to the listM and checks if the list is now
linearly dependent. If so, she removes the last element f
M again. Then she proceeds with removing the next proba
message fromX̂ and appending it toM , checking for linear
dependence, and so on. In the end she obtains a list

M5~ ux1&,...,uxd&) ~95!

of linearly independent source messages fromX, ordered by
decreasing probability, such thatp(xi)>p(xj ) for i< j . She
performs a Gram-Schmidt orthonormalization on the listM ,
giving a list B of orthornormal vectorsuv i&, defined by
3-11
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uv1&ªux1&, ~96!

uv i&ªNiF 12(
j 51

i 21

uv j&^v j uG uxi&, ~97!

with i 52, . . . ,d and suitable normalization constantsNi .
The elements ofB form an orthonormal basisBV for the
source spaceV. Now she assigns code words

uc~v i !&ªuZk
r ~ i 21!&, i 51, . . . ,d ~98!

of increasing significant length

Lc~v i !5 d logk~ i !e. ~99!

Note that the first code word is the empty messageuB&
5uZk

r (0)&5u0¯0&, which does not have to be sent throu
the quantum channel at all. Instead, nothing is sent thro
the quantum channel and a signal representing ‘‘length 0
sent through the classical channel. Alice implements the
coder

Cª(
i 51

d

uc~v i !&^v i u ~100!

by a gate array onR. Then she calculates the base lengths
the code words

LI c~x!5 max
i 51,...,d

$Lc~v i !uu^v i ux&u2.0% ~101!

for every messageux&PX and writes them into a table
The classical information is compressed using Huffm
coding of the set of distinct base-length valu
L5$Lc(v1),...,Lc(vd)%. Alice constructs the Huffman cod
word to each lengthl PL appearing with probability

pl5 (
x:LI c~x!5 l

p~x!, ~102!

and writes them into a table. At last, Alice builds a gate ar
realizing the decoderD5C21 and gives it to Bob. For the
classical channel she hands the table with the Huffman c
words for the distinct lengths to Bob. Now everything
prepared and the communication can begin.

B. Communication protocol

Alice prepares the messageux&PX and applies the en
coder C to obtain uc(x)&. She looks up the correspondin
code base lengthLc(x) in the table. IfLc(x),r , she trun-
cates the message toLc(x) digits by removingr 2Lc(x)
leading digits. She sends theLc(x) digits through the quan
tum channel and the length informationLc(x) through the
classical channel. Then she proceeds with the next mess

For any messageux& Alice sends, Bob receives the leng
information Lc(x) through the classical channel andLc(x)
quantum digits through the quantum channel. He addr
2Lc(x) digits in the stateu0& at the beginning of the receive
code word. He then applies the decoderD and obtains the
03231
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original messageux& with perfect fidelity. Note that Alice can
send any message from the source message spaceV, the
protocol will ensure a lossless communication of the m
sage. For such arbitrary messages, however, compres
will, in general, not be achieved, since the protocol is on
adapted to the particular ensembleS. Also, Bob can as well
store all received quantum digits on his quantum hard d
and the received length information on his classical h
disk, and go to bed. The next day, he can scan the clas
hard disk for length information and separate and decode
corresponding code words on the quantum hard disk.
protocol works as well for online communication as for da
storage.

C. An explicit example

Alice and Bob want to communicate vectors of a fou
dimensional Hilbert spaceV5Span$u0&,u1&,u2&,u3&%, where
we use the row notation in the following. Alice decides
use the~linearly dependent! source message set

X5$ua&,ub&,uc&,ud&,ue&,u f &,ug&,uh&,u i &,u j &%, ~103!

whose elements are given by

ua&5
1

2
1,1,1,1, ~104!

ub&5
1

A5
~1,2,1,1!, ~105!

uc&5
1

A6
~1,3,1,1!, ~106!

ud&5
1

A7
~1,4,1,1!, ~107!

ue&5
1

&
~1,0,1,0!, ~108!

u f &5
1

)
~2,0,1,0!, ~109!

ug&5
1

2
~3,0,1,0!, ~110!

uh&5
1

&
~0,1,0,1!, ~111!

u i &5
1

)
~0,2,0,1!, ~112!

u j &5
1

2
~0,3,0,1! ~113!

and which are used with the probabilities
3-12
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p~a!50.6, p~b!5p~c!5p~d!50.1, ~114!

p~e!5¯5p~ j !5
0.3

3
. ~115!

