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Quantum anharmonic oscillator in the Heisenberg picture and multiple scale techniques
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Multiple scale techniques are well known in classical mechanics to give perturbation series free from
resonant terms. When applied to the quantum anharmonic oscillator, these techniques lead to interesting
features concerning the solution of the Heisenberg equations of motion and the Hamiltonian spectrum.
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[. INTRODUCTION postpone to an Appendix some explicit results: the solutions
of the Heisenberg equations of motion and the energy levels
Multiple scale technique$MST) originated in Poincare of the full Hamiltonian, up to the order 6 included.
works have been developed by many authors, mainly in solv-
ing (partia) differential equations related to physical prob- Il. THE CLASSICAL CASE
lems in celestial mechanics or in fluid dynamics. All of these

methods have a common mathematical purpose: to avoid The classical anharmonic oscillatéEAO) is probably

resonances or secularities appearing in the usual or conveﬁ—zg I?;;_?e Q&iﬁ)gﬁfglﬂeiﬁzr:?;% Vt\':%rgvitgjscgi?f\éfggggsl
tional perturbative theory. From a more physical point of P :

view, one can see the MST as adaptable methods that feel t%ten, one speaks of the Duffing equation instead, although

underlying physical phenomena in order to fit them. In othercfoeql%aggn 'rséc?soéh'tr;]% %ulfﬁtiue :qagggg igfams()e;[lt%nn(?-fo:zzr
words, the usual perturbative theory tends to impose its ' P ' 9 €eq

. . . : nonlinear equation in the time variable, the solution of which
ﬂ‘:&?ﬁ; while MST are flexible and compose with the realbeing the position of the CAO. Starting from the CAO La-

In this work, we apply one of the various MST to the grangian(in units where the mass parameter is jone

guantum anharmonic oscillator. Such studies have been ini-
tiated by Bender and BettencoyB&B) in two recent papers
[1,2]. They have fouqd th_at the nonresonance condition leadgy,g readily gets from the Euler-Lagrange equation
to a “mass renormalization” of the oscillator and—as a by-

product—to the energy-level differences of the quantum os- (8):q+ w’q+4gq°=0.

cillator. This pioneering work was limited to the first non-

trivial order in MST perturbation of the coupling constant of ~ The usual formal perturbation expansion reads
the anharmonicity. The aim of the present paper is to extend

this early study in several directions. First, we introduce an ”

alternative framework, which turns out to be more conve- at)= Z 9"dn(t),

nient than the B&B one for performing higher-order calcu- n-o
lations. Second, it turns out that we are able to obtain th
energy levels themselves at these perturbative orders. In t
third point, we show that the diagonalization of the Hamil-
tonian is rather easy once the free Hamiltonian has been
recast in an appropriate form. Finally, this approach leads to
a natural and elegant method to find perturbatively the eigen- 2 3
values of the full Hamiltonian, far away from the original (e1):0:+ @ 01 = —40p.
MST concept.

The paper is organized as follows. In the first section,
although the classical anharmonic oscillator is studied in de
tail in many textbook$3,4], we sketch some relevant points
in order to further clarify the differences and the analogie
between the classical and the quantum cases. In the second 3
section we explain our framework and we work out the two
first orders in MST perturbation, that includes the full solu-
tion of the Heisenberg equations and the energy levels. The
third section is devoted to general arguments showing that Henceq,(t) is unbounded and the truncated expansion
the method is compelled to work at any order, due to itsgo(t) +gg;(t) cannot be an acceptable approximation of
connection with a certain unitary transformation which di- q(t) for timest larger tharnw/Q?g, however smalg may be.
agonalizes the Hamiltonian of the anharmonic oscillator. WeThe flaw is even worse at the higher orders. It is obvious on

L(a,9)=q%2— w?q?2—gq®,

ﬁ\évith some initial conditions, sag(0)=Q and q(0)=0],
and the first equations one obtains fréen are

(€0):Gp+ w?0p=0,

Then the frequency of the solution of the homogeneous
part of (e;) coincides with the frequency ofgy(t)
=Qcoswt, which generates a resonance in the solution
Sql(t) of the full equation €,)

gq(t)= ——(Cos 3wt —coswt — 12wt sinwt).
8w
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this simple example that the perturbative solution develops a
spurious behavior which is absent in the exact solution. In- 4(t,9)= 3
deed, it is well known that the exact solution is bounded and
periodic. A2 _

