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Quantum computing in a macroscopic dark period
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Decoherence-free subspaces allow for the preparation of coherent and entangled qubits for quantum com-
puting. Decoherence can be dramatically reduced, yet dissipation is an integral part of the scheme in generating
stable qubits and manipulating them via one- and two-bit gate operations. How this works can be understood
by comparing the system with a three-level atom exhibiting a macroscopic dark period. In addition, a dynami-
cal explanation is given for a scheme based on atoms insidetéal cavityin the strong-coupling regime and
we show how spontaneous emission by the atoms can be highly suppressed.
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I. INTRODUCTION et al. [13] and for the states of trapped ions by Kielpinski
et al.[14].

A major development in recent decades was the realiza- Far less is known about the manipulation of a system
tion that computation is a purely physical procgsk What insidea DFS. One way is to use a Hamiltonian that does not
operations are computationally possible and with what effiexcite transitions out of the DFS, as has been discussed by
ciency depends upon the physical system employed to peBacon et al. [15]. Alternatively, one can make use of
form the calculation. The field of quantum computing hasenvironment-induced measuremefi$] and the quantum
developed as a consequence of this idea, using quantum sy&eno effec{17-19 as proposed by Beiget al.[12,20 (see
tems to store and manipulate information. It has been show@lso[21]). The quantum Zeno effect predicts that any arbi-
that such computers can enable an exponential speed up fi@ry but sufficiently weak interaction does not move the
the time taken to compute solutions to certain problems oveptate of a system out of the DFS, if all non-DF states of the

that taken by a purely classical devia-4. system couple strongly to the environment and populating
To obtain a quantum-mechanical kijubit), two well- them leads to an immediate photon emission. The system

defined, orthogonal states, denoted [8) and |1), are then beh_a\(es_ as if it were under con_ti_nuoqs observation as to
é/yhether it is in a DF state or not. Initially in a DF state, the
system remains DF with a probability very close to unity.
This idea leads to a realm of new possibilities to manipulate
F qubits.

needed. There are certain minimum requirements for any r
alization of a universal quantum compufé]. It must be
possible to generate any arbitrary entangled superposition

the qubits. As shown by Barenen al. [6], to achieve this, it The possibility of quantum computingsing dissipation

suffices 1o be able to pe_rform a set_ of universal _quantu as been pointed out already by Zurek in 1932] but so far
logic gates. The set considered in this paper consists of thg, concrete example for a scheme based on this idea has
single-qubit rotation and the controlle>T gate between peen found. In this paper we discuss in detail such a proposal
two qubits. In addition, the system should be scalable withy,, quantum computing by Beiget al. outlined in[20] and
well characterized qubits and it has to be possible to read OWimplify its setup. Advantages of this scheme are that it al-
the result of a computation. Finally, the error rates of theiows for the presence of finite decay rates and that its imple-
individual gate operations should be less than“l assure mentation is relatively simple, which should make its experi-
that the quantum computer works fault tolerarjtfy}. mental realization much less demanding. The precision of
To achieve the required precision, the relevant decohergate operations is independent of most system parameters
ence times of the system have to be much longer than that @ihd the decoherence times are much longer than the duration
a single gate operation and it is this that constitutes the maiof gate operations.
obstacle for quantum computing to overcome. To avoid de- In the last few years, many proposals for the implemen-
coherence it has been proposed that decoherencéBfée tation of quantum computing have been made taking advan-
states should be used as qubits. The existence afge of advances in atom- and ion-trapping technology. Such
decoherence-free subspacé®FSg has been discussed methods mainly differ in the nature of the coupling between
widely in the literature by several authofsee[8—12] and  the qubits, e.g., using collective vibrational modad—27,
references therein These subspaces arise if a system posa strongly coupled single-cavity mof28—31 or the dipole-
sesses states that do not interact with the environment. Idipole interaction between atorfi32—34. The physical sys-
addition, the system’s own time evolution must not drive thetem considered here consistsdftoms(or iong stored in a
states out of the DFS. Recently, the existence of DFSs folinear trap[35], inside an optical latticE36], or on top of an
photon states has been verified experimentally by Kwiattomic chip for quantum computif@7-39 and interacting
via a common-cavity radiation-field mode. Each qubit is, as
in [40], obtained from two ground states of an atom, which
*Present address: Max-Planck-Institttr fQuantenoptik, Hans- we call state 0 and 1. The number of qubits is thus the same
Kopfermann-StralRe 1, 85748 Garching, Germany. as the number of atoms and the system is scalable.

