PHYSICAL REVIEW A, VOLUME 65, 032121
Nonlocality, closing the detection loophole, and communication complexity
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It is shown that the detection loophole that arises when trying to rule out local realistic theories as alterna-
tives for quantum mechanics can be closed if the detection efficiened®*2 %09 whered is the
dimension of the bipartite entangled system &hid a positive constant. Furthermore it is argued that such an
exponential decrease of the detector efficiency required to close the detection loophole is almost optimal. This
optimality argument is based on a close connection that exists between closing the detection loophole and the
amount of classical communication required to simulate quantum correlations when the detectors are perfect.
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Experimental tests of the entanglement of quantum sysexperiment tested the entanglement of systems of dimension
tems are important for several reasons. They provide an ex3 [5].) However, when pairs of photons are produdéat
perimental check of the validity of quantum mechanics, andnstance by parametric down conversiothe photons are
in particular the surprising “nonlocality” exhibited by quan- entangled in position-momentum and time-energy in addition
tum mechanics. Furthermore they can be viewed as primito a possible entanglement in polarization. Thus entangled
tives from which one can build more complicated protocolssystems of large dimensionality can easily be produced in the
of interest for quantum information processing and they pro{aboratory. Can one exploit the large dimensionality of these
vide a benchmark with which to compare the performance oéntangled photons to carry out stronger tests of quantum
different quantum systems, such as ion traps, photons, etcnonlocality? This has been the subject of several recent the-

To test the entanglement of a quantum system one carriaxetical works[6—10] in which it has been shown that using
out measurements on each particle, and compares the cormnatangled systems of large dimensionality can be advanta-
lations between the results of these measurements with thgeous, but no spectacular improvements have been found.
predictions of quantum mechanics. A crucial check of the In the present work it will be shown that using entangled
quantumness of these correlations is whether they exhibiystems of large dimensionality allows in principle a dra-
“nonlocality,” that is, whether it is impossible to reduce matic decrease in the detector efficiency required to close the
them by a classical local-variable theadisiso called local- detection loophole. More precisely, the minimum detector
realistic theory [1]. Formally, this is done by inserting the efficiency required to close the detection loophole decreases
joint probabilities of outcomes into an inequality, called aexponentially with the dimensiod. This is particularly rel-
“Bell inequality,” which must be satisfied in the case evant to possible experiments involving momentum or
of local-variable theories but can be violated by quantumenergy-entangled photons since in this case it may be pos-

mechanics. sible to devise an experiment in which photon losses and
During the past decades successively more sophisticatetbtector efficiency decrease only slowly with the dimension.
tests of Bell inequalities have been carried tfot a review This result is obtained by explicitly describing a set of

see[2]). Most experiments so far have involved entangledmeasurements carried out by Alice and Bob on an entangled
photons. By letting the photons propagate a large distancsystem of large dimension and writing a Bell inequality
from their emission point it has been possible to spatiallyadapted to this measurement scenario. It will be shown that
separate the two measurements and thereby close the gbis Bell inequality is violated even for exponentially small
called “locality loophole.” However, in optical experiments, detector efficiencies. However, this Bell inequality is ex-
because of losses and small detector efficiency, all tests afemely sensitive to noise and therefore does not constitute a
Bell inequalities so far leave open the so-called “detectionrealistic experimental proposal. A noteworthy feature of this
loophole.” This means that all experimental results that useneasurement scenario is that the number of measurements
pairs of photons can be explained by a classical localbetween which Alice and Bob must choose is exponentially
variable theory if the local-variable theory can instruct thelarge.
detectors either to click, i.e., register the presence of a par- In the second part of this paper we consider whether it is
ticle, or not. The strongest theoretical result so far is that theossible to improve this Bell inequality. Can one decrease
detection loophole can be closed in the efficiencyis2/3  the number of measurements between which Alice and Bob
[3], but this is too stringent for optical experiments. Recentlymust choose, or decrease the dimensionality of the entangled
an experiment that closes the detection loophole has beeystem, while keeping the same low sensitivity to detector
carried out using trapped iofig]. But in this experiment the inefficiency? We argue that this is not the case and that our
ions were separated by a very small distance and the localitgell inequality is close to optimal.
loophole was not closed. These latter results follow from a close connection be-
In almost all experiments on entangled systems each sysween the detection loophole and the minimum amount of
tem belongs to a Hilbert space of dimension(@ne recent classical communication required to perfectly simulate mea-
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surements on an entangled quantum system. Suppose méaowsy but does not knowk and chooses an outconie

surements are carried out on an entangled quantum systemg(y,\). We can suppose that the functiohsnd g are

