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Quantum anharmonic oscillator in the Heisenberg picture and multiple scale techniques
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Multiple scale techniques are well known in classical mechanics to give perturbation series free from
resonant terms. When applied to the quantum anharmonic oscillator, these techniques lead to interesting
features concerning the solution of the Heisenberg equations of motion and the Hamiltonian spectrum.
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I. INTRODUCTION

Multiple scale techniques~MST! originated in Poincare´
works have been developed by many authors, mainly in s
ing ~partial! differential equations related to physical pro
lems in celestial mechanics or in fluid dynamics. All of the
methods have a common mathematical purpose: to a
resonances or secularities appearing in the usual or con
tional perturbative theory. From a more physical point
view, one can see the MST as adaptable methods that fee
underlying physical phenomena in order to fit them. In oth
words, the usual perturbative theory tends to impose
choices while MST are flexible and compose with the r
medium.

In this work, we apply one of the various MST to th
quantum anharmonic oscillator. Such studies have been
tiated by Bender and Bettencourt~B&B ! in two recent papers
@1,2#. They have found that the nonresonance condition le
to a ‘‘mass renormalization’’ of the oscillator and—as a b
product—to the energy-level differences of the quantum
cillator. This pioneering work was limited to the first non
trivial order in MST perturbation of the coupling constant
the anharmonicity. The aim of the present paper is to ext
this early study in several directions. First, we introduce
alternative framework, which turns out to be more conv
nient than the B&B one for performing higher-order calc
lations. Second, it turns out that we are able to obtain
energy levels themselves at these perturbative orders. In
third point, we show that the diagonalization of the Ham
tonian is rather easy once the free Hamiltonian has b
recast in an appropriate form. Finally, this approach lead
a natural and elegant method to find perturbatively the eig
values of the full Hamiltonian, far away from the origin
MST concept.

The paper is organized as follows. In the first secti
although the classical anharmonic oscillator is studied in
tail in many textbooks@3,4#, we sketch some relevant poin
in order to further clarify the differences and the analog
between the classical and the quantum cases. In the se
section we explain our framework and we work out the t
first orders in MST perturbation, that includes the full so
tion of the Heisenberg equations and the energy levels.
third section is devoted to general arguments showing
the method is compelled to work at any order, due to
connection with a certain unitary transformation which
agonalizes the Hamiltonian of the anharmonic oscillator.
1050-2947/2002/65~3!/032120~9!/$20.00 65 0321
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postpone to an Appendix some explicit results: the soluti
of the Heisenberg equations of motion and the energy le
of the full Hamiltonian, up to the order 6 included.

II. THE CLASSICAL CASE

The classical anharmonic oscillator~CAO! is probably
one of the most popular examples where the conventio
and MST perturbative theories lead to obvious differenc
Often, one speaks of the Duffing equation instead, altho
this equation is nothing but the equation of motion of t
CAO. To be precise, the Duffing equation is a second-or
nonlinear equation in the time variable, the solution of whi
being the position of the CAO. Starting from the CAO L
grangian~in units where the mass parameter is one!

L~q,q̇!5q̇2/22v2q2/22gq4,

one readily gets from the Euler-Lagrange equation

~e!:q̈1v2q14gq350.

The usual formal perturbation expansion reads

q~ t !5 (
n50

`

gnqn~ t !,

@with some initial conditions, sayq(0)5Q and q̇(0)50#,
and the first equations one obtains from~e! are

~e0!:q̈01v2q050,

~e1!:q̈11v2q1524q0
3 .

Then the frequency of the solution of the homogeneo
part of (e1) coincides with the frequency ofq0(t)
5Q cosvt, which generates a resonance in the solut
q1(t) of the full equation (e1)

q1~ t !5
Q3

8v2
~cos 3vt2cosvt212vt sinvt !.

Henceq1(t) is unbounded and the truncated expans
q0(t)1gq1(t) cannot be an acceptable approximation
q(t) for timest larger thanv/Q2g, however smallg may be.
The flaw is even worse at the higher orders. It is obvious
©2002 The American Physical Society20-1
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this simple example that the perturbative solution devel
spurious behavior which is absent in the exact solution.
deed, it is well known that the exact solution is bounded a
periodic.

The main idea of MST for dealing with this problem is th
introduction of new variables, independent and appropri
and we refer to textbooks for an extensive review of
various possibilities. Here we concentrate on the anharm
oscillator. Some methods take into accountab initio that the
circular functions play a major role. For instance, in t
Poincare´ method, one looks for sine and cosine solutio
whose argument is stillvt but wherev is now an arbitrary
function of the coupling constant, actuallyv5Sgnvn . Then
one has to find thevn’s, order by order, to discard the res
nance. We do not insist on the application of these meth
to the CAO because we believe they are not suitable for
quantum case. Another class of MST seems to be of a la
use, since there is no ‘‘prerequisite’’ in these methods. T
MST we will use, also called the derivative expansi
method, belongs to this class: it promotes the time variabl
be a function of the coupling constant, namely,tn5gnt. Ac-
tually, the method is not so rough and one first extends
function depending ont to an ‘‘extended’’ function depend
ing on all the variablestn (n50,1,2, . . . ) assumed to be
independent@5#. So, one introduces a position functio
Q(T,g) depending on the collectionT5$t0 ,t1 ,t2 , . . . ,% of
independent variablestn . This function is considered as a
extension of the true position in the Lagrange formalis
which is recovered by restrictingQ to the sectiontn5gnt of
the T space:q(t,g)5Q(T,g)u tn5gnt .