1050-2947/2002/68)/03230%9)/$20.00 65 032305-1 ©2002 The American Physical Society



BEN TREGENNA, ALMUT BEIGE, AND PETER L. KNIGHT PHYSICAL REVIEW A65 032305

H %
- \

S
4 \
. r\Q, Q r'
X K :J_lgl ° % NI

A
\

0

ol 0

: ’]’L\ atom 1 atom 2

o . ' I~ ,

: FIG. 2. Level configuration of the atoms inside the cavity. The

ground states 0 and 1 of each atom form one qubit, while level 2
FIG. 1. Schematic view of the atom-cavity system. Two atomsprovides the coupling of the atoms with coupling constgntith
are moved into the cavity where a controlledt gate is performed the cavity mode via the 1-2 transition. One laser field excites the
by the application of a single laser pulse. Heyedescribes the 1-2 transition of atom 1 with the Rabi frequen@y and another the
coupling of each atom to the cavity mode, whileand x are  0-2 transition of atom 2 with the Rabi frequent.
spontaneous-emission and cavity-damping rates.

) ) ) ) ) ) example we considefCa’ ions as in the experiment by
The single-qubit rotations can easily be achieved indepeng ihalein et al. [35].

der_ltly of the _cavity by usin_g the We_II-known method of adia-  The paper is organized as follows. In Sec. Il we give a
batic population transfer via an excited stpté,42. Another  getajled discussion of the realization of the controliexk
crucial component of any quantum computer is a mechanisfate ysing three-level atoms and show that the behavior of
for measuring the qubits in the computational basis. For thigr scheme has close parallels with the well-known behavior
a proposal by Dehmel[23] can be used. An additional rap- of 4 single three-level atom exhibiting macroscopic dark pe-
idly decaylng level is strongly coupled to one of the groundjggs [23]. As will be shown in this paper, moving to the
states with a short Iaser_pulse. The presence or absence Qfirect parameter regime enables the operation to be com-
scattered photons then gives an accurate measurement of %ted with a high success rate and high fidelity of the out-

atomic state. Further details and extensions of this methogy The use of further levels to reduce the decoherence from

are given in[43,44. _ spontaneous emission is covered in Sec. IIl. Finally, Sec. IV
To perform a controlledkoT gate, the two atoms involved  offers a summary of our resullts.

have to be moved into a cavity as shown in Fig. 1 and main-

tained a suitable distance apart to enable laser pulses to ad-

dress each atom individually. The coupling constant of each !l THE REALIZATION OF THE CONTROLLED-  NOT
atom to the cavity mode is denoted in the following . GATE WITH A SINGLE LASER PULSE

For simplicity we assume here that the coupling strength for 1, perform a controlledioT gate, one has to realize a

H 1) ~(2)—
both atoms is the same amfd’)=g®=g. To couple non- itary operation between the two qubits involved. This
neighboring atoms, ring cavities with a suitable geometryyansformation flips the value of the target qubit conditional
could be used. on the control qubit being in statd). Writing the state of

The main source of decoherence in cavity schemes is thgye o qubits as a control state followed by a target state,
possibility of a photon leaking out of the cavity through im- 4,4 corresponding unitary operator equals
perfect mirrors with a ratec. Here the qubits are obtained

from atomic ground states, and so the system is protected _
against this form of decoherence while no gate is performed. Ucnor=00)(00 +[02)(0% +[10)(14 +[11)(10. (1)
Additionally the two atoms in the cavity possess a further DF

state involving excited atomic levels and an empty cavity.

