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Quantum computing in a macroscopic dark period
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Decoherence-free subspaces allow for the preparation of coherent and entangled qubits for quantum com-
puting. Decoherence can be dramatically reduced, yet dissipation is an integral part of the scheme in generating
stable qubits and manipulating them via one- and two-bit gate operations. How this works can be understood
by comparing the system with a three-level atom exhibiting a macroscopic dark period. In addition, a dynami-
cal explanation is given for a scheme based on atoms inside anoptical cavityin the strong-coupling regime and
we show how spontaneous emission by the atoms can be highly suppressed.
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I. INTRODUCTION

A major development in recent decades was the real
tion that computation is a purely physical process@1#. What
operations are computationally possible and with what e
ciency depends upon the physical system employed to
form the calculation. The field of quantum computing h
developed as a consequence of this idea, using quantum
tems to store and manipulate information. It has been sh
that such computers can enable an exponential speed u
the time taken to compute solutions to certain problems o
that taken by a purely classical device@2–4#.

To obtain a quantum-mechanical bit~qubit!, two well-
defined, orthogonal states, denoted byu0& and u1&, are
needed. There are certain minimum requirements for any
alization of a universal quantum computer@5#. It must be
possible to generate any arbitrary entangled superpositio
the qubits. As shown by Barencoet al. @6#, to achieve this, it
suffices to be able to perform a set of universal quant
logic gates. The set considered in this paper consists of
single-qubit rotation and the controlled-NOT gate between
two qubits. In addition, the system should be scalable w
well characterized qubits and it has to be possible to read
the result of a computation. Finally, the error rates of
individual gate operations should be less than 1024 to assure
that the quantum computer works fault tolerantly@7#.

To achieve the required precision, the relevant deco
ence times of the system have to be much longer than th
a single gate operation and it is this that constitutes the m
obstacle for quantum computing to overcome. To avoid
coherence it has been proposed that decoherence-free~DF!
states should be used as qubits. The existence
decoherence-free subspaces~DFSs! has been discusse
widely in the literature by several authors~see@8–12# and
references therein!. These subspaces arise if a system p
sesses states that do not interact with the environmen
addition, the system’s own time evolution must not drive t
states out of the DFS. Recently, the existence of DFSs
photon states has been verified experimentally by Kw
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et al. @13# and for the states of trapped ions by Kielpins
et al. @14#.

Far less is known about the manipulation of a syst
insidea DFS. One way is to use a Hamiltonian that does
excite transitions out of the DFS, as has been discusse
Bacon et al. @15#. Alternatively, one can make use o
environment-induced measurements@16# and the quantum
Zeno effect@17–19# as proposed by Beigeet al. @12,20# ~see
also @21#!. The quantum Zeno effect predicts that any ar
trary but sufficiently weak interaction does not move t
state of a system out of the DFS, if all non-DF states of
system couple strongly to the environment and populat
them leads to an immediate photon emission. The sys
then behaves as if it were under continuous observation a
whether it is in a DF state or not. Initially in a DF state, th
system remains DF with a probability very close to uni
This idea leads to a realm of new possibilities to manipul
DF qubits.

The possibility of quantum computingusing dissipation
has been pointed out already by Zurek in 1984@22# but so far
no concrete example for a scheme based on this idea
been found. In this paper we discuss in detail such a prop
for quantum computing by Beigeet al. outlined in @20# and
simplify its setup. Advantages of this scheme are that it
lows for the presence of finite decay rates and that its imp
mentation is relatively simple, which should make its expe
mental realization much less demanding. The precision
gate operations is independent of most system parame
and the decoherence times are much longer than the dur
of gate operations.

