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Implementing the quantum random walk

B. C. Travaglione* and G. J. Milburn
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~Received 16 September 2001; published 20 February 2002!

Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line
and on a circle. It has been found that the quantum versions have markedly different features to the classical
versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the
quantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum
random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the
number of steps that could be experimentally implemented will be relatively small. However, we show how the
enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the
quantum random walk tends to the classical random walk. By measuring the degree to which the walk remains
‘‘quantum,’’ this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.
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I. INTRODUCTION

The idea that a computational device based on the law
quantum mechanics might be more powerful than a com
tational device based on classical mechanics has been ar
for about two decades@1#. The study of computational de
vices based upon quantum mechanics is known as quan
computation. For an introduction to the field, see for exam
Nielsen and Chuang@2#. Active research in this field ha
exploded since the discovery by Shor@3# that a quantum
computer could, in theory, factor large semiprimes expon
tially faster than can currently be done on a classical co
puter. Since Shor’s algorithm, Grover has devised an a
rithm which can, in principle, search an unsorted datab
quadratically faster than any classical algorithm@4#. How-
ever, new quantum algorithms which out perform their cl
sical counterparts are proving difficult to find. One pa
which is being followed to find quantum algorithms involv
looking at effective classical algorithmic techniques, and t
ing to adapt them to quantum computation. Classically,
random walk has found applications in many fields includ
astronomy, solid-state physics, polymer chemistry, and b
ogy. For a review of the theory and applications for rand
walks, see for example Barber and Ninham@5#. The hope is
that a quantum version of the random walk might lead
applications unavailable classically. Quantum random wa
have been investigated by a number of groups@6–12#. In this
paper, we propose a scheme to implement the discrete q
tum random walk on a line@8# and on a circle@9#, using an
ion trap quantum computer. For a review of ion trap quant
computation see Winelandet al. @13#. With current ion trap
technologies, it will not be possible to implement a lar
number of steps in the walk, however it should be possibl
implement enough steps to experimentally highlight the d
ferences between the classical and quantum random w
providing an important proof of principle.

The structure of this paper is as follows. In Sec. II w
review the simple models of random walks on both a l
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and a circle, highlighting the differences between the cla
cal and quantum versions in both cases. The classical w
are Gaussian, and therefore can be described by their s
dard deviations. The quantum walks are highly no
Gaussian, however we analyze the standard deviation
these walks also, in order to make a fair comparison with
classical walks. In Sec. III we discuss how we shall be r
resenting the algorithms in an ion trap quantum compu
We then discuss the pulses required to evolve the sys
first for the walk on the line, and then for the walk on
circle. Finally, in Sec. IV, we discuss a relatively simple me
surement procedure which can be used to highlight the
ference between the classical and quantum random walk

II. CLASSICAL VERSUS QUANTUM RANDOM WALKS

Classical random walks can take many different form
starting from the simple discrete random walk on a line,
random walks on graphs, to continuous-time random wa
such as brownian motion. In this paper, we are only cons
ering discrete time, discrete space, random walks on a
and on a circle.

A. Classical walk on a line

Imagine a person standing at the origin of a line with
coin in their hand. They flip the coin, and if it comes u
heads, they take a step to the right, if it is tails, they tak
step to the left. They then repeat this procedure, flipping
coin, and taking a step based on the result. The probab
PN(d) of being in a positiond after N steps is

PN~d!5
1

2N S N

d1N

2
D . ~2.1!

Table I contains the probabilities for the first few values ofN.
The nonzero elements of the distribution are simply ter
from Pascal’s triangle, divided by the appropriate factor
two. There are two features of this random walk that
would like to compare to the quantum analog. First, t
©2002 The American Physical Society10-1
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mean of the walk is zero. This is intuitively obvious, we a
using a fair coin, so we are as likely to step left as we are
step right. The other property of the distribution that we a
interested in is the standard deviation. It is not hard to c
culate that the standard deviation of this distribution,sc , is
given by

sc5AN. ~2.2!

B. Quantum walk on a line

Now let us consider a quantum version of the walk on
line. The first modification we can make is to replace t
coin with a qubit. In this paper, we shall be representing
two levels of the qubit with the statesu↓& andu↑& rather than
u0& andu1&. If we start with the qubit in the down state, an
apply a Hadamard operation, we get an equal superpos
of up and down,

Ĥu↓&5
1

A2
u↑&1

1

A2
u↓&, Ĥ5

1

A2
S 1 1

1 21D . ~2.3!