This state is a maximally entangled state of the atoms anﬁir,St an intuitive explanation is given, followed by an ana-
populating it allows the entanglement in the system tovtic derivation of the time evolution of the system. The suc-

change and the controlledsT gate operation to be realized C€SS rate of a single gate operation and its fidelity under the

without populating the cavity mode. To prevent the po ula_condition 9f no photon emission are calculated. .
bop d Y P pop To realize a controlledioT gate between two qubits the

tion of non-DF states, we use the idea described above for ) ) L C
the manipulation of a DFS, which is explained in terms Ofcorrespondlng two atoms are pIach at f|xed. positions inside
adiabatic manipulation of DF states. a cavity as shown in Fig. 1. To obtain a coupling between the

The second source of decoherence in the scheme is spoﬁt-omS via the cavity mode, an additional level, level 2, is

taneous emission from excited atomic states, which only bedS€d: We assume in the following, that the qubit Stadys
d|1) together with 2) form aA configuration as shown in

come populated during a gate operation. The simple schenf! " -
we discuss in the beginning of this paper involves three-level 9 2- The 1-2 transition of each system couples with the
atoms with aA configuration. It only works with a high Strengthg to the cavity mode, while the 0-2 transition is
success rate if the spontaneous decay rate of the upper levd[ONgly detuned. In addition two laser fields are required.
is small. More realistically, one can replace all the transitionoN€ laser couples with the Rabi frequen@y to the 1-2

by Raman transitiongt1,42 by using three additional levels transition of atom 1, the other couples wifl, to the 0-2
per atom. We show that the resulting six-level atoms behav&ansition of atom 2 and we choose

like the A systems discussed before but with a highly re-

duced probability for a spontaneous photon emission. As an QO=91£\/§Q. 2

In this section we discuss a possible realization of this gate.
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Note that this choice of the Rabi frequencies is different from (a) —C (b) T HQIL-Dljostates
the choice in[20]. There we minimized the error rate, withn
whereas here we are interested in improving the feasibility of B & K

s s 8

the proposed scheme by simplifying its setup. Only one laser
is actually required per atom. v v
As in [20] we assume in the following that the Rabi fre- — B ——§— LD aaic

quency() is weak compared to the coupling constgrand QW,, Q v

the decay ratec. On the other hand{) should not be too T Afldarkstate) — DFstates

small because otherwise spontaneous emission from level 2 fig. 3. Analogy between two systems with a macroscopic dark

during the gate operation cannot be neglected. This leads {riod.(a) Level scheme of a three-level atom with dark stap.

the condition Here Q. is the Rabi frequency of the strong laser driving B«€

transition, (), is the Rabi frequency of the weak laser driving the

A-B transition, ands is the decay rate of level. (b) Schematic

view of the level scheme of the two atoms inside the cavity. The

dark statgA) is replaced by the DFSB) by the subspace of the

It is shown in the following that under this condition a laser "on-DF states with no photons in the cavity<0), and|C) by a

pulse of duration subspace containing non-_DF states with the cav_lty mode po_pulated
(n>0). The analog td},, is 1, the analog of)4 is g, and I’y is

\/577 replaced byk.

g2
F<Q<? and k. 3

These terms describe the interaction of the atoms with the
; f the initial state of the at b trolet cavity mode and the coupling of the cavity or the atoms,
ranstorms the initial state ot the atoms Dy a controlen- respectively, to the external fields and the effect of the laser

operathn. . . o on the atomic state.
In this section we consider only the two atoms inside the

cavity, the laser, the cavity field, and the surrounding free-
radiation fields. In the following we denote the energy of
level x by 7w, the energy of a photon with wave number In this section we provide a simple description of the
by hwy, andw.,, is the frequency of the cavity field with  physical mechanism underlying our proposal. To do so we

point out that there is a close analogy between this scheme

Weay™= W~ O] (5  and the single three-level atom shown in Fige)3The atom

has a metastable levé, which is weakly coupled via a
The annihilation operator for a photon in the cavity mode isdriving laser with Rabi frequencg,, to level B. Level B in
given byb, and for a photon of the free-radiation field of the turn is strongly coupled to a rapidly decaying third le@I
mode ,\), by ay, oray, for those coupled to the atom or We denote the Rabi frequency of this drivifi, the decay
cavity, respectively.(The geometry of the setup requires rate of the upper level's, and assume in the following that
separate fields for eaghThe coupling of thg — 2 transition
of atomi to the free-radiation field can be described by cou-
pling constantg(k‘)\), while EjkA characterizes the coupling of

the cavity mode to a different free-radiation field. Using this S
notation, the interaction Hamiltonian of the system with re- Let us assume that the atom is initially in the metastable

