PHYSICAL REVIEW A, VOLUME 65, 032313
Lossless quantum data compression and variable-length coding
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In order to compress quantum messages without loss of information it is necessary to allow the length of the
encoded messages to vary. We develop a general framework for variable-length quantum messages in close
analogy to the classical case and show that lossless compression is only possible if the message to be com-
pressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below
by its von-Neumann entropy. We show that it is possible to reduce the number of gbits passing through a
guantum channel even below the von Neumann entropy by adding a classical side channel. We give an explicit
communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a
simple example. This protocol can be used for both online quantum communication and storage of quantum
data.
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[. INTRODUCTION by an explicit example. Let us start with reviewing the fun-
damental notion of @ode[17].
Any physical system can be considered as a carrier of

information because the state of that system could, in prin- Il. CODES
ciple, have been intentionally manipulated to represent a . ]
messageThe state of a system composed from distinguish-  Basically, when you have a set of things and you want to
able subsystems forms a message of a certain length, whegd/e them a name, then this is a coding task. There is a code
each subsystem represents one letter. In quantum informatidf" bank accounts, telephone devices, and inhabitants of a
theory, the systems are quantum and the system states repf@untry, there even is a code for living beings: the genetic
sent quantum messages. A message is compressed if it G9de. Language is a code for thoughts, which are in turn
mapped to a shorter message and if this map is reversiblé_Pdes for abstrapt ideas or concrete objeqts of human expe-
then no information has been lost. Schumacher was the fir§tence. A code givesneaningto a message, it relates objects
to present a method for quantum data compresgignit is O their descrlptlon_. Objects are encoded into messages com-
based on the concept of encoding onlyyaical subspace posed from a ba_\S|c alpha_bet. The_number of letters that is
spanned by the typical sequences emitted by a memoryle§§99_ded to qlescnbe a p_artlcular objegt is a good measure of
source. Since then there have been further investigatiorf§€ information contengiven to the object by the code. This
[2—8], but all the considered compression methods are onljf/s the key to data compression, which we will study in the
faithful in the limit of large block lengths. Now we ask: Is it following with a focus on quantum codes.
possible to compress quantum messages withoytoss of ~ Classically, acodeis a mapc:Q0—M from a set of ob-
information? To answer this question some basic concepts ¢€Cts. (1, to a set of messagesl (see Fig. 1. It is the mes-
quantum information theory have to be revisited. In particu-S2ges that can be communicated and not the objects them-
lar, the requirement of a fixed block length for quantum mesS€lves, so communication is always based on a code.
sages has to be abandoned and must be replaced by a mdfgssagesor strings are sequences of letters taken from an
general theory of quantum messages, which enables a fle_lphabet.A and are denoted by":=x;--'X,, x;e A. The
ible and easy treatment of quantum codes involving code
words of variable length. At first, we develop a general message set A
framework in close analogy to the classical case, based on
previous work by one of ug9,10]. A different approach to
variable-length quantum message@ppearing as a special
case in our formalistnhas been worked out by Braunstein
et al. [6] and Schumacher and WestmoreldB8fl We define
a measure of information quantifying the effort of communi-
cation. Compression then means reducing this effort. We ar-
gue that prefix codes are practically not very useful for quan-
tum coding and suggest a different method involving an
additional classical side channel. With the help of this chan-
nel, certain problems of instantaneous quantum communica- F|G. 1. A classical code is a map from a set of source objects
tion can be avoided and, moreover, the quantum channel cafto a set of code words composed from an alphabet. An ensemble
be used with higher efficiency. At last, we present a commuof source objects is mapped to an ensemble of code words. For
nication protocol that enables lossless and instantaneowariable-length codes, the length of the code words is allowed to
guantum data compression and we demonstrate its efficienaary.

alphabet A

source set )
code ¢
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empty message denoted byk’:=CJ. All messages of length product message$x"):=|x;)®---®|x,) that form the set
n form the set Q":={|x"||x;)e @} and span the block spacé{®"
:=Span@"), giving
AM:={x"|x; € A} (1) "
HE"= QR H=H®: - @H. (3)

and the empty message forms the 48t={}. All strings =t

of finite length form the set of general messages over thdhe space{®" is the quantum analog to the sdf of clas-
alphabetA4, sical block messages given by Ed), and contains arbitrary

superpositions of product messages, which are cadled
o tangled messages. Because superposition and entanglement
At:= U A, (2)  have no classical interpretation, quantum information is truly
n=0 different from classical information. The empty message, de-
noted by|x%)=|), forms the seQ’={|@)} and spans the
Every subsetMC A" is a message seNow we can pre- one-dimensio\r)al spackl*%:=Span@°). Elements ofH""
cisely define a classicitary codeas a mag:Q— A" with for someneN are calledblock messages. The set of+ all
k:=|.A|. The setC=c(Q) is thecode bookand each member prOdol;’Ct Tessages composed framh is deno'Fed byQ
of C is acode word Being a subset oft*, a code book is = Un-0Q"- Now the general message spa¢é induced by

also a message s@tist like a nightingale is also a birdlf ~ /f ¢an be defined b§{®:=Span@Q™), giving

Cc A" for someneN, thenc is called ablock code other- w

wise avariable-length codeThere is another important clas- HP=EP H"=H* o HOH?® . 4
sification: losslessand lossy codes. A code is lossledsr n=0

uniquely decodabler nonsingulay, if there are distinct code

words for distinct objects, i.e.¥ x, yeQ:x#y=c(x) The space{® is the quantum analog to the sdf of gen-
+c(y). In case of a lossy code, some objects are mapped @ral classical messages given by E2). ¢ is a separable
the same encoding. Lossy codes are used when it is motdilbert space with the countable bagls . The spacé{® is
important to reduce the size of the message than to ensufémilar to the Fock space in many-particle theory, except that
the correct decodinga fine example is theips code for the particles are letters here, which must be distinguishable,
sound data For a given probability distribution o), lossy ~ SO there is no symmetrization or antisymmetrization. The
codes can also be useful if tfieelity F, i.e., the probability —general message space contains also superpositions of mes-
of correct decoding, is close to 1. For lossless codes th&ages of distinct length, for example,

fidelity is exactly 1. In this paper, we only consider lossless

codes. 1 ®

A. Th | . .
© general message space if |0), |1) e H. Any block spaceH®" is a subspace of{®

The transition from classical to quantum information isand is orthogonal to any other block spa&&™ with n
simple. We just allow the elements of a source@3éb be in £ m. Elements with components of distinct length are called
superposition. Precisely, we interpr@t as an orthonormal variable-length messagesor indeterminate-length mes-
basis for a Hilbert spac® and consider every normalized sage$ to distinguish them from block messages. Any sub-

vector ofV as a valid object. TheW is thelinear spanof () spa_ce./\/lc’]—(éB is called amessage spacend its elements
and we write)= Span@) with dim V= |Q| The same goes gre guantum messages
for the messages. We interpret a messagd/isas an ortho-

nprmal basis for a message spagdd =SpanM) With B. Length operator
dim M=|M| and consider each element #ft as a valid _ e _
message. The mapV— M then represents guantum code Define the length operator iIR® measuring the length of