The main idea of MST for dealing with this problem is the + b))+6—49Xp(— 5i(Qt+b))
introduction of new variables, independent and appropriate,
and we refer to textbooks for an extensive review of thewhere
various possibilities. Here we concentrate on the anharmonic
oscillator. Some methods take into accoahtinitio that the 3\ 15\? ga?
circular functions play a major role. For instance, in the Q:w<1+7_ﬁ>:)\: 5 (€Y
Poincaremethod, one looks for sine and cosine solutions

w
whose argument is stilbt but wherew is now an arbitrary 4144 andb are two real integration constants fixed by the
function of the coupling constant, actually=>9"w,. Then  jnitial conditions(here unspecified

one has to find the,’s, order by order, to discard the reso-  gjpce the(perturbativé energy is conserved, it can be
nance. We do not insist on the application of these methOdéomputed most easily by choosirigs —b/Q or t= (/2

to the CAO because we believe they are not suitable for the. b)/Q in q(t,g)
guantum case. Another class of MST seems to be of a larger ’

, A
exp(—|(Qt+b))+§ 5

21\
1——)exp(—3i(Qt

+C.C,

use, since there is no “prerequisite” in these methods. The alw? ON 25\2

MST we will use, also called the derivative expansion Ec=— + TJFH) +O(\3). (2
method, belongs to this class: it promotes the time variable to

be a function of the coupling constant, namejy=g"t. Ac- We conclude this section with a few comments. As far as

tually, the method is not so rough and one first extends thue know, all the multiple scale techniques dealing with the

function depending ot to an “extended” function depend- secularities of the classical anharmonic oscillator are suc-
ing on all the variableg,, (n=0,1,2...) assumed to be cessful. However this is not a general feature, and some
independent[5]. So, one introduces a position function methods are not suitable for certain problems. Moreover, it is
Q(T,g) depending on the collection={ty,t;,t;, ...} of  absolutely not our purpose to discuss on a rigorous basis the

independent variables, . This function is considered as an mathematical aspects of the secular or nonsecular perturba-
extension of the true position in the Lagrange formalism tive expansions.

which is recovered by restrictin@ to the sectiort,=g"t of
the T spaceq(t,9) =Q(T,9) | ~gnt - Ill. THE QUANTUM CASE: DERIVATION

Then, forgetting temporarily any reference to the coupling
constant in thesg, variables, one expands in powergthe
position functionQ

The quantum anharmonic oscillat@AO) has been stud-
ied in the paper of B&B through the Heisenberg equation of
motions for the relevant operators and we will follow this
0 method. The main difference between the work of B&B and

_ n ours is that we will use the creation and annihilation opera-
Q.9 ngo 9Qu(T). tors to manage the problem of removing the secularities. At
first sight the gain in doing this choice is not obvious and

One obtains fron{e) the following set of equations, lim- Perhaps not essential. Moreover one can detect in the B&B

ited here at the three first orders: paper an indication pointing to this direction. Let us look at
the couple of Eqs(21) in their work[1], which can be writ-
D3Qo(T)+@?Qo(T) =0, fen as

D;Y=—-CX-XC and D;X=CY+YC,
D5Q4(T) +’Qy(T)=—2DoD1Qq(T) —4Q3(T),
ot ! oo 0 whereX andY aret; dependent, self-adjoint operators while
) ) ) C is a constant, self-adjoint operator. The authors proceed
DoQ2(T) + 0 Qx(T)=—(D1+2DoD2)Qo(T) with some arguments “suggesting” the form of the solution,
_ _ 2 with the help of Weyl ordered products and Euler polynomi-
2DoD1Qu(T) = 125(T)Qu(T), als to deal with these equations. Of course, it seems difficult,
) N or at least hazardous, to generalize at high orders a “sugges-
usingd/dt=2,9"Dy, Dy=d/dt,. , ~tive” method, which could be seen as a reminiscence of the
~ The basic principle of the method now consists of adjustpgincatemethod, but we have more convincing arguments to
ing thet, dependence oQ(T) so as to eliminate the secu- |eave this path. First, using=X+iY, the previous couple

larity in the sec_on_d equation, nexF ti’_tg depel_wdence o_f of equations reduces to the single equation
Q(T) so as to eliminate the secularity in the third equation,

and so on. We shall not work out the derivation hétean D,Z(ty)=—i[Z(t))C+CZ(ty)]

be found for example in Ref§3] or [4]) and we merely give

the solution up to the second ordergrin its final form, for ~ whose solution iZ(t,) =exp(—iCt;)Z(0)exp(iCt,), as it is
further classical versus quantum discussions easy to check. The operatd(t,) is closely related to the
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creation/annihilation operators. Once derived the expression Then the time derivative becomes

of the creation/annihilation operators, it is not necessary, in

order to proceed further, to write down the position operator. :

