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Tunneling decay in a magnetic field
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We provide a semiclassical theory of tunneling decay in a magnetic field and a three-dimensional potential
of a general form. Because of broken time-reversal symmetry, the standard WKB technique has to be modified.
The decay rate is found from the analysis of the Hamilton trajectories of the particle in complex phase space
and time. In a magnetic field, the tunneling particle comes from beneath the barrier with a nonzero velocity.
The exit location in the classically allowed region is obtained by matching the decaying and outgoing branches
of the WKB wave function on a caustic of the set of the complex trajectories. The slopelofdreghm of the
wave function sharply changes on the anti-Stokes surface where there occurs switching between different
WKB branches. For potential wells that are parabolic near the minimum, we also provide a bounce-type
formulation. The theory is applied to the models that are relevant to tunneling from correlated two-dimensional
electron systems in a magnetic field parallel to the electron layer.
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I. INTRODUCTION the presence of a magnetic field.
A simple potentialU(r) and the wave function)(r) of
Magnetic field can very strongly change the tunneling ratehe metastable state in this potential are sketched in Figs. 1
of charged particles. This change, in turn, strongly dependand 2. The wave function decays away from the potential
on properties of the system, as in the well-known effect ofwell. At some pointr, on the background of the decaying tail
giant hopping magnetoresistance in solitls Therefore tun- there emerges a propagating small-amplitude wave packet,
neling in a magnetic field has been broadly used as a sensivhich corresponds to the escaped particle. As a result, in a
tive and revealing probe of electron systems in solidspart of the classically allowed regiob),(r) <E, the function
including quantum Hall systemg2-5], two-layer hetero- (r) is determined by this wave packet, whereas in the other
structures away from the quantum Hall regif+9], and  part of this regionys is determined by a different branch of
correlated electron layers on the surface of liquid heliumthe tail of the localized state. The boundary between these

[10,11]. areas has a width#, and the slope of the wave function
Correlated two-dimensional2D) electron systems are sharply changes on this boundary.
currently attracting much interegt2]. The possibility to ob- An important part of the WKB formulation of the

tain information about electron correlations and dynamicgunneling-escape problem in a magnetic field was found in
through tunneling in a magnetic field is one of the motiva-Ref.[13b] in the analysis of decay for a special model of an
tions of the present work. Another important motivation
comes from the fact that tunneling in a magnetic field is an
interesting theoretical problem, even in the single-particle U(r)
formulation. Existing results, although often highly non- TB

trivial, are limited to the cases where the potential has either
a special fornj13-1€ (e.qg., lineaf13] or parabolid 15]), or
a part of the potential or the magnetic field is in some sense |
weak[17-23. ‘ U(r)=E
The problem of tunneling has two parts. One is to find the *
tail of the wave function of the localized intrawell state un-
der the potential barridd (r) and behind it, and the other is
to find the escape probability. In a magnetic fieldyV dif-

fers exponentially from the probability to reach the boundary z

of the classically allowed rang¥(r)=E, whereE is the i

energy of the particle. This is because, as it tunnels, the par- '

ticle is accelerated by the Lorentz force, and it comes out =

from the barrier with a nonzero velocity. The standard X

argument that the exit point is the turning point 0 relies FIG. 1. Tunneling in a two-dimensional potentla(x,z) trans-

on time-reversal symmetiigee belowand does not apply in  yerse to a magnetic fielB pointing in they direction. Initially the
particle is localized in a metastable state behind the baiwigthe
smallz side with energyE. In contrast to the casB=0, the par-
* Author to whom correspondence should be addressed. Email adicle emerges from under the barrier with a nonzero velocity, and
dress: dykman@pa.msu.edu therefore the exit point is located away from the lidér) =E.
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escaped particle behind the barrier, with regd,t. The ve-
locities on the trajectories can coincide at the matching point
only if v=0.

In the presence of a magnetic field, because of broken
time-reversal symmetry, the replaceméfitmay not be per-
formed. It would lead to a complex Hamiltonian, which
makes no sense and indicates that a more general approach is
required. The actiors(r) is complex under the barrier for
realr. This complexity plays an important role in the instan-
ton formulation of the problem of tunneling decay in a mag-

FIG. 2. The absolute value of the tunneling wave functeshe- ~ Netic field discussed below. Complex action arises also in
matically). The maximum is located inside the potential well, i.e., Other problems, such as tunneling splitting in an ultrastrong
behind the barrier in Fig. 1. A Gaussian wave packet of slowlymagnetic field 18], barrier penetration for oblique incidence
varying height describes the escaped particle. [29], and scattering by a complex potentiat in the case of

an absorbing medium[30]. The method discussed below
atomic systenfisee Eq(9) below]. In a general case, both the ¢an be applied to many of these problems.
tail of a metastable state and the outgoing wave packet can In this paper we consider a single-particle tunneling decay
be found using the approach described below and br|eﬂy'|t0 extended states in a three-dimensional potential of a

W

outlined in our papef24]. general form for arbitrary magnetic fields. We illustrate the
In the WKB approximation the wave function is sought in @Pproach using a toy model of a correlated 2D electron sys-
the form tem. We show that the expone8{r) and the escape rate in
a magnetic field can be found from dynamical equati@)s
H(r)=D(NexdiS(r)] (A=1). (1) by analytically continuing these equations to complex phase

space and time. The initial conditions for the trajectories are
determined by the analytical continuation of the usually
known intrawell wave function. The resulting set of complex
trajectories has singularities, caustics, which are envelopes of
6he trajectories. The complex acti&fr) is branching on the
gaustics, and tails of the decaying and propagating waves are
matched there. Careful analysis allows us to find the com-
plete semiclassical wave function and reveal the singular fea-

Here, S(r) is the classical action and is the prefactor. In
the classically allowed range, Edql) describes a wave
propagating with a real momentups= VS. In the classically
forbidden range the wave function decays. For the groun
intrawell state, this decay is not accompanied by oscillation
in the absence of a magnetic field. Then the actn) is
purely imaginary under the barrier aff@S| is the decrement i
of the wave function. tures of #(r) related to the branching @&

Both behind and inside the barrier, the action can be obf. I.nISecaIII anﬁ.Ahpp_endlxtA vlve prowtde a Elmple EUt .non-f
tained from the Hamilton equations of motion fivial mocel, which, In particuiar, captures basic pnysics o
tunneling from correlated 2D electron layers. In Sec. Il we

consider the tunneling exponent and formulate the boundary-

S=p-r, r=dH/dp, p=-—dHldr, (2)  value problem for tunneling trajectories in a magnetic field in
_ o _ complex phase space. In Sec. IV we discuss matching of
whereH is the Hamiltonian of the tunneling electron, different semiclassical solutions across the caustic of the set

of the tunneling trajectories. We show that a switching sur-

face (one of the anti-Stokes manifoldstarts at the caustic.
+U(r), ©) The wave function has an observable singular feature at this
surface, which is a sharp change of the slope pf()|. In
Sec. V we provide explicit results for two simple exactly
solvable models of physical interest, which also illustrate
general features of tunneling in a magnetic field. In Sec. VI
we discuss the path-integral formulation of the problem of
éunneling decay in a magnetic field. Section VII contains
concluding remarks.