Then, forgetting temporarily any reference to the coupl
constant in thesetn variables, one expands in power ofg the
position functionQ

Q~T,g!5 (
n50

`

gnQn~T!.

One obtains from~e! the following set of equations, lim
ited here at the three first orders:

D0
2Q0~T!1v2Q0~T!50,

D0
2Q1~T!1v2Q1~T!522D0D1Q0~T!24Q0

3~T!,

D0
2Q2~T!1v2Q2~T!52~D1

212D0D2!Q0~T!

22D0D1Q1~T!212Q0
2~T!Q1~T!,

usingd/dt5SngnDn , Dn5]/]tn .
The basic principle of the method now consists of adju

ing the t1 dependence ofQ(T) so as to eliminate the secu
larity in the second equation, next thet2 dependence o
Q(T) so as to eliminate the secularity in the third equatio
and so on. We shall not work out the derivation here~it can
be found for example in Refs.@3# or @4#! and we merely give
the solution up to the second order ing in its final form, for
further classical versus quantum discussions
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q~ t,g!5
a

2 Fexp„2 i ~Vt1b!…1
l

8 S 12
21l

8 Dexp„23i ~Vt

1b!…1
l2

64
exp„25i ~Vt1b!…G1C.C.,

where

V5vS 11
3l

2
2

15l2

16 D ,l5
ga2

v2
~1!

and a and b are two real integration constants fixed by t
initial conditions~here unspecified!.

Since the~perturbative! energy is conserved, it can b
computed most easily by choosingt52b/V or t5(p/2
2b)/V in q(t,g)

Ec5
a2v2

2 S 11
9l

4
1

25l2

64 D1O~l3!. ~2!

We conclude this section with a few comments. As far
we know, all the multiple scale techniques dealing with t
secularities of the classical anharmonic oscillator are s
cessful. However this is not a general feature, and so
methods are not suitable for certain problems. Moreover,
absolutely not our purpose to discuss on a rigorous basis
mathematical aspects of the secular or nonsecular pertu
tive expansions.

III. THE QUANTUM CASE: DERIVATION

The quantum anharmonic oscillator~QAO! has been stud-
ied in the paper of B&B through the Heisenberg equation
motions for the relevant operators and we will follow th
method. The main difference between the work of B&B a
ours is that we will use the creation and annihilation ope
tors to manage the problem of removing the secularities
first sight the gain in doing this choice is not obvious a
perhaps not essential. Moreover one can detect in the B
paper an indication pointing to this direction. Let us look
the couple of Eqs.~21! in their work @1#, which can be writ-
ten as

D1Y52CX2XC and D1X5CY1YC,

whereX andY aret1 dependent, self-adjoint operators whi
C is a constant, self-adjoint operator. The authors proc
with some arguments ‘‘suggesting’’ the form of the solutio
with the help of Weyl ordered products and Euler polynom
als to deal with these equations. Of course, it seems diffic
or at least hazardous, to generalize at high orders a ‘‘sug
tive’’ method, which could be seen as a reminiscence of
Poincare´ method, but we have more convincing arguments
leave this path. First, usingZ5X1 iY, the previous couple
of equations reduces to the single equation

D1Z~ t1!52 i @Z~ t1!C1CZ~ t1!#

whose solution isZ(t1)5exp(2iCt1)Z(0)exp(2iCt1), as it is
easy to check. The operatorZ(t1) is closely related to the
0-2
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QUANTUM ANHARMONIC OSCILLATOR IN THE . . . PHYSICAL REVIEW A 65 032120
creation/annihilation operators. Once derived the expres
of the creation/annihilation operators, it is not necessary
order to proceed further, to write down the position opera
Indeed, almost all the informations, the ‘‘mass renormali
tion’’ effect and the difference of energy levels, are alrea
contained in the argument of the exponentials. Second,
Heisenberg equations in terms of creation/annihilation op
tors are first-order differential equations in place of t
second-order one for the position operator, which simplifi
noticeably the whole procedure. To be honest, one has
disadvantage to carry both creator and annihilator, but th
not a serious complication. Last, there appears also a l
variation between the B&B works and ours in the status
the initial conditions: we do not use these conditions as in
classical case, which is the way taken by B&B. This po
will become obvious throughout our study.