Indeed, almost all the informations, the “mass renormaliza- a(t’g):n; gnD“A(T’g)|tJ=g“'

tion” effect and the difference of energy levels, are already

contained in the argument of the exponentials. Second, the SecondA(T,g) is expanded as

Heisenberg equations in terms of creation/annihilation opera-

tors are first-order differential equations in place of the N

second-order one for the position operator, which simplifies A(T,g)=nzo 9"An(T). @)

noticeably the whole procedure. To be honest, one has the -

disadvantage to carry both creator and annihilator, but this is ag for the initial conditions to be associated with the

not a serious complication. Last, there appears also a larggyuation of motior(5), one notices that

variation between the B&B works and ours in the status of

the initial conditions: we do not use these conditions as in the

classical case, which is the way taken by B&B. This point a(09)= > g"A,(0). (8)

will become obvious throughout our study. n=0
We start with the QAO Hamiltoniahl written in terms of

the momentunp and positiong operators in convenient units

(h=w=1): H=p?%2+ 9?2+ gq*, whereg is assumed to be

a “small” (positive coupling constant. Within the Heisen-

This forces us to choose between two possible starting
viewpoints either(a): a(0,9) is taken as independent gf
which implies

berg picture, the dynamics is governed by the equations A,(0)=0Vn=1, (9)
q=i[H.,q]l, p=i[H,p], or (b): the previous condition is not imposed, in which case
. . ! the initial values ofa(t,g) must be considered as a function
supplemented by the canonical commutation relafig/p] of g
=i, valid at all times. The Heisenberg equations gige: It turns out that both approaches lead to consistent multi-
=p and p=—q—4gq°. Writing as usualg=(a+a")/\2  time expansions. In fact, the choide) was (implicitly)
andp=—i(a—a')/\/2, the Hamiltonian becomes adopted by B&B. However, these authors did not extend
" . s their analysis beyond the first order. In this paper, we rather
H(a,a',g)=1/2+a'a+g(a+a’)"/4 () follow the procedurehb), which we found much more con-

venient, and in a sense, more natural.

together with The equation of motion foa(t,g) gives us the following

[a(t,g), a(t,g)]=1, Vt, (4)  infinite system for theA,(T)'s:
where, to avoid possible confusion later on, we have kept ) ! )
track of the variables andg. DoAntiAp=— mZO Dn-mAm—I i r§> . QmQ:Qs
The Heisenberg equation for the annihilator N m+r+s=n—1
a(t,9)=i[H(a(t,g),a'(t,9).9),a(t,9)], (n=0,1,2, ... (10
reads, in our case whereQ,=A,+A', or explicitly
a(t,g)=—ila(t,9)+g(a(t,g)+a'(t,g))®]. (5 DoAo+iAg=0, (109

Since the Hamiltonian is conserved, its formal solution is

a(t,g)=exfiH(a(0),a'(0),9)t]a(0)
X exy —iH (a(0),a(0),9)t],

DoAs+iA;=—D;A—iQ3, (10b)

DOA2+iA2: _(D2A0+ DlAl)

_ —i(Q§Q1+QuQ1Qo+Q:Qf), (109
with a(0)=a(0,9).

We now turn on the formal series of the multitime pertur- etc.
bative expansion, similar to that used in the classical case. A simple check shows us thany formal solution of Eq.
First one introduces an operator valued functh(T,g) de-  (10) generates via Eq$6) and(7) a formal solutiona(t,g)
pending on the collectiof of independent variablds. This  of Eq. (5). In particular, this implies that, for such a solution,
function is considered as an extension of the true annihila’tio(\A(T,g),A”(T,g)]|tj:gjt is independent of. Of course, this

operator in the Heisenberg picture, which is recoveretjpes no mean yet thaA(T,g),A(T,g)] is independent of
through the restriction T, allowing us to impose

a(tag):A(Tig”tj:th- (6) [A(T,g),AT(T,g)]zl VT, (11)
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in order to insure the canonical commutation relatidn At the same time, Eq.14) becomes
However, one can look fahosesolutions of Eq(10) which .
are subjected to the stronger conditidd), if such solutions [AoAT2) AgT2)]=1.V T5. (18

do exist indeed, i.e., if no inconsistencies or obstructions
arise in their iterative construction. Together with E®),
this entails