2

e
H= ﬁ p+ EA(I‘)

[A(r) is the vector potential of the magnetic figld

In the standard approach to tunneling decay, which ap
plies for B=0 [14,25-2§, the purely imaginary actioi
under the barrier is calculated by changing to imaginary tim
and momentum in Eqg2), but keeping coordinates real,

t——it, p—ip, r—r, U(r)——U(r). (4)
IIl. AMODEL OF THE TUNNELING BARRIER
Equations(2) then take the form of equations of classical A physical system that allows one to reveal and investi-
motion in an inverted potentiat U(r), with energy—E= gate specific features of 3D tunneling in a magnetic field and
—U(r). The imaginary-time trajectory goes from the turning where the effect of a magnetic field on tunneling has been
point on the boundary of the potential well to the turninginvestigated experimentally is a correlated 2D electron sys-
point on the boundary of the classically allowed region,tem (2DES. We will use it in order to formulate a tractable
where it matches the appropriate classical trajectory of thenodel and illustrate our general results. In a 2D system, elec-

032122-2



TUNNELING DECAY IN A MAGNETIC FIELD PHYSICAL REVIEW A 65 032122

trons are localized in thedirection in a metastable potential r(0)=rls, pO)=—=i[VIng(r)ls, (7)
well Ug(2). The intrawell electron motion is quantized in the
z direction, and electrons can tunnel from the well into ex-with the actionS(0)=—i[In ¢(r)]s . Only the lowest-order
tended states. Many 2D systems of current interest arterms in should be kept in the expressions f(0),S(0).
strongly correlated. Electrons are far away from each othefThe final result should be independent of the choic& of
exchange is weak, and there is at least short-range order in The trajectorieg2) with the initial conditions(7) form a
the (x,y) plane. The tunneling electron can be then identifiedwo-parameterset in the case of 3D tunneling. The two pa-
and “labeled.” Its tunneling motion is accompanied by mo- rameters are the initial coordinates on the surfac&Ve can
tion of other electrons. The many-electron dynamics of achoose curvilinear coordinatesx,(X,,Xs) SO that Xs|s
correlated system can be described in terms of in-plane elee=x3(0)=0. The trajectories are then parametrized by
tron vibrations, and the corresponding Hamiltonian is givenx,(0),x,(0).
in Appendix A assuming that the electrons form a Wigner To illustrate these arguments we consider the initial con-
crystal. Here we will make a further simplification and think ditions for an electron with the potentiéd), (6), which tun-
of an electron as tunneling in a static potential created by alhels from a 2D layer. Inside the metastable potential well the
other electrons. As we showed earlier, this is a good approxielectron motion separates into a quantized motion in the nor-
mation for the tunneling probleril]. mal to the layerz direction and in-plane vibrations. To
The static potential from surrounding electrons can be asslightly simplify the analysis, we will neglect the effect of a
sumed to be parabolic with respect to the in-plane coordimagnetic field on the wave function inside the well, but not
natesx,y. If the characteristic width. of the tunneling bar- on the tail ofy(r) in a much broader region under the bar-
rier is less than the interelectron distance, the overaltier, where the field effect accumulates. This is a good ap-
potential is a sum of the parabolic in-plane part &h(z), proximation for not too strong fields, provided the character-
istic intrawell localization length is small compared to the
B 0, 2, 2 tunneling length.
U(r)=——(X"+y9) +Uq(2). ) It is convenient then to choose the surfateas a plane
z=const close to the well. We setx3=0 on2, and choose
The form ofU,(z) depends on the system. Inside the wellX1=X, X,=Y. If the electron is in the ground intrawell state
U, is often singular, as in the case of electrons on heliumwith E=0, we obtain from Eqs(5) and (6),
where U, includes the image potential. Important simple . .
forms of the potential barrier are a square bparrier, as inpthe 2(0)=0, pA0)=iy, S(0)=imwo[x*(0)+y?*(0)]/2,
case of unbiased semiconductor heterostructures, or a nearly . .
linear one, as in the presence of strong enough bias voltage, P(0)=iMwox(0),  py(0)=imagy(0). (8)

with In the general case, to find the trajectory that arrives at a
9 . given realr deep under the barrier, it may be necessary to
Uo(2)= 7_( 1— _) (6) usecomplexr(0). Thecorresponding values @f(0) can be
2m L found by analytically continuing the intrawell wave function
o ) _ to complexr. The whole trajectory will then go in complex
inside the barrier. In what follows, we will set the energy of phase space (p) and also in complex time The energy of
the out-of-plane motiofE=0. Theny in Eq. (6) character-  the trajectory is given by the energy of the intrawell state
izes the decay of the wave function close to the W&t from which the system tunnels. It remains real.
reciprocal intrawell localization lengthandL is the barrier The rate of tunneling decay is determined bySrat the
width for B=0. The potentia(6) describes, in particular, the point where the particle emerges from the barrier as a semi-
barrier for a correlated 2DES on a helium surfage. For thig|assical wave packet. This wave packet propagates along a
system, an unexpected dependence of the tunneling rde onyeg) classical trajectory 4(t), which is a real-time solution
and electron density was observgt0] and recently ad- of the Hamilton equation€). The underbarrier trajectory for
dressed theoretically1,24). tunneling escape should go over into the trajectogt).
Therefore at some time both the coordinate and velocity
[ll. THE TUNNELING EXPONENT should become real,

2

For a smooth tunneling barridd(r), the underbarrier Imr(t)=Imp(t)=0. (9)
wave functiony(r) [Eqg. (1)] can be obtained from the tun-
neling trajectorie$2). The initial conditions for these trajec- Equations(9) determine the complex starting point of the
tories are determined by the tail of the intrawell wave func-trajectory for tunneling escape(0) [i.e., the complex
tion close to the well. To find them, we can take a surfice X;0), sincex3(0)=0] and also the imaginary part of the
close to the well, but under the barrier, whérér) is smooth  duration of motion along this trajectory limThe real part of
(even if it is singular inside the well The wave function t remains undetermined: a change intRe Eq. (9) results
#(r) on X is presumably known from the solution of the just in a shift of the particle along the classical trajectory
Schralinger equation inside the well and is semiclassicalrq(t), see Fig. 3. Such a shift does not changeS|nsince
Only the exponent of this wave function is needed to find thep=VS is real alongr(t). We note that the number of
initial conditions for Eqs(2). They take the form equationg9) is equal to the number of variables Rgy0),
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. . . FIG. 4. The set of tunneling trajectori¢solid lineg with Rex
FIG. 3. (a) Complext plane for integrating the Hamilton equa- —Imz=0 and the caustiédashed lingfor an effectively 2D tun-

tions (2) in the escape problem. The line tm const corresponds to neling problem. The data refer to the potent),(6) and a mag-

the classical_traj:ectow of the esca_peq electron, which is shown irr‘\etic field along they axis. The parameters are {he same as in Fig.
(0. '30"’ solid lines in(a) gnd (b) indicate the range W_here the 3. The classical trajectory of the escaped electron is the real-time
amplitude of the propagating wave exceeds the amplitude of th%ontinuation of the trajectory 2 from the point kr=0 shown by
decaying underbarrier wave function. The escaped particle sho e open circle. The momentumis real at this point, as explained
up as a semiclassical wave packet, with a nonzero velocity, at thﬁ,] Sec. V A. Other trajectories do not describe éscape, since on

oint (full circle) where the classical trajectory intersects the . . e
P ( ) ) y these trajectories the necessary conditiong#nim x=0 [Eq. (9)]

switching line[thin solid line in(b)]. The crosses mark the value of L . .
t (8 and the positior(b) of the caustic where it goes through real are never satisfied. The caustic goes through real space at the point
a%=zcaust,lm x=0 (the intersection of the dotted linesThe trajec-

space. The specific data refer to tunneling through the potenti “th d el i h h thi A
barrier (5),(6) transverse to a magnetic field, which points in the tory of the escaped electron dorst go through this point.

direction, withwy7y=1.2 andw.79=1.2; time in(a) is in the units
of 7=2mL/y. For the chosen parameter values, the escape traje¢nultivalued function ofr, even though it is a single-valued
tory hits the caustic for complex. The time when it happens is function oft andx; 5(0). This means that several trajectories
numerically very close to the position of the crosg@h (2) with differentt andx; 0) can go through one and the
same point. However, except for the points on the switch-

Imx; {0), and Imt, with account taken of energy conserva- ing surface(see Sec. IV ), only one of the branches of the
tion. The conditiong9) were first giver{13b] for a -shaped actionS(r) contributes to the wave functiop(r).
potential well and a linear tunneling barrier, but only the
condition Imr(t)=0 was explicitly used. A. Caustics in a magnetic field

In the absence of a magnetic field, we can choose the
surface®, such that the momentuply is imaginary for real
r. The equations of motiof2) can then be solved in purely
imaginary time, with reat (t) and imaginaryp(t), i.e., decay
of the localized wave function is not accompanied by osci
lations. The escape trajectory ends at the turning ppint
=0, even for a multidimensional systef28].

