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Nonlocality, closing the detection loophole, and communication complexity
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It is shown that the detection loophole that arises when trying to rule out local realistic theories as alterna-
tives for quantum mechanics can be closed if the detection efficiencyh>Cd3/4220.0035d where d is the
dimension of the bipartite entangled system andC is a positive constant. Furthermore it is argued that such an
exponential decrease of the detector efficiency required to close the detection loophole is almost optimal. This
optimality argument is based on a close connection that exists between closing the detection loophole and the
amount of classical communication required to simulate quantum correlations when the detectors are perfect.
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Experimental tests of the entanglement of quantum s
tems are important for several reasons. They provide an
perimental check of the validity of quantum mechanics, a
in particular the surprising ‘‘nonlocality’’ exhibited by quan
tum mechanics. Furthermore they can be viewed as pr
tives from which one can build more complicated protoc
of interest for quantum information processing and they p
vide a benchmark with which to compare the performance
different quantum systems, such as ion traps, photons, e

To test the entanglement of a quantum system one ca
out measurements on each particle, and compares the c
lations between the results of these measurements with
predictions of quantum mechanics. A crucial check of
quantumness of these correlations is whether they exh
‘‘nonlocality,’’ that is, whether it is impossible to reduc
them by a classical local-variable theory~also called local-
realistic theory! @1#. Formally, this is done by inserting th
joint probabilities of outcomes into an inequality, called
‘‘Bell inequality,’’ which must be satisfied in the cas
of local-variable theories but can be violated by quant
mechanics.

During the past decades successively more sophistic
tests of Bell inequalities have been carried out~for a review
see@2#!. Most experiments so far have involved entang
photons. By letting the photons propagate a large dista
from their emission point it has been possible to spatia
separate the two measurements and thereby close the
called ‘‘locality loophole.’’ However, in optical experiments
because of losses and small detector efficiency, all test
Bell inequalities so far leave open the so-called ‘‘detect
loophole.’’ This means that all experimental results that u
pairs of photons can be explained by a classical loc
variable theory if the local-variable theory can instruct t
detectors either to click, i.e., register the presence of a
ticle, or not. The strongest theoretical result so far is that
detection loophole can be closed in the efficiency ish.2/3
@3#, but this is too stringent for optical experiments. Recen
an experiment that closes the detection loophole has b
carried out using trapped ions@4#. But in this experiment the
ions were separated by a very small distance and the loc
loophole was not closed.

In almost all experiments on entangled systems each
tem belongs to a Hilbert space of dimension 2.~One recent
1050-2947/2002/65~3!/032121~5!/$20.00 65 0321
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experiment tested the entanglement of systems of dimen
3 @5#.! However, when pairs of photons are produced~for
instance by parametric down conversion!, the photons are
entangled in position-momentum and time-energy in addit
to a possible entanglement in polarization. Thus entang
systems of large dimensionality can easily be produced in
laboratory. Can one exploit the large dimensionality of the
entangled photons to carry out stronger tests of quan
nonlocality? This has been the subject of several recent
oretical works@6–10# in which it has been shown that usin
entangled systems of large dimensionality can be adva
geous, but no spectacular improvements have been foun

In the present work it will be shown that using entangl
systems of large dimensionality allows in principle a dr
matic decrease in the detector efficiency required to close
detection loophole. More precisely, the minimum detec
efficiency required to close the detection loophole decrea
exponentially with the dimensiond. This is particularly rel-
evant to possible experiments involving momentum
energy-entangled photons since in this case it may be
sible to devise an experiment in which photon losses
detector efficiency decrease only slowly with the dimensi

This result is obtained by explicitly describing a set
measurements carried out by Alice and Bob on an entan
system of large dimension and writing a Bell inequal
adapted to this measurement scenario. It will be shown
this Bell inequality is violated even for exponentially sma
detector efficiencies. However, this Bell inequality is e
tremely sensitive to noise and therefore does not constitu
realistic experimental proposal. A noteworthy feature of t
measurement scenario is that the number of measurem
between which Alice and Bob must choose is exponentia
large.