In the last few years, many proposals for the impleme
tation of quantum computing have been made taking adv
tage of advances in atom- and ion-trapping technology. S
methods mainly differ in the nature of the coupling betwe
the qubits, e.g., using collective vibrational modes@24–27#,
a strongly coupled single-cavity mode@28–31# or the dipole-
dipole interaction between atoms@32–34#. The physical sys-
tem considered here consists ofN atoms~or ions! stored in a
linear trap@35#, inside an optical lattice@36#, or on top of an
atomic chip for quantum computing@37–39# and interacting
via a common-cavity radiation-field mode. Each qubit is,
in @40#, obtained from two ground states of an atom, whi
we call state 0 and 1. The number of qubits is thus the sa
as the number of atoms and the system is scalable.
©2002 The American Physical Society05-1
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The single-qubit rotations can easily be achieved indep
dently of the cavity by using the well-known method of ad
batic population transfer via an excited state@41,42#. Another
crucial component of any quantum computer is a mechan
for measuring the qubits in the computational basis. For
a proposal by Dehmelt@23# can be used. An additional rap
idly decaying level is strongly coupled to one of the grou
states with a short laser pulse. The presence or absen
scattered photons then gives an accurate measurement
atomic state. Further details and extensions of this met
are given in@43,44#.

To perform a controlled-NOT gate, the two atoms involved
have to be moved into a cavity as shown in Fig. 1 and ma
tained a suitable distance apart to enable laser pulses to
dress each atom individually. The coupling constant of e
atom to the cavity mode is denoted in the following byg( i ).
For simplicity we assume here that the coupling strength
both atoms is the same andg(1)5g(2)[g. To couple non-
neighboring atoms, ring cavities with a suitable geome
could be used.

The main source of decoherence in cavity schemes is
possibility of a photon leaking out of the cavity through im
perfect mirrors with a ratek. Here the qubits are obtaine
from atomic ground states, and so the system is prote
against this form of decoherence while no gate is perform
Additionally the two atoms in the cavity possess a further
state involving excited atomic levels and an empty cav
This state is a maximally entangled state of the atoms
populating it allows the entanglement in the system
change and the controlled-NOT gate operation to be realize
without populating the cavity mode. To prevent the popu
tion of non-DF states, we use the idea described above
the manipulation of a DFS, which is explained in terms
adiabatic manipulation of DF states.

The second source of decoherence in the scheme is s
taneous emission from excited atomic states, which only
come populated during a gate operation. The simple sch
we discuss in the beginning of this paper involves three-le
atoms with aL configuration. It only works with a high
success rate if the spontaneous decay rate of the upper
is small. More realistically, one can replace all the transitio
by Raman transitions@41,42# by using three additional level
per atom. We show that the resulting six-level atoms beh
like the L systems discussed before but with a highly
duced probability for a spontaneous photon emission. As

FIG. 1. Schematic view of the atom-cavity system. Two ato
are moved into the cavity where a controlled-NOT gate is performed
by the application of a single laser pulse. Hereg describes the
coupling of each atom to the cavity mode, whileG and k are
spontaneous-emission and cavity-damping rates.
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example we consider40Ca1 ions as in the experiment b
Guthörlein et al. @35#.

The paper is organized as follows. In Sec. II we give
detailed discussion of the realization of the controlled-NOT

gate using three-level atoms and show that the behavio
our scheme has close parallels with the well-known beha
of a single three-level atom exhibiting macroscopic dark
riods @23#. As will be shown in this paper, moving to th
correct parameter regime enables the operation to be c
pleted with a high success rate and high fidelity of the o
put. The use of further levels to reduce the decoherence f
spontaneous emission is covered in Sec. III. Finally, Sec
offers a summary of our results.

II. THE REALIZATION OF THE CONTROLLED- NOT

GATE WITH A SINGLE LASER PULSE

To perform a controlled-NOT gate, one has to realize
unitary operation between the two qubits involved. Th
transformation flips the value of the target qubit condition
on the control qubit being in stateu1&. Writing the state of
the two qubits as a control state followed by a target sta
the corresponding unitary operator equals

UCNOT5u00&^00u1u01&^01u1u10&^11u1u11&^10u. ~1!

In this section we discuss a possible realization of this g
First an intuitive explanation is given, followed by an an
lytic derivation of the time evolution of the system. The su
cess rate of a single gate operation and its fidelity under
condition of no photon emission are calculated.