The Shannon entropy of the ensembleS5$p,X % is

H~S!52.029 45, ~116!

and the classical raw information~45! reads

I 0~X!5 log2uX u53.321 93, ~117!

which gives an optimal classical compression rate ofR
5H/I 050.610 924. If Bob knows Alice’s list of possibl
messages, then this rate could in the optimal case
achieved by pure classical communication. However, B
does not know the list and classical communication is not
task here. The message matrixs5SxPX p(x)ux&^xu given by

s5S 0.214 549 0.224 624 0.197 882 0.177 882

0.224 624 0.403 02 0.224 624 0.244 624

0.197 882 0.224 624 0.191 216 0.177 882

0.177 882 0.244 624 0.177 882 0.191 216

D
~118!

has von Neumann entropy

S~s!50.571 241. ~119!

The orthogonalization procedure yields the basisBV
5$uv i&% with

uv1&5~0.5,0.5,0.5,0.5!, ~120!

uv2&5~20.288 675,0.866 025,20.288 675,20.288 675!,
~121!

uv3&5~0.408 248,0,0.408 248,20.816 497!, ~122!

uv4&5~0.707 107,0,20.707 107,0!. ~123!

Let the quantum channel be binary, i.e., letk52. The code
words are constructed alonguc(v i)&5uZ2( i 21)&, yielding
the variable-length states

uc~v1!&5uB&, ~124!

uc~v2!&5u1&, ~125!

uc~v3!&5u10&, ~126!

uc~v4!&5u11& ~127!

that span the code spaceC. In a neutral-prefix code they ar
realized by the two-qubit states

uc̃~v1!&5u00&, ~128!

uc̃~v2!&5u01&, ~129!
03231
be
b
e

uc̃~v3!&5u10&, ~130!

uc̃~v4!&5u11& ~131!

that span the operational code spaceC̃, which is a subspace
of the physical spaceR5C2

^ C2. Alice realizes the encode
C:V→C̃, C5( i uc̄(v i)&^v i u given by

C

5S 0.5 0.5 0.5 0.5

20.288 675 0.866 025 20.288 675 20.288 675

0.408 248 0 0.408 248 20.816 497

0.707 107 0 20.707 107 0

D
~132!

and the decoderD5C21 given by

D5S 0.5 0.408 248 20.288 675 0.707 107

0.5 0 0.866 025 0

0.5 0.408 248 20.288 675 20.707 107

0.5 20.816 497 20.288 675 0

D
~133!

by gate arrays and gives the decoder to Bob. The enco
alphabet is obtained byuc(x)&5Cux&. Alice writes the base
lengths of the code words

LI c~a!50, LI c~b!5LI c~c!5LI c~d!51, ~134!

LI c~e!5¯5LI c~ j !52 ~135!

in a table and calculates the corresponding probabilities

p050.6, p150.3, p250.1. ~136!

She constructs Huffman code words for each length

c051, c1501, c2500, ~137!

such that the average bit length is

L85(
l 50

2

pl l 51.4, ~138!

which is the optimal value next to the Shannon entropy
the length ensemble,

I 852(
l 50

2

pl log2 pl51.295 46. ~139!

Alice hands the table with the Huffman code words to B
and tells him that he must listen to the classical chann
decode the arriving Huffman code words into numbers,
ceive packages of qubits, whose size corresponds to the
coded numbers, and add to each package enough lea
qubits in the stateu0& to end up with two qubits. Then he
must apply the decoderD to each extended package and
will get Alice’s original messages.
3-13
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Say, Alice wants to send the messageua&. She preparesua&
and applies the encoderC to obtain the code wordu00&. She
looks up the corresponding base lengthLI c(a)50 and trun-
cates the code word toLI c(a)50 qubits. In this case there ar
no qubits left at all, so she sends nothing through the qu
tum channel and the Huffman code word for ‘‘length 0
through the classical channel. Bob receives the class
length information ‘‘0’’ and knows that nothing come
through the quantum channel and that in this case he ha
prepare two qubits in the stateu00&. He applies the decoderD
and obtains Alice’s original messageua&. In order to send
messageub&, Alice truncates the code word toLc(b)51 qu-
bit and obtains (1/&)(u0&1u1&). She sends the qub
through the quantum channel together with the classical
nal ‘‘length 1.’’ Bob receives the length message and kno
that he has to take the next qubit from the quantum chan
and that he has to add one leading qubit in the stateu0&. He
applies D and obtains Alice’s original messageub&. The
whole procedure works instantaneously and without loss
information. We have implemented the above example b
MATHEMATICA ™ program, and numerical simulations sho
that the procedure works fine and the specified compres
of quantum data is achieved.~You can find the program an
the package at@16#!.

