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Tunneling decay in a magnetic field
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We provide a semiclassical theory of tunneling decay in a magnetic field and a three-dimensional potential
of a general form. Because of broken time-reversal symmetry, the standard WKB technique has to be modified.
The decay rate is found from the analysis of the Hamilton trajectories of the particle in complex phase space
and time. In a magnetic field, the tunneling particle comes from beneath the barrier with a nonzero velocity.
The exit location in the classically allowed region is obtained by matching the decaying and outgoing branches
of the WKB wave function on a caustic of the set of the complex trajectories. The slope of thelogarithmof the
wave function sharply changes on the anti-Stokes surface where there occurs switching between different
WKB branches. For potential wells that are parabolic near the minimum, we also provide a bounce-type
formulation. The theory is applied to the models that are relevant to tunneling from correlated two-dimensional
electron systems in a magnetic field parallel to the electron layer.
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I. INTRODUCTION

Magnetic field can very strongly change the tunneling r
of charged particles. This change, in turn, strongly depe
on properties of the system, as in the well-known effect
giant hopping magnetoresistance in solids@1#. Therefore tun-
neling in a magnetic field has been broadly used as a se
tive and revealing probe of electron systems in soli
including quantum Hall systems@2–5#, two-layer hetero-
structures away from the quantum Hall region@6–9#, and
correlated electron layers on the surface of liquid heli
@10,11#.

Correlated two-dimensional~2D! electron systems ar
currently attracting much interest@12#. The possibility to ob-
tain information about electron correlations and dynam
through tunneling in a magnetic field is one of the motiv
tions of the present work. Another important motivatio
comes from the fact that tunneling in a magnetic field is
interesting theoretical problem, even in the single-parti
formulation. Existing results, although often highly no
trivial, are limited to the cases where the potential has eit
a special form@13–16# ~e.g., linear@13# or parabolic@15#!, or
a part of the potential or the magnetic field is in some se
weak @17–23#.

The problem of tunneling has two parts. One is to find
tail of the wave function of the localized intrawell state u
der the potential barrierU(r ) and behind it, and the other i
to find the escape probabilityW. In a magnetic field,W dif-
fers exponentially from the probability to reach the bound
of the classically allowed rangeU(r )5E, where E is the
energy of the particle. This is because, as it tunnels, the
ticle is accelerated by the Lorentz force, and it comes
from the barrier with a nonzero velocityv. The standard
argument that the exit point is the turning pointv50 relies
on time-reversal symmetry~see below! and does not apply in
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the presence of a magnetic field.
A simple potentialU(r ) and the wave functionc(r ) of

the metastable state in this potential are sketched in Fig
and 2. The wave function decays away from the poten
well. At some pointr , on the background of the decaying ta
there emerges a propagating small-amplitude wave pac
which corresponds to the escaped particle. As a result,
part of the classically allowed region,U(r ),E, the function
c(r ) is determined by this wave packet, whereas in the ot
part of this regionc is determined by a different branch o
the tail of the localized state. The boundary between th
areas has a width}\, and the slope of the wave functio
sharply changes on this boundary.

An important part of the WKB formulation of the
tunneling-escape problem in a magnetic field was found
Ref. @13b# in the analysis of decay for a special model of

d-

FIG. 1. Tunneling in a two-dimensional potentialU(x,z) trans-
verse to a magnetic fieldB pointing in they direction. Initially the
particle is localized in a metastable state behind the barrier~on the
small-z side! with energyE. In contrast to the caseB50, the par-
ticle emerges from under the barrier with a nonzero velocity, a
therefore the exit point is located away from the lineU(r )5E.
©2002 The American Physical Society22-1
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atomic system@see Eq.~9! below#. In a general case, both th
tail of a metastable state and the outgoing wave packet
be found using the approach described below and bri
outlined in our paper@24#.

In the WKB approximation the wave function is sought
the form

c~r !5D~r !exp@ iS~r !# ~\51!. ~1!

Here,S(r ) is the classical action andD is the prefactor. In
the classically allowed range, Eq.~1! describes a wave
propagating with a real momentump5“S. In the classically
forbidden range the wave function decays. For the gro
intrawell state, this decay is not accompanied by oscillati
in the absence of a magnetic field. Then the actionS(r ) is
purely imaginary under the barrier andu“Su is the decremen
of the wave function.

Both behind and inside the barrier, the action can be
tained from the Hamilton equations of motion

Ṡ5p• ṙ , ṙ5]H/]p, ṗ52]H/]r , ~2!

whereH is the Hamiltonian of the tunneling electron,

H5
1

2m Fp1
e

c
A~r !G2

1U~r !, ~3!

@A(r ) is the vector potential of the magnetic field#.

In the standard approach to tunneling decay, which
plies for B50 @14,25–28#, the purely imaginary actionS
under the barrier is calculated by changing to imaginary ti
and momentum in Eqs.~2!, but keeping coordinates real,

t→2 i t , p→ ip, r→r , U~r !→2U~r !. ~4!

Equations~2! then take the form of equations of classic
motion in an inverted potential2U(r ), with energy2E>
2U(r ). The imaginary-time trajectory goes from the turnin
point on the boundary of the potential well to the turni
point on the boundary of the classically allowed regio
where it matches the appropriate classical trajectory of

FIG. 2. The absolute value of the tunneling wave function~sche-
matically!. The maximum is located inside the potential well, i.
behind the barrier in Fig. 1. A Gaussian wave packet of slow
varying height describes the escaped particle.
03212
an
y

d
s

-

-

e

l

,
e

escaped particle behind the barrier, with realr ,p,t. The ve-
locities on the trajectories can coincide at the matching po
only if v50.

In the presence of a magnetic field, because of bro
time-reversal symmetry, the replacement~4! may not be per-
formed. It would lead to a complex Hamiltonian, whic
makes no sense and indicates that a more general approa
required. The actionS(r ) is complex under the barrier fo
real r . This complexity plays an important role in the insta
ton formulation of the problem of tunneling decay in a ma
netic field discussed below. Complex action arises also
other problems, such as tunneling splitting in an ultrastro
magnetic field@18#, barrier penetration for oblique incidenc
@29#, and scattering by a complex potential~as in the case of
an absorbing medium! @30#. The method discussed belo
can be applied to many of these problems.

In this paper we consider a single-particle tunneling de
into extended states in a three-dimensional potential o
general form for arbitrary magnetic fields. We illustrate t
approach using a toy model of a correlated 2D electron s
tem. We show that the exponentS(r ) and the escape rate i
a magnetic field can be found from dynamical equations~2!
by analytically continuing these equations to complex ph
space and time. The initial conditions for the trajectories
determined by the analytical continuation of the usua
known intrawell wave function. The resulting set of compl
trajectories has singularities, caustics, which are envelope
the trajectories. The complex actionS(r ) is branching on the
caustics, and tails of the decaying and propagating waves
matched there. Careful analysis allows us to find the co
plete semiclassical wave function and reveal the singular
tures ofc(r ) related to the branching ofS.

In Sec. II and Appendix A we provide a simple but no
trivial model, which, in particular, captures basic physics
tunneling from correlated 2D electron layers. In Sec. III w
consider the tunneling exponent and formulate the bound
value problem for tunneling trajectories in a magnetic field
complex phase space. In Sec. IV we discuss matching
different semiclassical solutions across the caustic of the
of the tunneling trajectories. We show that a switching s
face ~one of the anti-Stokes manifolds! starts at the caustic
The wave function has an observable singular feature at
surface, which is a sharp change of the slope of lnuc(r )u. In
Sec. V we provide explicit results for two simple exact
solvable models of physical interest, which also illustra
general features of tunneling in a magnetic field. In Sec.
we discuss the path-integral formulation of the problem
tunneling decay in a magnetic field. Section VII contai
concluding remarks.