To realize a controlled-NOT gate between two qubits th
corresponding two atoms are placed at fixed positions ins
a cavity as shown in Fig. 1. To obtain a coupling between
atoms via the cavity mode, an additional level, level 2,
used. We assume in the following, that the qubit statesu0&
andu1& together withu2& form aL configuration as shown in
Fig. 2. The 1-2 transition of eachL system couples with the
strengthg to the cavity mode, while the 0-2 transition
strongly detuned. In addition two laser fields are requir
One laser couples with the Rabi frequencyV1 to the 1-2
transition of atom 1, the other couples withV0 to the 0-2
transition of atom 2 and we choose

V05V1[A2V. ~2!

s

FIG. 2. Level configuration of the atoms inside the cavity. T
ground states 0 and 1 of each atom form one qubit, while leve
provides the coupling of the atoms with coupling constantg with
the cavity mode via the 1-2 transition. One laser field excites
1-2 transition of atom 1 with the Rabi frequencyV1 and another the
0-2 transition of atom 2 with the Rabi frequencyV0.
5-2
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QUANTUM COMPUTING IN A MACROSCOPIC DARK PERIOD PHYSICAL REVIEW A65 032305
Note that this choice of the Rabi frequencies is different fr
the choice in @20#. There we minimized the error rate
whereas here we are interested in improving the feasibility
the proposed scheme by simplifying its setup. Only one la
is actually required per atom.

As in @20# we assume in the following that the Rabi fr
quencyV is weak compared to the coupling constantg and
the decay ratek. On the other hand,V should not be too
small because otherwise spontaneous emission from lev
during the gate operation cannot be neglected. This lead
the condition

G!V!
g2

k
and k. ~3!

It is shown in the following that under this condition a las
pulse of duration

T5
A2p

V
~4!

transforms the initial state of the atoms by a controlled-NOT

operation.
In this section we consider only the two atoms inside

cavity, the laser, the cavity field, and the surrounding fr
radiation fields. In the following we denote the energy
level x by \vx , the energy of a photon with wave numberk
by \vk , andvcav is the frequency of the cavity field with

vcav5v22v1 . ~5!

The annihilation operator for a photon in the cavity mode
given byb, and for a photon of the free-radiation field of th
mode (k,l), by akl or ãkl for those coupled to the atom o
cavity, respectively.~The geometry of the setup require
separate fields for each.! The coupling of thej 22 transition
of atom i to the free-radiation field can be described by co
pling constantgkl

( j ) , while g̃kl characterizes the coupling o
the cavity mode to a different free-radiation field. Using th
notation, the interaction Hamiltonian of the system with
spect to the free Hamiltonian can be written as

H I5Hat-cav1Hcav-env1Hat-env1H laser I, ~6!

where

Hat-cav5 i\g(
i

@ u2& i^1ub2H.c.#,

Hcav-env5 i\(
kl

g̃kl@ei (v12vk)tb†ãkl2H.c.#,

Hat-env5 i\(
i , j

(
kl

gkl, j@ei (v j 2vk)tu2& i^ j uakl2H.c.#,

H laser I5
1

2
A2\V@ u0&2^2u1u1&1^2u1H.c.#. ~7!
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These terms describe the interaction of the atoms with
cavity mode and the coupling of the cavity or the atom
respectively, to the external fields and the effect of the la
on the atomic state.

A. Quantum computing in a dark period

In this section we provide a simple description of t
physical mechanism underlying our proposal. To do so
point out that there is a close analogy between this sch
and the single three-level atom shown in Fig. 3~a!. The atom
has a metastable levelA, which is weakly coupled via a
driving laser with Rabi frequencyVw to level B. Level B in
turn is strongly coupled to a rapidly decaying third levelC.
We denote the Rabi frequency of this drivingVs, the decay
rate of the upper levelGs, and assume in the following tha

Vw!
Vs

2

Gs
and Gs. ~8!

Let us assume that the atom is initially in the metasta
stateuA&. In the absence of the strong driving (Vs50) the
atom goes over into the stateuB& within a timep/Vw . If the
strong laser pulse is applied, the atoms remain inuA& much
longer on average, namely, about the mean time before
first photon emission from levelC, which equals@45#

Tdark5
Vs

2

Vw
2Gs

@
p

Vw
. ~9!

The transition from levelA to level B is strongly inhibited,
an effect known in the literature as ‘‘electron shelving’’@23#.
It is also known as a macroscopic dark period and stateuA&
is known as a dark state@45#.