One can now come back to the form of Efj5) exempted
of secularity to obtain its general solution

[Ag(T),ALT)]=1 AL(T)=A3(T1)exp(—3itg)/2— Ab3(Ty)exp +3it,)/4

VT —3N(T2)AG(Ty)exp(+itg)/2+Cy(Ty)exp( —ito),
" (19
> [An(T)AL n(T]=0, n=1. (12
m=0 where the operatd€,(T,) is an integration “constant.” The

latter must be so adjusted, if possible, as to insure that the
We are now ready to construct step by step the resonancggcond Eq(12)

free solution of the problem. To zeroth order, E§0a and

the first Eq.(12) yield [Ao(T),AL(T)]+[AL(T),ANT)]=0, (20
Ao(T)=Apx(Tr)exp —itp) (13)  be fulfilled at all timesT. Here, it turns out that Eq20) is
i satisfied by taking simpl¥;(T,)=0. One ends up with
wi
AT)=A3T) 12— A¥(T)I4—3N(T)ALT)2 (21
[Aoi(To) Ab(TD)]=1, VTy, (14 (D= A2 A (DI SN A2 (20
and the first-order step is complete.
and the notatiom = {t,tx:q, ... J,(k=1,2,...). Before going further, some comments are in order. First,
Then, one can proceed to the first order step by insertingyriting the position operator,+ga;, one notes that the
Eq. (13) into Eq. (10b) coefficients of exptity) in g, get corrections coming from
o ot N g;. It means, in the position formalism, the scheme used by
DoAr iA1=~ [D1Aorti(AoAcrt AorAoiAor B&B, that one would have to take into account the solutions

of the homogeneous second-order differential equation. Sec-

+ T 2 _ i 3 _ .
AorAoy) JEXH ~ito) =i Agsexp(— 3ito) ond, it appears in Eq21) that any power of expit) [re-

3 _ . Lo o
+A(T)1ex;1+3|t0)+(A$fA01+A$1A01A$1 sp}rectlvely, expél_to)] is multiplied by the same power of

Agi(Ty) [respectively, Api(T1)]. Such a correspondance,
+ A AL exp( +itg)]. (15  which is specific to our way of managing the initial condi-

tions, will be a guide throughout our study. Last, the solution
Before integrating this equation, one has to get rid of theof the homogeneous equation in the classical case is differ-
first resonant term on the right-hand side, which would pro-ent. This variation with the quantum case is due to the dif-
duce a contribution growing linearly withy(=t). This leads ferent status of the initial conditions.

to the condition Clearly, one can go iteratively through the higher-order
o ‘ - steps by similar(although rapidly tedioyscalculations as
D1A0= —i1(ApAort AoiAciAort ApAo). (160 |ong as the integration “constants” analogous@g(T;) can
, . be properly adjusted. As in the first-order step, we gather in
which will fix the t, dependence oAy, . Eq. (100 the terms containing exp(to), since expfito) is

To do that, let us first introduce the self-adjoint opera’coragain (and alway solution of the homogeneous equation.
N(T)=A5(T)Aq(T). Thanks to Eq(13) and its creator ver- BecauseD;A,(T) does not provide such a term, we just
sion, N(T) is only T; dependentN(T)=Al(T1)An(T1).  have to take into account the nonderivative part of the right-
Moreover as a consequence of Ed4), An(T;)N(T1)  hand side of Eq(109. Through an intensive use of the re-
=[N(T1)+1]Ax(T4). Last, from Eq.(16), one observes |ation Ay (T;)N(T,)=[N(T,)+1]Aux(T;), this expression
thatD;N(T;)=0. Thus,N is also independent df and Eq. can be reduced to—3Ay(T,)[17N?(T,)+7]exd—ity
(16) can be now written in the tractable form —3iN(T,)t,J/4, and the nonresonance condition coming from

. the second order reads
D1Ag1= —3iAgi(T1)N(T>),
DoAxAT2)=3iAgy To)[17N2(T,) + 7]/4.
which produces
This equation shows th&t(T,) is in fact independent df,,

Ao1(T1) =Aox T2)exd —3iN(To)t]. too, [i.e. N(T,) =Als(T3)Ass(T3)] and we find through in-
tegration
This allows us to write down the first-order annihilation g
operator Ao To) =Ana(Ta)exl + 3i (LINA(Ta) + ty/4], (22)