In the second part of this paper we consider whether i
possible to improve this Bell inequality. Can one decrea
the number of measurements between which Alice and B
must choose, or decrease the dimensionality of the entan
system, while keeping the same low sensitivity to detec
inefficiency? We argue that this is not the case and that
Bell inequality is close to optimal.

These latter results follow from a close connection b
tween the detection loophole and the minimum amount
classical communication required to perfectly simulate m
©2002 The American Physical Society21-1
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SERGE MASSAR PHYSICAL REVIEW A 65 032121
surements on an entangled quantum system. Suppose
surements are carried out on an entangled quantum sy
~with perfect detectorsh51). The correlations exhibited b
such measurements will in general violate a Bell inequa
and therefore cannot be reproduced by local variable th
ries. However, by supplementing the local-variable theory
classical communication one can reproduce the quantum
relations. Recently there have been several works tha
tempted to understand how much classical communicatio
necessary to bridge the gap between quantum mechanic
local-variable theories@11,13,14#. Intuitively one would ex-
pect that the greater the amount of communication requ
to recover the quantum correlations, the stronger is the n
locality of the quantum-correlation test. This intuition will b
made precisely below in the context of the detection lo
hole. It will be shown that the minimum amount of classic
communicationCmin required to recover the quantum corr
lations is anticorrelated to the minimum detection efficien
h* required to close the detection loophole.

We begin with some definitions.
Definition 1.A measurement scenario is defined by a

partite quantum statec belonging to the tensor product o
two Hilbert spacesHA^ HB , and by two ensembles of mea
surements,MA acting onHA and MB acting onHB . For
instancec5(k51

d uk&Auk&B /Ad can be the maximally en
tangled state ofd dimensions. The elementsxPMA are a
basis ofHA : x5$ux1&, . . . ,uxd&% with ^xi uxj&5d i j . Simi-
larly the elementsyPMB are a basis ofHB . PartyA is given
a random elementxPMA as input and partyB is given a
random elementyPMB as input.

Definition 2. In a measurement scenario with perfect d
tectors (h51), both parties must give as output one ofd
possible outcomes. Denote Alice’s output bya and Bob’s
output by b. The joint probabilities of the outcomes a
P(a5 i ,b5 j ux,y)5u^cuxi&uyj&u2.

Defintion 3.In a measurement scenario with detectors
finite efficiencyh, both parties must give as output one
d11 possible outcomes. Output 0 occurs with probabi
12h and corresponds to the detector not detecting the
ticle whereas outcomes 1 tod occur with probabilityh and
correspond to a specific result of the measurement when
particle is detected. The probability that one of the detec
gives outcome 0 is independent of the other detector. T
the joint probabilities of outcomes are

P~a50,b50ux,y!5~12h!2,

P~a5 i ,b50ux,y!5h~12h!Truxi&^xi u ^ 1Buc&^cu,

P~a50,b5 j ux,y!5h~12h!Tr 1A^ uyj&^yj uuc&^cu,

P~a5 i ,b5 j ux,y!5h2u^cuxi&uyj&u2. ~1!

Definition 4. In a local-variable theory for the measur
ment scenario$c,MA ,MB% with detector efficiencyh, Alice
and Bob are both given the same elementlPL drawn with
probability p(l) ~often called the ‘‘local-hidden variable’’!.
Alice knowsx but does not knowy. From her knowledge of
l andx, Alice selects an outcomea5 f (x,l). Similarly Bob
03212
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knows y but does not knowx and chooses an outcomeb
5g(y,l). We can suppose that the functionsf and g are
deterministic since all local randomness can be put inl. The
joint probabilities

P~a,bux,y!5*Ldlp~l!d„f ~x,l!2a…d„g~y,l!2b…

are identical with the predictions of quantum mechanics
~1!.

A local-variable theory will only exist if the detector ef
ficiency is sufficiently small. The maximum detector ef
ciency for which a local-variable theory exists will be d
notedh* (c,MA ,MB).