In the scheme we discuss in this paper, the levelsA, B,
andC are replaced by subspaces of states. To show this le
first consider which states play the role of the dark stateA.
There are two conditions for dark states or decoherence-
~DF! states of a system@8–12#. First, the state of the system

FIG. 3. Analogy between two systems with a macroscopic d
period.~a! Level scheme of a three-level atom with dark stateuA&.
HereVs is the Rabi frequency of the strong laser driving theB-C
transition,Vw is the Rabi frequency of the weak laser driving th
A-B transition, andGs is the decay rate of levelC. ~b! Schematic
view of the level scheme of the two atoms inside the cavity. T
dark stateuA& is replaced by the DFS,uB& by the subspace of the
non-DF states with no photons in the cavity (n50), anduC& by a
subspace containing non-DF states with the cavity mode popul
(n.0). The analog toVw is V, the analog ofVs is g, andGs is
replaced byk.
5-3
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must be decoupled from the environment. Let us in the
lowing neglect spontaneous emission by the atoms inside
cavity by settingG50. Then, this is the case for all state
with n50 photons inside the cavity. Second, the atomic s
must be unable to excite the cavity, requiring thatHat-cav
must annihilate it. The dark states of the system are there
of the form uc&5u0&cav̂ uw&, whereuw& can be an arbitrary
superposition of the five atomic statesu00&, u01&, u10&, u11&
and the antisymmetric state

ua&[@ u12&2u21&]/A2. ~10!

Hereun&cav denotes the state withn photons inside the cavity
The DFS of the two atoms inside the cavity is thus the s
of the individual dark states shown above, resulting in a fi
dimensional DFS.

The analog to the shelving system’s levelB is a non-DF
state with no photon inside the cavity. They are coupled
the DFS via the weak driving laser with Rabi frequencyV.
The analog to levelC are non-DF states with at least on
photon in the cavity field. They become excited via coupli
of the atoms to the cavity mode, with the coupling const
g. A photon leaks out of the cavity with a ratek, which has
the same effect as the decay rateGs above.

Using this analogy, which is summarized in Fig. 3, a
replacing condition~8! by condition~3! we can now easily
predict the time evolution of the two atoms inside the cav
It suggests that the weak laser pulse does not move the
of the atoms out of the DFS. Nevertheless, the time evolu
inside the DFS is not inhibited and is now governed by
effective HamiltonianHeff . This Hamiltonian is the projec
tion of the laser HamiltonianH laser I with the projectorPDFS
onto the DFS and equals

Heff5PDFSH laser IPDFS. ~11!

For the choice of Rabi frequencies made here this lead
the effective Hamiltonian

Heff5
1

2
\V@ u10&^au2ua&^11u1H.c.# ^ u0&cav̂ 0u. ~12!

If the lasers are applied for a durationT as in Eq.~4!, then
the resulting evolution is exactly that desired, the controll
NOT gate operation.

The length of the gate operation is chosen such that
additional DF stateua& is no longer populated at the end
the gate operation. It acts as abusfor the population transfe
between the qubit states. By populatingua& one can create
entanglement between the two atoms by applying only a
ser field. Note, that the cavity always remains empty dur
the gate operation, nevertheless, it establishes a coupling
tween the qubits.

B. The no-photon time evolution

In this section it is shown that the effect of the weak la
fields indeed resembles a controlled-NOT operation. We also
show that the mean time before the first photon emissio
of the order ofg2/(kV2) as suggested by Eq.~9!, and the
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equivalence of the two schemes shown in Fig. 3. To do
we use the quantum-jump approach@46–49#. It predicts that
the stateuc0& of the two atoms inside the cavity and th
cavity field under the condition ofno photon emission in
(0,t) is governed by the Schro¨dinger equation

i\d/dtuc0&5Hconduc0& ~13!

with the conditional HamiltonianHcond. This Hamiltonian is
non-Hermitian and the norm of the state vectoruc0& is de-
creasing in time. From this decrease one can calculate
probability for no photon in the time period (0,t), which is
given by

P0~ t,c!5iUcond~ t,0!uc&i2. ~14!

Here we solve Eq.~13! for the laser pulse of Eq.~2! and the
parameter regime~3! with the help of an adiabatic elimina
tion of the fast varying parameters.