Ag(T)=ApATo)exd —i(tg+3N(T,)t1)]. 17 whereas Eq(18) becomes
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[Ao(T2) Als(Ta) =1, VTs. 23y (3). Obviously, we are waiting for an expansion in powers of
g polynomially dependent oA, and Ag, up to the second

Collecting Eqgs.(7), (17), and(22), we see that the non- order ing
resonance conditions, up to the second order, imply that the ) 3
first-order term of the expansion of the annihilation operator H=Ho+gH;+g"H,+0(g”).
is, in the variable
The result is that thél;’s are a function oN= AlAo, not

a0(t,9) = ao(0.0){exi] —it(1+3gN—3g2(1IN>+7)/4)]  Of Ao andA] separately
+0(g¥}, (24) H=1/2+N+3g(1+2N+2N?)/4—g?(1+ 2N)(21+ 17N
2 3

which exhibits a large difference with the classical case: 17 +17N%)/8+0(g”). (28)
is a prime number, difficult to link with the other prime num-
ber 5 coming in the CAO frequendy). We will discuss later
on this CAO/QAO(apparentdiscrepancy. Nevertheless, the
result, Eq.(24), is in perfect agreement with the perturbative
expression of the energy levels of the QAO, as calculated b
standard methods:

This feature, which technically appears as an accident due
to many cancellations, is in fact easy to understand. One
observes, at each step, thg t;, t,, ... dependences of

o(T) arise from the exponentials only. Since thdepen-
ence must eventually disappear from the conserved quantity
H, a proper balance betwedg(T) andAg(T) is expected in
E,(g)=1/2+n+3g(1+2n+2n?)/4—g?(1+2n)(21+ 17n eeeh of the monomialsl;, namely, as many creators as an-
nihilators. Then, whatever the number and the order of the
+17n?)/8+0(g®). (25 Ag's and AO’s in those polynomials, the commutation rela-
tion (12) aIIows us to cast thel;'s in the form of polynomi-

Indeed, a straightforward argument based on the formadls in N= Avo Furthermore anticipating a result to be
expression o&(t,g) in the Heisenberg picture shows us that proved in the next sectio(T) is not only independent of
the frequency appearing in E@4) for N=n should coin-  t, t, andt, butin fact of T altogetherN=Al(0)A,(0). On

cide with E,(g) —E,_1(9). This is readily checked. account of the Heisenberg algel?) (taken atT=0) this
Turning back on the second-order E@Oc) cleared from  jmplies that the spectrum dfl is the set of non-negative
its resonant terms, we obtain its general solution integerS, and the expressi&ﬁ) for His in Comp|ete agree-
ment with Eq.(25) indeed.
Ay(T)=—15A5(N—1)/4+ 3Ag/16+3(23N%+7)Al/8 Finally, we have to explain the apparent discrepancy no-

. ticed earlier between the classical and quantum results. Let
+ 2N = 1)A;16- AF/8+ Co( Ty)expl —ito), us write the classical energy?) for o=1: E.=a?22
(26)  +3ga*/8+0(g?). Now for largen the quantum energg25)
reduces toE;=n+3g n?/2+0(g?). Then the natural corre-
whereA, andN stand forAy(T) andN(T3). In contrast with ~ spondance |32/2—>n plus a quantum correction so adjusted
C4(T,) in Eq. (19), the operatolC,(T,) cannot be taken as as to insureE.=E +O(gz) One finds a?/2—n—3gn?

vanishing, because the second conditib®), which, inserted in the classical frequentd) gives Q=1

+3gn—51g2n?/4, in agreement with the large quantum

[Ao(T), AN T+[ALT),AL(T)1+[Ax(T),Al(T)]=0, frequency from Eq(24), derived within the MST scheme.
would not be fulfilled. Imposing this and using Eq42), IV. THE QUANTUM CASE: GENERAL DISCUSSION

(17), (18), and(26), one finds instead an appropriate expres-

sion for the solution of the homogeneous version of Eq. [N the previous section, in particular on Eq&1), (26),
(100, namely, and(27), one observes that the construction is made with two

elementary brick&\y(T) andAg(T), whereAy(T) is the first
C,o(Tyexp —itg)=—9A,(T)(1—3N?)/32. (270 termin the MST expansion of the annihilation operator. We
have also pointed out the simple connection between the