with the spaceC=c(V) being thecode spaceand the ele- & Message as
ments ofC being the code words. In order to preserve linear- o
ity, the code must be a linear map and in order to preserve |:==E nll (6)
. . . n:»
norm, the code must be an isometric map. In the literature, n=0
often the code spacerather than the mapis called a code
[this is a bit like callingf(x) a functiorl. However, by saying WhereIl, is the projector on the block spad¢®"CH®,
“code” we will refer to the mapc here, in full analogy to the ~given by
classical case. Now let us find the general message space
corresponding to the classical general messagedsetin- M= > [x"(x". 7
terpret the letters of guantum alphabe® as an orthonormal xeQn
basis for aletter spaceH:=Span@). A letter spaceH with .
k=dimH=|Q| is called ak-ary space Quantum letters are As L is a quantum observable, the length of a messape
composed into messages by tensor multiplication, givinge H® is generally not sharply defined. Rather, the measure-
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ment of L generally disturbs the message by projecting it on message space H®
a block space of the corresponding length. The expected
length of a messaglx) e H® is given by source space V

code space C

[01001)
Z(111) +110) +[0))
25(1101) + [111))

2(01) +11))

L(x):=(x|L|x). (8

However, in’H® there are also messages whose expected
length is infinite. Classical analogs are probability distribu-
tions with nonexisting moments, e.g., the Lorentz distribu-

tion. Block messages are eigenvectorsiofthat is, I:|x>
=n|x) for all |x) e H®".

The gengrahzatmn to statistical ensemble; is straightfor- 5 5 A quantum code is a linear isometric map from a source
ward. Consider an ensemble={p,A} of variable-length  nace of quantum objects into a code space of code words com-
messagefx) e XCH* occurring with probabilityp(x) >0V posed from a quantum alphabet. Superpositions of source objects
Ix) e X such that,. v p(x)=1. Then there is a density op- are encoded into superpositions of code words. An ensemble of
erator source objects is mapped to an ensemble of code words. For a

variable-length quantum code, the length of the code words is al-
lowed to vary. Superpositions of code words of distinct length lead

‘T_;E:X POOIX)(X], ©) to code words of indeterminate length. Thase lengthof a code
word is defined as the length of the longest component.

called a statistical quantum messageepresenting the en- .
sembleS. The set of all such density operators is denoted byt IS important to note that the base length is not an observ-

S(H®). Vice versa, however, for a given density operatorable- It is only available if the message is a priori known.

o e S(H?) there is, in general, a noncountable set of corre-

sponding ensembles. In terms of information theergan- D. Quantum code

not be regarded as a lossless code for the ense¥hbiibere Now we can precisely definelaary quantum codéo be

is more information in the ensemble than in the correspondy jinear isometric map: V—H?, whereV is a Hilbert space

ing density operator. As we will see, this additiomapriori  and 7/® is the general message space induced by a letter
knowledge is in fact needed to make lossless compressioghacet of dimensionk. The image of\ underc is the code

possible. i spaceC=c(V) (see Fig. 2 Being a quantum analog to the
The expected length of an ensemBleor of the corre-  code hook( is the space of valid code words. The caie
sponding statistical message= S(H®) is defined as uniquely specified by the transformation rule
L(3)=L(0):=Tr{ol}=> p(x)L(x). (10) ‘
Xe X |w>H|y>' (14)

where|w) are elements of a fixed orthonormal baSisof V
C. Base length and|y)=|c(w)) are elements of an orthonormal basjsof
C. Since c¢ is an isometric map, i.e. (olo')

Eq. (8), will, in general, not be the outcome of a length :<C(‘”)|,C(_“’/)>' this implies that/c(w))# |c(w')) forgll
measurement. Every length measurement results in one gp)#|@’) inV, socis alossless code with an inverse™.
the length eigenvalues supported Jsy and generally dis- The quantum code can be represented by the isometric
turbs the message. If there is a maximum value resultin@Perator

from a length measurement of a stat¢, namely, the length

The expected length of a quantum messpge given by

of the longest component ¢k), then let us call it thébase C:= 2 [c(w) ) w|= 2 BN EY] (15)
lengthof |x), defined as weBy veBe
L(x):=max{n e N|(x|II,|x)>0}. (11)  called the encoder af Sincec is lossless, there is an inverse
) operator

For example, the quantum message

D:=C'= 2 |o)(c(w)|= > [cT )y (16
1 yeBy veBe
|x)=—(|abra + |cadabr) (12
V2 called thedecoder In practice, the source spadeand the
code spac€ are often subspaces of one and the same physi-
has base length 7. Since the base length of a state is the siggl spaceR. SinceC is an isometric operator betwe&hand

of its longest component, we have C, there is anonuniqué unitary extension |J on R with

L(x)=L(x). (13) Uc/x)=C|x), V |x)eVCR, (17)
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ULlyy=CYy), V |y)eCCR. (18) register
However, usingC and distinguishing betweel and C is [o]oJofofo]1]0[7]3]
more convenient and more general. Codes WitiH®" for redundant digits | TI significant digits
somen e N are called block codes, otherwise variable-length start digit

codes.

FIG. 3. Realizing a general variable-length message.

IIl. REALIZING VARIABLE-LENGTH MESSAGES . .-
register. In the cas&=2 the quantum digits arquantum

Variable-length messages could, in principle, directly bebits, in short “qubits.” The physical spacR represents the
realized by a quantum system whose particle number is napace of all physical states of the register, while the message
conserved, for instance, an electromagnetic field. Each phapaceH®" represents the space of valid code words that can
ton may carry letter information by its field mode, while the be held by the register and it is isomorphic to a subspace
number of photons may represent the length of the messagg®" of the physical spac®. Let dim H=Kk, then you must
The photons can be ordered either using their spacetime p@hooses such that
sition (e.g., single photons running through a wio¥ some

internal state with many degrees of freedéeng., a photon dim(H;"")<dim(D**), (21
with frequencyw, can be defined to “follow” a photon with )

frequencyw;<w,). The Hilbert space representing such a n kK'fi-1 R

system of distinguishable particles with nonconserved par- :20 k :ﬁgk ' (22)
ticle number simply is the message spd¢é. In case we

have only a system at hand where the number of particles is =s=r+1. (23
conserved, we can also realize variable-length messages by

embedding them into block spaces. Thus you need a register of at least{1) digits to realize

It is a good idea to distinguish between the messagéhe message spag¢”’. Choose the smallest possible regis-
space, which is a purely abstract space, from its physicaer spac_eR=D®(r+_1_). Since at most digits are carrying
realization. Let us call the physical realization of a messagéformation, one digit can be used to indicate either the be-
spaceM the operational spacét. BetweenM and Aq, ~ 9inning or the end of the message. Now you can conve-
there is an isometric map. so dii=dim A4, This is ex- niently usek-ary representations of natural numbeas code