If a photon is emitted, either by atomic spontaneous em
sion or by cavity decay, then the atomic coherence is lost,
gate operation has failed and the computation has to be
peated. The probability for no photon emission during
single gate operation,P0(T,c), therefore equals the succe
rate of the scheme. In order to evaluate the quality of a g
operation we define the fidelityF of a single gate operation
of lengthT as

F~T,c!5
u^cuUCNOTUcond~T,0!uc&u2

P0~T,c!
. ~15!

This is the fidelity of the scheme under the condition of
photon emission. If no photon detectors are used to disco
whether the operation has succeeded or not, the fidelity
duces to just the numerator.

The conditional Hamiltonian for the atoms in the cavi
can be derived from the HamiltonianH I of Eq. ~7! using
second-order perturbation theory and the assumption
environment-induced measurements on the free-radia
field @16#. This leads to@50#

Hcond5 i\g(
i

@ u2& i^1ub2H.c.#1
1

2
A2\V@ u0&2^2u

1u1&1^2u1H.c.#2
i

2
\kb†b2

i

2
\G(

i
u2& i^2u.

~16!

The notation we adopt in describing the states of the sys
is as follows, unx& denotes a state withn photons in the
cavity whilst the state of the two atoms is given byux&.
Analogously to Eq.~10! we define

us&[@ u12&1u21&]/A2. ~17!

Writing the state of the system under the condition of
photon emission as

uc0&5(
n,x

cnxunx&, ~18!
5-4
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QUANTUM COMPUTING IN A MACROSCOPIC DARK PERIOD PHYSICAL REVIEW A65 032305
one finds

ċn0052
i

2
A2Vcn022

1

2
nkcn00,

ċn0152Angcn21022
1

2
nkcn01,

ċn1052Angcn21202
i

2
V@A2cn201cna1cns#2

1

2
nkcn10,

ċn1152A2ngcn21s2
i

2
V@cns2cna#2

1

2
nkcn11,

ċn025An11gcn11012
i

2
A2Vcn00,

2
1

2
~nk1G!cn02

ċn205An11gcn11102
i

2
A2V@cn101cn22#,

2
1

2
~nk1G!cn20

ċna52
i

2
V~cn102cn111cn22!2

1

2
~nk1G!cna ,

ċns5A2~n11!gcn11112A2ngcn21222
i

2
V@cn101cn11

1cn22#2
1

2
~nk1G!cns ,

ċn225A2~n11!gcn11s2
i

2
V@A2cn201cna1cns#

2
1

2
~nk12G!cn22. ~19!

There are two different time scales in the time evoluti
of these coefficients, one proportional to 1/V and 1/G and a
much shorter one proportional tok/g2 and 1/k. The only
coefficients that change slowly in time are the amplitudes
the DF states. All other coefficients change much faster
adapt immediately to the system. By setting their derivati
equal to zero we can generate a closed system of differe
equations for the coefficients of the DF states. Neglecting
terms much smaller thanVk/g2, V/k, andG/V one finds

S ċ010

ċ011

ċ0a

D 52
1

2S 10k1 2k1 iV

2k1 2k1 2 iV

iV 2 iV 2k2

D S c010

c011

c0a

D ~20!

and
03230
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ċ000524k1c000, ċ00150 ~21!

with

k1[
V2k

16g2 , k2[
V2k

16g2 1
V2

2k
1

G

2
. ~22!

As a consequence of condition~3! and Eq.~4! we havekiT
!1. Therefore, solving the differential equations~20! and
~21! in first order ink1 and k2 allows one to describe the
effect of the laser pulse of lengthT already to a very good
approximation.

By doing so one finds that there is a small population
level a at timeT. This might lead to the spontaneous em
sion of a photon via atomic decay at which point t
controlled-NOT operation has failed. With a much highe
probability, the no-photon time evolution causes the popu
tion of stateu0a& to vanish within a timeta of the order of
1/G. Taking this into account and assuming that at the be
of the gate operation only qubit states are populated, we

Ucond~T1ta,0!5UCNOT

2
1

4
~6k12k2!T@ u10&^10u1u11&^11u#

2
1

4
~10k11k2!T@ u10&^11u1u11&^10u#

24k1Tu00&^00u. ~23!