The tunneling exponem is given by the value of In$ at
any point on the trajectory,,

In multidimensional systems, branching of the semiclas-
sical action generally occurs on caustics, or envelopes of the
Hamilton trajectorie$31,32), see Fig. 4. Caustics are multi-

|_dimensional counterparts of turning points familiar from the
analysis of tunneling in 1D system33]. The prefactoD(r)
in the WKB wave function(1) diverges at a caustic. In the
case of 1D semiclassical motion along thexis we have
Docpz’llz, andD—« at turning pointsz,, which are given
by the conditionp,=0. The action is branching at turning
R=2ImS(ry). (10  Points,S(2) —S(z,)*(z—z;)%? The behavior o near caus-
tics in a multidimensional system is very simil@ee belowy,
For a physically meaningful solution, 18 should have a With_z—zt cc_)rresp(_)nding to_ the dista_nce f_rom the caustic.
parabolic minimum ar, as a function of the coordinates ~ SINC€ neighboring Hamilton’s trajectorié), (7) touch
transverse to the trajectory. The outgoing wave packet wilfach other on a caustic, the one-to-one correspondence be-
then be Gaussian near the maximum. tween the coordinates,, X,, Xz on the trajectory and the
From Eq.(9), even in the presence of a magnetic field theParameters, x;(0), x(0) breaks. Therefore the equation
tunneling exponent can be obtained by solving the equation@' & caustic has the form
of motion (2) in imaginary time, with complex. However,
such a solution does not give the wave function for neal JN=0, Jr)=——""" .
between the well and the classical trajectogy Nor does it d[x1(0),%(0),t]
tell us where the particle shows up on the classical trajectory.
The Jacobian)(r) can be related in a standard way to the
prefactorD(r), which in turn is determined by the first-order
(in ) correction to the action-iS™*), D(r)=exgdSV(r)].
The equation forS™)(r) can be obtained from the Schro
The complete WKB solution of the tunneling problem candinger equation by seeking the wave function in the form
be obtained and the wave functigifr) can be found if one  y=exp(S), with S=S®—is®)  This gives VS
takes into account that the acti®as given by Eqs(2) isa  =—Vv, wheremv=V S+ (e/c)A. The vectow gives the

A(X1,X2,X3) (11)

IV. BRANCHING OF THE ACTION AND ITS
OBSERVABLE CONSEQUENCES
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velocity on the Hamilton trajector{?). Taking into account
that vWS(r)=dSV/dt and thatVv=d InJ(r)/dt, where

the time derivatives are taken along the trajectory, we obtain 1w,
D(r)=cons[J(r)] 2 12 oo oooo2 Lo W2

w_—iw

It follows from Egs.(11), (12) that the prefactob diverges 2 1 AN W,

on caustics, and the WKB approximation does not apply IWI<<IW| /_iw +w

there[31]. 127

There are both formal and physical distinctions between \ |W2|>>|W1|
caustics for tunneling trajectories with and without a mag- LN
netic field. ForB=0, the trajectories are complex, and Eq. switching line

(12) specifies a complex surface. This surface intersects the FIG. 5. The functiong(z') [Eq. (14)] for large |2'| on the

rgal 3D space along a line. In c_:omrast' B]':,O’ be?ause of complexz’' plane perpendicular to the caustic surface. The dashed
time-reversal symmetry, tunneling trajectories lie in real COMines, arge’ = (2n+1)m/3, show the Stokes lines where the ratio of

figuration space. In this case Ed1) specifies a surfad@8]  the functiongw, /w, | [Eq. (15)] reaches its maximum or minimum.
rather than a line in the 3D space. This distinction leads torhe anti-Stokes linegsolid lines, argz' =2nm/3, are the lines

observable consequences. where|w,|=|w,|. At these lines the ratidw,/w;| changes from
exponentially large to exponentially small with varying atgThe
B. Local analysis near caustics coefficients are found from the radiation boundary condition fol-
lowing the Stokes prescriptiof3l]. The dotted line shows the

The analysis of the wave function and branching of the, . ..t
actionS(r) at complex caustics in the magnetic field is simi-
lar to that for caustics in real space, including turning points
in the 1D casé¢31]. Near a caustic, it is convenient to change
to variablesx’, y', andz’, which are locally parallel and With a=a(r e = (2/3) — 2mU., 12 To make the func-
perpendicular to the caustic surface, respectivelg setz’ caus z-
=0 on the caustic Since a caustic is an envelope of the
Hamilton trajectorieq2), the normal to the caustic compo-
nent of the velocity isv,»=0 for z’=0. However, forB
#0 the normal component of the momentum is not equal e
zero, nor are the tangential components. Therefore the wave
function near a point.,,s0n the caustic can be sought in the S(x",y",2)~S(X",y",0) + (Peaus) 2’ + @z’ 32 (16)
form

Wy o= (2') " Yexd Fiaz' ¥, (15)

tions wy , uniquely defined, we have to make a cut on the
complexz’ plane. Our choice of the cut is shown in Fig. 5
with a dotted line.

With account taken of Eq(13), we find that the action
ar the caustic is

, ) with an appropriately chosen branchzf’2. Another way to
P(Fcaust ') =€'Peaust’™ b(Z" ;1 5,80, (13)  understand the nonanalyticity 8fis based on the analysis of
the set of the Hamilton trajectori¢8). Because the caustic is
wherep.a,stis the momentum at the poing,,s(we note that  an envelope of the trajectories ang =0 on the causticz’
I caustS @ 2D complex vectog,,=0). We consider the case is quadratic in the incremenisx; 0),6t of the parameters
where the dependence pf,usi0n the positior :along the  of the set. Thereforéx, 0),dt are nonanalytic ire’. Tak-
caustic is smooth, and the dependenc@ain r,,sis much  ing into account cubic terms in the expansion $fin
weaker than orz’. Generally,pcaystiS complex even where  sx, 0),dt, we obtain Eq(16). The coefficients ir§ can be
the caustic goes through real spacerdm=0. Therefore expressed in terms of the derivativesS)f as given by Egs.
the classical trajectory of the escaped particle does not g@) overx; 0).t.
through a caustic, in contrast to the case of zero magnetic

field, cf. Fig. 4. _ C. Choosing branches of the action
Becausev, =0 for z' =0, the equation for(z";r caus) _ . ) )
which follows from the 3D Schidinger equation with a Equation(14) _descrlbes how the WKB solutions, which
magnetic field, coincides with the 1D Séhinger equation  correspond to different branches of the actreonnect on
near a turning point without a magnetic field, the caustic. Of interest for the problem of tpnnellng escape is
the caustic where the intrawell wave function and the outgo-
1 g2 ing wave packet for the escaped particle are connected. From
— 5= ——+U (a2 | (2 ;Tcaust =0 (14 Eq.(11), on this caustic there is a point through which there
2m gz'2 goes the Hamilton trajectory?), (7) for escape, with the
initial coordinatesx; ,(0) given by the conditior{(9) of ar-
(here,U ,=4dU/dz"). riving, ultimately, at the classical outgoing trajectary, cf.
The function ¢ is single valued. It is given by a linear Fig. 4.
combination of the Airy function$33]. For comparatively In general, a caustic can be thought of as a “mirror,”
large|z’| (but still close to the caustidt becomes a linear which partly reflects the wave packet. The boundary condi-
combination of the functions tion to Eq.(14) for the tunneling-escape problem is the “ra-
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diation condition.” Far from the potential well the solution of ~ On the anti-Stokes line amj=4m/3, the values ofw,]

the full Schralinger equation is a semiclassical wave packetand|w,| become equal to each other, an(z’) is primarily
moving in real space away from the well. Respectively, thedetermined byw, for larger arge’. After argz’ crosses the
wave function far from the well has a formj(r) Stokes line 57/3, the exponentially small termw, in ¢(z")
«exdiS(r)]. This solution has to be continued to the com-disappears, according to the Stokes prescrigtain.

plex caustic, which means that there is a range of directions Since we chose the irradiated wave to bow,(z'), the

in the complexz’ plane not too close to the caustic asymptotic behavior of the wave function of the metastable
(|laz'®?3>#) where the wave function is described by only state within the range 2/3<argz’<4m/3 is given by
one exponential exi5(r)]. Away from this range, the wave w;(z'). We note that, for the radiation boundary condition,
function is a combination of two waves. This is again similarthe switching between the wave functions occurs only on one
to a 1D problem, where behind the turning paipthe wave  of the anti-Stokes lines.