A. Quantum computing in a dark period

2

QW<F—S and T,. (8)
S

spect to the free Hamiltonian can be written as state|A). In the absence of the strong drivin@ {=0) the
atom goes over into the stdt®) within a time=/Q,,. If the
H,=H z.cavt Heav-envt Hat-envt Hiaser 1s (6)  strong laser pulse is applied, the atoms remaipAihmuch
longer on average, namely, about the mean time before the
where first photon emission from level, which equalg45]
Hateam 1192 [|2)i(1lb—H.c] T O 7 (9)
at-cav 4 i — ..., =_ >
. dark Qavrs Qw

The transition from level to level B is strongly inhibited,
an effect known in the literature as “electron shelvif@3].
It is also known as a macroscopic dark period and gta}e
_ is known as a dark stafd5].
Haten= 152, 2 Gia jl€' 179 2) (jla —H.c], In the scheme we discuss in this paper, the levels,
Lk andC are replaced by subspaces of states. To show this let us
first consider which states play the role of the dark state
H —E\/Ehﬂ 10)5(2| +|1)4(2] + H 7) There are two conditions for dark states or decoherence-free
laser ™" 5 [10)( A Cl. (DF) states of a systefi8—12]. First, the state of the system

Hcav-en | ﬁ% ak)\[ei(wlfwk)tbfék)\_ H.c],
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must be decoupled from the environment. Let us in the fol-equivalence of the two schemes shown in Fig. 3. To do this
lowing neglect spontaneous emission by the atoms inside th@e use the quantum-jump approde6—49. It predicts that
cavity by settingl'=0. Then, this is the case for all states the state|#°) of the two atoms inside the cavity and the
with n=0 photons inside the cavity. Second, the atomic stateavity field under the condition ofio photon emission in
must be unable to excite the cavity, requiring thf. ..,  (0) is governed by the Schdinger equation

must annihilate it. The dark states of the system are therefore . 0 0

of the form|¢)=|0)ca,® | @), Where| @) can be an arbitrary i71d/dt|§°) =Hond ¥°) (13
superposition of the five atomic statg¥), |01), |10), |11)

and the antisymmetric state with the conditional Hamiltoniatd .,,q. This Hamiltonian is

non-Hermitian and the norm of the state vedf) is de-
=112 — 211/ V2. 10 creasing in time. From thls decr.ease one can Ca!culgte the
l@)=[112)=121] V2 (10 probability for no photon in the time period (D, which is

Here|n),, denotes the state withphotons inside the cavity. 9iven by
The DFS of the two atoms inside the cavity is thus the span _ 2
of the individual dark states shown above, resulting in a five- Po(t. ) =[Ucond .01 (14)

dimensional DFS. ) Here we solve Eq(13) for the laser pulse of Eq2) and the

The analog to the shelving system’s le®ls a non-DF  parameter regimé3) with the help of an adiabatic elimina-
state with no photon inside the cavity. They are coupled tGjgn of the fast varying parameters.
the DFS via the weak driving laser with Rabi frequeriey If a photon is emitted, either by atomic spontaneous emis-
The analog to leveC are non-DF states with at least one sjon or by cavity decay, then the atomic coherence is lost, the
photon in the cavity field. They become excited via couplingga»[e operation has failed and the computation has to be re-
of the atoms to the cavity mode, with the coupling constanpeated. The probability for no photon emission during a
g. A photon leaks out of the cavity with a raie which has  sjngle gate operatiorPy(T, ), therefore equals the success
the same effect as the decay ritgabove. rate of the scheme. In order to evaluate the quality of a gate

Using this analogy, which is summarized in Fig. 3, andgperation we define the fidelitiy of a single gate operation
replacing condition8) by condition(3) we can now easily of length T as

predict the time evolution of the two atoms inside the cavity.

It suggests that the weak laser pulse does not move the state (/] U cnotY cond T,0)| )|

of the atoms out of the DFS. Nevertheless, the time evolution F(T.¢)= Po(T, ) : (15)
inside the DFS is not inhibited and is now governed by the ’

effective HamiltonianH . This Hamiltonian is the projec- This is the fidelity of the scheme under the condition of no
tion of the laser Hamiltonial s, | With the projectorP’pes  photon emission. If no photon detectors are used to discover

onto the DFS and equals whether the operation has succeeded or not, the fidelity re-
‘ duces to just the numerator.
Her= PorsHiaser 1IPoFs- (11) The conditional Hamiltonian for the atoms in the cavity

can be derived from the Hamiltoniad, of Eq. (7) using
Qecond-order perturbation theory and the assumption of
environment-induced measurements on the free-radiation
field [16]. This leads td50]

For the choice of Rabi frequencies made here this leads
the effective Hamiltonian

1
Her=5%0[]10)(al - [a)(11] + H.c]®[0)cal0]. (12

1

Hoond= 1792 [12)i(1]b—H.c]+ 5V2hQ[]0)5(2)
If the lasers are applied for a duratidnas in Eq.(4), then !
the resulting evolution is exactly that desired, the controlled- i i
NOT gate operation. +]1)1(2|+H.c]- EﬁKbTb— EﬁFZ 12)i(2].