We start with the QAO HamiltonianH written in terms of
the momentump and positionq operators in convenient unit
(\5v51): H5p2/21q2/21gq4, whereg is assumed to be
a ‘‘small’’ ~positive! coupling constant. Within the Heisen
berg picture, the dynamics is governed by the equations

q̇5 i @H,q#, ṗ5 i @H,p#,

supplemented by the canonical commutation relation@q,p#

5 i , valid at all times. The Heisenberg equations give:q̇

5p and ṗ52q24gq3. Writing as usualq5(a1a†)/A2
andp52 i (a2a†)/A2, the Hamiltonian becomes

H~a,a†,g!51/21a†a1g~a1a†!4/4 ~3!

together with

@a~ t,g!, a~ t,g!#51, ;t, ~4!

where, to avoid possible confusion later on, we have k
track of the variablest andg.

The Heisenberg equation for the annihilator

ȧ~ t,g!5 i @H~a~ t,g!,a†~ t,g!,g!,a~ t,g!#,

reads, in our case

ȧ~ t,g!52 i @a~ t,g!1g„a~ t,g!1a†~ t,g!…3#. ~5!

Since the Hamiltonian is conserved, its formal solution

a~ t,g!5exp@ iH „a~0!,a†~0!,g…t#a~0!

3exp@2 iH „a~0!,a†~0!,g…t#,

with a(0)[a(0,g).
We now turn on the formal series of the multitime pertu

bative expansion, similar to that used in the classical c
First one introduces an operator valued functionA(T,g) de-
pending on the collectionT of independent variablest j . This
function is considered as an extension of the true annihila
operator in the Heisenberg picture, which is recove
through the restriction

a~ t,g!5A~T,g!u t j 5gj t . ~6!
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Then the time derivative becomes

ȧ~ t,g!5 (
n>0

gnDnA~T,g!u t j 5gj t .

Second,A(T,g) is expanded as

A~T,g!5 (
n>0

gnAn~T!. ~7!

As for the initial conditions to be associated with th
equation of motion~5!, one notices that

a~0,g!5 (
n>0

gnAn~0!. ~8!

This forces us to choose between two possible star
viewpoints either~a!: a(0,g) is taken as independent ofg,
which implies

An~0!50,;n>1, ~9!

or ~b!: the previous condition is not imposed, in which ca
the initial values ofa(t,g) must be considered as a functio
of g.

It turns out that both approaches lead to consistent mu
time expansions. In fact, the choice~a! was ~implicitly !
adopted by B&B. However, these authors did not exte
their analysis beyond the first order. In this paper, we rat
follow the procedure~b!, which we found much more con
venient, and in a sense, more natural.

The equation of motion fora(t,g) gives us the following
infinite system for theAn(T)’s:

D0An1 iAn52 (
m50

n21

Dn2mAm2 i (
m,r ,s,.,0

m1r 1s5n21

QmQrQs

~n50,1,2, . . .! ~10!

whereQn5An1An
† , or explicitly

D0A01 iA050, ~10a!

D0A11 iA152D1A02 iQ0
3 , ~10b!

D0A21 iA252~D2A01D1A1!

2 i ~Q0
2Q11Q0Q1Q01Q1Q0

2!, ~10c!

etc.
A simple check shows us thatany formal solution of Eq.

~10! generates via Eqs.~6! and ~7! a formal solutiona(t,g)
of Eq. ~5!. In particular, this implies that, for such a solutio
@A(T,g),A†(T,g)#u t j 5gj t is independent oft. Of course, this

does no mean yet that@A(T,g),A†(T,g)# is independent of
T, allowing us to impose

@A~T,g!,A†~T,g!#51 ;T, ~11!
0-3
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in order to insure the canonical commutation relation~4!.
However, one can look forthosesolutions of Eq.~10! which
are subjected to the stronger condition~11!, if such solutions
do exist indeed, i.e., if no inconsistencies or obstructio
arise in their iterative construction. Together with Eq.~7!,
this entails

@A0~T!,A0
†~T!#51

;T

(
m50

n

@Am~T!,An2m
† ~T!#50, n>1. ~12!

We are now ready to construct step by step the resona
free solution of the problem. To zeroth order, Eq.~10a! and
the first Eq.~12! yield

A0~T!5A01~T1!exp~2 i t 0! ~13!

with

@A01~T1!,A01
† ~T1!#51, ;T1 , ~14!

and the notationTk5$tk ,tk11 , . . . ,%,(k51,2, . . . ).
Then, one can proceed to the first order step by inser

Eq. ~13! into Eq. ~10b!

D0A11 iA152@D1A011 i ~A01
2 A01

† 1A01A01
† A01

1A01
† A01

2 !#exp~2 i t 0!2 i @A01
3 exp~23i t 0!

1A01
†3

exp~13i t 0!1~A01
†2A011A01

† A01A01
†

1A01A01
†2!exp~1 i t 0!#. ~15!