(with perfect detectors)=1). The correlations exhibited by deterministic since all local randomness can be put.iithe

such measurements will in general violate a Bell inequalityjoint probabilities

and therefore cannot be reproduced by local variable theo-

ries. However, by supplementing the local-variable theory by P(a,b|x,y)=f,d\p(\)8(f(x,\)—a)8(g(y,\) —b)

classical communication one can reproduce the quantum cor-

relations. Recently there have been several works that a&re identical with the predictions of quantum mechanics Eq.

tempted to understand how much classical communication i€l).

necessary to bridge the gap between quantum mechanics andA local-variable theory will only exist if the detector ef-

local-variable theorie§11,13,14. Intuitively one would ex- ficiency is sufficiently small. The maximum detector effi-

pect that the greater the amount of communication requirediency for which a local-variable theory exists will be de-

to recover the quantum correlations, the stronger is the nomoted »* (#,M o ,Mp).

locality of the quantum-correlation test. This intuition willbe ~ We are now in a position to state our main result.

made precisely below in the context of the detection loop- Theorem 1.There exists a measurement scenario for

hole. It will be shown that the minimum amount of classicalwhich the state is the maximally entangled state of dimen-

communicationC™" required to recover the quantum corre- siond=2" with n=2 an integer, and for which the number

lations is anticorrelated to the minimum detection efficiencyof measurements carried out by Alice and Bob are exponen-

7* required to close the detection loophole. tially large [MA|=|Mpg|=29, and such that the detection
We begin with some definitions. loophole is closed ify=Cd**42~%093% whereC is a positive
Definition 1.A measurement scenario is defined by a bi-constant.

partite quantum staté belonging to the tensor product of Proof. We consider the same measurement scenario as

two Hilbert space$i ,®Hpg, and by two ensembles of mea- that described in Theorem 4 gf1] that itself is inspired by

surementsM, acting onH, and Mg acting onHg. For  the Deutch-Jozsa problem, sdd2]. The state is

instance y=3§_,|k)alk)g/\d can be the maximally en- =39=2"|ky|k)//d. The sets of measuremerits, and Mg
tangled state ofi dimensions. The elementss M, are a  are identical. The measurements M, are parametrized by
basis of Ha: x={|x1), ... |[Xq)} with (xi[x;)=8;;. Simi- a3 string ofd bits: X=X, . . . X4 Wherex; € {0,1} and simi-
larly the elementy € Mg are a basis dflg. PartyAis given larly for ye Mg. Hence|M,|=|Mg|= 24 The measure-
a random elemerte M as input and partyB is given a  ments are described in detail ih1].
random elemeny e Mg as input. They have the following propertie§l) if x=y, then Al-

Definition 2.1n a measurement scenario with perfect de-ice and Bob’s outcomes are identical<b); (2) if the Ham-
tectors (p=1), both parties must give as output onedf ming distanceA(x,y) betweenx andy is A(x,y) =d/2, then
possible outcomes. Denote Alice’s output Byand Bob’s  Alice and Bob's outcomes are always differeat4b).
output by b. The joint probabilities of the outcomes are et us define
P(a=i,b=j|xy)=[(¢|x:)|y;I*

