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Implementing the quantum random walk
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Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line
and on a circle. It has been found that the quantum versions have markedly different features to the classical
versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the
guantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum
random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the
number of steps that could be experimentally implemented will be relatively small. However, we show how the
enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the
guantum random walk tends to the classical random walk. By measuring the degree to which the walk remains
“quantum,” this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.
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[. INTRODUCTION and a circle, highlighting the differences between the classi-
cal and quantum versions in both cases. The classical walks
The idea that a computational device based on the laws gfre Gaussian, and therefore can be described by their stan-
quantum mechanics might be more powerful than a compudard deviations. The quantum walks are highly non-
tational device based on classical mechanics has been arouf@ussian, however we analyze the standard deviations of
for about two decadegl]. The study of computational de- these walks also, in order to make a fair comparison with the
vices based upon quantum mechanics is known as quantuﬁlﬁSSiCaJ walks. In Sec. lll we discuss how we shall be rep-
computation. For an introduction to the field, see for examplé€esenting the algorithms in an ion trap quantum computer.
Nielsen and Chuangj2]. Active research in this field has We then discuss the pulses required to evolve the system,
exploded since the discovery by Shi@] that a quantum first for the walk on the line, and then for the walk on a
computer could, in theory, factor |arge Semiprimes exponenCirC|e. Finally, in Sec. IV, we discuss a relatively simple mea-
tially faster than can currently be done on a classical comsurement procedure which can be used to highlight the dif-
puter. Since Shor’s algorithm, Grover has devised an algoference between the classical and quantum random walks.
rithm which can, in principle, search an unsorted database
guadratically faster than any classical algoriti). How- Il. CLASSICAL VERSUS QUANTUM RANDOM WALKS
ever, new quantum algorithms which out perform their clas- ) )
sical counterparts are proving difficult to find. One path Classical random walks can take many different forms,
which is being followed to find quantum algorithms involves starting from the simple discrete random walk on a line, to
looking at effective classical algorithmic techniques, and try-random walks on graphs, to continuous-time random walks,
ing to adapt them to quantum computation. Classically, théuch as brownian motion. In this paper, we are only consid-
random walk has found applications in many fields includingefing discrete time, discrete space, random walks on a line
astronomy, solid-state physics, polymer chemistry, and bioland on a circle.
ogy. For a review of the theory and applications for random
walks, see for example Barber and Ninhfsih The hope is A. Classical walk on a line
that a quantum version of the random walk might lead to | . tandi t th qin of a li ith
applications unavailable classically. Quantum random walks ‘magine a person standing at the origin ot a in€ with a
have been investigated by a number of gros12. In this coin in their hand. They flip ”“? con, .aﬂd 'f. It comes up
. ; heads, they take a step to the right, if it is tails, they take a
paper, we propose a scheme to implement the discrete quan:- ; 7
tum random walk on a ling8] and on a circld9], using an step to the Ieft. They then repeat this procedure, flipping Fhe
ion trap quantum computer. For a review of ion trap quantu coin, and taking a step based on the result. The probability

computation see Winelanet al. [13]. With current ion trap %N(d) of being in a positiord after N steps is

technologies, it will not be possible to implement a large N

number of steps in the walk, however it should be possible to 1

implement enough steps to experimentally highlight the dif- Pn(d)= ﬁ dJ“_N : 2.1
ferences between the classical and quantum random walks, 2

providing an important proof of principle.
The structure of this paper is as follows. In Sec. |l weTable | contains the probabilities for the first few value$of
review the simple models of random walks on both a lineThe nonzero elements of the distribution are simply terms
from Pascal’s triangle, divided by the appropriate factor of
two. There are two features of this random walk that we
*Electronic address: btrav@physics.uq.edu.au would like to compare to the quantum analog. First, the
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TABLE |. The probability of being found at positiod after N TABLE Il. The probability of being found at positiod after N
steps of the classical random walk on the line. steps of the quantum random walk on the line, with the initial qubit

state 14/2| | )+i/V2|1).
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mean of the walk is zero. This is intuitively obvious, we are
using a fair coin, so we are as likely to step left as we are to 1

step right. The other property of the distribution that we are |[Woy=—=[0)(|1)+i|T)). (2.6)
interested in is the standard deviation. It is not hard to cal- V2

culate that the standard deviation of this distributioq, is

given by Table Il contains the probability distribution associated with

the first few state§¥ ). The nonzero elements of the distri-

o= \/N (2.2 bution are no longer simply terms from Pascal’s triangle,
which arose in the classical case. The deviations from the
classical distribution are caused by quantum interference ef-
fects. Now it is no longer simple to calculate the standard