Before integrating this equation, one has to get rid of
first resonant term on the right-hand side, which would p
duce a contribution growing linearly witht0(5t). This leads
to the condition

D1A0152 i ~A01
2 A01

† 1A01A01
† A011A01

† A01
2 !, ~16!

which will fix the t1 dependence ofA01.
To do that, let us first introduce the self-adjoint opera

N(T)5A0
†(T)A0(T). Thanks to Eq.~13! and its creator ver-

sion, N(T) is only T1 dependent:N(T)5A01
† (T1)A01(T1).

Moreover as a consequence of Eq.~14!, A01(T1)N(T1)
5@N(T1)11#A01(T1). Last, from Eq.~16!, one observes
thatD1N(T1)50. Thus,N is also independent oft1 and Eq.
~16! can be now written in the tractable form

D1A01523iA01~T1!N~T2!,

which produces

A01~T1!5A02~T2!exp@23iN~T2!t1#.

This allows us to write down the first-order annihilatio
operator

A0~T!5A02~T2!exp@2 i „t013N~T2!t1…#. ~17!
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At the same time, Eq.~14! becomes

@A02~T2!,A02
† ~T2!#51,;T2 . ~18!

One can now come back to the form of Eq.~15! exempted
of secularity to obtain its general solution

A1~T!5A01
3 ~T1!exp~23i t 0!/22A01

†3~T1!exp~13i t 0!/4

23N~T2!A01
† ~T1!exp~1 i t 0!/21C1~T1!exp~2 i t 0!,

~19!

where the operatorC1(T1) is an integration ‘‘constant.’’ The
latter must be so adjusted, if possible, as to insure that
second Eq.~12!

@A0~T!,A1
†~T!#1@A1~T!,A0

†~T!#50, ~20!

be fulfilled at all timesT. Here, it turns out that Eq.~20! is
satisfied by taking simplyC1(T1)50. One ends up with

A1~T!5A0
3~T!/22A0

†3~T!/423N~T2!A0
†~T!/2 ~21!

and the first-order step is complete.
Before going further, some comments are in order. Fi

writing the position operatorq01gq1, one notes that the
coefficients of exp(6it0) in q0 get corrections coming from
q1. It means, in the position formalism, the scheme used
B&B, that one would have to take into account the solutio
of the homogeneous second-order differential equation. S
ond, it appears in Eq.~21! that any power of exp(1it0) @re-
spectively, exp(2it0)# is multiplied by the same power o
A01

† (T1) @respectively, A01(T1)#. Such a correspondance
which is specific to our way of managing the initial cond
tions, will be a guide throughout our study. Last, the soluti
of the homogeneous equation in the classical case is di
ent. This variation with the quantum case is due to the d
ferent status of the initial conditions.

Clearly, one can go iteratively through the higher-ord
steps by similar~although rapidly tedious! calculations as
long as the integration ‘‘constants’’ analogous toC1(T1) can
be properly adjusted. As in the first-order step, we gathe
Eq. ~10c! the terms containing exp(2it0), since exp(2it0) is
again ~and always! solution of the homogeneous equatio
BecauseD1A1(T) does not provide such a term, we ju
have to take into account the nonderivative part of the rig
hand side of Eq.~10c!. Through an intensive use of the re
lation A01(T1)N(T2)5@N(T2)11#A01(T1), this expression
can be reduced to23A02(T2)@17N2(T2)17#exp@2it0
23iN(T2)t1#/4, and the nonresonance condition coming fro
the second order reads

D2A02~T2!53iA02~T2!@17N2~T2!17#/4.

This equation shows thatN(T2) is in fact independent oft2,
too, @i.e. N(T2)5A03

† (T3)A03(T3)] and we find through in-
tegration

A02~T2!5A03~T3!exp@13i „17N2~T3!17…t2/4#, ~22!

whereas Eq.~18! becomes
0-4



-
th
to

1
-

e
ve

b

m
a

s

s
q

n
o

n
s

s

of

due
ne

f

ntity

n-
the
a-

e
f

no-
Let

-
d

wo

e
the

st

f

QUANTUM ANHARMONIC OSCILLATOR IN THE . . . PHYSICAL REVIEW A 65 032120
@A03~T3!,A03
† ~T3!#51, ;T3 . ~23!

Collecting Eqs.~7!, ~17!, and ~22!, we see that the non
resonance conditions, up to the second order, imply that
first-order term of the expansion of the annihilation opera
is, in the variablet

a0~ t,g!5a0~0,g!$exp@2 i t „113gN23g2~17N217!/4…#

1O~g3!%, ~24!

which exhibits a large difference with the classical case:
is a prime number, difficult to link with the other prime num
ber 5 coming in the CAO frequency~1!. We will discuss later
on this CAO/QAO~apparent! discrepancy. Nevertheless, th
result, Eq.~24!, is in perfect agreement with the perturbati
expression of the energy levels of the QAO, as calculated
standard methods:

En~g!51/21n13g~112n12n2!/42g2~112n!~21117n

117n2!/81O~g3!. ~25!