We are now in a position to state our main result.
Theorem 1.There exists a measurement scenario

which the state is the maximally entangled state of dim
sion d52n with n>2 an integer, and for which the numbe
of measurements carried out by Alice and Bob are expon
tially large uMAu5uMBu52d, and such that the detectio
loophole is closed ifh>Cd3/4220.0035d whereC is a positive
constant.

Proof. We consider the same measurement scenario
that described in Theorem 4 of@11# that itself is inspired by
the Deutch-Jozsa problem, see@12#. The state is c

5(k51
d52n

uk&uk&/Ad. The sets of measurementsMA and MB

are identical. The measurementsxPMA are parametrized by
a string ofd bits: x5x1x2 . . . xd wherexiP$0,1% and simi-
larly for yPMB . Hence uMAu5uMBu52d. The measure-
ments are described in detail in@11#.

They have the following properties:~1! if x5y, then Al-
ice and Bob’s outcomes are identical (a5b); ~2! if the Ham-
ming distanceD(x,y) betweenx andy is D(x,y)5d/2, then
Alice and Bob’s outcomes are always different (aÞb).

Let us define

a~x,y!5d~x2y!2d„D~x,y!2d/2…,

which is equal to11 if x5y, equal to21 if D(x,y)5d/2,
and equal to zero otherwise. Consider the following B
expression:

I 5 (
x51

2d

(
y51

2d

P~a5b AND aÞ0!a~x,y!. ~2!

It is immediate to compute the value ofI predicted by quan-
tum mechanics for the above measurement scenario s
from properties 1 and 2 above, only the term proportiona
d(x5y) contributes,

I ~QM!5h22d. ~3!

It is more difficult to compute the maximum value ofI in
the case of local-variable theories. LetZ be the largest subse
of $0,1%d such that ifz,z8PZ, thenD(z,z8)Þd/2 ~i.e. no two
elements ofZ are Hamming distanced/2 one from the other!.
We shall show below that

I ~ local variable!<duZu ~4!
1-2
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independently ofh. Frankl and Ro¨dl have given bounds on
uZu. Theorem 1.10 of@15# states that whend is divisible by 4,
then uZu,(22e)d for some universal constante.0. Com-
bining this with Eq.~3! implies that one can close the dete
tion loophole if

h>d1/2S 12
e

2D d/2

. ~5!

In order to obtain a more precise result we introduce
slightly different Bell expression. We denote byR the set of
all strings ofd bits x1 . . . xd , such that exactlyd/2 of the
bits are equal to 1 andd/2 of the bits are equal to 0. Th
number of such strings is

uRu5S d
d/2D5

A2

Apd
2d@11o~1!#. ~6!

The second Bell expression is

J5 (
xPR

(
yPR

P~a5b AND aÞ0!a~x,y!. ~7!

It is immediate to compute the value ofJ predicted by quan-
tum mechanics for the above measurement scenario

J~QM!5h2uRu. ~8!

It is more difficult to compute the maximum value ofJ in
the case of local-variable theories. LetQ be the largest subse
of R such that ifz,z8PQ, then D(z,z8)Þd/2 ~i.e., no two
elements ofQ are Hamming distanced/2 one from the
other!. In analogy with Eq.~4! one has

J~ local variable!<duQu ~9!

independent ofh. Frankl and Ro¨dl have given bounds on
uQu. Corollary 1.2 of@15# implies that whend is divisible by
4, thenuQu<1.99d,20.993d. Combining this with Eq.~8! im-
plies that one can close the detection loophole if

h>AduQu
uRu

>
d3/4p1/4

21/4
20.0035d@11o~1!#. ~10!

We now prove Eq.~4!. The proof of Eq.~9! is exactly the
same and will not be given. Recall that in the case of loc
variable model, Alice’s output is a functiona(l,x) of the
local variable and of her measurement, and similarly
Bob. UsingP(a5b AND aÞ0)5(k51

d P(a5k AND b5k),
the value ofI for a local-variable model can be written as

I ~ lv!5(
l

p~l!(
x

(
y

(
k51

d

3P@a~l,x!5k AND b~l,y!5k#a~x,y!