function for realz is a propagating wave, whereas befare

there is a wave with an exponentially decaying amplitude D. Switching between the branches of the wave function

coming from the intrawell state, and the wave which is re- Switching between the WKB wave function of the local-

flected back to this state. ized state and the outgoing wave packet is an important ob-
To connect the tails of the wave functions near the caustic going P P

in our problem one can use the explicit solution of Etz) Servable consequence of the analysis in the preceding sec-

with the radiation boundary condition, as in the 1D c&3. t|on._|t is due to branching of_the WK_B a_ctlon. The SW"Ch!f?g
. ... _manifold starts on the caustic and is given by the condition
An alternative way to see how the boundary condition

i I m S;(r)=Im S,(r), whereS, , are the actions for the corre-
works, which also allows us to reveal the specific feature o . : ; .
L o ) .~ ~sponding WKB branches. On the opposite sides of the
tunneling in a magnetic field, is to follow the transformation ™" . . : . :
) oy . switching manifold one of the WKB wave functions is expo-
of the wave functionp for |az’*4|># as the argument of

ies b hi vsis is based h ) f th nentially bigger than the other.
varies by 2r. This analysis is based on the notion of the ", 1o resence of a magnetic field, caustics go through

Stokes gnd anti-Stokes lines _and is an extension. of _thFeaI space along the lines given by the conditidr)

Stokes-lines-based approach in the .WK'B approximation_ g |mr=0, with r=r(x,40).t) being a point on the

[31,34,33 to the case where a caustic lies in complex spaceamilton trajectory(2), (7). The switching manifold in real

We give it here for completeness. space is a surface that starts from the caustic line and goes
We count arg’ off from —arga®®. Then, for the choice away from itin one direction Although the wave function is

of the cut in Fig. 5 and with the functions, , given by Eq.  continuous on this surface, the derivative of its logarithm

(15), in the vicinity of the caustic, the Stokes lines are thesharply changes frol¥ S, to VS,.

rays argg’ =(2n+1)7/3 with n=0,1,2. On the Stokes lines The exit pointr in the configuration space where the es-

Rez'3?=0 and the ratidw,/w;,| is extremal(maximal or  caped particle emerges from under the barrier is determined

minimal). The anti-Stokes lines are the rays afg2n=/3 by the intersection of the classical escape trajectqyt)

with n=0,1,2, wherdw,/w,|=1. and the switching surface. This point should be found from
From the radiation boundary condition, there is a raﬁge the global analysis of the WKB wave function. It does not lie

of argz’ where¢(z’) is given by only one of the functions On the caustic, nor is it given by the conditign=0 or

wy {2'), not by a superposition of; andw,. This condition U(_r)= E.Ina 2D_ system the caustic pierces real space at a

is physically meaningful provided the corresponding is point, and the SW|tch|_ng §urfa_ce becomes a !me._An example

exponentiallysmall compared tavs_; in a part of the range of the caustic, the switching line, and the exit point for a 2D

A. [Otherwise the conditiop(z') = constX w; is not a limi- system is shown in Fig. 3.

tation, in the WKB approximatioh.For concreteness, we In the absef.‘ce of a ma_gnetlc_fleld,_as we mentioned be-
. . .__. fore, the caustic for tunneling trajectories is a surface rather
will assume thatA contains the range between semiaxis

'—0 and th tin Fig. 5 d that in thi than a line in real configuration space. The switching mani-
argz, _—C an , € cu 'n,g,zig‘ 2 an a _|n” IS ralrllge fold starts at the caustic and goes into complex space. The
ﬁ(z )E. Wy(z )Octexq'lthl ft ![s. ?(ponenna y small. eyit point is the turning poinp=0, and S has zero slope

ere,L IS a cons ‘.”m(' 'S, et out in =19 3. _ normal to the caustice surface. In contrast, in a magnetic field
S.mce. the funguonﬁ(z ) IS single valued, if we cross the different action branches have different nonzécomplex
cut in Fig. 5 by incrementing aj, ¢(z') becomes equal g 5565 normal to the switching surface. The topologies for
to —iCw;(z'). It remains exponentially small as a{

; : , B=0 andB#0 cases are thus very different.
grows up to 2r/3, including the Stokes line amj= /3.
Then behind the anti-Stokes line at afg-2/3, the func-
tion w; becomes exponentially big. It is important that, on
the Stokes line arg' =7, one has to take into account the
admixture to¢ of an exponentially small termcw,(z"). We now apply the general approach to tunneling from a
This can be seen from the explicit solution f¢rand can be correlated 2D electron system transverse to a magnetic field
understood by noticing that when we incrementZrdpy  and illustrate the occurrence of the singularities discussed
21, we have to recover the original asymptotic form¢f  above. We use the simple but nontrivial model of an electron
This latter argument explains the coefficientgtin Fig. 5.  system discussed in Sec. Il and described by Eg)s(6),

V. TUNNELING FROM A CORRELATED
2D ELECTRON SYSTEM
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FIG. 6. Two branches of the action on the symmetry axis 181 © L ]
=0 as a function of the tunneling coordinatbefore the branching emitted . incident|
point (Cusp Zeuust1.078, for the symmetric moddb) and the wave ; wave
same parameter values as in Fig. 3. The vicinity of the cusp is
zoomed in the inset to show that the upper branch is nonmonotonic. L
Its extremum atz,,, lies on the classical trajectory of the escaped .
particle shown in Fig. ®). However, the particle emerges from the r X
barrier forz>z,, andx#0. | .

2ImS/yL

and its generalization to the case of broken in-plane symme 1.5

try. We assume that the magnetic field is parallel to the elec- x/L

tron layer, and choose theaxes along the fiel@. _ )
FIG. 7. Cross sections of the function Bnby the planez

=const in the case of tunneling in a symmetric poter(&al for (a)
Zn<Z<Zgausy (B) 2= 2Zcaus @NA(C) 2>27.4,s The parameter values
For an electron in the potenti&h), (6), classical motion are the same as in Figs. 3 and 6. The solid lines show the branches

along theB|ly axis is decoupled from motion in the,) of ImS t_hat determine the exponent of the WKB wave function.
plane. The WKB tunneling problem then becomes two di-The minima of branch 2 .and of.the branches(qln hgve the same
mensional, with complex classical trajectorié® lying in M Sand lie on the classical trajectory shown in Figh)3
the (x,z) plane. The Hamilton equations are linear, and we
can find the trajectories explicitly. We can also explicitly find
the tunneling exponerR [24] and analyze its dependence on  Using the explicit form of the trajectorie®) with the
the two dimensionless parametesgry and w7y, wherer initial conditions(8), one can find the complex caustic near
is the tunneling time in the absence of the magnetic field, x=0, z=2z.,,=Zca,(0). It has theform z.,,s(X) — Zcaus(0)
=iC’x with real C'/B>0, cf. Fig. 4. It is seen from Fig. 6
To=2mL/y. that, for x=0, the singular parts of ImS;, behave as
T (Zeausi— 2)¥? near the caustic. Therefore we can choose the
distance from the caustic in Eqg13)—(16) as z'=z
—Zeaust0)—iC'X, and the branching behavior near the caus-
dic is then described by Fig. 5. The ranger<argz’' <0
corresponds to rea and real positivex.
From Fig. 5, close to the caustic only one branch of the
t——t*, x——x*, z—7*, S—-S*. (17 action describes the wave function for negatwand realz
(the upper half of the complex’ plane. For positivex, we
In particular, the caustic, where the outgoing wave packeshould keep both branches, and depending<@md z, the
and the intrawell wave function are connected, goes throughVKB wave function is given by the branch with the smaller
the real planeX,z) at a pointx.,s=0 on the symmetry axis. ImS. Near the switching line where 18, =Im S,, the total
Thez coordinate of this point depends on the magnetic fieldwave function is given by a linear combination of the two
With ZeausEZecausfX=0)=L for B=0. The action forz ~ WKB solutions.
<ZcaustiN the symmetry plane=0 is shown in Fig. 6. As In Fig. 6 for z<z.,,s, the action branch 1 describes the
seen from the inset, the slope of the actiod I S/9z>0 at  tail of the intrawell wave function, and the branch 2 corre-
Ze.aus IN CONtrast to the 1D case where the slope is equal teponds to the wave “reflected” from the caustic. The branch
zero at the turning poirg; . We note that the branches 1 and 2 is nonmonotonic irnz for x=0, with a minimum atz,,
2 are formed by the trajectories that go through real space at z.,,s. By symmetry(17), the momentum componepy, is
times —Imt being, respectively, smaller and larger than real for x=0, whereag,=0 at z,,. Therefore the poing
—Imt.,s fOr the same trajectorieft..,s: iS given by Eq.  =z,, x=0 belongs to the classical escape trajectory shown
(AD]. in Fig. 3(b). Again by symmetry, this is also the point where

A. A model with in-plane symmetry

We start with the structure of the WKB action. The po-
tential U(r) [Egs. (5) and (6)] has the in-plane symmetry
U(x,y,z2)=U(*xx,*y,z). It gives rise to the symmetry of
the set of the Hamilton trajectories and, consequently, of th
singularities of this set,
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the escape trajectory comes most close to the wetk=d.
However, this is not the exit point for the tunneling particle
in the configuration space. Indeed, the wave function at this
point is determined by the branch 1, becauseSjraiim S,.