Indeed, a straightforward argument based on the for
expression ofa(t,g) in the Heisenberg picture shows us th
the frequency appearing in Eq.~24! for N5n should coin-
cide with En(g)2En21(g). This is readily checked.

Turning back on the second-order Eq.~10c! cleared from
its resonant terms, we obtain its general solution

A2~T!5215A0
3~N21!/413A0

5/1613~23N217!A0
†/8

121~N21!A0
†3/162A0

†5/81C2~T1!exp~2 i t 0!,

~26!

whereA0 andN stand forA0(T) andN(T3). In contrast with
C1(T1) in Eq. ~19!, the operatorC2(T1) cannot be taken a
vanishing, because the second condition~12!,

@A0~T!,A2
†~T!#1@A1~T!,A1

†~T!#1@A2~T!,A0
†~T!#50,

would not be fulfilled. Imposing this and using Eqs.~12!,
~17!, ~18!, and~26!, one finds instead an appropriate expre
sion for the solution of the homogeneous version of E
~10c!, namely,

C2~T1!exp~2 i t 0!529A0~T!~123N2!/32. ~27!

Let us notice that the~operator! coefficients of exp(6it0)
which appear in the zeroth-order solution get correctio
from the first and second orders, and the coefficients
exp(63it0) which appear at the first order get also correctio
coming from the second order. Such a behavior still hold
the third order, as we have checked.

So far, the perturbative expression of the energy level
the QAO~which was not our main goal! did not show up in
full within our MST procedure. Yet, it can be found~without
appealing to other perturbative methods! by insertinga(t,g)
as given by Eqs.~6!, ~21!, ~26!, and~27! in the Hamiltonian
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~3!. Obviously, we are waiting for an expansion in powers
g polynomially dependent onA0 and A0

† , up to the second
order ing

H5H01gH11g2H21O~g3!.

The result is that theH j ’s are a function ofN5A0
†A0, not

of A0 andA0
† separately

H51/21N13g~112N12N2!/42g2~112N!~21117N

117N2!/81O~g3!. ~28!

This feature, which technically appears as an accident
to many cancellations, is in fact easy to understand. O
observes, at each step, thet0 , t1 , t2, . . . dependences o
A0(T) arise from the exponentials only. Since thet depen-
dence must eventually disappear from the conserved qua
H, a proper balance betweenA0(T) andA0

†(T) is expected in
each of the monomialsH j , namely, as many creators as a
nihilators. Then, whatever the number and the order of
A0’s and A0

†’s in those polynomials, the commutation rel
tion ~12! allows us to cast theH j ’s in the form of polynomi-
als in N5A0

†A0. Furthermore, anticipating a result to b
proved in the next section,N(T) is not only independent o
t0 , t1, andt2 but in fact ofT altogether:N5A0

†(0)A0(0). On
account of the Heisenberg algebra~12! ~taken atT50) this
implies that the spectrum ofN is the set of non-negative
integers, and the expression~28! for H is in complete agree-
ment with Eq.~25! indeed.

Finally, we have to explain the apparent discrepancy
ticed earlier between the classical and quantum results.
us write the classical energy~2! for v51: Ec5a2/2
13ga4/81O(g2). Now for largen the quantum energy~25!
reduces to:Eq5n13gn2/21O(g2). Then the natural corre
spondance isa2/2→n plus a quantum correction so adjuste
as to insureEc5Eq1O(g2). One finds a2/2→n23gn2

which, inserted in the classical frequency~1! gives V51
13gn251g2n2/4, in agreement with the largen quantum
frequency from Eq.~24!, derived within the MST scheme.

IV. THE QUANTUM CASE: GENERAL DISCUSSION

In the previous section, in particular on Eqs.~21!, ~26!,
and~27!, one observes that the construction is made with t
elementary bricksA0(T) andA0

†(T), whereA0(T) is the first
term in the MST expansion of the annihilation operator. W
have also pointed out the simple connection between
operatorN and the Hamiltonian. More precisely, the fir
perturbative results exhibit the following features:

~1! N5A0
†(T)A0(T) is independent oft0 , t1 , t2 , . . . , i.e.,

of T.
~2! The ‘‘nonhomogeneous’’ parts ofAn(T) depend onT

through the basic operatorsA0(T) and A0
†(T). The same is

true for the ‘‘homogeneous’’ partsCn(T1)exp(2it0) which,
after determination ofCn(T1), can be recast in the form o
functions ofA0(T) andA0

†(T) only.
~3! The operatorsH andN commute.
If these features persist at all orders, then~putting aside
0-5
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any consideration of convergence! one should obtain in the
limit

A~T,g!5A0~T!1 (
n51

`

gnFn@A0~T!,A0
†~T!#, ~29!

where

A0~T!5A0expF2 i Xt01 (
n51

`

f n~N!tnCG ~30!

together with @A0 ,A0
†#51, and where theFn’s are some

polynomial functions ofA0 andA0
† while the f n’s are some

polynomial functions ofN. We will show below that the
resonance-free solutions of the perturbative multitime eq
tions of motion do exist indeed, and have the general fo
~29! and~30!. This means, in particular, that no obstructio
are encountered in determining the integration ‘‘constan
Cn(T1) and giving them the appropriate form. Equatio
~29! and ~30! then yield

a~ t,g!5a0~ t,g!1 (
n51

`

gnFn„a0~ t,g!,a0
†~ t,g!…, ~31!

where

a0~ t,g!5A0expF2 i X11 (
n51

`

gnf n~N!CtG ~32!

andN5A0
†A0 is a constant operator.