If we were to measure the qubit, and step left or right d
pending upon the result, we would obtain exactly the cla
cal walk described above. Now, rather than a person hold
a coin, suppose we have a particle, whose motion is confi
to one dimension. We can now treat the particle as a quan
system, and perform the quantum walk as follows. Dur
each iteration, we apply the Hadamard operation, follow
by the operation which steps right if the qubit is down, a
steps left if the qubit is up. That is, we apply the operato

Û5eip̂ŝzĤ, ~2.4!

wherep̂ is the momentum operator of the particle confined
one dimension, andŝz is the Pauli-z operator acting on the
qubit. Therefore, the state of the system afterN steps is

uCN&5~eip̂ŝz!NuC0&, ~2.5!

whereuC0& is the initial state of the system. The mean of t
distribution produced by this quantum random walk is n
necessarily zero. It is dependent upon the initial state of
qubit. For example, choosing the initial state of the qubit
be down gives a nonzero mean after the second step. Fo
remainder of this paper, we shall only be considering
distribution created with the initial qubit state 1/A2u↓&
1 i /A2u↑& which has a mean of zero for all values ofN,

TABLE I. The probability of being found at positiond after N
steps of the classical random walk on the line.

N/d 24 23 22 21 0 1 2 3 4

0 1
1 1

2 0 1
2

2 1
4 0 1

2 0 1
4

3 1
8 0 3

8 0 3
8 0 1

8

4 1
16 0 4

16 0 6
16 0 4

16 0 1
16
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uC0&5
1

A2
u0&~ u↓&1 i u↑&). ~2.6!

Table II contains the probability distribution associated w
the first few statesuCN&. The nonzero elements of the distr
bution are no longer simply terms from Pascal’s triang
which arose in the classical case. The deviations from
classical distribution are caused by quantum interference
fects. Now it is no longer simple to calculate the standa
deviation of the distribution. However, numerical simul
tions reveal that the standard deviation,sq , is almost inde-
pendent of the initial state of the qubit, and is approximat
linear in N,

sq'
3

5
N. ~2.7!

The standard deviation is plotted in Fig. 1 up toN540 for
both the classical and quantum walk distributions.

Clearly, the standard deviation is significantly differe
for the quantum and classical random walks on a line. N
let us consider the random walks which arise when perio
boundary conditions are applied to the random walks.

C. Classical walk on a circle

In the paper by Aharonovet al. @9#, they consider random
walks on the circle, where the step size is an irrational m
tiple of p. Here, we shall only be considering the simp

TABLE II. The probability of being found at positiond after N
steps of the quantum random walk on the line, with the initial qu
state 1/A2u↓&1 i /A2u↑&.

N/d 24 23 22 21 0 1 2 3 4

0 1
1 1

2 0 1
2

2 1
4 0 1

2 0 1
4

3 1
8 0 3

8 0 3
8 0 1

8

4 1
16 0 6

16 0 2
16 0 6

16 0 1
16

FIG. 1. Standard deviation for both the quantum and class
random walks up toN540.
0-2
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distribution which arises when the step size is taken to
p/2. Let us assume that the particle is initially found, w
probability one, at some point on a circle denoted byu50,

P0~u50!51. ~2.8!

After one step of the algorithm, the classical distribution
given by

P1~u!5H 0, u50,p,

1

2
, u56

p

2
,

~2.9!

and after the second step,

P2~u!5H 1

2
, u50,p,

0, u56
p

2
.

~2.10!

It is not difficult to see that the probability distribution for a
subsequent odd number of steps will be given by Eq.~2.9!,
and the distribution for all subsequent even number of st
will be given by Eq.~2.10!.

D. Quantum walk on a circle

Let us consider the quantum random walk on a circ
Once again, we start with the particle at some point o
circle denoted byu50, thus the initial probability distribu-
tion is given by Eq.~2.8!. The probability distributions afte
one and two steps are also given by Eqs.~2.9! and ~2.10!,
respectively, however after the third step, interference effe
results in the distribution

P3S u5
p

2 D51. ~2.11!

Calculation of the states after subsequent steps reveals
the quantum random walk around the circle, with a step s
of p/2 is periodic with a period of eight. The eight probab
ity distributions which arise are given in Table III.

TABLE III. The probability of being found at positionu afterN
steps of the quantum random walk on the circle.

N/d 0
p

2
p 2

p

2

0 1 0 0 0
1 0 1

2 0 1
2

2 1
2 0 1

2 0
3 0 1 0 0
4 0 0 1 0
5 0 1

2 0 1
2

6 1
2 0 1

2 0
7 0 0 0 1
03231
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III. IMPLEMENTING THE WALKS IN AN ION TRAP

The analysis thus far has assumed that all operations
be applied without error and the particle can exist in posit
eigenstates. Now we shall relax these assumptions, and
scribe how the algorithm can be implemented in an ion tr

The ion trap provides a convenient setting for the qu
tum random walks we have described, as it contains the
quired discrete and continuous quantum variables. For
remainder of this paper, we shall be discussing impleme
tions based on a single9Be1 ion, confined in a coaxial-
resonator radio frequency ion trap, as described in@14# and
references therein.