~ P. ) [ words. Each natural numbéehas a uniqué-ary representa-
pres;ed by\i= M. The operational spacet |s_the space of  +ign Z,(i). For instanceZ,(3)=11 andZ4(243)=E3. Al
physical states of a s_ystem repres_entmg valid code words qgary representations havenautral prefix“0” that can pre-
M. Often the operational space is a subspace of the tot@lege the representation without changing its value, e.g.,
space of all physical states of the system. Denoting the totg}n0011=11. For a natural number>0, definez(i) as the
physical space b we have n-extendeck-ary representation dGfby

M=MCR. (19)
Zi(i)=0---0Z, (i), O=isk"—1. (24
N
A. Bounded message spaces n

The general message spak€’ is the “mother” of all
message spaces induced by the letter sgdcét contains  For exampleZS(S)zOOOOll ancZ?6(243)= 0OO0CES. Letus
just abouteveryquantum message that can be composed uddefine that the message starts after the first appearance of
ing letters fromH and the laws of quantum mechanics. How- “1,” e.g., 00010254@=02540. Now define orthonormal vec-
ever, it is an abstract space, i.e., independent from a particters
lar physical implementation. It would be good to know if y "
such a space can also physically be realized. It is clear that if |ei>‘:|wlzk(’)> eR, (29
you have a finite system you can only realizefiaite- r—n
dimensional subspacef the general message space, whose
dimension is infinite. So let us start with the physical real-yhere n>0 and 0<i<k"—1. The n digits of Z0(i) are

ization of ther-bounded message space called significant digits The empty message corresponds to
r the unit vector
HEBF = @ H@n’ (20)

=0 | D) +=|eg):=[0---01). (26)

Ivaiously, |y has no significant digits. Next, define ortho-

containing all superpositions of messages of maximal lengt :
normal basis sets

r.
: — XS H ~
Say you haye a phys!ca}l spage=D reprgsent!ng a B”=={|83).---,|8En_1)}, o<n<r, 27)
register (see Fig. 3 consisting ofs systems with dimD
=k. Each subspac® represents onguantum digitin the  which span the operational block spaces
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HE"=SpariB"). (28)

Note thatH®" is truly different from+®", becausé{*" has

dimensionk’ "1, while H®" has dimensiok”. Next, define
an orthonormal basis

r
Bt:=UB" (29
n=0
and construct the operational spadé'C R as
H®":=SpariB). (30)

Altogether, the physical spade=D®{*1) is the space of all

PHYSICAL REVIEW 85 032313

B. Realizing more message spaces

A code is a mag:V—H?® from source states W to code
words in H®. The spac&C=c()) of all code words is the
code space and as a subspace of the general message space
H® it is just a special message space. In order to implement
a particular code, it is, in practice, sufficient to realize only
the corresponding code spacéy a physical system. Let us
realize some important code spaces now. However, we will
not discuss the very important classesfor-correctingcode
spaces here, since this would go beyond the scope of this
paper.

1. Block spaces

An important message space is the block spate',
which contains messages of fixed lengttBlock spaces are

physical states of the register, while the operational spacge message spaces of standard quantum information theory.
H®'CR is the space of those register states that represeffthey can directly be realized by a regist®="H®" of n
valid code words, and it is isomorphic to the abstract mesdigits, e.g.,n two-level systems representing one qubit each.

sage spaceé{®".

A general message is represented by the vector
kN1
iE Xn,i|ein>

|X>:nzo =0

(31)

with !, _ ;=K' 2|x, /2= 1. The length operator introduced in
Sec. Il B is here of the form

r

= ZO nll,, (32)

because there are at mastigits to constitute a message.
Now we need to know how the projectdrs, are constructed

in the operational spac®". For a register state containing

a message of sharply defined length, the length eigenvalue

is given by thenumber of significant digitén that register,

Llel)s=nlef), (33
for O<i<k"—1. Each projector is then defined by
kN—1
Mye= 2, [ef)e] (34

and projects onto the spa@¢®"CR. Note that thephysical

2. Prefix spaces

Another interesting message space is the space of prefix
code words of maximal length Such a space contains only
superpositions of prefix code words. A set of code words is
prefix (or prefix-freg, if no code word is the prefix of another
code word. For example, the d8§={0,10,110,111is a set
of binary prefix code words of maximal length 3. Prefix code
words have one significant advantage: Prefix code words are
instantaneousthat is, sequences of prefix code words do not
need a word separator. The separator can be added while
reading the sequence from left to right. A sequence fRyM
can be separated as

110111010116~110,111,0,10,110. (35
However, there is also a drawback: Prefix code words are, in
general, not as short as possible. This is a consequence of the
fact that there are, in general, less prefix code words than
possible code words. For example, if you want to encode
four different objects, you can use the prefix &at above
with maximal length 3. If you renounce the prefix property
you can use the s¢0, 1, 01, 10 with maximal length 2.

A prefix spaceP, of maximal lengthr is given by the
linear span of prefix code words of maximal lengthror the
set P3, the corresponding prefix space isP;
=Spard|0),/10),]110),|111)}. The prefix spaceP,CH®"
can physically be realized by a subspaeof the register

lengthof each message is always given by the fixed size ( SpaceR=D“" spanned by the prefix code words that have

+ 1) of the register. Only thsignificant lengtrof a message,

been extended by zeros at the end to fit them into the register.

i.e., the number of digits that constitute a message containefor example?;= Sparf|000),|100),|110),|111)}CD*% is a
in the register, is, in general, not sharply defined. Note furphysical realization of the prefix spa@y. The length op-
ther that the particular form of the length operator dependgrator measures the significant length of the code words,

on the realization of the message space.
In the limit of larger we have lim_.. H®"'="H®, but that

given by the length of the corresponding prefix code words.
Schumacher and Westmorelaf@] as well as Braunstein

space can no longer be embedded into a physical sRace et al. [6] used prefix spaces for their implementation of

=D**:=lim,_,.,, D®", since the latter is no longer a sepa-

rable Hilbert space. However, we can thinkras very large,
such that working irt{® just means working with a quantum
computer having enough memory.

variable-length quantum coding. However, we will show
later on that the significant advantage of prefix code words in
fact vanishes in the quantum case, whereas the disadvantage
remains.
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register Note that the so-defined length operator looks different from
that defined in Sec. IllA. Whild_ is always of the same
|° | 0 | °| 0 ' °| 1 |° | 7 l 3 | form (32), the projectord1, are different because the opera-
redundant digits | significant digits tional spaces are different.