If one neglects all terms of the orderkiT, then one finds that
the no-photon time evolution of the system is indeed
controlled-NOT operation. In contrast to the preceding se
tion, this has now been derived by solving the time evolut
of the system analytically.

From Eq.~14! and~23! we find that the success rate of th
schemeP0(T,c) equals in first order

P0~T,c!512
1

2
~10k11k2!T@ uc010u21uc011u2#

2
1

2
~6k12k2!T@c010c011* 1c010* c011#

28k1Tuc000u2, ~24!

which is close to unity and becomes arbitrarily close to un
asV andG go to zero. In this case the performance of t
gate becomes very slow. Nevertheless, this is successfu
cause whilst the gate duration increases as 1/V, Eq. ~24!
shows that the mean time for emission of a photon throu
the cavity walls scales as 1/k1 and 1/k2, which increases as
1/V2.

A main advantage of the scheme we propose here is,
if it works, then the fidelity of the gate operation does n
differ from unity in the first order ofkiT. From Eqs.~15! and
~23! we find within the approximations made above
5-5
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F~T,c!51. ~25!

It should therefore be possible that with our scheme the
cision of 1024 can be reached, which is required for quantu
computing to work fault tolerantly@7#.

C. Numerical results

In this section we present results obtained from a num
cal integration of the differential equations~19!. Figure 4
shows the success rateP0(T,c). For the initial qubit state
u10& the population of the bus stateu0a& during the gate
operation is maximal and spontaneous emission by the at
the least negligible. We shall therefore use this state as
initial state to which we apply the gate operation. ForG
!V0, for which P0(T,c) has been derived analytically,
very good agreement with Eq.~24! is found. If the sponta-
neous decay rateG becomes of the order ofV0 then the
no-photon probability decreases sharply. The reason is
the durationT of a single controlled-NOT gate is of the order
of 1/V0 and then also of the order of the lifetime 1/G of the
bus stateu0a&.

The fidelity of the gate operation under the condition
no photon emission through either decay channel is show
Fig. 5. ForG50 and for the chosen parameters the fidelityF
is in good agreement with Eq.~25!. Like the success rate,
only differs significantly from unity if the spontaneous dec
rate G becomes of the same order of magnitude asV0. A
method to prevent spontaneous emission by the atoms is
cussed in the following section.

III. SUPPRESSING SPONTANEOUS EMISSION

The main limiting factor in the scheme discussed in
preceding section is spontaneous emission from leve
However, we show now how this can be overcome by rep
ing all transitions in Fig. 2 by Raman transitions. To be a
to do so three additional levels per atom are required, wh
we denote in the following byej . The statesu0&, u1&, and
u2& in the new scheme are ground states. They could

FIG. 4. Success rate of a single gate operation,P0(T,c), as a
function of the Rabi frequencyV0 for the initial qubit stateuc&
5u10& and for the spontaneous decay ratesk5g, G50 ~a!, G
50.0001g ~b!, andG50.001g ~c!.
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obtained, for instance, from the2S1/2 and 2D3/2 levels of a
trapped calcium ion as used in Fig. 6.

The new scheme now requires three strong laser fie
applied to both atoms simultaneously, each exciting aj -ej
transition. Their function is to establish an indirect coupli
between the statesu0& and u1& with the stateu2& and to
generate phase factors. As before, the realization o
controlled-NOT operation requires one transition per atom
be individually addressed. One weak laser has to couple o
to the 2-e1 transition in atom 1, and another weak one on
to the 2-e0 transition in atom 2. In the following we denot
the Rabi frequency of the laser with respect to thei -ej tran-
sition byV i j , the corresponding detuning of the laser byD j
and the spontaneous decay rate ofuej& is G j .

The coupling of both atoms is again realized via the c
ity mode, which couples to the 1-e2 transition of each atom
The frequency of the cavity mode should equal

FIG. 5. The fidelity of a single controlled-NOT gate in case of no
photon emission as a function of the Rabi frequencyV0 for the
same parameters as in Fig. 4.