The length of the gate operation is chosen such that the :
additional DF statea) is no longer populated at the end of (16)
the gate operation. It acts adbasfor the population transfer
between the qubit states. By populatif@ one can create The notation we adopt in describing the states of the system
entanglement between the two atoms by applying only a lais as follows,|nx) denotes a state with photons in the
ser field. Note, that the cavity always remains empty duringavity whilst the state of the two atoms is given by).
the gate operation, nevertheless, it establishes a coupling b&nalogously to Eq(10) we define

tween the qubits. |s)=[|12)+|2D)]/ 2. (17

B. The no-photon time evolution Writing the state of the system under the condition of no
In this section it is shown that the effect of the weak laserphoton emission as
fields indeed resembles a controlledT operation. We also
show that the mean time before the first photon emission is |¢/o>:2 Cox NX) (18)
of the order ofg?/(xQ?) as suggested by E@9), and the e
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one finds
. i 1
Cnoo= — E\/EQCnOZ_ 5 NkCnoo,
) 1
Cho1= — \/ﬁgcnfloz_ EnKCnOL
) i 1
Cn10=—VNQGy_ 120~ EQ[ V2Cn20+ Coat Cnsl - 5 NKCnio,
. i 1
Ch11™= — \/%QCn,B— EQ[Cns_ Cna]_ EnKCnlly

. i
Cno2= VN+19Cny 101~ E\/EQCnOO!

1
- E(ﬂK"l‘F)Cnoz
. i
Cnoo= VN+19Chy 110~ E\/EQ[CnlO+ Cn22l,

1
- E(nK"’F)CnZO

. i 1
Cha= — EQ(Cnlo_ Cn111 Cn22) — E(nK+F)Cnav

) i
Cns=V2(N+1)gChs 111~ V2NQG 100 EQ[Cnlo+ Ch11
1
+Cpool — E(nK+F)cnS,
) i
Cr22=V2(N+1)gCh 15— EQ[ \/Ecn20+ Cnat Cnsl

1
_E(nK+2F)Cn22. (19)

PHYSICAL REVIEW 45 032305

Cooo= —4K1Co00,  Coor="0 (21)

with

0%k 0%k 02

klErng, szquz'i‘Z-i-E.

(22)

As a consequence of conditidB) and Eq.(4) we havek; T
<1. Therefore, solving the differential equatiof0) and
(21) in first order ink; andk, allows one to describe the
effect of the laser pulse of length already to a very good
approximation.

By doing so one finds that there is a small population in
level a at time T. This might lead to the spontaneous emis-
sion of a photon via atomic decay at which point the
controlledNoOT operation has failed. With a much higher
probability, the no-photon time evolution causes the popula-
tion of state|0a) to vanish within a timet, of the order of
1/T". Taking this into account and assuming that at the begin
of the gate operation only qubit states are populated, we find

Ucond T+12,0)=Ucnor

1
— 7 (6ki—ko) T[|10)(10/+|11)(11]]

1
= 710Ky + ko) T[|10)(11) +|11)(10]]

— 4k, T|00)(00. (23)

If one neglects all terms of the ordkfT, then one finds that
the no-photon time evolution of the system is indeed a
controlledNOT operation. In contrast to the preceding sec-
tion, this has now been derived by solving the time evolution
of the system analytically.