The empty message can be defined by
FIG. 4. Realizing variable-length messages by neutral-prefix

code words. |&):=|Z}(0))=]0---0). (43)
3. Neutral-prefix space A =
general message i, is given by
A specific code space will be of interest, namely, the
space ofneutral-prefixcode words, which we define as fol- K'—1
lows. Thek-ary representation of a natural numbes de- IX)= > xi|ZK(i)). (44)
noted byZ,(i) (see Sec. lllA. The empty messagé is =0

represented by, (0)=J. Define an orthonormal basis , i ,
We have realized the neutral-prefix spa¢g by exhausting

B, :={|Z(0)],... Y Zi (K" — 1))} (36)  the entire register spade so that the quantum resources are
optimally used. In other words all messagesAf are as

of variable-length messages of maximal lengtiihe length ~ short as possible. Remember that the physical realization of

of each basis messag(i)) is given by H®" requires one additional digit to represent the beginning
or the end of a message. This digit does not contain any
|Z, ()| =[logy(i+1)], (377  message information, it is sort of wasted. For quantum cod-

ing, the additional digit may really count, since it would have
where[x] denotes the smallest inteder]x. These basis to be added each time a code word is stored or transmitted.

messages span thebounded neutral-prefix space Also the prefix space considered in Sec. 11l B 2 contains mes-
sages that are not as short as possible. You can encode a
N;:=Spari5,). (38)  spacey of dimension dinV=4 by a prefix space spanned by

{/000),|100,|110),| 111y} with corresponding lengthid, 2, 3,
Note that\, is not equal to the-bounded message space 3}, but then you need a register of three qubits. In contrast to
H®" as you can see by comparing the dimension Afim that, ) can be encoded by a neutral-prefix space spanned by
=k" with dim H®'=(k""1—1)/(k—1). A; is smaller than the basis{|00), |01), |10), |11)} with corresponding lengths

H®" because not all messages7df" are contained inV; . {0, 1, 2, 2, and you need a register of only two qubits. In the
For example, the messag@l) is in H®" but not in N,  operational spacé/;, the basis messages reveal their length
hence we have information by simply discarding leading zeros. That way,
or not all variable-length messages can be realized, but we save
N CH® (39 one register digit, soV; is a good candidate for variable-

) . o i length quantum coding.
Now we want to find a physical realization 4f, . This turns

out to be quite easysee Fig. 4. As already noted in Sec.
[l A, the k-ary representatiod, (i) of any natural numbeir IV. DATA COMPRESSION

can be extended by addlng Ieading zeros tortextended A. Classical data compression
k-ary representatio@(i):= 0---0Z,(i). Take a registeR

— D" of r digits with D=CX. Then the set Intuitively, compression is achieved when the effort to

store or communicate the code words is minimized. But how
can we precisely define that “effort?” The key idea is the
concept of aaw code One can always construct a code for

. . . Q by inventing a new letter for each single object. Such a
is an orthonormal basis for the register sp&ceAt the same classical raw code is a cogeQ — A for some alphabetl of

time it can be regarded as an orthonormal basis for the O"he same size af. The chinese writing is a fairly good

erational spaceV; representing the neutral-prefix spabg.  jjjystration of a raw code. There are up to 50000 letters

While the physical length of each code word is constantly representing a manifold of abstract and concrete things, e.g.,

the significant length is measured by the length operator the “noise of a running horse.” The length of the code is
minimized to 1, but the encoding and decoding machines
will need a large memory to remember all the letters. Obvi-

Br:={|Z(0)),....|Zi(k'= 1))} (40

.
L:=n20 nil,, (41) ously, a raw code does not compress at all, so it is a good
idea to set the effort of communication in relation to the raw
with mutually orthogonal projectors information content of) (similar to the notion irf14], p. 71

and interestingly similar also to the Boltzmann entropy of a
microcanonical ensembledefined by

M= > |ZONZH)]. (42)
HZe@l=n 1o(Q) =log,| Q. (45)
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1o(Q) represents the number of binary digitits) needed to ~ So the quantum raw informatidg corresponding to a space
enumerate the elements 6f This motivates the following V equals the fixed number of qubits needed to represent all
definition. Thecode information conterdf an individual ob- ~ states inV.

ject in an arbitrary sef for a givenk-ary codec: Q— A" is Now, for a givenk-ary codec:V—H® represented by an
defined as encoderC, the code information operator can be defined as
le(X):=loga(K)Lo(X),  Xxe£2, (46) To:=logy(k)L, (52)

where L¢(x) denotes the length of the code woo{x)  where L:=C™'LC is the length operator measuring the
e A" 1.(x) represents the number of bits needed to dejength of the code word for a source vectoninlf the code
scribe the objeck by the codec. For a raw code:—A, 5 asaqy on a qubit alphabdt, measures the number of

defmmon (46) gives the raw information content for_every qubits forming the code message, hence the measuring unit
objectxe Q). A few remarks about the code information are *_~ . o )
of I is “1 qubit.” In analogy to Eq.(47), we define the

as follows. . ; ; .

(1) The code information is defined for things, not for direct information operator acting on the message sp#te
strings. Of course, things may sometimes also be strings. ﬁ’y
s0, one can define thdirect informationof a stringx" over

an alphabet4 as I:=log,(k)L. (53

1(x"):=n logy| A (47) In short, the code information operator is defined in an arbi-
trary Hilbert spaceV and depends on a quantum code
(2) The code information,, is code dependent, reflecting c:V—H®, while the direct information operator is defined in
the philosophy that there is no information contained in ar® message spadé® without referring to a quantum code.
object without a code giving it some meaning. The codeFor a given code, the relation between both operators is
word “XWF$%&$ FggHZ (" may be a random sequence of . .
letters or may in a certain code represent the first digits of l.=C~tIC. (54
or in another code the beginning of a Mozart symphony. .
Now let there be a probability distributigmon Q. We can ~ Now one compresses a code word by removing redundant

define the code information of the ensemBle-{p,Q} as guantum digits. The number of quantum digits carrying in-
the average of Eq46), formation is given by the base length of the code word. All

other digits are redundant and can be removed without loss
of information. This motivates the definition of tlee@de in-

lo(2):=l0g, kXEQ P(X)Lc(X). (48 formationof a statelx) e V respecting a code by
Compression means reducing the code information of the 1e(X):= logy(K)L (%), (55)

ensemble. We can define the compression rate achieved by g, (x)=L(c(x)) is the base length of the code word
codec on the ensembl& by =° N

for |x). 1.(x) represents the number of qubits needed to de-
1(3) scribe the staté) by the codec. This value must_be distin-
RC(E);ZI"_Q, (49) guished from the expected number of qubits I.(x)
o(£) =(x|T¢|x), which is found by performing a length measure-
ment on the code word fojx). In the classical case, this
difference vanishes.
RU(S)<1, e, 1(3)<Io(Q). (50) Now one wants to encode an ensemble={p,X} of
states|x) e X that span the source spa¥e Each individual
_ messagéx) can be compressed tg(x) qubits, so the entire
B. Quantum data compression ensemble> will on the average be compressed to the code
Now that we have a classical definition of compressionjnformation
the next step is to translate these concepts to the quantum
case. Again, the key is the raw information, i.e., the size of a -
noncompressed message, so let us look for its quantum ana- Le(2)+=log, kxg POOL(X). (56)
log. The raw information(45) of a setQ is 1,(Q) =log,||
because we ned€l)| distinct letters to encode each element The compression rate can then be defined by
of () by a raw code. Interpretin@ as an orthonormal basis
for a Hilbert spaceV, the raw information ofV is also R (2):=1°(2) (57)
log,|(}|, because we still neeld}| distinguishable letters to ¢ (V)"
represent each element of the spic&ince| Q| =dimV, we
define the quantum raw information of a spateas A codec is compressive on the ensemBeif and only if