Now let us consider a quantum version of the walk on adeviation of the distribution. However, numerical simula-
line. The first modification we can make is to replace thetions reveal that the standard deviatien,, is almost inde-
coin with a qubit. In this paper, we shall be representing thgyendent of the initial state of the qubit, and is approximately
two levels of the qubit with the statés) and|1) rather than Jinear inN,
|0) and|1). If we start with the qubit in the down state, and
apply a Hadamard operation, we get an equal superposition
of up and down,

B. Quantum walk on a line

3
qugN. (27)

fl1)= i|T>+ i|l> - i( ) 23 The standard deviation is plotted in Fig. 1 upNe-40 for
\/5 \/5 ’ \/5 1 -1/ ) both the classical and quantum walk distributions.
Clearly, the standard deviation is significantly different
If we were to measure the qubit, and step left or right defor the quantum and classical random walks on a line. Now
pending upon the result, we would obtain exactly the classitet us consider the random walks which arise when periodic
cal walk described above. Now, rather than a person holdingoundary conditions are applied to the random walks.
a coin, suppose we have a particle, whose motion is confined
to one dimension. We can now treat the particle as a quantum C. Classical walk on a circle
system, and perform the quantum walk as follows. During .
each iteration, we apply the Hadamard operation, followed In the paper by Aharonoet al. [9], they ponsujer Ta”dom
by the operation which steps right if the qubit is down, andv.valkS on the circle, where the step size IS an '”a“"”"%' mul-
steps left if the qubit is up. That is, we apply the operator, tiple of 7. Here, we shall only be considering the simple

25

N — aipof i ' ' ' ' ' T o
U=e ZH’ (24) © Oy Quantum walk OOO
n ¢ O¢ Classical walk 0°
wherep is the momentum operator of the particle confined to 201 °c°°
one dimension, an&z is the Pauliz operator acting on the N o°°0
qubit. Therefore, the state of the system aftesteps is § N5t 0°
|W )= (€PN W), (2.5 é “ | o°
< &10 0?

where| W) is the initial state of the system. The mean of the SE Oo°° _______
distribution produced by this quantum random walk is not 51 007 L iweemsmeeertttttY
necessarily zero. It is dependent upon the initial state of the S IE
qubit. For example, choosing the initial state of the qubit to 0 .

be down gives a nonzero mean after the second step. For the 0 5 10 15 20 25 30 35 40
. . . . N (number of steps)

remainder of this paper, we shall only be considering the

distribution created with the initial qubit state \I|) FIG. 1. Standard deviation for both the quantum and classical

+i//2|1) which has a mean of zero for all values Nf random walks up toN=40.
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TABLE Ill. The probability of being found at positiofi after N 0.3
steps of the quantum random walk on the circle. 05
a T
N/d 0 > T -7 E" 0.1
0 1 0 0 0 z 0
1 0 3 0 3 o
2 : 0 1 0
3 0 1 0 0 -0.2
4 0 0 1 0 2
5 0 : 0 : P2 T s 0 5 10
6 i 0 i 0 *
7 0 0 0 1 FIG. 2. Wigner function of the particle after five steps of the

guantum random walk on the lin€The electronic level of the ion
has been traced ovgr.

distribution which arises when the step size is taken to be

/2. Let us assume that the particle is initially found, with  1ll. IMPLEMENTING THE WALKS IN AN ION TRAP
probability one, at some point on a circle denotedésyO,

The analysis thus far has assumed that all operations can
Po(6=0)=1. (2.8  be applied without error and the particle can exist in position
eigenstates. Now we shall relax these assumptions, and de-
scribe how the algorithm can be implemented in an ion trap.
The ion trap provides a convenient setting for the quan-
tum random walks we have described, as it contains the re-
quired discrete and continuous quantum variables. For the

After one step of the algorithm, the classical distribution is
given by

0, 6=0m, remainder of this paper, we shall be discussing implementa-
Pi(0)=11 T (2.9  tions based on a singl&Be" ion, confined in a coaxial-
2’ 0= —2 resonator radio frequency ion trap, as describefl#] and

references therein.

and after the second step, The preparation involves laser cooling the ion to the mo-
tional and electronic ground stat®)||), as described in
[15]. A sequence of four Raman beam pulses are then applied

1
> 6=0,m, [14] to create the statel¢)|])+|—a)|T))/V2, where|a)
P,(6)= _ (2.10 denotes the coherent state of the the oscillator,
0, 6==x—. ;
’ 2 eZaRoql . - o
|a>= 771/4 jdxeﬁla,xe 1/2(x—\2aR) |X> (3.1)