Several cross sections of the action surfaces by planes
=const are shown in Fig. 7. F@<z., both branches
Im S, , are symmetrical irx. However, the branch 2 is non-
monotonic inx for z>z,,. It has a locaimaximumat x=0
and two symmetricaiinima These minima lie on the clas-
sical trajectory shown in Fig.(B). Forz=z,,, the maximum
and the minima merge together. We note that at this point
Im S, x* near the minimum.

Behind the caustic in real space>z.,,s the action
S(x,z) on one of the two branches is equal t&* (—X,2)
on the other brancfcf. Fig. 7). At their minima with respect FIG. 8. The tunneling exponerR for an electron tunneling
to x, the values of In§(x,z) are independent of. These transverse to a magnetic field through the triangular potential bar-
minima lie on the classical escape trajectory, as seen fromer (6) as a function of the dimensionless paramet@gs, and
the comparison with In§ for z<z.,,s The branches of the wc7o. In the absence of confinement in the Hall direction, i.e., for
action describe the incideffrom largez) and emitted wave @o=0, the tunneling exponent diverges agro— 1.
packets. Only the emitted wave is physically meaningful for
the problem of tunneling escape.

As discussed above, switching between the actiorrise in the prefactor in this problem, in contrast to the prob-
branches occurs for positive where the branches of I& lem of tunneling splitting in a symmetric potential in the
cross each other. The resulting action, which determines theresence of an ultrastrong magnetic field. In the latter case,
WKB wave function, is shown in Fig. 7 by solid lines. The tunneling is effectively one dimensional, but there may be
switching line thus obtained coincides with the anti-Stokegnultiple extreme paths with the same BnExtra phase fac-
switching line discussed in the preceding section. tors have to be added when the contributions from these

The escaped particle can be observed as a semiclassidddths are calculated 8].
object if ImS,(ry)<Im S;(rg). It “shows up” at the point
where the classical escape trajectory intersects the switching B. A nonsymmetric model
line, cf. Fig. 3. The exit point is located fax>0 even
though the potential5) is symmetric. This is a consequence
of the symmetry breaking by a magnetic field.

The problem considered in the preceding section for the
quadratic inx,y potentialU(r) [Eg. (5)] can be solved dif-
The tunneling exponerR is given by Eqs(19) and (20) ferently. The trick'is[14] to make a ca}nonical transformation
below, in which one has to sgt=0. The dependence & '© the new coordinatp, and the cogjuzgazte momenturnx.
0N vo= woTo and v.= w.7, is shown in Fig. 8. The function 1he kinetic energy then becompsi“wox”+p;]/2m and is
R monotonically increases with the magnetic field. Howeverndependent of the new coordinates and the magnetic field.

for wo>wc,751 the in-plane confinement compensates thel he time-reversal symmetry is thus “restored,” and the prob-

effect of the field, leading t& being nearly flat and close to €M iS mapped onto the standard problem of tunneling in the

; 2
its B=0 value of 4yL/3, as seen from Fig. 8. For weak 2D_potentialuo(z)+(px+macz)*/2m. . -
confinement, the effect of the field becomes strong and The general method discussed in this paper is not limited

would diverge forw,o>1 [10,13 if w, were equal to zero. to potentials with these special properties.. In this section we
For nonzero but smakb, (i.e., wgro<1) and forw.ro— 1 illustrate how the method works where variables do not sepa-
.e., c

> wy7o ONe can obtain from Eq$19) and (20), rate. To this gnd, V\fe- consider a problem of tunneling trans-

verse to the field|y in the potential

R=~2yL(v.—1)2(2v.+ 1)/31/51/0. 1 52
U(x,2)= Emng2+ UXZ+ —

z
>m 1- E) (Z> O),
The corresponding sharp increaseRoWith decreasing con- (18)
finement frequencw, and increasing is seen from Fig. 8.

The prefactor in the tunneling rate is determined by thewhich differs from the potential discussed earlier by the term

2 -1
f":llCtO”DI(r”t;U S)L[ths.l(él)band(12)€te\éalq$(atg on tlhe uXz. In the case of tunneling from a 2D electron system, this
classical patlt, which should be weighted wi € VEIOC- term mimics the dependence of the tunneling potential on

ity ry and the factor determined by the curvature of3fn)  displacements of neighboring electrons, see Appendix A.

in the direction transverse tg,. The result is independent of ~ The termuxz breaks the symmetry of the Hamilton tra-

a point on the path(t). It could be calculated for the dis- jectories(17). However, the Hamilton equatiorig) are still
cussed model of the barrier complemented by a model of thénear, and we explicitly solved them. The results for $m
intrawell potentialfor example, one can use the potential for and the classical escape trajectory obtained using the initial
electrons on helium11]). No interesting interference effects conditions(8) are shown in Figs. 9 and 10. Because of bro-
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FIG. 10. Classical escape trajectories. The dimensionless asym-
metry parameter on the curves 1—3Asélm=0,0.5,1.5. The filled
circles are exit points and the open circles are the paipteshere
the trajectory is closest to the localized state.

by the trajectories in complex time with —Imt being, re-
spectively, smaller and bigger thanlmt.,, At the point
(Xcaust Zeaus) » branches 1 and 2 touch each other.

o Classically forbidden region Switching between the branches in real space occurs for
08 04 0 04 08 06 04 02 0 . 02 Z<Zeaus It canbe analyzed in the same way as for0.
x/L. x/L The WKB wave function is determined by the branch in Fig.

9 shown with the solid line. The switching line starts from

case of tunneling in the asymmetric potentiKix,z) [Eq. (18)] for the _b_ranchlng POIND{causs Zeaus) @Nd goes in the direction of

() Zn<Z<Zcaysy (D) 2= Zgausy ANA(C) 2> Zaus At (Xcaust Zeaus) the positivex. - .

caustic goes through real plane & branching; the correspond- Branch 2 has two minima as a function xffor z,,<z

ing point is marked by the cross if)]. The values ofw.7o and ~ <Zcaust It IS asymmetric foru# 0. However, the minimal

woT, are the same as in Figs. 3 and 6, and the dimensionless asyialues of ImS remain equal to each other and are the same in

metry parameter. 73/m= 1/2. The solid lines show the branches of all cross sectiong=const. The minima of In$ lie on the

Im S that determine the exponent of the WKB wave function. Theclassical trajectory along which the electron escapesx At

minima of branch 2 lie on the classical escape trajectory shown in=Xx,,,z=z,, they merge together, and I&hbecomes quartic

(d). The switching ling(thin solid ling starts at the branching point. in x—x,,. The valuez,, shows how close the escape trajec-
tory comes to the localized intrawell state.