A codec:Q)—C is compressive ot if and only if

Io(V) ==logy(dim V). (51) R(3)<1, e, 1(3)<loV). (58)
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Note that these definitions only apply to lossless codes. Théor every |x) e Ha. So for every ensembl& ={p,A} of

lossy case is not considered here. messagesx) e Hy', we havel (2)=1.(x)=14(}), which
violates condition(58). By choosing mutually orthogonal
V. NO-GO THEOREMS source states, one can derive the analog statement for the

o ) classical case. The present paper would probkdgdi much
Of course, lossy compression is always possible. But le§horter when written in Chinese symbols. However the effort

us look for some statements about lossless codes. The firgt communication that is expressed by the code information
three of the following no-go theorems are also known in| would not be reduced.

classical information theory and are easily transferred to the
guantum case by general reasoning. However, we show them

by applying the tools developed in this paper. The last theo- C. No universal lossless compression

rem is genuinely quantum with no classical analog. We have seen that it is not possible to compress messages
without loss of information by using a block code or by
A. No lossless compression by block codes using a different letter space. Now we will see that no code

) ) can compresall messages without loss of information.
A code is a block code if all code words have the same Say you have a spack®" of block messages of fixed

length, else it is a variable-length code. Unfortunately, loss]engthr and you want to compress all of them by use of a
less block codes do not compress. Take an arbitrary er{iariable-length code: H®'—H®S with s<r. The code can
sembleX ={p, X} with XCV and any lossles&-ary block only be lossless if

codec:V—H®". Let B,, and 3, be orthonormal basis sets of
VY and H®", respectively. In order to find for every basis dimHE ' <dimH®s, (63
vector |w) € B, a code basis vectdc(w)) e B,, the code

must fulfill dim V<dim H*"=k". For every|x) e X, the cor-  But since dim{®'=k" and dimH®S=(ks"1-1)/(k—1),
responding code wordic(x)) has sharp length.(x)=n, we have

hence
kS+l_ 1
Ks— 64
1(3)=log;k 3, p(X)L(x) =logy(k)n=logy(K") k—1 (64
(59 —kMtl<kstit k—1, (65)
=log,(dim V)=14(V), (60)

which is wrong forr=s andk>1, so you cannot compress
which violates conditior(58). This implies that there is no &ll block messages of a given length. Now say you have a

_ A & . ) .
lossless compressing block code. By choosing mutually orSPaceH ™" of variable-length messages with maximal length
thogonal source states one can derive the analog statemént*SSume that there is a universal lossless codeat re-
for the classical case. duces the length of all messagesHfi". The code can only

For long strings emitted by a memoryless source, bloci€ lossless if dirfit®'<dim#“, which is obviously wrong
codes can achieve almost lossless compression by encodiﬁ@j r=s, so you cannot. compress all varlaple-length mes-
only typical subspaces. The quantum code performing thi§ages with a given maximal length. Concluding, there is no
type of lossy compression is known as the Schumacher codghiversal lossless compression that reduces the size of all
[3]. The only way to compress messages without loss off€ssages. Some messages are unavoidably lengthened by a

information is by use of a variable-length code. In order tol0ssless code. By choosing mutually orthogonal source
achieve compression, more frequent objects must be encod&fftes, one can derive the analog statement for the classical
by shorter messages, less frequent objects by longer me%ase.

sages, so that the average length of the codes is minimized.

This is the general rule of lossless data compression. D. No lossless compression of unknown messages
_ . Now we come to a no-go theorem that is typically quan-
B. No lossless compression by changing the alphabet tum. In quantum mechanics there is a profound difference
Trying to achieve compression by using a different alphabetween aknown and anunknownstate. For example, a
bet does not work. known state can be clonety simply preparing another

A code c:HE"HE™ that transforms messages over COPY of i), whereas an unknown state cannot be cloned.

some letter space(, into messages over some letter space ASSume tQ?t the@rse is a lossless quantum compression al-
Mg is lossless only if dinHE"<dimHE", which implies gorithm c:H®'—H®® that compresses messages of fixed

that lengthr to variable-length messages of maximal lengjtAs
we have seen in the preceding section, a lossless code cannot
lo(V)=nlog,(dimH,) (61  compressll messages, s&>r. Now there is an oracle that
hands you an arbitrary message= =" ,X;| w;), where the
<mlog,(dimHg)=1c(X) |w;) e H®" are mutually orthogonal states. The algorithm en-

(62)  codes the messag®) into |c(x))=2!",xi|c(w;)). Even if

032313-8



LOSSLESS QUANTUM DATA COMPRESSION AND . .. PHYSICAL REVIEW 85 032313

all the code-word components(w;)) have qetermlnate Quantum | [1001101)] |11) | [10) |
length L(w;), the total code wordc(x)) has, in general, Channel | : 5 :
. : o oo 4]1101)  i4]1011) G 4 11) E -
indeterminate length. If you want to remove redundant digits ; ; ; :
without loss of information, you must know at least an upper +110) §+|11101> +11)
bound for its base length, i.e., the length of its longest com- Classical | 7 P52
. Channel
ponent. Since you do not know the source message/ou
do not know the base length of its encodiregx)), so you FIG. 5. Storing length information in a classical side channel.

have to assume the maximal lengthSinces>r, no com-
pression is achieved. The same argument applies to quantum-
compression algorithms: 4" — H®S compressing variable-
length messages of maximal lengthto variable-length
messages of maximal lenggh

Prefix code words can be separated while reading the se-
quence, but in the quantum case this is potentially a very bad
thing to do. Reading a stream of quantum letters means, in

Wi lude that lossl . £ unk eneral, disturbing the message all the time. Therefore, the
€ conclude that lossiess compression of unknown qua ength information is generally not available. Furthermore,

tum messages is, In general, |mposs_|ble. This statementis n Fefix code words are, in general, longer than nonprefix code
true for the classical case. A classme_ll message Is not di vords, because there are less prefix code words of a given
turbed by a length measurement, so it can, in principle, b‘?\haximal length than possible code words. Hence, by using

cpmpressed without loss of mformat_lon. I.t would have .beerbrefix code words, qubits are wasted to encode length infor-
nice to compress a quantum hard disk without loss of infor-

mation just like a classical hard disk, but this cannot, inmatlon, which is unavailable anyway. We conclude that pre-
general, be accomplished.

Now that we have found a lot of impossible things to do
with quantum messages, it is time to look for the possible

things.

fix quantum codes are practically not very useful for lossless
coding.