From Eq.(14) and(23) we find that the success rate of the
schemePy(T,#) equals in first order

1
Po(T,)=1—- 5(10(14' ko) TL|Co1d ?+ |Co11l ]

There are two different time scales in the time evolution
of these coefficients, one proportional tdX1and 1I" and a
much shorter one proportional t/g? and 1k. The only
coefficients that change slowly in time are the amplitudes of
the DF states. All other coefficients change much faster and
adapt immediately to the system. By setting their derivativesvhich is close to unity and becomes arbitrarily close to unity
equal to zero we can generate a closed system of differentials ) andI” go to zero. In this case the performance of the
equations for the coefficients of the DF states. Neglecting alyjate becomes very slow. Nevertheless, this is successful be-
terms much smaller thaQ x/g?, Q/«, andI'/Q one finds cause whilst the gate duration increases d3, 1£q. (24)

shows that the mean time for emission of a photon through

1
- E(le_ ko) T[ CorcCo11+ Co1Co14]

— 8k T|Cood?, (24

émo 10k,  2kg iQ Co1o the cavity walls scales aski/and 1k,, which increases as
con | ==X 2 2 i 1.
Com | =735 1 v Cor| (20 A main advantage of the scheme we propose here is, that
Coa i —iQ  2ky/ \ Cpa if it works, then the fidelity of the gate operation does not
differ from unity in the first order ok;T. From Eqs(15) and
and (23) we find within the approximations made above
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FIG. 5. The fidelity of a single controlledoT gate in case of no
photon emission as a function of the Rabi frequetizy for the
same parameters as in Fig. 4.

FIG. 4. Success rate of a single gate operat®y(,T, ), as a
function of the Rabi frequency§l, for the initial qubit state| i)
=]10) and for the spontaneous decay ratesg, I'=0 (a), T
=0.0001 (b), andI'=0.001y (c).

obtained, for instance, from th&S,,, and 2D, levels of a

F(T,4)=1. (25)  trapped calcium ion as used in Fig. 6. _
The new scheme now requires three strong laser fields

applied to both atoms simultaneously, each exciting-eg

It should therefore be possible that with our scheme the pretransition. Their function is to establish an indirect coupling
cision of 104 can be reached, which is required for quantumbetween the state)) and |1) with the state|2) and to

computing to work fault tolerantly7]. generate phase factors. As before, the realization of a
controlledNOT operation requires one transition per atom to

) be individually addressed. One weak laser has to couple only
C. Numerical results to the 2e; transition in atom 1, and another weak one only

In this section we present results obtained from a numerito the 2, transition in atom 2. In the following we denote
cal integration of the differential equatior{49). Figure 4  the Rabi frequency of the laser with respect to itteg tran-
shows the success raly(T,). For the initial qubit state sition by ();; , the corresponding detuning of the laserdy
|10) the population of the bus stat@a) during the gate and the spontaneous decay ratde is T'; .
operation is maximal and spontaneous emission by the atoms The coupling of both atoms is again realized via the cav-
the least negligible. We shall therefore use this state as thity mode, which couples to the &, transition of each atom.
initial state to which we apply the gate operation. Hor The frequency of the cavity mode should equal

<y, for which Py(T,#) has been derived analytically, a
very good agreement with E§24) is found. If the sponta- ®, % e
neous decay raté€ becomes of the order d, then the
no-photon probability decreases sharply. The reason is tha ,
the durationT of a single controlleddoT gate is of the order P
of 1/Q)y and then also of the order of the lifetimd16f the B AN
bus statg0a). \
The fﬁjelizy of the gate operation under the condition of Qo | 8 M Ll O
no photon emission through either decay channel is shown iﬂDs/2 \
Fig. 5. ForI'=0 and for the chosen parameters the fidefity 2p 0 \ 1 ms52
is in good agreement with E¢25). Like the success rate, it +*
only differs significantly from unity if the spontaneous decay 2 5
rate ' becomes of the same order of magnitude(gs A Sin m=12 m=172
method to prevent spontaneous emission by the atoms is dis- ! !

cussed in the following section.

FIG. 6. Level configuration of one of two calcium iofeom 1)

inside the cavity. Two of the spl#D,, levels provide the states 0

and 1 to form one qubit, while level @& 2S,,, state provides the
S . . . coupling of the atoms via the cavity field. The transition between

The.mam “m't'ng, factor in the scheme _d|scussed In thethese ground states is realized by Raman transitions via the excited

preceding section is spontaneous emission from level Ztates|e;). The 1e, transition couples to the cavity field with a

However, we show now how this can be overcome by rep'""cc‘,oupling constang and();; denotes the Rabi frequency of a laser

ing all transitions in Fig. 2 by Raman transitions. To be ablegriving thei-e; transition. The configuration of the second atom is

to do so three additional levels per atom are required, whicBimilar to the first but with the polarization of ti§&,, laser reversed

we denote in the following by;. The stateg0), |1), and  so that it now couples staté®) and |ey), we call this Rabi fre-

|2) in the new scheme are ground states. They could bguency,,.