The preparation involves laser cooling the ion to the m
tional and electronic ground stateu0&u↓&, as described in
@15#. A sequence of four Raman beam pulses are then app
@14# to create the state (ua&u↓&1u2a&u↑&)/A2, whereua&
denotes the coherent state of the the oscillator,

ua&5
e2aRa I i

p1/4 E dxeA2ia I xe2 1/2(x2A2aR)2
ux& ~3.1!

anda[aR1 ia I .
The first pulse is ap/2 pulse, which creates an equ

superposition ofu0&u↓& and u0&u↑&. A displacement beam is
then applied which excites the motion correlated to theu↑&
internal state. The third pulse is ap pulse which exchange
the internal states, and finally the displacement beam is
plied again. The combined action of the four pulses is
effectively perform the operatorÛ, defined in Eq.~2.4!. The
quantum random walk on the line is accomplished by repe
ing this sequence of pulsesN times. Figure 2 contains the
Wigner function obtained by tracing over the internal deg
of freedom after five steps of the quantum random w
algorithm.

The quantum random walk on the circle can be imp
mented in an ion trap by ‘‘walking’’ the particle around
circle in phase space, rather than a circle in real space
order to accomplish this task, we need to generate an op
tor of the form

Ŵ5eipâ†âŝz/2Ĥ, ~3.2!

FIG. 2. Wigner function of the particle after five steps of th
quantum random walk on the line.~The electronic level of the ion
has been traced over.!
0-3
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whereâ and â† correspond to the annihilation and creati
operators of the harmonic oscillator. This operator can
produced in an ion trap by applying far-detuned laser pu
to the ion@16#, followed by ap/2 pulse.

IV. MEASURING THE WALKS

Using current ion trap technologies, wave-packet disp
sion is negligible@14#, so the main source of decoherence
related to the internal levels of the ion. Decoherence of
electronic levels of the ion during the application of the
gorithm has the effect of gradually transforming the quant
random walk to the classical random walk. Rather than c
sidering this to be a negative effect, we can measure
degree to which the ion is acting as a quantum variable ra
than a classical variable, and thereby effectively measure
level of decoherence in the ion trap.

The scheme that we envisage for measuring the ran
walk utilizes similar operators to those employed in the
plication of the algorithm. After applying the random-wa
sequence for some number of steps, the internal state o
ion is decoupled from the motional state by an appropr
Raman pulse. An effective operator such as exp(ip̂ŝy) is ap-
plied, before finally measuring the internal state of the i
Thus we are using the internal state of the ion to supply
with information about the motional state.

In the case of the walk on the line, suppose we decou
the internal state from the motional state by measur
whether the ion is in the stateu↑& or u↓&. We then apply the
operator

M̂ 65e6 i p̂ŝy. ~4.1!

The positive Hamiltonian is applied upon obtaining the
sults u↑&, while the negative Hamiltonian is applied othe
wise. Finally, we again measure the internal state of the
If the quantum random walk has experienced no deco
ence, then we measureu↓& with the probabilities given by the
solid line in Fig. 3, whereas if the ion suffers complete d

FIG. 3. Probability of measuring the ion in the ground state a
applying the random walk for a timet/v, decoupling the interna

and motional states, and applying the measurement operatorM̂ .
03231
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coherence we would expect to measureu↓& with probability
of one half.

A similar scheme can be used to measure the leve
decoherence in the quantum random walk on the circle. F
ure 4 again depicts the probability of measuring the ion
the ground state after decoupling the internal and motio
states, however, this time we then apply the operator

D̂5eix̂ŝy. ~4.2!

In this case, because we have total destructive interferenc
certain paths during the walk, the deviation of the quantu
to-classical walk is much larger at certain stages of the w

V. DISCUSSION

We have described ion trap implementation schemes
quantum random walks, both on the line and on the circ
We have also suggested a measurement process which a
the enhanced features of these walks to be experimen
observed.

At this point, it is unclear whether quantum random wal
will have any useful algorithmic applications. However, w
believe that they can provide a benchmarking protocol
ion trap quantum computers, and perhaps other impleme
tion schemes which combine continuous and discrete qu
tum variables.
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r
FIG. 4. Probability of measuring the ion in the ground state a

applying the random walk on a circle for a timept/v, decoupling
the internal and motional states, and applying the measuremen

eratorD̂.
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