5(
l

p~l!(
k51

d

(
xPXkl

(
yPYkl

a~x,y!, ~11!
03212
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whereXkl is the set ofx such thata(l,x)5k andYkl is the
set ofy such thatb(l,y)5k.

Let us denote byZkl the largest set such that:~1!
Zkl,Xkl ; ~2! Zkl,Ykl ; ~3! if z,z8PZkl then D(z,z8)
Þd/2. The third defining property ofZkl implies thatuZklu
<uZu.

Consider the sumb(x)5(yPYkl
a(x,y). From the defini-

tion of a, it follows thatb(x) is an integer less than or equ
to 1. Let us show that ifx¹Zkl , thenb(x)<0. Suppose this
is not true @i.e., x¹Zkl and b(x)51#, then necessarilyx
PYkl and there is noyPYkl such thatD(x,y)5d/2. But
then we could increaseZkl by addingx to Zkl . But Zkl is
maximal, hence there is a contradiction. We therefore ob
that (xPXkl

b(x)<(xPZkl
b(x)<uZklu<uZu. Inserting this in

Eq. ~11! yields Eq.~4!. j
Note that the Bell expressions Eqs.~2! and ~7! are ex-

tremely sensitive to noise. This is because in the presenc
noise the term ina proportional tod„D(x,y)5d/2… receives
a very large contribution, and therefore leads to a much
duced value ofI.

We now turn to the relation between the detection loo
hole and communication complexity. We begin with a de
nition.

Definition 5In a local-variable theory supplemented byC
bits of classical communication for the measurement s
nario $c,MA ,MB% with perfect detectors (h51), the par-
ties, in addition to sharing the random variablel, are al-
lowed to communicateC bits before choosing their output.

Note that one should distinguish whetherC is the absolute
bound on the amount of communication, or whetherC is the
average amount of communication between the part
where the average is taken over many repetitions of the
tocol, see @14#. For a given measurement scenar
$c,MA ,MB% with perfect detectors one can try to minimiz
the amount of communication required to reproduce
quantum probabilities. The minimum amount of communic
tion required to simulate the measurement scenario in
average communication model will be denot
Cmin(c,MA ,MB).

We shall now show that the minimum detector efficien
h* required to close the detection loophole and the m
mum amount of communicationCmin required to simulate a
measurement scenario with perfect detectors are closely
lated. We begin by showing that if a measurement scenar
difficult to simulate classically, then the minimum detect
efficiency required to close the detection loophole is sm
In fact this result was the inspiration for Theorem 1: t
measurement scenario considered in Theorem 1 is difficu
simulate classically@11#, henceh* must be small. Further
investigations led to the strong result of Theorem 1.

Theorem 2.For all measurement scenarios$c,MA ,MB%,
the relationh* (c,MA ,MB)<A2/Cmin(c,MA ,MB) holds.

Proof. It will be shown that any local-variable model wit
detector efficiencyh can be mapped into a communicatio
protocol with an average of 2/h2 bits of communication.
ThereforeCmin<2/h2 for all detector efficiencies for which
a local-variable model exists, and this yields the upper bo
on h* .
1-3
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SERGE MASSAR PHYSICAL REVIEW A 65 032121
Recall that a local-variable model is defined by the t
functions f and g introduced above and the probability di
tribution p on the spaceL. Now suppose that initially the
parties share an infinite number of independent identic
distributed hidden variablesl1 ,l2 ,l3 , . . . each drawn from
the spaceL with probability p. Consider the following pro-
tocol in which the two parties repeatedly simulate the loc
variable model and communicate whether the model pred
that the detectors work or not:~1! Set the indexk51. ~2!
Alice computesf (x,lk) and Bob computesg(y,lk). ~3! Al-
ice tells Bob whetherf (x,lk)50 or f (x,lk)Þ0 and Bob
tells Alice whether g(y,lk)50 or g(y,lk)Þ0. ~4! If
f (x,lk)50 or g(y,lk)50, Alice and Bob increase the inde
k by 1 and go back to step 2.~5! If f (x,lk)Þ0 and
g(y,lk)Þ0 then Alice outputsf (x,lk) and Bob outputs
g(y,lk).