II. A MODEL OF THE TUNNELING BARRIER

A physical system that allows one to reveal and inve
gate specific features of 3D tunneling in a magnetic field a
where the effect of a magnetic field on tunneling has be
investigated experimentally is a correlated 2D electron s
tem ~2DES!. We will use it in order to formulate a tractabl
model and illustrate our general results. In a 2D system, e
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TUNNELING DECAY IN A MAGNETIC FIELD PHYSICAL REVIEW A 65 032122
trons are localized in thez direction in a metastable potentia
well U0(z). The intrawell electron motion is quantized in th
z direction, and electrons can tunnel from the well into e
tended states. Many 2D systems of current interest
strongly correlated. Electrons are far away from each ot
exchange is weak, and there is at least short-range ord
the (x,y) plane. The tunneling electron can be then identifi
and ‘‘labeled.’’ Its tunneling motion is accompanied by m
tion of other electrons. The many-electron dynamics o
correlated system can be described in terms of in-plane e
tron vibrations, and the corresponding Hamiltonian is giv
in Appendix A assuming that the electrons form a Wign
crystal. Here we will make a further simplification and thin
of an electron as tunneling in a static potential created by
other electrons. As we showed earlier, this is a good appr
mation for the tunneling problem@11#.

The static potential from surrounding electrons can be
sumed to be parabolic with respect to the in-plane coo
natesx,y. If the characteristic widthL of the tunneling bar-
rier is less than the interelectron distance, the ove
potential is a sum of the parabolic in-plane part andU0(z),

U~r !5
mv0

2

2
~x21y2!1U0~z!. ~5!

The form ofU0(z) depends on the system. Inside the w
U0 is often singular, as in the case of electrons on heliu
where U0 includes the image potential. Important simp
forms of the potential barrier are a square barrier, as in
case of unbiased semiconductor heterostructures, or a n
linear one, as in the presence of strong enough bias volt
with

U0~z!5
g2

2m S 12
z

L D ~6!

inside the barrier. In what follows, we will set the energy
the out-of-plane motionE50. Theng in Eq. ~6! character-
izes the decay of the wave function close to the well~the
reciprocal intrawell localization length! and L is the barrier
width for B50. The potential~6! describes, in particular, th
barrier for a correlated 2DES on a helium surface. For t
system, an unexpected dependence of the tunneling rateB
and electron density was observed@10# and recently ad-
dressed theoretically@11,24#.

III. THE TUNNELING EXPONENT

For a smooth tunneling barrierU(r ), the underbarrier
wave functionc(r ) @Eq. ~1!# can be obtained from the tun
neling trajectories~2!. The initial conditions for these trajec
tories are determined by the tail of the intrawell wave fun
tion close to the well. To find them, we can take a surfaceS
close to the well, but under the barrier, whereU(r ) is smooth
~even if it is singular inside the well!. The wave function
c(r ) on S is presumably known from the solution of th
Schrödinger equation inside the well and is semiclassic
Only the exponent of this wave function is needed to find
initial conditions for Eqs.~2!. They take the form
03212
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r ~0!5r uS , p~0!52 i @“ ln c~r !#S , ~7!

with the actionS(0)52 i @ ln c(r )#S . Only the lowest-order
terms in\ should be kept in the expressions forp(0),S(0).
The final result should be independent of the choice ofS.

The trajectories~2! with the initial conditions~7! form a
two-parameterset in the case of 3D tunneling. The two p
rameters are the initial coordinates on the surfaceS. We can
choose curvilinear coordinates (x1 ,x2 ,x3) so that x3uS
[x3(0)50. The trajectories are then parametrized
x1(0),x2(0).

To illustrate these arguments we consider the initial c
ditions for an electron with the potential~5!, ~6!, which tun-
nels from a 2D layer. Inside the metastable potential well
electron motion separates into a quantized motion in the n
mal to the layerz direction and in-plane vibrations. To
slightly simplify the analysis, we will neglect the effect of
magnetic field on the wave function inside the well, but n
on the tail ofc(r ) in a much broader region under the ba
rier, where the field effect accumulates. This is a good
proximation for not too strong fields, provided the charact
istic intrawell localization length is small compared to th
tunneling length.

It is convenient then to choose the surfaceS as a plane
z5const close to the well. We setz5x350 onS and choose
x15x, x25y. If the electron is in the ground intrawell stat
with E50, we obtain from Eqs.~5! and ~6!,

z~0!50, pz~0!5 ig, S~0!5 imv0@x2~0!1y2~0!#/2,

px~0!5 imv0x~0!, py~0!5 imv0y~0!. ~8!

In the general case, to find the trajectory that arrives a
given realr deep under the barrier, it may be necessary
usecomplexr (0). Thecorresponding values ofp(0) can be
found by analytically continuing the intrawell wave functio
to complexr . The whole trajectory will then go in comple
phase space (r ,p) and also in complex timet. The energy of
the trajectory is given by the energy of the intrawell sta
from which the system tunnels. It remains real.

The rate of tunneling decay is determined by ImS at the
point where the particle emerges from the barrier as a se
classical wave packet. This wave packet propagates alo
real classical trajectoryr cl(t), which is a real-time solution
of the Hamilton equations~2!. The underbarrier trajectory fo
tunneling escape should go over into the trajectoryr cl(t).
Therefore at some timet both the coordinate and velocit
should become real,

Im r ~ t !5Im p~ t !50. ~9!

Equations~9! determine the complex starting point of th
trajectory for tunneling escaper (0) @i.e., the complex
x1,2(0), sincex3(0)50# and also the imaginary part of th
duration of motion along this trajectory Imt. The real part of
t remains undetermined: a change in Ret in Eq. ~9! results
just in a shift of the particle along the classical trajecto
r cl(t), see Fig. 3. Such a shift does not change ImS, since
p5“S is real alongr cl(t). We note that the number o
equations~9! is equal to the number of variables Rex1,2(0),
2-3



a-

he

th

y

cil
t

s
w

he
io

l

or

an

d
s

e
h-
e

as-
the

i-
he

e

g

.

be-

n

he
r

rm

-

n
e
th
o
t

he
f

al
nt

je
s

ig.
time

d
on

point
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Im x1,2(0), and Imt, with account taken of energy conserv
tion. The conditions~9! were first given@13b# for a d-shaped
potential well and a linear tunneling barrier, but only t
condition Imr (t)50 was explicitly used.

In the absence of a magnetic field, we can choose
surfaceS such that the momentumpuS is imaginary for real
r . The equations of motion~2! can then be solved in purel
imaginary time, with realr (t) and imaginaryp(t), i.e., decay
of the localized wave function is not accompanied by os
lations. The escape trajectory ends at the turning poinp
50, even for a multidimensional system@28#.

The tunneling exponentR is given by the value of ImS at
any point on the trajectoryr cl ,

R52 ImS~r cl!. ~10!

For a physically meaningful solution, ImS should have a
parabolic minimum atr cl as a function of the coordinate
transverse to the trajectory. The outgoing wave packet
then be Gaussian near the maximum.

From Eq.~9!, even in the presence of a magnetic field t
tunneling exponent can be obtained by solving the equat
of motion ~2! in imaginary time, with complexr . However,
such a solution does not give the wave function for rear
between the well and the classical trajectoryr cl . Nor does it
tell us where the particle shows up on the classical traject

IV. BRANCHING OF THE ACTION AND ITS
OBSERVABLE CONSEQUENCES

The complete WKB solution of the tunneling problem c
be obtained and the wave functionc(r ) can be found if one
takes into account that the actionS as given by Eqs.~2! is a

FIG. 3. ~a! Complext plane for integrating the Hamilton equa
tions~2! in the escape problem. The line Imt5const corresponds to
the classical trajectory of the escaped electron, which is show
~b!. Bold solid lines in~a! and ~b! indicate the range where th
amplitude of the propagating wave exceeds the amplitude of
decaying underbarrier wave function. The escaped particle sh
up as a semiclassical wave packet, with a nonzero velocity, at
point ~full circle! where the classical trajectory intersects t
switching line@thin solid line in~b!#. The crosses mark the value o
t ~a! and the position~b! of the caustic where it goes through re
space. The specific data refer to tunneling through the pote
barrier ~5!,~6! transverse to a magnetic field, which points in they
direction, withv0t051.2 andvct051.2; time in~a! is in the units
of t052mL/g. For the chosen parameter values, the escape tra
tory hits the caustic for complexr . The time when it happens i
numerically very close to the position of the cross in~a!.
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multivalued function ofr , even though it is a single-value
function of t andx1,2(0). This means that several trajectorie
~2! with different t and x1,2(0) can go through one and th
same pointr . However, except for the points on the switc
ing surface~see Sec. IV D!, only one of the branches of th
actionS(r ) contributes to the wave functionc(r ).