FIG. 6. Level configuration of one of two calcium ions~atom 1!
inside the cavity. Two of the split2D3/2 levels provide the states 0
and 1 to form one qubit, while level 2~a 2S1/2 state! provides the
coupling of the atoms via the cavity field. The transition betwe
these ground states is realized by Raman transitions via the ex
statesuej&. The 1-e2 transition couples to the cavity field with
coupling constantg andV i j denotes the Rabi frequency of a las
driving the i -ej transition. The configuration of the second atom
similar to the first but with the polarization of theV21 laser reversed
so that it now couples statesu2& and ue0&, we call this Rabi fre-
quencyV20.
5-6
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vcav5ve2
2v12D2 ~26!

such that its detuning is the same as the detuning of the l
driving the 2-e2 transition. If desired, the interaction be
tween an atom and the cavity can now be effectiv
switched on or off as required by switching on or off th
laser, which excites the 2-e2 transition, relaxing the condi
tion that only the two atoms involved in the controlled-NOT

operation can be within the cavity. The coupling const
between each atom and the cavity mode is again denote
g and the spontaneous decay rate of a single photon in
the cavity byk. Using this notation in the interaction pictur
with respect to the free Hamiltonian

H05(
i 51

2

(
j 50

2

\v j u2& i^ j u1\~vej
2D j !uej& i^ej u1\vcavb

†b

1(
kl

\vk@ ãkl
† ãkl1akl

† akl#, ~27!

the conditional Hamiltonian becomes

Hcond5 i\g(
i

@ ue2& i^1ub2H.c.#1
1

2
\@V21u2&1^e1u

1V20u2&2^e0u1H.c.#1
1

2
\(

i , j
@V j j u j & i^ej u1H.c.#

1\(
i , j

D j uej& i^ej u2
i

2
\kb†b2

i

2
\(

i , j
G j uej& i^ej u.

~28!

A. The no-photon time evolution

In this section we determine the parameter regime
quired for the scheme to behave as the two atoms in Fi
by solving the no-photon time evolution of the two six-lev
atoms inside the cavity. It is shown that the difference of
scheme based on six-level atoms compared to the sch
discussed in Sec. II is that the parametersV0 , V1, andg are
now replaced by some effective ratesV0 eff , V1 eff , andgeff
and one hasG50. In addition, level shifts are introduced.

First, we should assume that the detuningsD j are much
larger than all other system parameters. This allows us
eliminate adiabatically the excited statesuej&. The ampli-
tudes of the wave function of these states change on a
fast time scale, proportional to 1/D j , so that they adapt im
mediately to the system. We can therefore set the deriva
of their amplitude in the Schro¨dinger equation~13! equal to
zero. Neglecting all terms proportional to 1/D j one can de-
rive the HamiltonianH̃cond, which governs the no-photo
time evolution of the remaining slowly varying states.
equals
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H̃cond5 i\geff(
i

@ u2& i^1ub2H.c.#1
1

2
\@V0 effu0&2^2u

1V1 effu1&1^2u1H.c.#2
i

2
\kb†b

2\
g2

D2
(

i
u1& i^1ub†b2

1

4
\(

i , j

V j j
2

D j
u j & i^ j u

2
1

4
\

V20
2

D0
u2&2^2u2

1

4
\

V21
2

D1
u2&1^2u. ~29!

The first three terms in this conditional Hamiltonian are t
same as the terms in the HamiltonianHcond in Eq. ~16! but
with the Rabi frequenciesV j now replaced by

V j eff52
V2 jV j j

2D j
, ~30!

the coupling constantg replaced by the effective couplin
constant

geff52
gV22

2D2
, ~31!

and withG50. The final four terms all represent level shift
The first one of these introduces a level shift to the sta
un1& i with n.0, while the others correspond to a shift of th
statesu0&, u1&, andu2& of each atom.

To use the setup shown in Fig. 6 for the realization o
controlled-NOT gate operation we have to assume in analo
to Eqs.~2! and ~3! that

V0 eff5V1 eff ~32!

and

uV0 effu!
geff

2

k
and k. ~33!

By analogy with Eq.~4! the lengthT of the weak laser fields
with Rabi frequencyV0 eff should be

T5
2p

uV0 effu
5

4pD0

V20V00
. ~34!