The classical trajectory becomes observable in configura-

n space once it crosses the switching line. The shape of the

trajectory and the exit point for several values of the asym-

goes through_ re?" planez), Ii_e_s alXgausp* 0. It is marked metry parameter. are shown in Fig. 10. The outgoing wave
by the cross in Fig. @). Its pO.SIt.IOFI depenpis on and other acket is Gaussian near the maximum @iis parabolic near
parameters of the system. Similarly, the time where the cau he corresponding minimum

_tic crosses the real space has bOJFh real and im_agingry parts, By solving the Hamilton equation&) for the potential
in contrast to the casg=0 where it was purely imaginary, (18), we can write the tunneling exponef0) in the form

FIG. 9. Cross sections of I8(x,z) by the planez=const in the

ken symmetry, the branching point of the action in real space
(Xcaust Zcaus) » Where the caustic of the set of trajectori@s

see Fig. 3.
For u+#0, the surfaces I18(x,z) become asymmetric.
The general structure of the solution, however, remains the R=2yL[ 7,q+ vok(71g)]. (19

same as in the cage=0. This can be seen by comparing the

cross sections of the action in Figs. 7 and 9. In both figuresHere, 7,4 is the imaginary part of the time to reach the clas-
the cross sections ifa), (b), and (c) refer to the planeg  sical escape trajectofisee Fig. 8a)] in the units of the tun-
<Zeaust Z= Zeausy aNd z>7.,,, respectively. As in the neling time 7, for B=ux=0. Along with the functionk in
symmetrical case, the branches 1 and 2ier0 are formed Eq.(19), the reduced time,4 can be found from the equation

V3(7,qCOSV_ Trg— v_ - SiNv_7,q) + 12 COSv_7g— v_(1— v+ voTrg)SINV_Trg

K(Tg) = ~>5 _ .
n(vgCosSv_Tq—v_SiNv_T1y)

(VSTrd_ v, 2)coshv, 7 gt v, (1— vo+ vorg— vé/v+2)sinh VT 20
1 (vgcoshy, 7g+ v, sinhv, 7,g) .
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VI. THE PATH-INTEGRAL FORMULATION
IN A MAGNETIC FIELD

In the absence of a magnetic field, the problem of tunnel-
ing decay is often considered using the instanton technique
[25,26]. This technique applies if the potential well is para-
bolic near the minimum and thermalization inside the well
occurs much faster than escape from the \ialthe case of
2D electron systems, both conditions are often violafed).
Because the Schdinger equation for metastable states has
to be solved with the radiation boundary condition, the ener-

FIG. 11. The tunneling exponeRtas a function of the magnetic gies of these states acquire small imaginary parts, and so
field and the asymmetry parameterin the model(18) for wq7, does the partition functioZ. The escape rat®/ for finite
=1.2. The functiorR is even inu. temperatures is simply related to Fn

Here,w= w73/m is the dimensionless asymmetry parameter. W=2T Im Z/ReZ (22)
The motion under the barrier is characterized by the dimen(We have sekg=1).

sionless frequencieg,= wo7o, V= 7o, and the~ir combi- The partition function is given by the integral over peri-
nationsv=(v2+ v2)*2 and v. 2= + v?/2+ \ v¥4+ 2. odic pathsr(7) in imaginary time[37),

The tunneling exponenR depends on the interrelation
between the in-plane electron dynamics, which is character- _f
) ' Z= D -S , 23
ized by the frequencyn,, the cyclotron frequencw,, the H0)=r(8) r(m)exp = Selr(n) ]} @3

tunneling timery, and the asymmetry parameter The ex-
ponentR increases with the magnetic field. The dependenc&vhere =T andS is the Euclidean actiofthe action in
of Ron w.,wy for =0 as given by Eqs(19) and (20) is  imaginary time. It is real forB=0 and for real trajectories
shown in Fig. 8. A typical dependence Bfon x andB for (7).
woTo~1 is shown in Fig. 11. The general expressiorig2) and (23) should also apply
The asymmetry results in lowering of the tunneling bar-in the presence of a magnetic field. However, the Euclidean
rier for B=0 and the corresponding increase of the tunnelingaction for an electron
rate. This can be qualitatively understood, since a displace- ml dr
2<dT

ment in thex direction with ux<<0 increases the effective Se= fﬁdr
is now complex. Therefore the standard wgBb,26 of

force in thez direction, which pulls the electron away from
the layer. For small asymmetry, <1, the correction tdR is

quadratic i”_'“' In the limit of a thin and high tunneling g 5yating the escape rate has to be revised, except for spe-
barrier forx=0 or soft in-plane vibrations, wher@,70<1,  ¢ja| symmetric cases like that discussed in Sec. V A, where
tunneling is most likely to occur in the barrier, which is jna can change to new variables in whigh becomes real
adiabatically prepared by the optimal in-plane displacement; 4 16,

2 e dr
+U(r)+leA(I’)E_ (24

x (the “completely adjusted” barrief36]). The expression The goal of this section is to show how the instanton

for R takes a form technique works in the case of a complex action functional.
Although we will often refer to the action functional of the

R=2yL(3vg/nd)® (vy=woro<1l), (21)  form (24), much of the results below apply also to a more

general retarded Euclidean action, which is of interest for
systems coupled to a bath.

it depends on the in-plane frequeney and onu nonana-
P P dueros " In the spirit of the WKB approximation, the path integral

lytically. The role of the asymmetry increases with the mag-
r)1/::‘tic f?/eld as seen from F)i/g. 11. v g (23) will be evaluated by the steepest-descent method in the

In terms of comparison with the currently available ex- ©n€-bounce approximation. The extremal paths) of the

perimental data on tunneling from a correlated 2D manyfunctional S satisfy the equation
electron system on helium surfaf®0], of utmost interest is )

the situation where the asymmetry is small. Bgparallel to mﬂ —VU(r)+i €
the electron layer, the observed dependende af B did not 2 c
show the divergence expected if the tunneling electron were

free to move along the layer. The simple moé®lprovides  This equation has to be solved with the periodic boundary
a qualitative explanation of the experimd@4]. Excellent  conditionr(0)=r(8). Note that the sign of the potential has
quantitative agreement, without adjustable parameters, wdseen inverted compared to the case of classical motion in
achieved by using a dynamical model of the correlated sysreal time.

. (25

dpr
dr

tem, which can be efficiently mimicked by E¢p) and also For low temperatures and for the potentii(r), which is
incorporates the curvature of the potentig)(z) due to elec- parabolic near its intrawell minimum,;, Eq. (25 has a
tron correlationg 11]. solutionr (1) =r e, With Sg=0. It gives the real part of the
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partition function, see below. As in the caBe: 0, the imagi-
nary part ofZ is determined by another solution of E5),
which is of the bounce type. This solution 7), starts near
I'well» Slides downhill in the inverted potentialU(r), and in
time B comes back. FoB=0 the corresponding path is a
symmetric real trajectory;,(7) =ry(B8— 7), which bounces

off the turning pointry(B/2)=0.

PHYSICAL REVIEW A 65 032122

IET(T,T'):IE(,B—T,,B—T,)ZIE*(T,T,). (28
The energy spectra for several complex Hamiltonians with
symmetry similar to Eq(28) (called thePT symmetry were
investigated earlier numerically and using the WKB approxi-
mation|[38].

The symmetry(28) has several consequences. First, it

For B#0, because of broken time-reversal symmetry, theshows thati;,(7) = a, ¢} (7), wherea,, is a constant. This
pathr,(7) is complex, and the velocity along this path doesmeans that, with proper normalization, the orthogonality re-
not become equal to zero. The path is not symmetrical ifation becomes

time, because the replacement> — 7 changes Eq(25).
However, if we simultaneously change- —i, the equation

remains unchanged. Therefore the bounce-type path has the

symmetry

(1) =r5(B—1). (26)

An immediate and very important consequence of (26) is
that the value 08¢(r}) for the bounce-type path real. This
value gives the tunneling exponent.

A. The eigenvalue problem

The prefactor inZ can be found by integrating over the

B
f A7) ()= S 29

[here, we assumed that the eigenvalues are nondegenerate;
for degenerate eigenvalues, the conditi@d) can be satis-
fied by choosing appropriate linear combinations of the
eigenfunctions with samkg,].

It also follows from Eq.(28) that, if ¢,(7) is an eigen-
function of Eqg.(27) with an eigenvaluen,, then (B
—17) is also an eigenfunction of the same boundary-value
problem, but with the eigenvalug;; . This means that the
eigenvalues\,, are either real or form pairs of complex-

tubes of paths around the extremal paths. It can be done HPnjugate numbers.

expandingSg in deviations from the extremal paths to the
second order, and then expandim@r)—r,e and r(7)
—rp(7) in the three-vector eigenfunctiong,(7) of the ap-
propriate eigenvalue problem,

N B ~
Fip,= JO dr'F(7, 7" ) (7)) = Nnihin(7),

A (27)
Fij(7,7')=8Se/ori(m)or(7').