A. Caustics in a magnetic field

In multidimensional systems, branching of the semicl
sical action generally occurs on caustics, or envelopes of
Hamilton trajectories@31,32#, see Fig. 4. Caustics are mult
dimensional counterparts of turning points familiar from t
analysis of tunneling in 1D systems@33#. The prefactorD(r )
in the WKB wave function~1! diverges at a caustic. In th
case of 1D semiclassical motion along thez axis we have
D}pz

21/2, andD→` at turning pointszt , which are given
by the conditionpz50. The action is branching at turnin
points,S(z)2S(zt)}(z2zt)

3/2. The behavior ofSnear caus-
tics in a multidimensional system is very similar~see below!,
with z2zt corresponding to the distance from the caustic

Since neighboring Hamilton’s trajectories~2!, ~7! touch
each other on a caustic, the one-to-one correspondence
tween the coordinatesx1 , x2 , x3 on the trajectory and the
parameterst, x1(0), x2(0) breaks. Therefore the equatio
for a caustic has the form

J~r !50, J~r !5
]~x1 ,x2 ,x3!

]@x1~0!,x2~0!,t#
. ~11!

The JacobianJ(r ) can be related in a standard way to t
prefactorD(r ), which in turn is determined by the first-orde
~in \) correction to the action2 iS(1), D(r )5exp@S(1)(r )#.
The equation forS(1)(r ) can be obtained from the Schro¨-
dinger equation by seeking the wave function in the fo
c5exp(iS), with S5S(0)2 iS(1). This gives 2v“S(1)

52“v, wheremv5“S(0)1(e/c)A. The vectorv gives the

in

e
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FIG. 4. The set of tunneling trajectories~solid lines! with Rex
5Im z50 and the caustic~dashed line! for an effectively 2D tun-
neling problem. The data refer to the potential~5!,~6! and a mag-
netic field along they axis. The parameters are the same as in F
3. The classical trajectory of the escaped electron is the real-
continuation of the trajectory 2 from the point Imx50 shown by
the open circle. The momentump is real at this point, as explaine
in Sec. V A. Other trajectories do not describe escape, since

these trajectories the necessary conditions Imż5Im x50 @Eq. ~9!#
are never satisfied. The caustic goes through real space at the
z5zcaust,Im x50 ~the intersection of the dotted lines!. The trajec-
tory of the escaped electron doesnot go through this point.
2-4
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TUNNELING DECAY IN A MAGNETIC FIELD PHYSICAL REVIEW A 65 032122
velocity on the Hamilton trajectory~2!. Taking into account
that v“S(1)(r )[dS(1)/dt and that“v5d ln J(r )/dt, where
the time derivatives are taken along the trajectory, we ob

D~r !5const3@J~r !#21/2. ~12!

It follows from Eqs.~11!, ~12! that the prefactorD diverges
on caustics, and the WKB approximation does not ap
there@31#.

There are both formal and physical distinctions betwe
caustics for tunneling trajectories with and without a ma
netic field. ForBÞ0, the trajectories are complex, and E
~11! specifies a complex surface. This surface intersects
real 3D space along a line. In contrast, forB50, because of
time-reversal symmetry, tunneling trajectories lie in real co
figuration space. In this case Eq.~11! specifies a surface@28#
rather than a line in the 3D space. This distinction leads
observable consequences.

B. Local analysis near caustics

The analysis of the wave function and branching of
actionS(r ) at complex caustics in the magnetic field is sim
lar to that for caustics in real space, including turning poi
in the 1D case@31#. Near a caustic, it is convenient to chan
to variablesx8, y8, and z8, which are locally parallel and
perpendicular to the caustic surface, respectively~we setz8
50 on the caustic!. Since a caustic is an envelope of th
Hamilton trajectories~2!, the normal to the caustic compo
nent of the velocity isvz850 for z850. However, forB
Þ0 the normal component of the momentum is not equa
zero, nor are the tangential components. Therefore the w
function near a pointr causton the caustic can be sought in th
form

c~r caust1r 8!5eipcaust•r8f~z8;r caust!, ~13!

wherepcaustis the momentum at the pointr caust~we note that
r caustis a 2D complex vector,zcaust8 [0). We consider the cas
where the dependence ofpcauston the positionr caustalong the
caustic is smooth, and the dependence off on r caustis much
weaker than onz8. Generally,pcaust is complex even where
the caustic goes through real space, Imr caust50. Therefore
the classical trajectory of the escaped particle does no
through a caustic, in contrast to the case of zero magn
field, cf. Fig. 4.

Becausevz850 for z850, the equation forf(z8;r caust),
which follows from the 3D Schro¨dinger equation with a
magnetic field, coincides with the 1D Schro¨dinger equation
near a turning point without a magnetic field,

F2
1

2m

d2

dz82
1Uz8

8 ~r caust!z8Gf~z8;r caust!50 ~14!

~here,Uz8
8 []U/]z8).

The functionf is single valued. It is given by a linea
combination of the Airy functions@33#. For comparatively
large uz8u ~but still close to the caustic! it becomes a linear
combination of the functions
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w1,25~z8!21/4exp@7 iaz83/2#, ~15!

with a[a(r caust)5(2/3)@22mUz8
8 #1/2. To make the func-

tions w1,2 uniquely defined, we have to make a cut on t
complexz8 plane. Our choice of the cut is shown in Fig.
with a dotted line.

With account taken of Eq.~13!, we find that the action
near the caustic is

S~x8,y8,z8!'S~x8,y8,0!1~pcaust!z8z81az83/2, ~16!

with an appropriately chosen branch ofz83/2. Another way to
understand the nonanalyticity ofS is based on the analysis o
the set of the Hamilton trajectories~2!. Because the caustic i
an envelope of the trajectories andvz850 on the caustic,z8
is quadratic in the incrementsdx1,2(0),dt of the parameters
of the set. Thereforedx1,2(0),dt are nonanalytic inz8. Tak-
ing into account cubic terms in the expansion ofS in
dx1,2(0),dt, we obtain Eq.~16!. The coefficients inScan be
expressed in terms of the derivatives ofS,r as given by Eqs.
~2! over x1,2(0),t.

C. Choosing branches of the action

Equation~14! describes how the WKB solutions, whic
correspond to different branches of the actionS, connect on
the caustic. Of interest for the problem of tunneling escap
the caustic where the intrawell wave function and the out
ing wave packet for the escaped particle are connected. F
Eq. ~11!, on this caustic there is a point through which the
goes the Hamilton trajectory~2!, ~7! for escape, with the
initial coordinatesx1,2(0) given by the condition~9! of ar-
riving, ultimately, at the classical outgoing trajectoryr cl , cf.
Fig. 4.

In general, a caustic can be thought of as a ‘‘mirro
which partly reflects the wave packet. The boundary con
tion to Eq.~14! for the tunneling-escape problem is the ‘‘ra

FIG. 5. The functionf(z8) @Eq. ~14!# for large uz8u on the
complexz8 plane perpendicular to the caustic surface. The das
lines, argz85(2n11)p/3, show the Stokes lines where the ratio
the functionsuw2 /w1u @Eq. ~15!# reaches its maximum or minimum
The anti-Stokes lines~solid lines!, argz852np/3, are the lines
where uw1u5uw2u. At these lines the ratiouw2 /w1u changes from
exponentially large to exponentially small with varying argz8. The
coefficients are found from the radiation boundary condition f
lowing the Stokes prescription@31#. The dotted line shows the
branch cut.
2-5
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diation condition.’’ Far from the potential well the solution o
the full Schrödinger equation is a semiclassical wave pac
moving in real space away from the well. Respectively,
wave function far from the well has a formc(r )
}exp@iS(r )#. This solution has to be continued to the com
plex caustic, which means that there is a range of directi
in the complex z8 plane not too close to the caust
(uaz83/2u@\) where the wave function is described by on
one exponential exp@iS(r )#. Away from this range, the wave
function is a combination of two waves. This is again simi
to a 1D problem, where behind the turning pointzt the wave
function for realz is a propagating wave, whereas beforezt

there is a wave with an exponentially decaying amplitu
coming from the intrawell state, and the wave which is
flected back to this state.

To connect the tails of the wave functions near the cau
in our problem one can use the explicit solution of Eq.~14!
with the radiation boundary condition, as in the 1D case@33#.
An alternative way to see how the boundary conditi
works, which also allows us to reveal the specific feature
tunneling in a magnetic field, is to follow the transformatio
of the wave functionf for uaz83/2u@\ as the argument ofz8
varies by 2p. This analysis is based on the notion of t
Stokes and anti-Stokes lines and is an extension of
Stokes-lines-based approach in the WKB approximat
@31,34,35# to the case where a caustic lies in complex spa
We give it here for completeness.