In addition the parameters have to be chosen such tha
level shifts in Eq.~29! have no effect on the time evolutio
of the system. If the shifts are appreciable then signific
phase differences accrue in the computational basis, lea
to a marked decrease in gate fidelity. They may be negle
if they are negligible compared to the effective Rabi freque
cies or the effective coupling constantsgeff of the corre-
sponding transition. If we choose

V20!V00, V21!V11, and g!V22, ~35!

then g2/D2 becomes negligible compared togeff , and
V20

2 /D0 andV21
2 /D1 are much smaller thanV0 eff andV1 eff .
5-7
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For the remaining level shifts we assume that they are of
same size for all states. This is the case if

V00
2

D0
5

V11
2

D1
5

V22
2

D2
. ~36!

Then they introduce only an overall phase factor to the a
plitude of the DF states.

Note that only the lasers with Rabi frequencyV21 and
V20 have to be switched off at the end of a gate operati
The setup then resembles that of Sec. II without any la
fields applied and the state of the atoms inside the ca
does not change anymore.

B. Numerical results

Finally, we present some numerical results for the succ
rate P0(T,c) for a single controlled-NOT operation and for
the fidelity F(T,c) to show how well the setup shown i
Fig. 6 for the suppression of spontaneous emission in
scheme works. The following results are obtained from
numerical integration of the no-photon time evolution w
the conditional HamiltonianHcondgiven in Eq.~28!. For sim-
plicity and as an example we assume in the following:

D05D15D2[D, ~37!

which implies as a consequence of Eq.~36! that

V005V115V22[V. ~38!

The conditions~32!, ~33!, and ~35! given in the preceding
subsection are fulfilled if, for instance,V205V21, k5ugeffu,
andV20!g!V. In addition, the detuningD should be much
larger than all other parameters, i.e.,V!D. For simplicity
we assume here that the spontaneous decay rates are f
statesuej& the same,

G05G15G2[G. ~39!

FIG. 7. Probability for no photon emission during a sing
controlled-NOT operation for the initial atomic stateu10&, different
Rabi frequenciesV20, and the spontaneous decay ratesk
5ugeffu, G50 ~a!, G50.1g ~b!, G50.2g ~c!, andG50.5g ~d!. In
additionD51000g andV52g.
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The initial state of the qubits in the following is as in Sec.
given by u10&.

Figure 7 shows the success rate for a single control
NOT gate operation. As one can see by comparing the res
for G50 to the results forG50 in Fig. 4, the presence of th
additional level shifts in Eq.~29! increases slightly the no
photon probability of the scheme. Otherwise, it shows
same qualitative dependence onG and V0 or V20, respec-
tively, in both figures. The main advantage of the sche
using six-level atoms is that the spontaneous emission r
of the excited statesuej& can now be of the same order as t
cavity coupling constantg without decreasing the succes
rate of the gate operation significantly, which allows for t
implementation of the scheme with optical cavities.

The no-photon time evolution of the system over a tim
intervalT indeed plays the role of a controlled-NOT gate to a
very good approximation. The quality of the gate can
characterized through the fidelityF defined in Eq.~15!. The
fidelity obtained through numerical solution is now ve
close to unity. For the whole range of parameters used in
7 it is above 99.8%.

One could object that the durationT of the gate presented
here is much longer than for the gate described in the p
ceding section. But, as predicted in Sec. II B, the ratio of
gate-operation time to the decoherence time is highly
duced. One of the main requirements for quantum compu
to work fault tolerantly is for this ratio to be low. This is now
fulfilled for a much wider range of parameters.

IV. CONCLUSIONS

We have shown in this paper that it is possible to fulfill a
the requirements placed upon a universal quantum comp
in a quantum-optical regime. We have presented two s
schemes, the first is similar to that shown in@20# except that
it has been optimized for simplicity and its construction
feasible using current experimental techniques. The sec
suggestion builds on this by substantially reducing the err
arising from spontaneous decay at the expense of slig
increased complexity of implementation.

By comparing the underlying physical mechanism to th
observed in electron-shelving experiments, we hope to h
shed new light on passive methods of coherence control

As a first step to test the proposed scheme one could
it to prepare two atoms in a maximally entangled state a
measure its violation of Bell’s inequality as described
@51#. Finally we want to point out that we think that the ide
underlying our scheme can be carried over to other syst
and to arbitrary forms of interactions to manipulate th
state and so lead to a realm of new possibilities for the re
ization of decoherence-free quantum computing.
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