Actually, these facts result from the full equivalence b
tween the iterative process described in the previous sec
and the perturbative determination of an unitary transform
tion which brings the Hamiltonian to a diagonal form.

In order to prove this equivalence, let us consider
spectral decomposition of the Hamiltonian

H~a0 ,a0
† ,g![1/21a0

†a01g~a01a0
†!4/4

5 (
n50

`

En~g!un,g&^n,gu,

where $un,g&% is the orthonormal basis made of the ‘‘pe
turbed’’ eigenvalues ofH ~for future convenience,a is writ-
ten here asa0). We also introduce the ‘‘unperturbed,’’ ortho
normal Fock basis$un&% induced by the operatorsa0 anda0

† ,
together with the unitary transformation which maps t
former onto the latter

un&5U~g!un,g&~n50,1,2, . . . !.

The unitary operatorU(g) is determined up to a
N-dependent, arbitrary, right phase factor, whereN5a0

†a0.
Then if we define Hd as Hd(a0 ,a0

† ,g)
5U†(g)H(a0 ,a0

† ,g)U(g), we have

Hd~a0 ,a0
† ,g!5H~a~g!,a†~g!,g!, ~33!
03212
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where we denote bya(g) the annihilation operator trans
formed byU(g)

a~g!5U†~g!a0U~g!. ~34!

We also have

Hd~a0 ,a0
† ,g!5 (

n50

`

En~g!un&^nu.

In other words, the unitary transformations~34! of the
dynamical variables is that one which diagonalizes
Hamiltonian in the$un&% basis. The perturbative form of Eqs
~33! and ~34! are

a~g!5a01 (
n51

`

gnan ~35!

and

Hd~a0 ,a0
† ,g!5 (

n50

`

gkHk5
1

2
1a0

†a01 (
n51

`

gkHk , ~36!

where the explicit expressions of theHk’s in terms of the
an’s are obtained by substituing the perturbative form~35! in
H@a(g),a†(g),g#, and expanding. For the QAO Hami
tonian we are interested in, thoseHk’s are

Hk5 (
n50

k

am
† ak2m1 (

m,r ,s,l >0
m1r 1s1l 5k21

qmqrqsql /4,

~k51,2, . . .!,

whereqm5am1am
† .

The operatorsan (n51,2,3, . . . ) in Eq. ~35! are deter-
mined recursively as polynomial functions ofa0 and a0

† by
requiring the following.

~i! U(g) be unitary indeed, or equivalently~due to the
Von Neumann theorem@6#! that the commutator of the vari
ables a(g) and a†(g) be canonical: @a(g),a†(g)#51,
;g, i.e.,

(
m50

n

@am ,an2m
† #5dn,0 ,~n50,1,2••• !. ~37!

~ii ! Hd be diagonal indeed in the$un&% basis or, equiva-
lently, that@Hd ,N#50,;g, i.e.,

@Hk ,N#50,~k51,2,3, . . . !. ~38!

Equations~38! imply that all theHk’s are functions of the
operatorN5a0

†a0 only. In particular these operatorsHk com-
mute between themselves.

Evidently, Eqs.~37! and ~38! must admit solution for
$an%, due to the mere existence of the unitary operatorU(g)
and its formal perturbative expansion. However, there is
uniqueness property because of the phase freedom in
mappingU(g). In our case of QAO with standard quart
interaction, the ‘‘minimal’’ solution$an% is such that eachan
0-6
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is a polynomial of degree 2n11 in a0 anda0
† with rational

coefficients, and monomials of odd degrees only

an5 (
2k1l 52n11

1< l odd<2n11

~xn,k,la0
l Nk1yn,k,lN

ka0
†l !.

Let us now define theT-dependent operatorsan(T) by

an~T!5expS i (
k50

`

HktkD anexpS 2 i (
k50

`

HktkD ,

~n50,1,2, . . . ! ~39!

where tk5gkt. We claim that these operators obey exac
the canonical commutation relations~12! and the differential
Eqs.~10! which serve previously to determine theAn(T)’s.

Because of Eq.~37!, this is immediate for the relation
~12!. As for Eqs.~10!, one first derives from Eq.~39!