We count argz8 off from 2arga2/3. Then, for the choice
of the cut in Fig. 5 and with the functionsw1,2 given by Eq.
~15!, in the vicinity of the caustic, the Stokes lines are t
rays argz85(2n11)p/3 with n50,1,2. On the Stokes line
Rez83/250 and the ratiouw2 /w1u is extremal~maximal or
minimal!. The anti-Stokes lines are the rays argz852np/3
with n50,1,2, whereuw2 /w1u51.

From the radiation boundary condition, there is a rangeD
of argz8 wheref(z8) is given by only one of the function
w1,2(z8), not by a superposition ofw1 andw2. This condition
is physically meaningful provided the correspondingwi is
exponentiallysmall compared tow32 i in a part of the range
D. @Otherwise the conditionf(z8)5const3wi is not a limi-
tation, in the WKB approximation.# For concreteness, w
will assume thatD contains the range between semia
argz850 and the cut in Fig. 5, and that in this rang
f(z8)5Cw2(z8)}exp@iuauz83/2# is exponentially small.
Here,C is a constant~it is left out in Fig. 5!.

Since the functionf(z8) is single valued, if we cross th
cut in Fig. 5 by incrementing argz8, f(z8) becomes equa
to 2 iCw1(z8). It remains exponentially small as argz8
grows up to 2p/3, including the Stokes line argz85p/3.
Then behind the anti-Stokes line at argz852p/3, the func-
tion w1 becomes exponentially big. It is important that,
the Stokes line argz85p, one has to take into account th
admixture tof of an exponentially small term}w2(z8).
This can be seen from the explicit solution forf and can be
understood by noticing that when we increment argz8 by
2p, we have to recover the original asymptotic form off.
This latter argument explains the coefficient atw2 in Fig. 5.
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On the anti-Stokes line argz854p/3, the values ofuw1u
anduw2u become equal to each other, andf(z8) is primarily
determined byw2 for larger argz8. After argz8 crosses the
Stokes line 5p/3, the exponentially small termw1 in f(z8)
disappears, according to the Stokes prescription@31#.

Since we chose the irradiated wave to be}w2(z8), the
asymptotic behavior of the wave function of the metasta
state within the range 2p/3,argz8,4p/3 is given by
w1(z8). We note that, for the radiation boundary conditio
the switching between the wave functions occurs only on
of the anti-Stokes lines.

D. Switching between the branches of the wave function

Switching between the WKB wave function of the loca
ized state and the outgoing wave packet is an important
servable consequence of the analysis in the preceding
tion. It is due to branching of the WKB action. The switchin
manifold starts on the caustic and is given by the condit
Im S1(r )5Im S2(r ), whereS1,2 are the actions for the corre
sponding WKB branches. On the opposite sides of
switching manifold one of the WKB wave functions is exp
nentially bigger than the other.

In the presence of a magnetic field, caustics go throu
real space along the lines given by the conditionJ(r )
50, Imr50, with r[r „x1,2(0),t… being a point on the
Hamilton trajectory~2!, ~7!. The switching manifold in real
space is a surface that starts from the caustic line and g
away from itin one direction. Although the wave function is
continuous on this surface, the derivative of its logarith
sharply changes from“S1 to “S2.

The exit pointr in the configuration space where the e
caped particle emerges from under the barrier is determ
by the intersection of the classical escape trajectoryr cl(t)
and the switching surface. This point should be found fro
the global analysis of the WKB wave function. It does not
on the caustic, nor is it given by the conditionp50 or
U(r )5E. In a 2D system the caustic pierces real space
point, and the switching surface becomes a line. An exam
of the caustic, the switching line, and the exit point for a 2
system is shown in Fig. 3.

In the absence of a magnetic field, as we mentioned
fore, the caustic for tunneling trajectories is a surface rat
than a line in real configuration space. The switching ma
fold starts at the caustic and goes into complex space.
exit point is the turning pointp50, and S has zero slope
normal to the caustice surface. In contrast, in a magnetic fi
different action branches have different nonzero~complex!
slopes normal to the switching surface. The topologies
B50 andBÞ0 cases are thus very different.

V. TUNNELING FROM A CORRELATED
2D ELECTRON SYSTEM

We now apply the general approach to tunneling from
correlated 2D electron system transverse to a magnetic
and illustrate the occurrence of the singularities discus
above. We use the simple but nontrivial model of an elect
system discussed in Sec. II and described by Eqs.~5!,~6!,
2-6
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TUNNELING DECAY IN A MAGNETIC FIELD PHYSICAL REVIEW A 65 032122
and its generalization to the case of broken in-plane sym
try. We assume that the magnetic field is parallel to the e
tron layer, and choose they axes along the fieldB.

A. A model with in-plane symmetry

For an electron in the potential~5!, ~6!, classical motion
along theBi ŷ axis is decoupled from motion in the (x,z)
plane. The WKB tunneling problem then becomes two
mensional, with complex classical trajectories~2! lying in
the (x,z) plane. The Hamilton equations are linear, and
can find the trajectories explicitly. We can also explicitly fin
the tunneling exponentR @24# and analyze its dependence o
the two dimensionless parametersv0t0 andvct0, wheret0
is the tunneling time in the absence of the magnetic field

t052mL/g.

We start with the structure of the WKB action. The p
tential U(r ) @Eqs. ~5! and ~6!# has the in-plane symmetr
U(x,y,z)5U(6x,6y,z). It gives rise to the symmetry o
the set of the Hamilton trajectories and, consequently, of
singularities of this set,

t→2t* , x→2x* , z→z* , S→2S* . ~17!

In particular, the caustic, where the outgoing wave pac
and the intrawell wave function are connected, goes thro
the real plane (x,z) at a pointxcaust50 on the symmetry axis
Thez coordinate of this point depends on the magnetic fie
with zcaust[zcaust(x50)5L for B50. The action for z
<zcaust in the symmetry planex50 is shown in Fig. 6. As
seen from the inset, the slope of the action is] Im S/]z.0 at
zcaust, in contrast to the 1D case where the slope is equa
zero at the turning pointzt . We note that the branches 1 an
2 are formed by the trajectories that go through real spac
times 2Im t being, respectively, smaller and larger tha
2Im tcaust for the same trajectories@ tcaust is given by Eq.
~11!#.

FIG. 6. Two branches of the action on the symmetry axisx
50 as a function of the tunneling coordinatez before the branching
point ~cusp! zcaust'1.078, for the symmetric model~5! and the
same parameter values as in Fig. 3. The vicinity of the cusp
zoomed in the inset to show that the upper branch is nonmonoto
Its extremum atzm lies on the classical trajectory of the escap
particle shown in Fig. 3~b!. However, the particle emerges from th
barrier forz.zm andxÞ0.
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Using the explicit form of the trajectories~2! with the
initial conditions~8!, one can find the complex caustic ne
x50, z5zcaust[zcaust(0). It has theform zcaust(x)2zcaust(0)
5 iC8x with real C8/B.0, cf. Fig. 4. It is seen from Fig. 6
that, for x50, the singular parts of ImS1,2 behave as
7(zcaust2z)3/2 near the caustic. Therefore we can choose
distance from the caustic in Eqs.~13!–~16! as z85z
2zcaust(0)2 iC8x, and the branching behavior near the cau
tic is then described by Fig. 5. The range2p,argz8,0
corresponds to realz and real positivex.

From Fig. 5, close to the caustic only one branch of
action describes the wave function for negativex and realz
~the upper half of the complexz8 plane!. For positivex, we
should keep both branches, and depending onx and z, the
WKB wave function is given by the branch with the small
Im S. Near the switching line where ImS15Im S2, the total
wave function is given by a linear combination of the tw
WKB solutions.