IIl. SUPPRESSING SPONTANEOUS EMISSION
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Weay™ We, —w1— A, (26) ~ ) 1
o Heond=i%19en ) [12)i(1lb=H.c]+ 5[ Qo cerl0)2(2]

such that its detuning is the same as the detuning of the laser
driving the 2e, transition. If desired, the interaction be-
tween an atom and the cavity can now be effectively
switched on or off as required by switching on or off the —hg—2 2 1-(1lbTh— EﬁE ﬂ .
laser, which excites the &; transition, relaxing the condi- A, 4 |11 475 A DIl
tion that only the two atoms involved in the controllsdT
operation can be within the cavity. The coupling constant 20 21
between each atom and the cavity mode is again denoted by - ZﬁA_O|2>2<2| - ZﬁA_1|2>1<2|'
g and the spontaneous decay rate of a single photon inside
the cavity byx. Using this notation in the interaction picture The first three terms in this conditional Hamiltonian are the
with respect to the free Hamiltonian same as the terms in the Hamiltonikin,.qin Eq. (16) but
with the Rabi frequencieQ; now replaced by

i
+Qqe1)1(2|+H.c]— EﬁKbTb

2

2 2
(29)

2 2
. Qi€
Ho=2, ,20 fiwj] 2)i(j|+1i(we = A))e;)i(e)] +hweab'b Qjer=— 35 (30
~ ~ the coupling constang replaced by the effective coupling
+% hoahan +aanl, (27 constant
90y
L. . . Oeff= — oA’ (31)
the conditional Hamiltonian becomes 2

and withI'=0. The final four terms all represent level shifts.
1 The first one of these introduces a level shift to the states
H con= iﬁgE [les)i(1lb—H.c]+ Eh[921|2)1<e1| In1); with n>0, while the others correspond to a shift of the
! states|0), |1), and|2) of each atom.
1 To use the setup shown in Fig. 6 for the realization of a
+ Q50 2) (€| +H.Cc.]+ EﬁE [Qj]j)i(e| +H.c] controlledNOT gate operation we have to assume in analogy
b to Egs.(2) and(3) that

i i
+ﬁ2 AJ|eJ>|<eJ|—§fLKbTb_ Ehz F]|ej),(ej| QOeff:Qleff (32)
i) 1]

(28) and
2

Gert
_ _ |Qoel<— and «. (33)
A. The no-photon time evolution K

In this section we determine the parameter regime regy anajogy with Eq(4) the lengthT of the weak laser fields
quired for the scheme to behave as the two atoms in Fig. a/ith Rabi frequency(2 o should be
€

by solving the no-photon time evolution of the two six-level

atoms inside the cavity. It is shown that the difference of the 2 4mA,
scheme based on six-level atoms compared to the scheme = m: m (34
discussed in Sec. Il is that the parame®gs (2,, andg are 0 eff 202700

now replaced by some effective rat@s ¢, 1 o, aNdQGest
and one ha$' =0. In addition, level shifts are introduced.
First, we should assume that the detunidgsare much

In addition the parameters have to be chosen such that the
level shifts in Eq.(29) have no effect on the time evolution

! of the system. If the shifts are appreciable then significant

larger than all other system parameters. This allows us @ qe differences accrue in the computational basis, leading
eliminate adiabatically the excited statgs). The ampli- 1,3 marked decrease in gate fidelity. They may be neglected
tudes of the wave function of these states change on a VeWthey are negligible compared to the effective Rabi frequen-

fastjpmel scalt;, proportional to A/ ,hso t?at they ﬂda(ft M- cies or the effective coupling constanggy of the corre-
mediately to the system. We can therefore set the derivativEponding transition. If we choose

of their amplitude in the Schoinger equatior(13) equal to
zero. Neglecting all terms proportional toAl/one can de- Qo<Qgo, Q<Qqq, and g<Q,,, (35)
rive the HamiltonianH 4, Which governs the no-photon

time evolution of the remaining slowly varying states. It then g%/A, becomes negligible compared tg.;, and
equals Q5/A, andQ3,/A, are much smaller thafl g o and Q4 .
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T T T "@ T The initial state of the qubits in the following is as in Sec. Il
- given by|10).
Figure 7 shows the success rate for a single controlled-
NOT gate operation. As one can see by comparing the results
for I'=0 to the results foF =0 in Fig. 4, the presence of the