It is not difficult to see that the probability distribution for all
subsequent odd number of steps will be given by @), anda=aotia
and the distribution for all subsequent even number of steps The firF;t pullée is am/2 pulse, which creates an equal

will be given by Eq.(2.10. superposition of0)||) and|0)|1). A displacement beam is
then applied which excites the motion correlated to |the
D. Quantum walk on a circle internal state. The third pulse is7a pulse which exchanges
Let us consider the quantum random walk on a circlehe internal states, and finally the displacement beam is ap-
Once again, we start with the particle at some point on #lied again. The combined acition of the four pulses is to
circle denoted by=0, thus the initial probability distribu- effectively perform the operatdd, defined in Eq(2.4). The
tion is given by Eq(2.8). The probability distributions after quantum random walk on the line is accomplished by repeat-

one and two steps are also given by E@s9) and(2.10), ing this sequence of pulsds times. Figure 2 contains the
respectively, however after the third step, interference effect¥Vigner function obtained by tracing over the internal degree
results in the distribution of freedom after five steps of the quantum random walk
algorithm.
p.| o= z) 1 2.11) The quantum random walk on the circle can be imple-
3 2 ' : mented in an ion trap by “walking” the particle around a

circle in phase space, rather than a circle in real space. In
Calculation of the states after subsequent steps reveals thafider to accomplish this task, we need to generate an opera-
the quantum random walk around the circle, with a step sizéor of the form
of /2 is periodic with a period of eight. The eight probabil- e
ity distributions which arise are given in Table IlI. W=el ™37 (3.2
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FIG. 3. Probability of measuring the ion in the ground state after
applying the random walk for a timg w, decoupling the internal FIG. 4. Probability of measuring the ion in the ground state after

and motional states, and applying the measurement opdvator ~ applying the random walk on a circle for a timet/w, decoupling
the internal and motional states, and applying the measurement op-

wherea anda’ correspond to the annihilation and creation &"arD-

operators of the harmonic oscillator. This operator can be
produced in an ion trap by applying far-detuned laser pulsesoherence we would expect to measlire with probability

to the ion[16], followed by aw/2 pulse. of one half.
A similar scheme can be used to measure the level of
IV. MEASURING THE WALKS decoherence in the quantum random walk on the circle. Fig-

ure 4 again depicts the probability of measuring the ion in

~ Using current ion trap technologies, wave-packet disperihe ground state after decoupling the internal and motional
sion is negligiblg 14], so the main source of decoherence iSstates, however, this time we then apply the operator
related to the internal levels of the ion. Decoherence of the

electronic levels of the ion during the application of the al-

gorithm has the effect of gradually transforming the quantum

random walk to the classical random walk. Rather than con-

sidering this to be a negative effect, we can measure the

degree to which the ion is acting as a quantum variable rather o

than a classical variable, and thereby effectively measure thl@ this case, because we have total destructive interference of

level of decoherence in the ion trap. certain paths during the walk, the deviation of the quantum-
The scheme that we envisage for measuring the randoi®-classical walk is much larger at certain stages of the walk.

walk utilizes similar operators to those employed in the ap-

plication of the algorithm. After applying the random-walk

sequence for some number of steps, the internal state of the V. DISCUSSION

ion is decoupled from the motional state by an appropriate

Raman pulse. An effective operator such as Efxm) is ap-
plied, before finally measuring the internal state of the ion

D =exoy, (4.2)

We have described ion trap implementation schemes for
quantum random walks, both on the line and on the circle.

‘We have also suggested a measurement process which allows

Thus_ We are using the mternal_ state of the ion to supply Yhe enhanced features of these walks to be experimentally
with information about the motional state. observed

thelni;kt]grr?zglsitgft;h?r(\),vrglktr?en tmhgtill)nneé| S:tpa ?gsﬁwangggﬁﬁﬁle _ At this point, it is uncleay wh.ether quantum random walks
whether the ion is i the stafé) or ||). We then apply the QNI”. have any useful algont_hmlc appllcat|onsl. However, we
operator : belleve that they can provide a benchmarking protocol for
ion trap quantum computers, and perhaps other implementa-
~ inn tion schemes which combine continuous and discrete quan-
M= =e"P7. (4. tum variables.

The positive Hamiltonian is applied upon obtaining the re-
sults|1), while the negative Hamiltonian is applied other-
wise. Finally, we again measure the internal state of the ion.
If the quantum random walk has experienced no decoher- B.C.T. acknowledges support from the University of
ence, then we measurg) with the probabilities given by the Queensland, and thanks T. Bracken, O. Biham, and J. Kempe
solid line in Fig. 3, whereas if the ion suffers complete de-for useful discussions.
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