In Fig. 6 for z<zcaust, the action branch 1 describes th
tail of the intrawell wave function, and the branch 2 corr
sponds to the wave ‘‘reflected’’ from the caustic. The bran
2 is nonmonotonic inz for x50, with a minimum atzm
,zcaust. By symmetry~17!, the momentum componentpx is
real for x50, whereaspz50 at zm . Therefore the pointz
5zm , x50 belongs to the classical escape trajectory sho
in Fig. 3~b!. Again by symmetry, this is also the point whe

FIG. 7. Cross sections of the function ImS by the planez
5const in the case of tunneling in a symmetric potential~5!, for ~a!
zm,z,zcaust, ~b! z5zcaust, and~c! z.zcaust. The parameter values
are the same as in Figs. 3 and 6. The solid lines show the bran
of Im S that determine the exponent of the WKB wave functio
The minima of branch 2 and of the branches in~c! have the same
Im S and lie on the classical trajectory shown in Fig. 3~b!.
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the escape trajectory comes most close to the well atz50.
However, this is not the exit point for the tunneling partic
in the configuration space. Indeed, the wave function at
point is determined by the branch 1, because ImS1,Im S2.

Several cross sections of the action surfaces by planz
5const are shown in Fig. 7. Forz<zcaust, both branches
Im S1,2 are symmetrical inx. However, the branch 2 is non
monotonic inx for z.zm . It has a localmaximumat x50
and two symmetricalminima. These minima lie on the clas
sical trajectory shown in Fig. 3~b!. Forz5zm , the maximum
and the minima merge together. We note that at this p
Im S2}x4 near the minimum.

Behind the caustic in real space,z.zcaust, the action
S(x,z) on one of the two branches is equal to2S* (2x,z)
on the other branch~cf. Fig. 7!. At their minima with respect
to x, the values of ImS(x,z) are independent ofz. These
minima lie on the classical escape trajectory, as seen f
the comparison with ImS for z,zcaust. The branches of the
action describe the incident~from largez! and emitted wave
packets. Only the emitted wave is physically meaningful
the problem of tunneling escape.

As discussed above, switching between the act
branches occurs for positivex where the branches of ImS
cross each other. The resulting action, which determines
WKB wave function, is shown in Fig. 7 by solid lines. Th
switching line thus obtained coincides with the anti-Stok
switching line discussed in the preceding section.

The escaped particle can be observed as a semiclas
object if ImS2(r cl),Im S1(r cl). It ‘‘shows up’’ at the point
where the classical escape trajectory intersects the switc
line, cf. Fig. 3. The exit point is located forx.0 even
though the potential~5! is symmetric. This is a consequenc
of the symmetry breaking by a magnetic field.

The tunneling exponentR is given by Eqs.~19! and ~20!
below, in which one has to setm50. The dependence ofR
on n05v0t0 andnc5vct0 is shown in Fig. 8. The function
R monotonically increases with the magnetic field. Howev
for v0@vc ,t0

21 the in-plane confinement compensates
effect of the field, leading toR being nearly flat and close t
its B50 value of 4gL/3, as seen from Fig. 8. For wea
confinement, the effect of the field becomes strong a
would diverge forvct0.1 @10,13# if v0 were equal to zero
For nonzero but smallv0 ~i.e., v0t0!1) and forvct021
@v0t0 one can obtain from Eqs.~19! and ~20!,

R'2gL~nc21!2~2nc11!/3nc
2n0 .

The corresponding sharp increase ofR with decreasing con-
finement frequencyv0 and increasingvc is seen from Fig. 8.

The prefactor in the tunneling rate is determined by
factor uD(r )u2}uJ21(r )u @Eqs.~1! and~12!# evaluated on the
classical pathr cl , which should be weighted with the veloc
ity ṙ cl and the factor determined by the curvature of ImS(r )
in the direction transverse toṙ cl . The result is independent o
a point on the pathr cl(t). It could be calculated for the dis
cussed model of the barrier complemented by a model of
intrawell potential~for example, one can use the potential f
electrons on helium@11#!. No interesting interference effect
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arise in the prefactor in this problem, in contrast to the pro
lem of tunneling splitting in a symmetric potential in th
presence of an ultrastrong magnetic field. In the latter ca
tunneling is effectively one dimensional, but there may
multiple extreme paths with the same ImS. Extra phase fac-
tors have to be added when the contributions from th
paths are calculated@18#.

B. A nonsymmetric model

The problem considered in the preceding section for
quadratic inx,y potentialU(r ) @Eq. ~5!# can be solved dif-
ferently. The trick is@14# to make a canonical transformatio
to the new coordinatepx and the conjugate momentum2x.
The kinetic energy then becomes@m2v0

2x21pz
2#/2m and is

independent of the new coordinates and the magnetic fi
The time-reversal symmetry is thus ‘‘restored,’’ and the pro
lem is mapped onto the standard problem of tunneling in
2D potentialU0(z)1(px1mvcz)2/2m.

The general method discussed in this paper is not lim
to potentials with these special properties. In this section
illustrate how the method works where variables do not se
rate. To this end, we consider a problem of tunneling tra
verse to the fieldBi ŷ in the potential

U~x,z!5
1

2
mv0

2x21mxz1
g2

2mS 12
z

L D ~z.0!,

~18!

which differs from the potential discussed earlier by the te
mxz. In the case of tunneling from a 2D electron system, t
term mimics the dependence of the tunneling potential
displacements of neighboring electrons, see Appendix A.

The termmxz breaks the symmetry of the Hamilton tra
jectories~17!. However, the Hamilton equations~2! are still
linear, and we explicitly solved them. The results for ImS
and the classical escape trajectory obtained using the in
conditions~8! are shown in Figs. 9 and 10. Because of b

FIG. 8. The tunneling exponentR for an electron tunneling
transverse to a magnetic field through the triangular potential
rier ~6! as a function of the dimensionless parametersv0t0 and
vct0. In the absence of confinement in the Hall direction, i.e.,
v050, the tunneling exponent diverges asvct0→1.
2-8
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TUNNELING DECAY IN A MAGNETIC FIELD PHYSICAL REVIEW A 65 032122
ken symmetry, the branching point of the action in real sp
(xcaust,zcaust), where the caustic of the set of trajectories~2!
goes through real plane (x,z), lies atxcaustÞ0. It is marked
by the cross in Fig. 9~d!. Its position depends onm and other
parameters of the system. Similarly, the time where the ca
tic crosses the real space has both real and imaginary p
in contrast to the casem50 where it was purely imaginary
see Fig. 3.

For mÞ0, the surfaces ImS(x,z) become asymmetric
The general structure of the solution, however, remains
same as in the casem50. This can be seen by comparing th
cross sections of the action in Figs. 7 and 9. In both figu
the cross sections in~a!, ~b!, and ~c! refer to the planesz
,zcaust, z5zcaust, and z.zcaust, respectively. As in the
symmetrical case, the branches 1 and 2 formÞ0 are formed

FIG. 9. Cross sections of ImS(x,z) by the planez5const in the
case of tunneling in the asymmetric potentialU(x,z) @Eq. ~18!# for
~a! zm,z,zcaust, ~b! z5zcaust, and~c! z.zcaust@at (xcaust,zcaust) the
caustic goes through real plane andS is branching; the correspond
ing point is marked by the cross in~d!#. The values ofvct0 and
v0t0 are the same as in Figs. 3 and 6, and the dimensionless a
metry parametermt0

2/m51/2. The solid lines show the branches
Im S that determine the exponent of the WKB wave function. T
minima of branch 2 lie on the classical escape trajectory show
~d!. The switching line~thin solid line! starts at the branching poin
03212
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by the trajectories in complex timet, with 2Im t being, re-
spectively, smaller and bigger than2Im tcaust. At the point
(xcaust,zcaust), branches 1 and 2 touch each other.

Switching between the branches in real space occurs
z,zcaust. It can be analyzed in the same way as form50.
The WKB wave function is determined by the branch in F
9 shown with the solid line. The switching line starts fro
the branching point (xcaust,zcaust) and goes in the direction o
positivex.

Branch 2 has two minima as a function ofx for zm,z
,zcaust. It is asymmetric formÞ0. However, the minimal
values of ImS remain equal to each other and are the sam
all cross sectionsz5const. The minima of ImS lie on the
classical trajectory along which the electron escapes. Ax
5xm ,z5zm they merge together, and ImS becomes quartic
in x2xm . The valuezm shows how close the escape traje
tory comes to the localized intrawell state.

The classical trajectory becomes observable in configu
tion space once it crosses the switching line. The shape o
trajectory and the exit point for several values of the asy
metry parameterm are shown in Fig. 10. The outgoing wav
packet is Gaussian near the maximum (ImS is parabolic near
the corresponding minimum!.