0.95

R, ) [ additional level shifts in Eq(29) increases slightly the no-
085 | - photon probability of the scheme. Otherwise, it shows the
) S : same qualitative dependence Brnand Q) or ,q, respec-
o T tively, in both figures. The main advantage of the scheme
075 4 L L L using six-level atoms is that the spontaneous emission rates
0 0.01 0.02 0.03 0.04 0.05 of the excited state®;) can now be of the same order as the

$220/9 cavity coupling constany without decreasing the success
rate of the gate operation significantly, which allows for the

FIG. 7. Probability for no photon emission during a single . ; . . "
implementation of the scheme with optical cavities.

controllednoT operation for the initial atomic stafd0), different

Rabi frequenciesQ,,, and the spontaneous decay rates  1ne no-photon time evolution of the system over a time
=|gesl, T'=0(a), T=0.1g (b), [=0.2g (¢), and['=0.5g (d). In intervalT indeed plays the role of a controlledT gate to a
addition A = 1000y and Q= 2g. very good approximation. The quality of the gate can be

characterized through the fidelify defined in Eq(15). The
For the remaining level shifts we assume that they are of thédelity obtained through numerical solution is now very

same size for all states. This is the case if close to unity. For the whole range of parameters used in Fig.
7 it is above 99.8%.
02 02 02 One could object that the duratidnof the gate presented
o~ T2z (36)  here is much longer than for the gate described in the pre-
A A Ay ceding section. But, as predicted in Sec. Il B, the ratio of the

gate-operation time to the decoherence time is highly re-
Then they introduce only an overall phase factor to the ameuced. One of the main requirements for quantum computers
plitude of the DF states. to work fault tolerantly is for this ratio to be low. This is now
Note that only the lasers with Rabi frequenfy, and  fulfilled for a much wider range of parameters.
0,9 have to be switched off at the end of a gate operation.
The setup then resembles that of Sec. Il without any laser

fields applied and the state of the atoms inside the cavity IV. CONCLUSIONS

does not change anymore. We have shown in this paper that it is possible to fulfill all
the requirements placed upon a universal quantum computer
B. Numerical results in a quantum-optical regime. We have presented two such

schemes, the first is similar to that showr 2] except that
5% has been optimized for simplicity and its construction is
feasible using current experimental techniques. The second
X . 2 suggestion builds on this by substantially reducing the errors
Fig. 6 for the suppressmn'of spontaneous emission in th‘érising from spontaneous decay at the expense of slightly
scheme works. The following results are obtained from g,.reased complexity of implementation.
numerica}l_ integratiqn of_ the no-photqn time evolution with By comparing the underlying physical mechanism to that
the conditional Hamiltoniaf conggiven in Eq.(28). For sim- gpsaned in electron-shelving experiments, we hope to have
plicity and as an example we assume in the following: shed new light on passive methods of coherence control.
As a first step to test the proposed scheme one could use
An= A= Ao=A 37) it to prepare two atoms in a ma.ximally.entangled state and
0o mLT R measure its violation of Bell's inequality as described in
[51]. Finally we want to point out that we think that the idea
underlying our scheme can be carried over to other systems
and to arbitrary forms of interactions to manipulate their
Qoo=011= Q=0 (38)  state and so lead to a realm of new possibilities for the real-
ization of decoherence-free quantum computing.
The conditions(32), (33), and (35) given in the preceding
subsection are fulfilled if, for instanc€),o= 051, k=|ge|,

Finally, we present some numerical results for the succe
rate Po(T, ) for a single controlled¢oT operation and for
the fidelity F(T,¢) to show how well the setup shown in

which implies as a consequence of E86) that

and(),,<g<(). In addition, the detunind should be much ACKNOWLEDGMENTS
larger than all other parameters, i.€;<A. For simplicity We thank D. F. V. James, W. Lange, and B.-G. Englert for
we assume here that the spontaneous decay rates are forjalleresting and stimulating discussions. This work was sup-
statege;) the same, ported by the UK Engineering and Physical Sciences Re-
search Council and the European Union through the projects
Io=T1=T,=T. (39 QUBITS and COCOMO.
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