Let us look for the compression that has been achieve
~a! The quantum code information, i.e., the average nu

ber of qubits being sent through the quantum channel,

IIc5 (
xPX

p~x!LI c~x!50.5, ~140!

falls below the von Neumann entropy

LI c,S50.571 241. ~141!

Such a behavior has already been suspected in Sec. VI
~b! The quantum raw information, i.e., the size of t

noncompressed messages, is given by

IIc,I 05 log2~dim V!52, ~142!

hence the compression rate on the quantum channel rea

Rc5
IIc

I 0
50.25. ~143!

In other words, the number of qubits passing through
quantum channel is reduced by 75%. Sending 100 mess
without compression requires 200 qubits. Using the co
pression scheme, Alice typically sends 50 qubits.

~c! The sum of both quantum and classical information

I tot5IIc1I 851.795 46, ~144!

is smaller than the Shannon entropy~116! of the original
ensembleS,

I tot,H52.029 45. ~145!
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Thus it is better to use the quantum-compression sch
than to simplytell Bob on the phone, which state he mu
prepare. As already suspected,I tot is still greater than the von
Neumann entropy~119!,

I tot.S50.571 241. ~146!

The classical part of the compression depends on the a
rithm. Only in the ideal case, the information can be co
pressed down to the Shannon entropy of the length ensem
given by I 8. Using the Huffman scheme, the average len
L851.4 represents the information that is effectively se
through the classical channel, such that the totaleffective
information is given by

I eff5IIc1L851.9. ~147!

~d! The total compression rate of both channels reads

Rtot5
IIc1I 8

I 0
50.897 731,1, ~148!

where it is assumed that the information on the class
channel can be compressed down to its Shannon entropI 8.
Using the Huffman scheme~as we have done in our ex
ample!, the information on the classical channel can only
compressed toL8.I 8, such that theeffectivetotal compres-
sion rate is given by

Reff5
IIc1L8

I 0
50.95,1. ~149!

Thus in any case there is an overall compression. For hig
dimensional source spaces~hence more letters!, the compres-
sion is expected to get better~provided the letter distribution
is not too uniform!. However, the numerical effort fo
higher-dimensional letter spaces increases very fast and
want to keep the example as simple as possible.

VIII. CONCLUDING REMARKS

We have developed a general framework for variab
length quantum messages and have defined an obser
measuring the quantum-information content of individu
states by the number of qubits needed to represent the
by a given code. We derived some basic statements a
lossless compression. In particular, we have demonstr
that a quantum message can only be compressed without
of information if the source message isa priori known to the
sender. On these grounds, we have worked out a lossless
instantaneous quantum data-compression protocol. One
object that there is no use in compressing quantum states
are alreadyknownto the sender, because then Alice could
well tell Bob classically which of the quantum states s
wants to communicate. However, such a pure classical c
munication would require Bob to have a list of possible m
sages Alice may send. Moreover, forarbitrary quantum mes-
sages from the source space, Alice would need infinit
many bits to communicate them through a classical chan
to Bob. In contrast to that, in our communication sche
3-14
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Alice can send arbitrary messages from the source mess
space, but she must know which message she is goin
send to get the base length. Bob needs only the decode
the user instructions for the classical channel, then he
reobtain Alice’s original messages with perfect fidelity. T
protocol can individually be adapted to a given message
semble such that compression is achieved for that ensem

IX. OPEN QUESTIONS

It would be satisfying to find anoptimal compressing
lossless quantum code with a tight upper bound related to
von Neumann entropy. This would represent a quantum a
log to Shannon’s relation~93!. There might be interesting
applications to quantum cryptography. By combining t
methods of quantum cryptography with the methods of lo
less compression, the efficiency of secure data transfer
, a
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possibly be increased. Furthermore, it would be interestin
see how the framework of variable-length messages app
to quantum computation, since the data stored in the reg
of a quantum computer could also be regarded as a varia
length quantum message. One could also think ab
variable-length quantum error-correcting codes. We ho
that the presented work stimulates some more discussion
theoretical research on variable-length quantum coding
its applications.
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