By solving the Hamilton equations~2! for the potential
~18!, we can write the tunneling exponent~10! in the form

R52gL@t rd1n0k~t rd!#. ~19!

Here,t rd is the imaginary part of the time to reach the cla
sical escape trajectory@see Fig. 3~a!# in the units of the tun-
neling timet0 for B5m50. Along with the functionk in
Eq. ~19!, the reduced timet rd can be found from the equatio

m-

in

FIG. 10. Classical escape trajectories. The dimensionless as
metry parameter on the curves 1–3 ismt0

2/m50,0.5,1.5. The filled
circles are exit points and the open circles are the pointszm where
the trajectory is closest to the localized state.
k~t rd![
n0

2~t rd cosn2t rd2n2
21 sinn2t rd!1n2

2 cosn2t rd2n2~12n01n0t rd!sinn2t rd

m̃2~n0 cosn2t rd2n2 sinn2t rd!

5
~n0

2t rd2n1
2!coshn1t rd1n1~12n01n0t rd2n0

2/n1
2!sinhn1t rd

m̃2~n0 coshn1t rd1n1 sinhn1t rd!
. ~20!
2-9
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Here,m̃5mt0
2/m is the dimensionless asymmetry parame

The motion under the barrier is characterized by the dim
sionless frequenciesn05v0t0 , nc5vct0, and their combi-

nationsn5(nc
21n0

2)1/2 andn6
256n2/21An4/41m̃2.

The tunneling exponentR depends on the interrelatio
between the in-plane electron dynamics, which is charac
ized by the frequencyv0, the cyclotron frequencyvc , the
tunneling timet0, and the asymmetry parameterm. The ex-
ponentR increases with the magnetic field. The depende
of R on vc ,v0 for m50 as given by Eqs.~19! and ~20! is
shown in Fig. 8. A typical dependence ofR on m andB for
v0t0;1 is shown in Fig. 11.

The asymmetry results in lowering of the tunneling b
rier for B50 and the corresponding increase of the tunnel
rate. This can be qualitatively understood, since a displa
ment in thex direction with mx,0 increases the effectiv
force in thez direction, which pulls the electron away from
the layer. For small asymmetry,m̃!1, the correction toR is
quadratic inm̃. In the limit of a thin and high tunneling
barrier forx50 or soft in-plane vibrations, wherev0t0!1,
tunneling is most likely to occur in the barrier, which
adiabatically prepared by the optimal in-plane displacem
x ~the ‘‘completely adjusted’’ barrier@36#!. The expression
for R takes a form

R52gL~3n0 /m̃2!1/3 ~n05v0t0!1!, ~21!

it depends on the in-plane frequencyv0 and onm nonana-
lytically. The role of the asymmetry increases with the ma
netic field, as seen from Fig. 11.

In terms of comparison with the currently available e
perimental data on tunneling from a correlated 2D ma
electron system on helium surface@10#, of utmost interest is
the situation where the asymmetry is small. ForB parallel to
the electron layer, the observed dependence ofR on B did not
show the divergence expected if the tunneling electron w
free to move along the layer. The simple model~5! provides
a qualitative explanation of the experiment@24#. Excellent
quantitative agreement, without adjustable parameters,
achieved by using a dynamical model of the correlated s
tem, which can be efficiently mimicked by Eq.~5! and also
incorporates the curvature of the potentialU0(z) due to elec-
tron correlations@11#.

FIG. 11. The tunneling exponentR as a function of the magneti
field and the asymmetry parameterm in the model~18! for v0t0

51.2. The functionR is even inm.
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VI. THE PATH-INTEGRAL FORMULATION
IN A MAGNETIC FIELD

In the absence of a magnetic field, the problem of tunn
ing decay is often considered using the instanton techni
@25,26#. This technique applies if the potential well is par
bolic near the minimum and thermalization inside the w
occurs much faster than escape from the well~in the case of
2D electron systems, both conditions are often violated@11#!.
Because the Schro¨dinger equation for metastable states h
to be solved with the radiation boundary condition, the en
gies of these states acquire small imaginary parts, and
does the partition functionZ. The escape rateW for finite
temperatures is simply related to ImZ,

W'2T Im Z/ReZ ~22!

~we have setkB51).
The partition function is given by the integral over pe

odic pathsr (t) in imaginary time@37#,

Z5E
r (0)5r (b)

Dr ~t!exp$2SE@r ~t!#%, ~23!

whereb5T21 andSE is the Euclidean action~the action in
imaginary time!. It is real for B50 and for real trajectories
r (t).

The general expressions~22! and ~23! should also apply
in the presence of a magnetic field. However, the Euclid
action for an electron

SE5E
0

b

dtFm

2 S dr

dt D 2

1U~r !1 i
e

c
A~r !

dr

dtG ~24!

is now complex. Therefore the standard way@25,26# of
evaluating the escape rate has to be revised, except for
cial symmetric cases like that discussed in Sec. V A, wh
one can change to new variables in whichSE becomes real
@14,16#.

The goal of this section is to show how the instant
technique works in the case of a complex action function
Although we will often refer to the action functional of th
form ~24!, much of the results below apply also to a mo
general retarded Euclidean action, which is of interest
systems coupled to a bath.

In the spirit of the WKB approximation, the path integr
~23! will be evaluated by the steepest-descent method in
one-bounce approximation. The extremal pathsr (t) of the
functionalSE satisfy the equation

m
d2r

dt2
5“U~r !1 i

e

cF dr

dt
3BG . ~25!

This equation has to be solved with the periodic bound
conditionr (0)5r (b). Note that the sign of the potential ha
been inverted compared to the case of classical motion
real time.

For low temperatures and for the potentialU(r ), which is
parabolic near its intrawell minimumrwell , Eq. ~25! has a
solutionr (t)5rwell , with SE50. It gives the real part of the
2-10
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TUNNELING DECAY IN A MAGNETIC FIELD PHYSICAL REVIEW A 65 032122
partition function, see below. As in the caseB50, the imagi-
nary part ofZ is determined by another solution of Eq.~25!,
which is of the bounce type. This solution,rb(t), starts near
rwell , slides downhill in the inverted potential2U(r ), and in
time b comes back. ForB50 the corresponding path is
symmetric real trajectory,rb(t)5rb(b2t), which bounces
off the turning pointṙb(b/2)50.

For BÞ0, because of broken time-reversal symmetry,
path rb(t) is complex, and the velocity along this path do
not become equal to zero. The path is not symmetrica
time, because the replacementt→2t changes Eq.~25!.
However, if we simultaneously changei→2 i , the equation
remains unchanged. Therefore the bounce-type path ha
symmetry

rb~t!5rb* ~b2t!. ~26!

An immediate and very important consequence of Eq.~26! is
that the value ofSE(rb) for the bounce-type path isreal. This
value gives the tunneling exponent.

A. The eigenvalue problem

The prefactor inZ can be found by integrating over th
tubes of paths around the extremal paths. It can be don
expandingSE in deviations from the extremal paths to th
second order, and then expandingr (t)2rwell and r (t)
2rb(t) in the three-vector eigenfunctionscn(t) of the ap-
propriate eigenvalue problem,

F̂cn[E
0

b

dt8F̂~t,t8!cn~t8!5lncn~t!,

~27!
F̂ i j ~t,t8!5d2SE /dr i~t!dr j~t8!.

Here, the derivatives of the action are calculated on the
responding extremal trajectoryrwell and rb(t), and periodic
boundary conditions are assumed. The operatorF̂ is simpli-
fied for a nonretarded action~24!, F̂ i j (t,t8)5d(t
2t8) f̂ i j (t).

For B50, the operatorF̂ is Hermitian, with fˆi j 5
2md i j (d

2/dt2)1]2U/]r i]r j , if the action is given by Eq.
~24!. Therefore the functionscn(t) form complete and or-
thogonal sets for each extreme trajectory~25!, and the eigen-
valuesln are real.

For BÞ0, the operatorF̂ becomes non-Hermitian. Fo
example, in the case of a uniform magnetic field in Eq.~24!,
f̂kl(t) acquires an extra termi (e/c)ekl jBj (d/dt) (ekl j is the
Levi-Civita symbol!. Therefore some of the eigenvaluesln
become complex. The eigenvectorscn with different n are
orthogonal not to each other, but to the eigenvectorsfn of
the Hermitian conjugate operator,

E
0

b

dt8F̂†~t,t8!fn~t8!5ln* fn~t!.