B. A classical side channel

One could try to encode length information in a different
VI. LOSSLESS COMPRESSING CODES guantum channel, as proposed by Braunsgtial. [6] (un-
) ) . ] ) __ necessarily they used prefix code words anyhdsut that
The intention of using compressing codes is to minimizegpes not fix the problem. Whatever one does, reading out
the effort of communication between two parties: one Whoength information about different components of a variable-
prepares, encodes, compresses, and sémelsnessages and |ength code word equals a length measurement and hence
one whoreceives, decompresses, deco@es! possiblyeads  means disturbing the message. There shoulsobeeway to
them. So it is time for Alice and Bob to enter the scene. Aliceake sure where the code words have to be separated, else
is preparing source messagda$e ) and encodes them into he message cannot be decoded at all. Here is an idea: Use a
code words|c(x)) e H®" by applying the encode€. She  lassical side channeb inform the receiver where the code
compresses the code words by removing redundant quantuiifiords have to be separated. This has two significant advan-
digits and sends the result to Bob, who receives them anghges:(i) If the length information equals the base length of
decompresses them by appending quantum digits. After thake code word, the message is not disturbed and can be loss-
he can decode the messages by applying the dedd@&d  |essly transmitted and decodedi) abandoning the prefix
read them or use them as an input for further computationgondition, shorter code words can be chosen, such that the
The communication has been lossless if the decoded Meguantum channel is used with higher efficiency.
sage equals the source message. Note that it is not required | gt ys give an examplésee Fig. 5. Alice wants to send a
for Bob to read the message he received. In fact, if Bob messagéx, ), which is encoded into the code woje(x;))
wants to use the message as an input for a quantum CoM:(1/3)(]1001103+|1101)+|10)). The base length of
puter, he even must not do that, else he will potentially Iosqc(xl» is 7, so she submits that information through the
information. We require Alice to know which source mes- q|assical channel. Dependent on which realization of
sages she prepares, otherwise no lossless compression is p@griable-length messages Alice and Bob have agreed to use,
sible, as we have seen in the preceding section. Alice sends enough qubitst least 7 representing the code
word |c(X;)) through the quantum channel. The next code
word is|c(X,))=(1/3)(]11)+|1011)+|11103). The base
length of|c(x,)) is 5, so Alice sends the length information
In classical information theory, prefix codes are favored‘5” through the classical channel and enough qul§ésleast
for lossless coding. The reason is that theyiastantaneous  5) representing the code wotd(x,)) through the quantum
which means that they carry their own length informationchannel. She proceeds like that with all following messages.
(see Sec. llIB2 Prefix code words can be sent or storedOn Bob’s side, there is a continuous stream of qubits coming
without a separating signal between them. The decoder cahrough the quantum channel and a continuous stream of
add word separator&commas while reading the sequence classical bits coming through the classical channel. Bob can
from left to right. Whenever a string of letters yields a valid read out the classical length information, separate the qubits
code word, the decoder can add a comma and proceed. Afterto the specified blocks and apply the decoder to each code
all, a continuous stream of letters is separated into valid codeord. In this way, Bob obtains all source messages without
words. loss of information.

A. Why prefix quantum codes are not very useful
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C. How much compression? wherel . (w;)=0 is the length difference between the prefix

and the nonprefix code word fo;). Prefix codes, just like

all uniquely decodable symbol codes, have to fulfill the Kraft
How much compression can maximally be achieved byinequality[11,17]

using the method sketched in Sec. VIB? Say Alice has an

ensemble 3 ={p,X} of m=|X| messages,|x)eX,i d .

=1, ... m that she wants to encode lyary code words. ;1 k™reterl<1. (74)

The source spac¥® is spanned by the elements &f thus

V:=Spang) and has dimensiod:=dim). Alice fixes a ba-

sis setB,, of d orthonormal vectorgw;),i=1,...d. The

ensemble®, corresponds to the message matrix

1. Lower bound

Since the code-length operatog: is orthogonal in the basis
By, we can express the above condition by the quantum
Kraft inequality

m d I:
0==§1 p(Xi)|Xi><Xi|:_]_21 oijl o) wjl, (66) Tndk o<1, (79

1,]=
. wherel :=L .+, and
with ojj :=(wi|o|w;) and={_,0;;=1. The source messages
are encoded by the isometric mapV— H?, defined by A d
|C/=:i21 IC’(wi)|wi><wi|' (76)
C

|wiy=le(w)), i=1,...d. 67 The quantum Kraft inequality was derived for the first time

by Schumacher and Westmorelaf®]. Here, the quantum

The code space ik-ary, which means that=dim?. Let Kraft inequality requires that

each code wordc(w;)) have determinate length (w;)

such that the code-length operatar on V' is orthogonal in d
the basisB3,, and reads Q:zz1 k~Lelen—ler(@ < (77)
=
d
L= Le(wp|oiNwi. (68  Now define implicit probabilities
=1
. . ._i k~Lclop)—ler (@) 78
The code words$c(w;)) are not necessarily prefix, because q(“’i)"Q ' (78)

Alice can encode the length information about each code

word in a classical side channel. In order for the transmissiomvhich can be rewritten as

to be lossless, she has to transmit the base lelngtk) of )

each code word corresponding to the source mesbsaje Le(wi)=—logka(wi) —10ge Q—1"(w;). (79
The base length is at least as long as the expected CO%eumming overs; yields
length of the code word, hence "

d d
Lo(xi)=(xi|Llx)). (69) 21 U'iil—c(wi):__zzl i logy q(w;) —log, Q—1", (80)

Now we are interested in the average base length, since this
determines the compression rate. The average base length'¥§ere
bounded from below by d

|u=21 il () =Tr{ol e/} (81)

3

I:c(z)= 1 P(X)Lc(X)) (70

is the average additional length. The inequal#g) can now
be expressed by

m
=2, PO (xi|Lexi)=Tr{oL o} (72) g
I:C(E)Z_E o log q(w;) —log, Q—1". (82
m i=1
=2, ilo(). (72 Gibbs' inequality implies that
d
Now we perform the following trick. As already stated, non- L =_ loa. o —lo 1 83
prefix code words can be chosen shorter tf@mat most as Lo(2) izl 710G 7y ~10g Q=1 ®3
long ag prefix code words. Consider an arbitrary prefix code
c’, then The von Neumann entropy of the message madrizannot
decrease by a nonselective projective measurement in the
Lo (w)=Lw)+o(0)=L(w)), (73)  basisBy,, hence
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S(o)<S(ad"), (84)  which looks more familiar fok=2, such that logk=1 and
Ic(z): Lc(z)-
where

q D. Quantum Morse codes

d
Uqu |wi><wi|0|wi><wi|:2 oiilo)wi]. (85 One way to avoid a classical side channell is to leave a
i=1 i=1 pausebetween the quantum code words, which equals an
) additional orthogonal “comma state.” Such a code is a quan-
Since tum analog to the Morse code, where the code words are also
d d separated by a pause, in order to avoid prefix code words. Of
N _ course, the code worddus the pause are prefix. Due to the
S(o’)= .21 7ii 10g i = ~10g, k; 7ii 10k i close analogy one could speak of quantum Morse codes.
(86)  Here, the information’ needed for the comma state is inde-
pendent of the statistics, because the comma state must be
relation(84) states that sent after each letter code word, no matter which one. In
contrast to thatl’ is, in general, dependent on the statistics.
—E o 10gy 7 = S(o) 87) If one traqsmits the length of each code word through.a
& TR Jog, k ' classical side channel, one can use a Huffman code to find
shorter code words for more frequent length values. This is
Using Eq.(87) together with the Kraft inequalitpd<1, re- done in the following compression scheme.
lation (83) transforms into

loga(K){L(2) +1"}=S(0) ~logeQ=S(0).  (88)

Recalling the definition of the code informatid®6) and
defining the length information that can be drawn into the
classical side channel by

d

VII. ALOSSLESS COMPRESSION SCHEME

Let us construct an explicit coding scheme that realizes
lossless quantum compression.