Here, the derivatives of the action are calculated on the cor-

responding extremal trajectory,e; andry(7), and periodic
boundary conditions are assumed. The operﬁtd}r simpli-
fied for a nonretarded action(24), ﬁij(r, )=68(7
—7)fij(7). R R

For B=0, the operatorF is Hermitian, with f=
—mé;;(d%d7?) +3?Ular;ar;, if the action is given by Eq.
(24). Therefore the functiongy,(7) form complete and or-
thogonal sets for each extreme traject@$), and the eigen-
values\, are real.

For B#0, the operatorﬁ-' becomes non-Hermitian. For
example, in the case of a uniform magnetic field in E4),
f(7) acquires an extra ternfe/c) €;B;(d/d7) (ey; is the
Levi-Civita symbo). Therefore some of the eigenvalues
become complex. The eigenvectafg with differentn are
orthogonal not to each other, but to the eigenvecihrsof
the Hermitian conjugate operator,

B
fo d7'FT(7,7") (7' ) =N} bn(7).

Taking into account the symmet26) of the extremal tra-
jectories, we find that

Pairs of complex-conjugate eigenvalues emerge in the fol-
lowing way. ForB=0, all eigenvalues are real. With increas-
ing B some eigenvalues approach each other pairwise, while
still remaining real. Eventually they merge, and for larger
become complex conjugate. Such behavior with varying con-
trol parameter is generic for systems with symmégg), as
described in Appendix B. For 1D Schtinger-type equations
with different complex Hamiltonians it was observed nu-
merically [38].

1. Eigenvalues near the potential well

As an illustration, we consider the eigenvalue problem
nearr,, for the action functional24). Here, Eq.(27) be-
comes linear, and the eigenfunctiogs(7) can be sought in
the form of linear combinations of exp{w,7), with w,
=2mn/B. The eigenvalues are obtained from the equation

e
de{(mwﬁ—xny)5k|+mnﬁl—Ewnek”Bj =0, (30

wheremQg,=[5°U/ar ], andB is the magnetic field
atr,e - The subscripty enumerates the eigenvaluedor a
given Matsubara frequency.

If, for example,B is pointing along a principal axes of the
tensor O, (say, the axes )l then we have\,;/m=w?
+032, and

1 1
M=\ a= 0pt 5 (Q3+05) +5[(05-05)*~4wfwr]™?,
3D
where Q%>0 are the principal values of the tensfr,.

Clearly, the eigenvalues,; are complex-conjugate pairs
for large enoughv2w?.
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Equation(31) shows explicitly also how pairs of complex Let us now consider the contribution to the partition func-
eigenvalues emerge with varying magnetic field as a result aion Z,,; from trajectories close to the potential minimum
merging of adjacent real eigenvalues, as discussed for the,,,. The corresponding eigenvalug§*®" are either posi-

general case in Appendix B. tive or belong to complex conjugate pairs, cf. E§L).
_ _ ThereforeZ, is real. SinceSg[r ] =0, there is no expo-
2. Eigenvalues for the bounce trajectory nentially small factor inZ,,,. This term gives the partition

A specific feature of the eigenvalue probléay) for the  function for low-lying intrawell excitations in the presence
bounce trajectory,,(7) at low temperatures is that one of the of the magnetic field. o
eigenvalues is\{’’=0. It corresponds to the eigenfunction ~ When evaluating the contributiay, from paths close to
(7)1 (7). For B=0, the vector functionys(7)ory(7) the bounce (Er)ajectory, special care has to be taken of the
has one zero for all components. Therefore it is the eigenf-e'genv‘"‘.lue)‘1 =0. A-standard analys_|525,26 shows .t_hat
function of the first excited state of the multicomponémnit integration overd(_:l gives _the factor,B)ln_Zb. The pOS|_t|_ve
still one-dimensional, with “coordinate’s) Schrafinger- ~and complex-conjugate elgenval_u)e$ give a real positive
type equation(27). Since the eigenvalue proble(®7) is Her- ~ factor in Z,, whereas the negative eigenvaluef) (or an
mitian for B=0, by oscillation theorem all eigenvaluag®  0dd number of negative eigenvaluiesakeZ, purely imagi-
with n=2 are positive, and the eigenvalue of the ground"@’y- In addition, Z, contains the exponential factor

state is negative\ P’ <0 [25]. exp(— Sg[ry(7)]). Overall, this gives the tunneling rat22),

Wg are not aware of the oscillation theolrem'for non- W 2T|Z4l/ Zuser= X — Sel Fo( 1) T} (32)
Hermitian problems. Howeverys (7)ocry(7) is still an
eigenfunction forB#0, andA{”=0. Therefore it follows Equation(32) shows that the instanton technique can be

from arguments in Appendix B that, @& increases from applied to the problem of tunneling decay in the presence of
zero, the eigenvalur{® does not merge with other real ei- a magnetic field in spite of the field-induced breaking of
genvalues to form a pair of complex-conjugate eigenvaluesime-reversal symmetry. Although the instanton action re-
As a consequence, pairs of complex-conjugate eigenvalugsains real, the actual calculation is very different from that
will be formed only from thex(? that were positive foB  for B=0. Also, the bounce trajectory touches the classical
=0. The negative roat will remain real and negative. In escape trajectory at a poinf(3/2), which is not the point
principle, as a result of coalescence of complex-conjugatwhere the particle “shows up” as a semiclassical wave
eigenvalues, there may emerge pairs of negative real eigepacket; the latter point can be found from our general WKB
values, and then they can further bifurcate into complexanalysis of tunneling decay.

pairs. However, the total number of negative real eigenvalues

will be odd. VIl. CONCLUSIONS

B. The prefactor in the tunneling rate I_n c_onclusion, the pro_blem of tur_melin_g de_ca_y in a mag-
) - ) ) netic field can be solved in the semiclassical limit by analyz-
We are now in a position to discuss the prefactor in thepng the Hamilton trajectories of the particle in complex phase
partition functionZ. The standard step is to expand the de-gpace and time. The boundary conditions are determined by
viation &r(7) of the integration path in Eq23) from the e intrawell wave function and its analytic continuation.
extreme trajectory e OF Iy, in terms of the eigenfunctions Thjs approach allows one to find both the tunneling exponent
Y of the corresponding eigenvalue problendr(r)  and the tail of the wave function of the localized state. It
=2Cntf(7). With account taken of the orthogonality condi- goes not require to consider either a part of the potential or
tion (29), the incremen®Sg of the Euclidean action related the magnetic field as a perturbation, and it can be applied to
to the deviation of the trajectoryr then becomessSe 3 three-dimensional potential of a general form. The multi-
=S \,cl2. dimensional character of the problem is important. In par-
The above expansion assumes that the{gg} is com- ticular, confinement in the Hall directiofiransverse to the
plete. The completeness is known &+ 0, where the eigen- directions of tunneling and the magnetic fietén exponen-
value problem27) is Hermitian. AsB changes, the number tially strongly increase the tunneling rate by reducing the
of states does not change. From the orthogonality conditiomall velocity.
(29), none of the eigenfunctions becomes a linear combina- The escape rate in a magnetic field is generalgonen-
tion of other eigenfunctions. This makes us believe that theially smaller than the probability for a particle to reach the
functions#, form a complete set even f@&+0 and justifies  boundary of the classically accessible rangg)=E. The
the above expansion. escaped particle “shows up” from the tunneling barrier with
The path integral23) can be obtained as a linfit— of  nonzero velocity and behind the surfadér)=E. The con-
integrals overdr(7,) at discretized instants of time,  nection of the decaying and propagating waves occurs on
=kA7,A7=g/N. In the standard way, we change to integra-caustics of the set of complex Hamilton trajectories, where
tion overdc, . Because of the orthogonality relati@®9), the  the classical action is branching. Caustics are complex sur-
determinant déw, (7 )] of the transformation of variables is faces in 3D space. In the presence of a magnetic field, they
real and is equal ta- (A7)~ N2 Integration of expf 6) go through real space along lin@sstead of surfaces, for
overdc, gives consk I\, /2. B=0).
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An interesting feature of tunneling in a magnetic field is ACKNOWLEDGMENT
the occurrence of a switching surface, where different WKB
branches of the wave function have same amplitudes. Th
slope of thelogarithm of the wave function normal to the
surface sharply changes there, from the value on one of the
branches to that on the other branch. The escaped particlt=,‘°‘PPE'\lDIX A: THE MANY-ELECTRON HAMILTONIAN
first shows up as a propagating semiclassical wave packet on A simple and important model that allows us to consider
the switching surface where the classical escape trajectomyie effect of electron correlations on tunneling from a 2D
crosses it. Switching surfaces can be observed by measurimgectron system is the model of a Wigner crystal. In this
the electron-density distribution behind the potential barriermodel, the in-plane electron motion is small-amplitude vi-
A simpler experiment will be to investigate the dependencérations about equilibrium positions. Because of strong cor-
of the classical escape trajectory behind the barrier on a magelations, exchange effects are not important, and the tunnel-
netic field. This trajectory is sensitive to the form of the ing electron can be identified. Its tunneling motion is affected
effective confining potential, which is particularly interesting by the interaction with other electrons.
where this potential mimics many-body effects in correlated We will assume that the equilibrium in-plane position of
systems. the tunneling electron is at the origin. Then, in the presence