Taking into account the symmetry~26! of the extremal tra-
jectories, we find that
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F̂†~t,t8!5F̂~b2t,b2t8!5F̂* ~t,t8!. ~28!

The energy spectra for several complex Hamiltonians w
symmetry similar to Eq.~28! ~called thePT symmetry! were
investigated earlier numerically and using the WKB appro
mation @38#.

The symmetry~28! has several consequences. First,
shows thatcn(t)5anfn* (t), wherean is a constant. This
means that, with proper normalization, the orthogonality
lation becomes

E
0

b

dtcm~t!cn~t!5dmn ~29!

@here, we assumed that the eigenvalues are nondegene
for degenerate eigenvalues, the condition~29! can be satis-
fied by choosing appropriate linear combinations of t
eigenfunctions with sameln#.

It also follows from Eq.~28! that, if cn(t) is an eigen-
function of Eq. ~27! with an eigenvalueln , then cn* (b
2t) is also an eigenfunction of the same boundary-va
problem, but with the eigenvalueln* . This means that the
eigenvaluesln are either real or form pairs of complex
conjugate numbers.

Pairs of complex-conjugate eigenvalues emerge in the
lowing way. ForB50, all eigenvalues are real. With increa
ing B some eigenvalues approach each other pairwise, w
still remaining real. Eventually they merge, and for largerB
become complex conjugate. Such behavior with varying c
trol parameter is generic for systems with symmetry~28!, as
described in Appendix B. For 1D Schro¨dinger-type equations
with different complex Hamiltonians it was observed n
merically @38#.

1. Eigenvalues near the potential well

As an illustration, we consider the eigenvalue proble
near rwell for the action functional~24!. Here, Eq.~27! be-
comes linear, and the eigenfunctionscn(t) can be sought in
the form of linear combinations of exp(6ivnt), with vn
52pn/b. The eigenvalues are obtained from the equatio

detF ~mvn
22lnn!dkl1mVkl

2 2
e

c
vnekl jBj G50, ~30!

wheremVkl
2 5@]2U/]r k]r l # rwell

and B is the magnetic field

at rwell . The subscriptn enumerates the eigenvaluesl for a
given Matsubara frequency.

If, for example,B is pointing along a principal axes of th
tensor Vkl

2 ~say, the axes 1!, then we haveln 1 /m5vn
2

1V1
2 , and

m21ln2,35vn
21

1

2
~V2

21V3
2!6

1

2
@~V2

22V3
2!224vc

2vn
2#1/2,

~31!

where Vn
2.0 are the principal values of the tensorVkl

2 .
Clearly, the eigenvaluesln2,3 are complex-conjugate pair
for large enoughvn

2vc
2 .
2-11
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Equation~31! shows explicitly also how pairs of comple
eigenvalues emerge with varying magnetic field as a resu
merging of adjacent real eigenvalues, as discussed for
general case in Appendix B.

2. Eigenvalues for the bounce trajectory

A specific feature of the eigenvalue problem~27! for the
bounce trajectoryrb(t) at low temperatures is that one of th
eigenvalues isl1

(b)50. It corresponds to the eigenfunctio

c1(t)} ṙb(t). For B50, the vector functionc1(t)} ṙb(t)
has one zero for all components. Therefore it is the eig
function of the first excited state of the multicomponent~but
still one-dimensional, with ‘‘coordinate’’t) Schrödinger-
type equation~27!. Since the eigenvalue problem~27! is Her-
mitian for B50, by oscillation theorem all eigenvaluesln

(b)

with n>2 are positive, and the eigenvalue of the grou
state is negative,l0

(b),0 @25#.
We are not aware of the oscillation theorem for no

Hermitian problems. However,c1(t)} ṙb(t) is still an
eigenfunction forBÞ0, and l1

(b)50. Therefore it follows
from arguments in Appendix B that, asB increases from
zero, the eigenvaluel1

(b) does not merge with other real e
genvalues to form a pair of complex-conjugate eigenvalu
As a consequence, pairs of complex-conjugate eigenva
will be formed only from theln

(b) that were positive forB
50. The negative rootl0

(b) will remain real and negative. In
principle, as a result of coalescence of complex-conjug
eigenvalues, there may emerge pairs of negative real ei
values, and then they can further bifurcate into comp
pairs. However, the total number of negative real eigenva
will be odd.

B. The prefactor in the tunneling rate

We are now in a position to discuss the prefactor in
partition functionZ. The standard step is to expand the d
viation dr (t) of the integration path in Eq.~23! from the
extreme trajectoryrwell or rb in terms of the eigenfunction
cn of the corresponding eigenvalue problem,dr (t)
5(cncn(t). With account taken of the orthogonality cond
tion ~29!, the incrementdSE of the Euclidean action relate
to the deviation of the trajectorydr then becomesdSE

5(lncn
2/2.

The above expansion assumes that the set$cn% is com-
plete. The completeness is known forB50, where the eigen-
value problem~27! is Hermitian. AsB changes, the numbe
of states does not change. From the orthogonality condi
~29!, none of the eigenfunctions becomes a linear comb
tion of other eigenfunctions. This makes us believe that
functionscn form a complete set even forBÞ0 and justifies
the above expansion.

The path integral~23! can be obtained as a limitN→` of
integrals overdr (tk) at discretized instants of timetk
5kDt,Dt5b/N. In the standard way, we change to integ
tion overdcn . Because of the orthogonality relation~29!, the
determinant det@cn(tk)# of the transformation of variables i
real and is equal to6(Dt)2N/2. Integration of exp(2dSE)
over dcn gives const3)nln

21/2.
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Let us now consider the contribution to the partition fun
tion Zwell from trajectories close to the potential minimu
rwell . The corresponding eigenvaluesln

(well) are either posi-
tive or belong to complex conjugate pairs, cf. Eq.~31!.
ThereforeZwell is real. SinceSE@rwell#50, there is no expo-
nentially small factor inZwell . This term gives the partition
function for low-lying intrawell excitations in the presenc
of the magnetic field.

When evaluating the contributionZb from paths close to
the bounce trajectory, special care has to be taken of
eigenvaluel1

(b)50. A standard analysis@25,26# shows that
integration overdc1 gives the factorb in Zb . The positive
and complex-conjugate eigenvaluesln

(b) give a real positive
factor in Zb , whereas the negative eigenvaluesl0

(b) ~or an
odd number of negative eigenvalues! makeZb purely imagi-
nary. In addition, Zb contains the exponential facto
exp„2SE@rb(t)#…. Overall, this gives the tunneling rate~22!,

W'2TuZbu/Zwell}exp$2SE@rb~t!#%. ~32!

Equation~32! shows that the instanton technique can
applied to the problem of tunneling decay in the presence
a magnetic field in spite of the field-induced breaking
time-reversal symmetry. Although the instanton action
mains real, the actual calculation is very different from th
for B50. Also, the bounce trajectory touches the classi
escape trajectory at a pointrb(b/2), which is not the point
where the particle ‘‘shows up’’ as a semiclassical wa
packet; the latter point can be found from our general WK
analysis of tunneling decay.

VII. CONCLUSIONS

In conclusion, the problem of tunneling decay in a ma
netic field can be solved in the semiclassical limit by anal
ing the Hamilton trajectories of the particle in complex pha
space and time. The boundary conditions are determined
the intrawell wave function and its analytic continuatio
This approach allows one to find both the tunneling expon
and the tail of the wave function of the localized state.
does not require to consider either a part of the potentia
the magnetic field as a perturbation, and it can be applie
a three-dimensional potential of a general form. The mu
dimensional character of the problem is important. In p
ticular, confinement in the Hall direction~transverse to the
directions of tunneling and the magnetic field! can exponen-
tially strongly increase the tunneling rate by reducing t
Hall velocity.