This protocol reproduces exactly the correlations exh
ited by quantum mechanics. The mean number of iterati
of the protocol is 1/h2. The number of bits communicate
during each iteration is 2~one bit from Alice to Bob and one
from Bob to Alice!. Hence the average amount of commu
cation is 2/h2. j

We now investigate the converse, namely, whethe
model with finite communication and perfect detectors c
be mapped into a local-variable model with inefficient det
tors. We will give an argument, but not a proof, that sugge
that such a mapping should exist.

Consider a measurement scenario. Suppose there is a
sical protocol that simulates the quantum correlations witC
bits of communication. In this protocol, Alice initially know
the local variablel and her measurementx, and Bob initially
knows the local variablel and his measurementy. Denote
the conversation byC(x,y,l)5c1c2 . . . whereciP$0,1% is
the i th bit in the conversation. Alice and Bob’s outputs a
therefore, given by functions a5 f (x,l,C) and b
5g(y,l,C).

Now suppose that in addition to the local variablel, Alice
and Bob share a second local variablem5m1m2 . . . that
consists of an infinite string of independent random bitsm i
P$0,1%. The basic idea is that Alice and Bob will chec
whether the local variablem is a possible conversationm
5C(x,y,l). If it is they give the corresponding output. If it i
not they give the outcome 0 corresponding to the detec
not working. The probability thatm5C is 22C. This suggests
that if h<22C a local-variable model should exist.

Making the above argument precise is difficult becau
one wants to recover exactly the probability distribution E
~1!. For instance if some conversation are shorter than oth
then they will be accepted with higher probability, yielding
skewed distribution. Nevertheless the above argument is
suggestive. For instance in@14# it was shown that if the
entangled state has dimensiond, then any measurement sc
nario can be simulated in the average communication mo
03212
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using less than@613 log2(d)#d12 bits on average. Combin
ing this with the above argument suggests that ifh
,O(226dd23d) a local-variable model should exist. This i
turn suggests that Theorem 1 is close to optimal.

It is also interesting to combine the above argument w
a result from@11# that states that it is always possible
simulate a measurement scenario withC5 log2uMAu bits of
communication. Combining this with the above argume
suggests that ifh.1/uMAu a local-variable model should ex
ist. We now prove this result~in a slightly weaker form, since
the result in@11# depends only onuMAu, independently of
uMBu) by generalizing an argument of Gisin and Zbind
@16#.

Theorem 3.Consider a measurement scenario in wh
the number of possible measurements isuMAu5uMBu5M .
Then a local-hidden-variable model exists if the detector
ficiency ish51/M .

Proof.The local-hidden variable consists of the quadru
(x,i ,y, j ) where xPMA , yPMB , i , j P$1, . . . ,d% and i , j
have joint probabilitiesP( i , j )5u^cuxi&uyj&u2. The protocol
is as follows. Alice checks whether her measurement is eq
to x, if so she outputsi, if not she outputs 0, Bob check
whether his measurement is equal toy, if so he outputsj, if
not he outputs 0. This reproduces exactly the correlations
~1! with h51/M . j

In summary we have presented a measurement scen
that closes the detection loophole when the detector e
ciency h.d3/4220.0035d is exponentially small. This should
be contrasted to the best previous result that requiredh
.2/3 @3#. Our measurement scenario requires an entang
system of large dimensiond, and it requires that Alice and
Bob choose between exponentially many measurements
have argued that it is not possible to substantially impro
this measurement scenario, either by decreasing the num
of measurements, or by decreasing the dimension, w
keeping the same resistance to inefficient detectors.

The results reported here are inspired by recent work
communication complexity. Indeed the measurement s
nario we consider in our main theorem is also known
require a large amount of communication in order to
simulated classically@11#. And we present general argumen
concerning bounds on the minimum detector efficiency
quired to close the detection loophole follow from mappin
between communication models and local-variable mod
with inefficient detectors. This connection between two d
ferent approaches to entanglement, namely, the point of v
of computer scientists and the more pragmatic considerat
of experimentalists will, we hope, continue to prove fruitfu
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