Switching between branches of the WKB wave function©f @ magnetic fieldB parallel to the electron layer, the full
for B#0 is similar to switching between different branches Hamiltonian is of the form
of the probability distribution in classical systems away from 2
thermal equilibrium. Such systems lack time-reversal sym- H= Pz +Uq(2)+H,+Hg, (A1)

This research was supported in part by the NSF through
Erant Nos. PHY-0071059 and ITR/RC-0085922.

metry, as do also quantum systems in a magnetic field. Tails 2m
of the classical distributions are formed by infrequent fluc-

tuations. Fluctuational paths to a given state from the viciniyV1th

of an equilibrium positior{attractoy form a narrow tube cen- 1
tered at the most probable path. This path is given by a H,==
solution of the variational problem of finding the maximum 2
of the logarithm of the probability distributiofB9—41]. In

many cases of physical interest the corresponding Eulegnd

equations are similar to Eq$2). However, in contrast to 1
underbarrier tunneling trajectories, cIa;smaI optimal paths HB=—mw§22—wczN*1’zz [BXPyjlot Uiz {Uy;}).-
can be observe#12]. Switching surfaces in the phase space 2 K]

%‘ [milpkjpfkj"_mwﬁjukjufkj] (A2)

of fluctuating nonequilibrium systems separate areas reached (A3)
along topologically different optimal pattig3al. They have )
been seen in analog simulatiof#3h]. Here, pyj, Uy, and wy; are the 2D momentum, displace-

It follows from the results of this paper that for potential Ment, and frequency of the Wigner crystal phonon of branch
wells that are parabolic near the minimum, even in the presk(i =1,2) with 2D wave vgct()l%. The in-plane momentum
ence of a magnetic field one can still use the instanton tectf the tunneling electron i8l~““Xp,; (N is the number of
nique in order to find the escape rate. However, the bounc@léctrons. The termUy(z) describes the tunneling barrier
trajectory, which gives the tunneling exponent, is now comcf. Eq. (6)] for the electron at the origin provided all other
plex. Also in contrast to thé=0 case, evaluation of the €lectrons are at their in-plane lattice sites. _
prefactor requires solving a non-Hermitian boundary-value The termHg couples the out-of-plane tunneling motion to
problem. Because of special symmetry of this problem'att'ce vibrations. The prqplem of many—electrqn tunneling is
(which is the same as tHféT symmetry discussed previously thus mapped ontc_) a famlllar problem of a particle coupled to
for 1D complex Hamiltoniang38]), the corresponding ei- & bath of harmonic oscnlato_{ié_l,Sﬂ.Apart of the coupling
genvalues are either real or form pairs of complex-conjugatés due purely to the magnetic field. Another part comes from
numbers. the termU;,;, which describes the change of the tunneling

Our results for the model that mimics tunneling from a Parrier because of electron vibrations. Its simplest form is
strongly correlated 2D electron system illustrate the generediven by the lowest-order term of the expansion of the elec-
conclusions about tunneling in a magnetic field, includingtron energy,
the structure of singularities related to branching of the WKB
wave function and the occurrence of switching surfaces. -

They show that the rate of tunneling transverse (tJo the mag- Uini(Z.{uig}) Z% -1t » (A4)
netic field is highly sensitive to the in-plane electron dynam-

ics and exponentially increases when electrons are monehere gy; are coupling constantfor electrons on a thick
strongly confined in the plane, i.e., the frequencies of in-helium film [36] the leading term irJ,, is «z?). The cou-
plane vibrations increase. It also increases if electrons in thpling (A4) leads to lowering of the tunneling barrier as a
2D layer can adjust to the tunneling electron and thus effecresult of appropriate displacements of the electrons surround-
tively decrease its tunneling barrier. ing the tunneling electron.
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The major effect on tunneling comes from high-frequency
in-plane vibrations, which have large density of stdtEl. N P
Therefore it is not unreasonable to use the Einstein model of A
the Wigner crystal, in which all vibrations have the same <
frequencywg. Then, except for the ter,,,, the Hamil- 74 N
tonian(Al) becomes a sum of Hamiltonians of confined non- 4 N
interacting electrons of the forii®), with the potentialJ(r) 9
given by Eq.(5). This explains why Eqs3) and(5) can be
used to mimic the effect of electron correlations on tunnel- FIG. 12. The dependence of the eigenvalue shiftson the
ing. distances\ between the eigenvalues BB, (schematically. We

In the Einstein model, because of the symmetry of a 2Dcountd\ off from 67— 6F™™, and\ .. from (6F""+ 8F™™)/2.
Wigner crystal, there is no coupling term ih,, that would
be linear in the in-plane displacement of the tunneling elec-

. ) CI 1 . N 1 N
tron itself. Instead, forB=0 its out-of-plane motion is Ao =5(SF "+ SFMM = S [(SF""— SF"M— 5\ )2
coupled to an in-plane oscillator with the coordinate given by -2 2
a (totally symmetrig linear combination of displacements of A A A "
other electrons. This maps the problem onto the problem +ASFMSFE, SF = (4| OF ). (BI)
discussed in Sec. V B, with the in-plane electron coordirate
in Eq. (18) corresponding to the coordinate of this oscillator, )
and with » being a linear combination of theveighted Here, the wave functions are calculated B, and S\
coefficientsgy; . ForB+ 0, the coupling of tunneling motion =Am—Ap. A
to in-plane vibrations of the tunneling electron itsélfie Because of the symmet(28), the matrix elements afF
second term in Eq(A3)] also becomes substantial. Yet we in Eq. (B1) are real. However, the produél"fnma%mn does

expect that the modelL8) catches important qualitative fea- ot have to be positive, and in fact we are interested in the

tures c_>f many—elec_tron ‘“U”e"”g even Whef? both the MaYtase where it is negative. In this case, instead of level anti-
netic field and the interactiod,; are substantial.

crossing, we have the dependence of the eigenvalues on the
distancedS\ shown in Fig. 12. In the gap, the eigenvalues are
APPENDIX B: EMERGENCE Comp|ex Conjugate_

OF COMPLEX EIGENVALUES The control parameter in the tunneling problem is &bt

In this appendix we consider how, with the varying con-and it may be more interesting to look at the eigenvalues as
trol parameter, two real eigenvalues of the probléd7)  functions of SF"™. Their behavior is similar to what is
merge and then become complex. Near this bifurcation, thehown in Fig. 12, if the diagonal and off-diagonal matrix
eigenvalues can be sought by perturbation theory. We staglements depend on the control paraméter example, the
with a value ofB=B, (we can also use another control pa- magnetic fieldl in the same way. Otherwise, once the eigen-
rametey, where the given adjacent eigenvalues, A, are  values become complex with changing control parameter,
close to each other and are real. For sméB|=[B—Bo|,  they do not have to become real again, as is the case for the
the functionalF is close to its value foB,, F~F,+dFin  eigenvalues given by Eq&31) as functions ofw.. We note
Eq. (27). To first order in8F, the eigenvalues are given by that there is also an opposite process of merging of complex-
the expressionp\n(Bo) +Am(Bo) 1/2+X ., with conjugate eigenvalues, which is also described by(Bi).
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