The escape rate in a magnetic field is generallyexponen-
tially smaller than the probability for a particle to reach t
boundary of the classically accessible rangeU(r )5E. The
escaped particle ‘‘shows up’’ from the tunneling barrier wi
nonzero velocity and behind the surfaceU(r )5E. The con-
nection of the decaying and propagating waves occurs
caustics of the set of complex Hamilton trajectories, wh
the classical action is branching. Caustics are complex
faces in 3D space. In the presence of a magnetic field, t
go through real space along lines~instead of surfaces, fo
B50).
2-12
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TUNNELING DECAY IN A MAGNETIC FIELD PHYSICAL REVIEW A 65 032122
An interesting feature of tunneling in a magnetic field
the occurrence of a switching surface, where different W
branches of the wave function have same amplitudes.
slope of thelogarithm of the wave function normal to the
surface sharply changes there, from the value on one of
branches to that on the other branch. The escaped pa
first shows up as a propagating semiclassical wave packe
the switching surface where the classical escape trajec
crosses it. Switching surfaces can be observed by measu
the electron-density distribution behind the potential barr
A simpler experiment will be to investigate the dependen
of the classical escape trajectory behind the barrier on a m
netic field. This trajectory is sensitive to the form of th
effective confining potential, which is particularly interestin
where this potential mimics many-body effects in correla
systems.

Switching between branches of the WKB wave functi
for BÞ0 is similar to switching between different branch
of the probability distribution in classical systems away fro
thermal equilibrium. Such systems lack time-reversal sy
metry, as do also quantum systems in a magnetic field. T
of the classical distributions are formed by infrequent flu
tuations. Fluctuational paths to a given state from the vicin
of an equilibrium position~attractor! form a narrow tube cen
tered at the most probable path. This path is given b
solution of the variational problem of finding the maximu
of the logarithm of the probability distribution@39–41#. In
many cases of physical interest the corresponding E
equations are similar to Eqs.~2!. However, in contrast to
underbarrier tunneling trajectories, classical optimal pa
can be observed@42#. Switching surfaces in the phase spa
of fluctuating nonequilibrium systems separate areas rea
along topologically different optimal paths@43a#. They have
been seen in analog simulations@43b#.

It follows from the results of this paper that for potenti
wells that are parabolic near the minimum, even in the pr
ence of a magnetic field one can still use the instanton te
nique in order to find the escape rate. However, the bou
trajectory, which gives the tunneling exponent, is now co
plex. Also in contrast to theB50 case, evaluation of the
prefactor requires solving a non-Hermitian boundary-va
problem. Because of special symmetry of this probl
~which is the same as thePT symmetry discussed previous
for 1D complex Hamiltonians@38#!, the corresponding ei
genvalues are either real or form pairs of complex-conjug
numbers.

Our results for the model that mimics tunneling from
strongly correlated 2D electron system illustrate the gen
conclusions about tunneling in a magnetic field, includi
the structure of singularities related to branching of the W
wave function and the occurrence of switching surfac
They show that the rate of tunneling transverse to the m
netic field is highly sensitive to the in-plane electron dyna
ics and exponentially increases when electrons are m
strongly confined in the plane, i.e., the frequencies of
plane vibrations increase. It also increases if electrons in
2D layer can adjust to the tunneling electron and thus ef
tively decrease its tunneling barrier.
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APPENDIX A: THE MANY-ELECTRON HAMILTONIAN

A simple and important model that allows us to consid
the effect of electron correlations on tunneling from a 2
electron system is the model of a Wigner crystal. In th
model, the in-plane electron motion is small-amplitude
brations about equilibrium positions. Because of strong c
relations, exchange effects are not important, and the tun
ing electron can be identified. Its tunneling motion is affect
by the interaction with other electrons.

We will assume that the equilibrium in-plane position
the tunneling electron is at the origin. Then, in the prese
of a magnetic fieldB parallel to the electron layer, the fu
Hamiltonian is of the form

H5
pz

2

2m
1U0~z!1Hv1HB, ~A1!

with

Hv5
1

2 (
k, j

@m21pk jp2k j1mvk j
2 uk ju2k j # ~A2!

and

HB5
1

2
mvc

2z22vczN21/2(
k, j

@B̂3pk j #z1U int~z,$uk j%!.

~A3!

Here, pk j , uk j , and vk j are the 2D momentum, displace
ment, and frequency of the Wigner crystal phonon of bran
j ( j 51,2) with 2D wave vectork. The in-plane momentum
of the tunneling electron isN21/2(pk j (N is the number of
electrons!. The termU0(z) describes the tunneling barrie
@cf. Eq. ~6!# for the electron at the origin provided all othe
electrons are at their in-plane lattice sites.

The termHB couples the out-of-plane tunneling motion
lattice vibrations. The problem of many-electron tunneling
thus mapped onto a familiar problem of a particle coupled
a bath of harmonic oscillators@14,37#. A part of the coupling
is due purely to the magnetic field. Another part comes fr
the termU int , which describes the change of the tunneli
barrier because of electron vibrations. Its simplest form
given by the lowest-order term of the expansion of the el
tron energy,

U int~z,$uk j%!5z(
k, j

g2k juk j , ~A4!

where gk j are coupling constants~for electrons on a thick
helium film @36# the leading term inU int is }z2). The cou-
pling ~A4! leads to lowering of the tunneling barrier as
result of appropriate displacements of the electrons surrou
ing the tunneling electron.
2-13
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The major effect on tunneling comes from high-frequen
in-plane vibrations, which have large density of states@11#.
Therefore it is not unreasonable to use the Einstein mode
the Wigner crystal, in which all vibrations have the sam
frequencyv0. Then, except for the termU int , the Hamil-
tonian~A1! becomes a sum of Hamiltonians of confined no
interacting electrons of the form~3!, with the potentialU(r )
given by Eq.~5!. This explains why Eqs.~3! and ~5! can be
used to mimic the effect of electron correlations on tunn
ing.

In the Einstein model, because of the symmetry of a
Wigner crystal, there is no coupling term inU int that would
be linear in the in-plane displacement of the tunneling el
tron itself. Instead, forB50 its out-of-plane motion is
coupled to an in-plane oscillator with the coordinate given
a ~totally symmetric! linear combination of displacements o
other electrons. This maps the problem onto the prob
discussed in Sec. V B, with the in-plane electron coordinax
in Eq. ~18! corresponding to the coordinate of this oscillat
and with m being a linear combination of the~weighted!
coefficientsgk j . For BÞ0, the coupling of tunneling motion
to in-plane vibrations of the tunneling electron itself@the
second term in Eq.~A3!# also becomes substantial. Yet w
expect that the model~18! catches important qualitative fea
tures of many-electron tunneling even where both the m
netic field and the interactionU int are substantial.

APPENDIX B: EMERGENCE
OF COMPLEX EIGENVALUES

In this appendix we consider how, with the varying co
trol parameter, two real eigenvalues of the problem~27!
merge and then become complex. Near this bifurcation,
eigenvalues can be sought by perturbation theory. We s
with a value ofB5B0 ~we can also use another control p
rameter!, where the given adjacent eigenvaluesln ,lm are
close to each other and are real. For smalludBu5uB2B0u,
the functionalF̂ is close to its value forB0 , F̂'F̂01dF̂ in
Eq. ~27!. To first order indF̂, the eigenvalues are given b
the expressions@ln(B0)1lm(B0)#/21l6 , with
l-

.

st
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1

2
~dF̂nn1dF̂mm!6

1

2
@~dF̂nn2dF̂mm2dl!2

14dF̂nmdF̂mn#1/2, dF̂nm5^cnudF̂ucm&. ~B1!

Here, the wave functions are calculated forB0, and dl
5lm2ln.

Because of the symmetry~28!, the matrix elements ofdF̂
in Eq. ~B1! are real. However, the productdF̂nmdF̂mn does
not have to be positive, and in fact we are interested in
case where it is negative. In this case, instead of level a
crossing, we have the dependence of the eigenvalues on
distancedl shown in Fig. 12. In the gap, the eigenvalues a
complex conjugate.

The control parameter in the tunneling problem is notdl,
and it may be more interesting to look at the eigenvalues

functions of dF̂nm. Their behavior is similar to what is
shown in Fig. 12, if the diagonal and off-diagonal matr
elements depend on the control parameter~for example, the
magnetic field! in the same way. Otherwise, once the eige
values become complex with changing control parame
they do not have to become real again, as is the case fo
eigenvalues given by Eqs.~31! as functions ofvc . We note
that there is also an opposite process of merging of comp
conjugate eigenvalues, which is also described by Eq.~B1!.

FIG. 12. The dependence of the eigenvalue shiftsl6 on the
distancedl between the eigenvalues forBÄB0 ~schematically!. We

countdl off from dF̂nn2dF̂mm, andl6 from (dF̂nn1dF̂mm)/2.
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