Dn2mam~T!5 i expS i (
k50

`

HktkD @Hn2m~$ar%!,am#

3expS 2 i (
k50

`

HktkD
which, summing up, yields

(
m50

n

Dn2mam~T!5 i (
m50

n

@Hn2m~$ar~T!%!,am~T!#,

~40!

where the commutativity of theHk’s has been used twice. O
the other hand, using Eq.~7! together with Eqs.~33! and~36!
to expressH(A(T,g),A†(T,g),g) in terms of the function
Hk , one readily finds that Eqs.~10! read as well

(
m50

n

Dn2mAm~T!5 i (
m50

n

@Hn2m~$Ar~T!%!,Am~T!#,

~41!

identical to Eq.~40!. This is actually true not only for the
QAO but for a general interaction.

Therefore,$An(T)% can be identified as one of the sol
tions $an(T)%, which establishes the equivalence of the tw
schemes, and hence the consistence of the multitime me
we used, together with the general validity of the asserti
~1! to ~3! put forward at the beginning of this section.

It is possible now to comment on the ‘‘mass renormaliz
tion’’ introduced by B&B. SinceHd is a pure function ofN,
Hd5H(N), Eq. ~39! for a0(T)u t j 5gj t5A0(T)u t j 5gj t

5a0(t,g) reads

a0~ t,g!5exp„1 iH ~N!t…a0exp„2 iH ~N!t…,

or, by usinga0N5(N11)a0

a0~ t,g!5a0exp@2 i „H~N!2H~N21!…t#.

Together with Eq.~28!, this gives
03212
od
s

-

a0~ t,g!5a0exp@2 i t „113gN23g2~7117N2!/4…1O~g3!#.

The ‘‘renormalization’’ phenomenon can be pinned dow
to the fact thatH(N)2H(N21) is the trivial identity opera-
tor at the zeroth order, and becomes a true operator
higher orders.

As mentioned at the beginning, and apparent in Eqs.~29!
and ~30!, the solutionA(T,g) constructed there correspond
to initial conditions depending onA0 and g. If one insists in
having the perturbative solution with prescribe
g-independent initial condition:A(0,g)5a, with @a,a†#51,
this is easily achieved by a few additional manipulation
Indeed, it is sufficient to invert order by order the relation

a5A01 (
n51

`

gnFn~A0 ,A0
†!

~which is straightforward in spite of the noncommutative
gebra! to get

A05a1 (
n51

`

gnGn~a,a†!

and to reinsert this expression forA0 in Eqs.~29! and~30!, as
well as inN5A0

†A0, truncated at the relevant order. Then,
course, the expression ofA(T,g) in terms ofa anda† has no
longer the ‘‘simple’’ structure that it exhibits in terms ofA0

andA0
† .

To conclude this section, we wish to stress again that
arguments presented here are quite general, not specifi
the QAO. If one considers a Hamiltonian which is the sum
a harmonic oscillator one and a ‘‘potential’’ represented b
self-adjoint operator function of the position and the mome
tum, such an analysis can be repeated. Actually, the equ
lence between MST and unitary transformation diagonaliz
the Hamiltonian is likely to be a rather general feature.
particular, the previous discussion can be extended i
rather straigthforward way to systems with more than o
degree of freedom.

Furthermore, the equivalence between the multitime
proach and the perturbative construction of the relevant u
tary transformation must have a classical counterpart. In
classical framework, multitime expansions should appea
essentially equivalent to the construction of appropriate
nonical transformations, following the Poincare´–Von Zeipel
method@7#, or some of its disguises. As a matter of fact, o
can find an indication of such a connection in the literatu
@4,8#. This aspect of the question, which we have not touch
upon in the present paper, might deserve a further study

V. CONCLUSION

In this paper, we have used the anharmonic oscillato
the Heisenberg picture as a model for investigating the p
ticability of the derivative expansion method, of common u
in classical physics, within the quantum framework. Th
method turns out to be successful in providing us with
perturbative expansion of the time-dependent dynam
variables together with the energy levels, which we ha
0-7
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derived explicitly up to the second order. We also ha
proved that this MST is equivalent to the perturbative co
struction of an unitary transformation diagonalizing the f
Hamiltonian, leading to a step-by-step algorithm for the c
culation of the previous quantities at any order, and ther
strengthening the status of the multiple scale technique
quantum mechanics.
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APPENDIX

We give below, up to order 6 the following.
~i! The coefficientsan of the expansion~35! of the anni-

hilator a(g) in terms ofN5a0
†a0.

~ii ! The coefficientsEk(n) of the expansion of the energ
levels

En~g!5
1

2
1n1 (

n51

`

gkEk~n!.