Defintion 3.In a measurement scenario with detectors of a(x,y)=8(x—y)— 8(A(x,y)—d/2),
finite efficiency », both parties must give as output one of
d+1 possible outcomes. Output 0 occurs with probabilitywhich is equal to+ 1 if x=y, equal to—1 if A(x,y)=d/2,
1—» and corresponds to the detector not detecting the paand equal to zero otherwise. Consider the following Bell
ticle whereas outcomes 1 tboccur with probability» and  expression:
correspond to a specific result of the measurement when the
particle is detected. The probability that one of the detectors 24 od
gives outcome O is independent of the other detector. Thus | = 2 2 P(a=b AND a#0)a(X,y). )
the joint probabilities of outcomes are x=1y=1

P(a=0b=0|x,y)=(1—7)?, It is immediate to compute the value bpredicted by quan-
tum mechanics for the above measurement scenario since
P(a=i,b=0[x,y)=n(1— n)Tr|x){x;|®1g| )], from properties 1 and 2 above, only the term proportional to
8(x=y) contributes,

P(a=0b=j[x,y)=n(1=n)Trla@|y;Xy;l[¥)¥l,

P(a=i,b=j[x,y)=7*(ylx)ly;)|> (1) _ o _ _
It is more difficult to compute the maximum value loin
Definition 4.In a local-variable theory for the measure- the case of local-variable theories. L£be the largest subset

ment scenaridy,M,,Mg} with detector efficiencyy, Alice  of {0,1}9 such that ifz,z’ € Z, thenA(z,z') #d/2 (i.e. no two
and Bob are both given the same elemertA drawn with  elements oZ are Hamming distana#/2 one from the other
probability p(\) (often called the “local-hidden variablg”  We shall show below that
Alice knowsx but does not know. From her knowledge of
\ andx, Alice selects an outcoma= f(x,\). Similarly Bob | (local variable<d|Z| (4)

1(QM)= 72" )
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independently ofy. Frankl and Rdl have given bounds on whereX,, is the set ok such thai@a(\,x) =k andY,, is the
|Z|. Theorem 1.10 of15] states that whed is divisible by 4,  set ofy such thatb(\,y) =k.

then|Z|<(2— €)Y for some universal constast>0. Com- Let us denote byZ,, the largest set such thatl)
bining this with Eq.(3) implies that one can close the detec- 7,, C X, ; (2) ZiCY; 3 if 2,2 €Z,, then A(z,Z)
tion loophole if #d/2. The third defining property af,, implies that|Z,, |
<|Z|.
dr2 |
nzdlIZ( 1— g) _ (5) Consider the sung(x) =Eyeykxa(x,y). From the defini-

tion of «, it follows that3(x) is an integer less than or equal
In order to obtain a more precise result we introduce a{o 1. Letus show that k¢ Zy, , then(x)<0. Suppose this

slightly different Bell expression. We denote Bythe set of IS Not truefi.e., xe&Z,, and B(x)=1], then necessarily
all strings ofd bits x; . . .x4, such that exactlyl/2 of the € Yia @nd there is noye Yy, such thatA(x,y) =d/2. But

bits are equal to 1 and/2 of the bits are equal to 0. The then we could increasg, by addingx to Z, . But Zy, is

number of such strings is maximal, hence there is a contradiction. We therefore obtain
that2,  x, B(X)<Zxcz, B(X)<|Zn|<|Z|. Inserting this in
V2 _, Eq. (11) yields Eq.(4). [
IRI= dr2 :_\/ﬁz [1+0(1)]. (6) Note that the Bell expressions Eq®) and (7) are ex-

tremely sensitive to noise. This is because in the presence of
noise the term inx proportional tod(A (x,y) =d/2) receives

a very large contribution, and therefore leads to a much re-
duced value of.

The second Bell expression is

J= E 2 P(a=b AND a#0)a(X,y). (7) We now turn to the relation between the detection loop-
xeRyeR hole and communication complexity. We begin with a defi-
nition.