A. Preparations

I":=logy(K)l”, (89) Alice and Bob have a quantum computer on both sides of
] ) ] the channel. They both allocate a register &fary quantum
we finally arrive at the lower-bound relation digits, whose physical space is given B=D*" with D

=(K. They agree to use neutral-prefix code wofsise Sec.
111 B 3) to implement variable-length coding, hence the mes-

If ¢ is a uniquely decodable symbol code, e.g., a prefix code>29€ Space i8/; of dimensionk” and is physically realized
we havel ' = 0. Inequality(90) states that the ensemflecan by the operational spack="R. Alice is preparing source
be losslessly compressed not bel®w) qubits. However, Messages),i=1,... m from a set. The space spanned
by drawing length information into a classical side channelPy these messages is the source spaesSpan(y). Alice

it is possible to reduce the average number of qubits passirgfepares each message e X' with probability p(x), which
through the quantum channbelow the von Neumann en- gives the ensemblE:={p,X’}. She encodes the source mes-
tropy. We will give an example later on where this really sages into variable-length code worid$x)) € ; of maxi-
happens. mal lengthr. If the dimension ofV is given byd:=dimV,

then the length of the register must fulfill

L(2)+1"=S(0). (90)

2. Upper bound
. r=[log,d]. (94)
Let us look for an upper bound for the compression that

can be achieved. In order to encode every source vectdr in |f the set X is linearly dependent, Alice creates a 3ét X,
by ak-ary code, we need at most removes the most probable message ftrand puts it into

L.(x)=<[log(dimV)]<log,(dim})+ 1 (91) a Iistll/l. Next, she removes again the most probable message

from X, appends it to the lig¥l and checks if the list is now
digits. Using log x=log,b-log, X, we have linearly dependent. If so, she removes the last element from
. M again. Then she proceeds with removing the next probable

Le(2)=<logz(dimV)+log k. (920 message fromit and appending it td/, checking for linear

This upper bound is neither very tight nor is it related to thedependence, and so on. In the end she obtains a list

von Neumann entropy. However, our efforts to find a more M= (]Xq),....|Xq)) (95)
interesting upper bound were not successful. It remains an _
open question to find such a bound and hence a quantunef linearly independent source messages frtépordered by

mechanical generalization to Shannon’s theofé&sj, decreasing probability, such thptx;)=p(x;) for i<j. She
performs a Gram-Schmidt orthonormalization on the Nist
H(Z)=<I.(2)<H(X)+log, k, (93)  giving a listB of orthornormal vectorsw;), defined by
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|wq):=]Xq), (96) original messagé&x) with perfect fidelity. Note that Alice can
send any message from the source message spacthe

i-1 protocol will ensure a lossless communication of the mes-
|wi):=N; 11—_2 |op){wi] X)), (97  sage. For such arbitrary messages, however, compression
=1 will, in general, not be achieved, since the protocol is only
with i=2, ... d and suitable normalization constart. adapted to the particular ensemBleAlso, Bob can as well

store all received quantum digits on his quantum hard disk
and the received length information on his classical hard
disk, and go to bed. The next day, he can scan the classical

The elements oB form an orthonormal basi#,, for the
source spac®. Now she assigns code words

lc(w))=|ZLi-1)), i=1,...d (9gy ~ hard disk for length information and separate and decode the
corresponding code words on the quantum hard disk. The
of increasing significant length protocol works as well for online communication as for data
storage.
Lc(w;) =[logy(i)]- (99)

) . C. An explicit example
Note that the first code word is the empty message

=|ZL(0))=|0---0), which does not have to be sent through Alice and Bob want to communicate vectors of a four-
the quantum channel at all. Instead, nothing is sent througfimensional Hilbert space’=Spar{|0),|1),2),|3)}, where
the quantum channel and a signal representing “length 0” idVe US€ the row notation in the following. Alice decides to
sent through the classical channel. Alice implements the erSe the(linearly dependentsource message set

d rs
coder x={la),[b),[c).|d).€).If).1g). [y, li).1})}, (103
d
hose elements are given b
C=2, [o(wp)){wi (o9 " an 1 Y
by a gate array ofR. Then she calculates the base lengths of |a>=§1,1,1,1, (104
the code words
1
L) = max{L(w;)|[{wi[x)|*>0} (101 lb)=—=(1,2,1,3, (109
i-1,.. 5
for every messagéx)e X and writes them into a table. 1
The classical information is compressed using Huffman lcy=—(1,3,1,2, (106
coding of the set of distinct base-length values V6

L={L(®1),...,Lc(wyg)}. Alice constructs the Huffman code

word to each lengthe £ appearing with probability )= i(l 4114 (107
\/7 1 1 L L
p= > px), (102
x:Lo(x)=1 1
le)=—(1,0,1,0, (109
and writes them into a table. At last, Alice builds a gate array V2

realizing the decodeb=C~! and gives it to Bob. For the

classical channel she hands the table with the Huffman code 1

words for the distinct lengths to Bob. Now everything is |f)=‘/—§(2,0,1,0, (109
prepared and the communication can begin.

1
B. Communication protocol |9>:§(3,0,1,Q, (110

Alice prepares the message) e X and applies the en-
coder C to obtain|c(x)). She looks up the corresponding 1
code base length(x) in the table. IfL (x)<r, she trun- |h)= 5(0,1,0,]), (111)
cates the message 1o.(x) digits by removingr —L.(x)
leading digits. She sends the(x) digits through the quan- 1
tum channel and the length informatidn(x) through the liy=-—(0,2,0,2, (112
classical channel. Then she proceeds with the next message. V3

For any messagg) Alice sends, Bob receives the length
information L.(x) through the classical channel ahd(x)
guantum digits through the quantum channel. He adds
—L(x) digits in the staté0) at the beginning of the received
code word. He then applies the decodkrrand obtains the and which are used with the probabilities

1
1)=5(030, (113
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p(a)=0.6, p(b)=p(c)=p(d)=0.1, (114
pe)=++=p(j)= 5 - (119
The Shannon entropy of the ensemble{p, X’} is
H(3)=2.029 45, (116
and the classical raw informatigqd5) reads
Io(X)=log,| X|=3.32193, (117

which gives an optimal classical compression rate Rof
=H/1,=0.610924. If Bob knows Alice’s list of possible

PHYSICAL REVIEW 85 032313

[C(wg))=[10),

|T:(w4))=|11>

(130
(131

that span the operational code spagavhich is a subspace
of the physical spac®&=(?® (2. Alice realizes the encoder

C:V—C, C=3[c(w;)){wi| given by
C

0.5 0.5 0.5 0.5
—0.288675 0.866025—0.288675 —0.28867

messages, then this rate could in the optimal case be

achieved by pure classical communication. However, Bob
does not know the list and classical communication is not the, 4 iha decoded = C-

task here. The message matix 3, . »p(x)|x)(x| given by

0.214 549
0.224 624
0.197 882
0.177882

0.224624 0.197882 0.177882
0.40302 0.224624 0.244624
0.224624 0.191216 0.177§82
0.244624 0.177882 0.191216