Both have been computed by applying the algorithm
scribed in Sec. IV@Eqs.~37! and ~38!#.
03212
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~i! To be simpler,a anda† stand fora0 anda0
† :

a15~2a32a†326Na†!/4,

a25~29a1120a316a52120a3N127aN2184a†242a†3

24a†5142Na†31276N2a†!/32,

a35~6092a31756a518a728844a3N14422a3N2

2378a5N11278aN21062aN321708a†32464a†5

26a†729282Na†12406Na†31232Na†521203N2a†3

29042N3a†!/128,

a45~2200 645a11 546 416a31380 868a519264a7

140a922 975 280a3N12 143 296a3N2

2714 432a3N32322 896a5N180 724a5N223088a7N

2500 298aN21162 755aN41506 760a†2358 200a†3

2221 832a†526696a†7232a†91673 392Na†3

1186 464Na†512232Na†713 040 992N2a†

2472 788N2a†3246 616N2a†51157 596N3a†3

11 365 240N4a†!/2048,
a55~116 798 776a3151 228 696a512 189 520a7120 832a9148a112266 946 576a3N1255 315 936a3N2

2121 842 648a3N3130 460 662a3N4258 614 828a5N124 750 360a5N224 125 060a5N321 300 128a7N

1216 688a7N225208a9N152 602 092aN141 073 824aN326 417 388aN5221 539 684a†3228 787 584a†5

21 542 096a†7216 320a†9240a†112121 625 250Na†150 282 976Na†3132 551 232Na†51912 600Na†7

14080Na†9247 389 884N2a†3213 618 080N2a†52152 100N2a†72219 914 676N3a†122 248 396N3a†3

12 269 680N3a†525 562 099N4a†3255 675 938N5a†!/8192,

a65~22 649 077 789a119 854 323 040a3114 799 326 898a511 000 498 176a7115 874 840a9178 720a111112a13

215 744a11N252 410 470 592a3N159 605 775 856a3N2237 821 182 832a3N3113 464 443 160a3N4

22 692 888 632a3N5220 808 622 800a5N111 852 140 500a5N223 324 992 400a5N31415 624 050a5N4

2817 924 896a7N1242 212 752a7N2226 912 528a7N327 253 184a9N1906 648a9N2216 271 788 323aN2

26 097 875 991aN41521 267 535aN614 255 953 324a†22 581 523 304a†328 101 045 372a†52691 648 560a†7

212 242 240a†9264 720a†11296a†13112 944Na†1117 571 823 000Na†3111 245 609 120Na†51562 441 728Na†7

15 584 128Na†9135 458 238 196N2a†29 129 805 056N2a†326 326 409 960N2a†52165 946 104N2a†7

2698 016N2a†915 783 860 872N3a†311 757 503 840N3a†5118 438 456N3a†7129 695 249 188N4a†

22 055 444 390N4a†32219 687 980N4a†51411 088 878N5a†314 768 483 548N6a†!/65 536.
0-8
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~ii !

E1~n!53~112n12n2!/4,

E2~n!52~112n!~21117n117n2!/8,

E3~n!53~1111347n1472n21250n31125n4!/16,

E4~n!52~112n!~30 885149 927n160 616n2121 378n3

110 689n4!/128,

E5~n!53~305 57711 189 893n12 060 462n2

11 857 870n311 220 765n41350 196n5

1116 732n6!/256,
r

l

03212
E6~n!52~112n!~65 518 4011146 338 895n

121 317 2430n21139 931 868n3185 627 929n4

118 794 394n516 264 798n6!/1024.

Several number theoretic properties of theEk(n)’s are
worth pointing out. First, all the coefficientsckp of np in
Ek(n) are rational and positive, and the signs of theEk(n)’s
alternate, as it should be. Perhaps different are the follow
observations: whereas the denominator in the expressio
Ek(n) is a power of 2, the numerator is always a multiple
3 ~for integer n). This peculiarity was already noticed b
Bender and Wu@9# for the ground state (n50). It thus turns
out to hold for the excited levels too. Also, the sum of t
numerators of the coefficientsckp in eachEk(n) is a multiple
of 5. Finally, if one expresses theEk(n)’s in terms of the
variablem5n1 1

2 , one observes that they are even polyn
mials with positive coefficients~multiplied by 2m if k is
even!. More than that, all the zeroes of these polynomials
pure imaginary. This means that all the zeroes ofEk(n) lie
on the linen52 1

2 1 iy .
,

e-
@1# C.M. Bender and L.M.A. Bettencourt, Phys. Rev. Lett.77,
4114 ~1996!.

@2# C.M. Bender and L.M.A. Bettencourt, Phys. Rev. D54, 7710
~1996!.

@3# A. Jeffrey and T. Kawahara,Asymptotic Methods in Nonlinea
Wave Theory~Pitman Books, London, 1982!.

@4# A. Nayfeh,Perturbation Methods~Wiley, New York, 1973!.
@5# G. Sandri, Nuovo Cimento Soc. Ital. Fis., B36, 67 ~1965!.
@6# M. Reed and B. Simon,Methods of Modern Mathematica
Physics ~Academic Press, New York, 1980!, Vol. 1, Chap.
VIII.

@7# H. Goldstein,Classical Mechanics~Addison-Wesley, Reading
1980!.

@8# J. A. Morrison,Methods in Astrodynamics and Celestial M
chanics, edited by R. L. Duncombe and V. G. Szebehely~Aca-
demic Press, New York, 1966!.

@9# C.M. Bender and T.T. Wu, Phys. Rev.184, 1231~1969!.
0-9