It is immediate to compute the value &fpredicted by quan-

tum mechanics for the above measurement scenario Definition 5In a local-variable theory supplemented Gy

bits of classical communication for the measurement sce-
JQM)=72R|. ®) n.arlo_{t//,MA.,.M g} with perfect detectors 7f=;), the par-
ties, in addition to sharing the random variable are al-
It is more difficult to compute the maximum value bfn lowed to communicat€ bits before choosing their output.

the case of local-variable theories. [@be the largest subset ~ NOte that one should distinguish whetl@s the absolute
of R such that ifz,2’ € Q, thenA(z,2') #d/2 (i.e., no two bound on the amount of communication, or whet@as the

elements ofQ are Hamming distancel/2 one from the average amount qf communication betwe.e_n the parties,
othey. In analogy with Eq(4) one has where the average is taken over many repetitions of the pro-
tocol, see [14]. For a given measurement scenario
J(local variable<d|Q| (9  {¥:Ma,Mg} with perfect detectors one can try to minimize
the amount of communication required to reproduce the
independent ofy. Frankl and Rdl have given bounds on duantum probabilities. The minimum amount of communica-
|Q|. Corollary 1.2 of 15] implies that wherd is divisible by ~ tion required to simulate the measurement scenario in the
4, then|Q|<1.99'< 20993 Combining this with Eq(8) im- ~ @verage —communication model will be denoted

plies that one can close the detection loophole if C™(¢,Ma,Mpg). o .
We shall now show that the minimum detector efficiency
d[Q d¥4mys 7* required to close the detection loophole and the mini-
n= W; —3 2% [1+0(1)]. (100  mum amount of communicatio@™'" required to simulate a
2

measurement scenario with perfect detectors are closely re-
. lated. We begin by showing that if a measurement scenario is
We now prove Eq(4). The proof of Eq(9) is exactly the  gjfficult to simulate classically, then the minimum detector
same and will not be given. Recall that in the case of localefficiency required to close the detection loophole is small.
variable model, Alice’s output is a functioa(\,x) of the | fact this result was the inspiration for Theorem 1: the
local variable and of her measurement, and similarly formeasurement scenario considered in Theorem 1 is difficult to
Bob. UsingP(a=b AND a#0)=3{_,P(a=k AND b=k),  simulate classicallj11], hences* must be small. Further
the value ofl for a local-variable model can be written as  investigations led to the strong result of Theorem 1.
Theorem 2For all measurement scenaripg,M 5 ,Mg},

d : * < min
I(Iv):; p()\)g ; kgl the relations* (,M 5 ,Mg)=<2/C™"(44,M o ,Mg) holds.

Proof. It will be shown that any local-variable model with
detector efficiencyy can be mapped into a communication

X P[a(\,x)=kAND b(\,y)=k]a(X,y) protocol with an average of #f bits of communication.
d ThereforeCM"<2/7? for all detector efficiencies for which
_ A X.y), 11 a local-variable model exists, and this yields the upper bound
; p( )kgl XEZXK)\ y;k)\ a( y) ( ) on 7]*.
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Recall that a local-variable model is defined by the twousing less thafi6+ 3 log,(d)]d+2 bits on average. Combin-
functionsf and g introduced above and the probability dis- ing this with the above argument suggests that 7if
tribution p on the space\. Now suppose that initially the <O(2759d~39) a local-variable model should exist. This in
parties share an infinite number of independent identicallyurn suggests that Theorem 1 is close to optimal.
distributed hidden variables; ,\,,\3, ... each drawn from It is also interesting to combine the above argument with
the space\ with probability p. Consider the following pro- @ result from[11] that states that it is always possible to
tocol in which the two parties repeatedly simulate the local-Simulate a measurement scenario Wtk log,|M,| bits of
variable model and communicate whether the model predictéommunication. Combining this with the above argument
that the detectors work or notl) Set the indexk=1.(2)  Suggests that ify>1/M,| a local-variable model should ex-
Alice computesf(x,\,) and Bob computeg(y,\,). (3) Al- ist. We now prove this resufin a slightly weaker form, since
ice tells Bob whetherf(x,\,)=0 or f(x,\,)#0 and Bob the result in[11] depends only onM,|, independently of
tells Alice whether g(y,\)=0 or g(y,\)#0. (4) If IMg|) by generalizing an argument of Gisin and Zbinden
f(x,N)=0 org(y,\y) =0, Alice and Bob increase the index
k by 1 and go back to step 25) If f(x,\()#0 and
a(y,\ ) #0 then Alice outputsf(x,\,) and Bob outputs
g(yi)\k)

This protocol reproduces exactly the correlations exhi
ited by quantum mechanics. The mean number of iteration
of the protocol is 14?. The number of bits communicated
during each iteration is one bit from Alice to Bob and one
from Bob to Alice). Hence the average amount of communi-
cation is 2#2.