(118)
has von Neumann entropy

S(0)=0.571241. (119

The orthogonalization procedure vyields the badf
={|w;)} with
|w1)=(0.5,0.5,0.5,0.5 (120

|w,)=(—0.288 675,0.866 025,0.288 675;-0.288 675,

(121
|ws)=(0.408248,0,0.408 248,0.816 497, (122
|w,)=(0.707 107,05 0.707 107,0. (123

Let the quantum channel be binary, i.e., ket 2. The code
words are constructed along(w;))=|Z,(i—1)), yielding
the variable-length states

Ic(wy))=|D), (124
|c(w2))=[1), (129
|c(w3))=]10), (126
lc(ws))=112) (127)

that span the code spa€eln a neutral-prefix code they are

realized by the two-qubit states

[€(w1))=00), (128

[€(w,))=01), (129

0.408 248 0 0.408 248 —0.816 497,
0.707 107 0 —0.707 107 0
(132)
1 given by
0.5 0.408248 —0.288675 0.70710
5 0.5 0 0.866 025 0
1 05 0.408248 —0.288675 —0.707 107
0.5 —0.816497 —0.288675 0
(133

by gate arrays and gives the decoder to Bob. The encoded
alphabet is obtained big(x))=C|x). Alice writes the base
lengths of the code words

Lo(@)=0, Lc(b)=Lc(c)=Lc(d)=1, (134
(135

in a table and calculates the corresponding probabilities

L(e)=-=Lc(j)=2

Po=0.6, p;=0.3, p,=0.1. (136)

She constructs Huffman code words for each length

00:1, C]_:Ol, 02:00, (137)
such that the average bit length is
2
L'=> pl=1.4, (138
=o

which is the optimal value next to the Shannon entropy of
the length ensemble,

2

I"=—=> plog, p;=1.29546. (139
I=0

Alice hands the table with the Huffman code words to Bob
and tells him that he must listen to the classical channel,
decode the arriving Huffman code words into numbers, re-
ceive packages of qubits, whose size corresponds to the de-
coded numbers, and add to each package enough leading
qubits in the statd0) to end up with two qubits. Then he
must apply the decodd to each extended package and he
will get Alice’s original messages.
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Say, Alice wants to send the messda@e She preparelgy  Thus it is better to use the quantum-compression scheme
and applies the encodérto obtain the code wor{00). She than to simplytell Bob on the phone, which state he must
looks up the corresponding base lengtffa)=0 and trun-  prepare. As already suspectég, is still greater than the von
cates the code word 1o;(a) =0 qubits. In this case there are Neumann entropy119),
no qubits left at all, so she sends nothing through the quan-
tum channel and the Huffman code word for “length 0” ltor>S=0.571241. (146)
through the classical channel. Bob receives the classical ) _
length information “0” and knows that nothing comes The classical part of the compression depends on the algo-
through the quantum channel and that in this case he has f§hm- Only in the ideal case, the information can be com-
prepare two qubits in the sta@0). He applies the decodér pressed d,own t'o the Shannon entropy of the length ensemble
and obtains Alice’s original messaga. In order to send 9iven byl’. Using the Huffman scheme, the average length
messagéb), Alice truncates the code word tq.(b)=1 qu- L'=14 represents the information that is effecuvely sent
bit and obtains (3/2)(|0)+|1)). She sends the qubit f[hrough _the. clq55|cal channel, such that the tefééctive
through the quantum channel together with the classical signformation is given by
nal “length 1.” Bob receives the length message and knows o=l +L'=1.9 (147
that he has to take the next qubit from the quantum channel eff ™ ~c e
and that he has to add one leading qubit in the d@teHe
applies D and obtains Alice’s original messagb). The
whole procedure works instantaneously and without loss of [+
information. We have implemented the above example by a Rtot='|—=0.897 73K1, (148
MATHEMATICA ™ program, and numerical simulations show 0

that the procedure works fine and the specified compressiqRere it is assumed that the information on the classical

of quantum data is achieve@ou can find the program and  ,annel can be compressed down to its Shannon entfopy

the package &l6]). ) ) Using the Huffman scheméas we have done in our ex-
Let us look for the compression that has been achieved.;phja the information on the classical channel can only be

b (a)fThebqu%nt_um code Lnformhatir(])n, l.e., the a\éeragel MUMtompressed th’>1", such that theffectivetotal compres-
er of qubits being sent through the quantum channel, sion rate is given by

(d) The total compression rate of both channels reads

[.+L’
I_C=XEX P(X)Lc(x)=0.5, (140 Reﬁz'Cl— =0.95<1. (149
€ 0
falls below the von Neumann entropy Thus in any case there is an overall compression. For higher-
dimensional source spac@ésence more letteysthe compres-
L.<S=0.571241. (141 sion is expected to get bettgrrovided the letter distribution

is not too uniform. However, the numerical effort for
Such a behavior has already been suspected in Sec. VI C higher-dimensional letter spaces increases very fast and we
(b) The quantum raw information, i.e., the size of thewant to keep the example as simple as possible.
noncompressed messages, is given by
VIIl. CONCLUDING REMARKS

1.<ly=log,(dim V) =2, (142 i
We have developed a general framework for variable-

5!ength guantum messages and have defined an observable
measuring the quantum-information content of individual
| states by the number of qubits needed to represent the state
R.=—=0.25. (143 by a given code. We derived some basic statements about
' lossless compression. In particular, we have demonstrated
that a quantum message can only be compressed without loss
In other words, the number of qubits passing through they information if the source messageaisriori known to the
quantum channel is reduced by 75%. Sending 100 messagggnder. On these grounds, we have worked out a lossless and
without compression requires 200 qubits. Using the cominstantaneous quantum data-compression protocol. One can
pression scheme, Alice typically sends 50 qubits. object that there is no use in compressing quantum states that
(c) The sum of both quantum and classical information, are alreadyjknownto the sender, because then Alice could as
well tell Bob classically which of the quantum states she
lor=1c+1"=1.79546, (144 wants to communicate. However, such a pure classical com-
munication would require Bob to have a list of possible mes-
is smaller than the Shannon entrof}16) of the original  sages Alice may send. Moreover, fanbitrary quantum mes-
ensemblex, sages from the source space, Alice would need infinitely
many bits to communicate them through a classical channel
| or<<H=2.029 45. (145  to Bob. In contrast to that, in our communication scheme

hence the compression rate on the quantum channel read

o
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Alice can send arbitrary messages from the source messag®ssibly be increased. Furthermore, it would be interesting to
space, but she must know which message she is going see how the framework of variable-length messages applies
send to get the base length. Bob needs only the decoder atm quantum computation, since the data stored in the register
the user instructions for the classical channel, then he caof a quantum computer could also be regarded as a variable-
reobtain Alice’s original messages with perfect fidelity. Thelength quantum message. One could also think about
protocol can individually be adapted to a given message ensariable-length quantum error-correcting codes. We hope
semble such that compression is achieved for that ensemblénhat the presented work stimulates some more discussion and

theoretical research on variable-length quantum coding and

IX. OPEN QUESTIONS its applications.
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