Theorem 3.Consider a measurement scenario in which
the number of possible measurementgNt,|=|Mg|=M.
Then a local-hidden-variable model exists if the detector ef-
b_ficiency isn=1/M.

Proof. The local-hidden variable consists of the quadruple

X,0,Y,]) wherexeM,, yeMg, i,je{l,...d} andi,j
have joint probabilitiesP(i,j) = [{]xi)|y;)|?. The protocol

is as follows. Alice checks whether her measurement is equal
to x, if so she outputs, if not she outputs 0, Bob checks

We now investigate the converse, namely, whether d/n€ther his measurement is equalidf so he outputy, if
model with finite communication and perfect detectors car°t N€ outputs 0. This reproduces exactly the correlations Eg.
be mapped into a local-variable model with inefficient detec-(l) with 7=1/M. u .
tors. We will give an argument, but not a proof, that suggests_ " Summary we have presented a measurement scenario
that such a mapping should exist. that closes 3t/hei(()Jloeotaewct]on Ioopholg when the dgtector effi-

Consider a measurement scenario. Suppose there is a cl&€ncy 7=d 270 is exponentially small. This should
sical protocol that simulates the quantum correlations with P€ contrasted to the best previous result that requijed
bits of communication. In this protocol, Alice initially knows > 2/3 [3]. Our measurement scenario requires an entangled
the local variable. and her measuremextand Bob initially ~ SyStém of large dimensiod, and it requires that Alice and
knows the local variablé. and his measuremegt Denote ~ BOP choose between exponentially many measurements. We
the conversation bg(x,y,\)=c4C;, ... wherec;e{0,1} is have argued that it is not possible to substantially improve

theith bit in the conversation. Alice and Bob’s outputs are, NiS measurement scenario, either by decreasing the number
therefore, given by functionsa=f(x,\,C) and b of measurements, or by decreasing the dimension, while

_ keeping the same resistance to inefficient detectors.

e results reported here are inspired by recent work in
communication complexity. Indeed the measurement sce-
nario we consider in our main theorem is also known to

K require a large amount of communication in order to be
simulated classicallj11]. And we present general arguments

concerning bounds on the minimum detector efficiency re-
uired to close the detection loophole follow from mappings
etween communication models and local-variable models

Now suppose that in addition to the local variakleAlice
and Bob share a second local varialle= i, ... that
consists of an infinite string of independent random Jpits
€{0,1}. The basic idea is that Alice and Bob will chec
whether the local variablg. is a possible conversation
=C(x,Y,\). Ifitis they give the corresponding output. Ifitis
not they give the outcome 0 corresponding to the detector%

not working. The probability thag =C is 2*. This suggests with inefficient detectors. This connection between two dif-

that if »=2" © a local-variable model should exist. ferent approaches to entanglement, namely, the point of view
Making the above argument precise is difficult because bp 9 ' Y: P

one wants to recover exactly the probability distribution Eq.Of computer scientists and the more pragmatic considerations

(1). For instance if some conversation are shorter than otherg,f experimentalists will, we hope, continue to prove fruitful.

then they will be accepted with higher probability, yieldinga | would like to thank Harry Buhrman, Nicolas Cerf, Ri-
skewed distribution. Nevertheless the above argument is verghard Cleve, Thomas Durt, Nicolas Gisin, Jan-Ake Larsson,
suggestive. For instance ii4] it was shown that if the Noah Linden and Sandu Popescu for helpful discussions.
entangled state has dimensidnthen any measurement sce- Funding by the European Union under project EQUIST-
nario can be simulated in the average communication modétET program is gratefully acknowledged.
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