Let us notice that théoperatoy coefficients of exptity) operatorN and the Hamiltonian. More precisely, the first
which appear in the zeroth-order solution get correctlonsperturbat'Ve results exhibit the following features:
from the first and second orders, and the coefficients of (1) N=AJ(T)Aq(T) isindependent ofy, t;, t,, ... ,i.e.,
exp(+3it,) which appear at the first order get also correctionsof T.
coming from the second order. Such a behavior still holds at (2) The “nonhomogeneous” parts (ﬁn(T) depend orl
the third order, as we have checked. through the basic operatofs(T) and AO(T) The same is
So far, the perturbative expression of the energy levels ofrue for the “homogeneous” part€,(T,)exp(—itg) which,
the QAO (which was not our main gogtlid not show up in  after determination o€,(T;), can be recast in the form of
full within our MST procedure. Yet, it can be fourfdiithout ~ functions of Ag(T) andAg(T) only.
appealing to other perturbative methpby insertinga(t,g) (3) The operatordd andN commute.
as given by Eqs(6), (21), (26), and(27) in the Hamiltonian If these features persist at all orders, tHentting aside
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any consideration of convergencene should obtain in the where we denote bw(g) the annihilation operator trans-
limit formed byU(g)

a(g)=U"(g)agU(9). (34)

ATQ=AM+ 2, O'FlAM AL @9

where T ”
Hd(ao,ao,g>=n§0 En(g)[n)(nl.

(30) In other words, the unitary transformatiof34) of the

dynamical variables is that one which diagonalizes the
together with[Ay,Al]=1, and where ther’s are some Hamiltonian in the{|n)} basis. The perturbative form of Egs.
polynomial functions ofA, and A} while the f,'s are some (33) and(34) are
polynomial functions ofN. We will show below that the
resonance-free solutions of the perturbative multitime equa-
tions of motion do exist indeed, and have the general forms
(29) and(30). This means, in particular, that no obstructions
are encountered in determining the integration “constantsand
Cn(T4) and giving them the appropriate form. Equations
(29 and (30) then vyield

AO(T)=AOexp[ —i (t0+ 21 fn(N)tn)

a(g>=ao+r§l g"a, (35)

Ha(ao.ab,9)= 2 g*Hi=5 +afao+ > g'Hy, (36)
3 n=0 n=1
a(t,g)=ay(t,g) + 2 9"Fn(a(t,9),a5(t,9)), (3D  where the explicit expressions of thé/s in terms of the
=t a,’s are obtained by substituing the perturbative fd@88) in
Hla(g),a'(g),g], and expanding. For the QAO Hamil-

where tonian we are interested in, thobk'’s are
~ K
= —1 n
%(t.0) Aoex’{ '(an‘l 9 f”(N)H 523 Hie 2 afacnt X dnd0sal4,

m+r+s+/=k-1
and N=A$A0 iS a constant operator.
Actually, these facts result from the full equivalence be- (k=12,...),
tween the iterative process described in the previous section

. . . whereq,,=an+ar .
and the perturbative determination of an unitary transforma- m-=m " =m .
perturbatly nat uniary The operators, (n=1,2,3...) in Eq. (35 are deter-

tion which brings the Hamiltonian to a diagonal form. ) ) ) ) "
In order to prove this equivalence, let us consider theMined recursively as polynomial functions aj anda, by

spectral decomposition of the Hamiltonian requiring the following. _
(i) U(g) be unitary indeed, or equivalentligue to the
H(ag,ad,g9)=1/2+afa,+g(ap+ah)*/4 Von Neumann theorerf6]) that the commutator of the vari-
ables a(g) and a'(g) be canonical:[a(g),a'(g)]=1,
” Vg, i.e.,
=2 Ex(9)Ing)ngl,
n=0 n
> [am.al n]=8,0,(n=0,1,2:-). (37)
where{|n,g)} is the orthonormal basis made of the “per- o oMo

turbed” eigenvalues oH (for future convenience is writ- . ) . ) , .
ten here agy). We also introduce the “unperturbed,” ortho- () Ha be diagonal indeed in thiin)} basis or, equiva-
normal Fock basié|n)} induced by the operatoe anda], ~ '€nty. that[Hq,N]=0Vg, ie.,

together with the unitary transformation which maps the [He,N]=0,k=12,3...). (38)
former onto the latter

Equationg38) imply that all theH,’s are functions of the
[m=U(g)[n,g)(n=0,1,2...). operatoN=a/a, only. In particular these operatar, com-
mute between themselves.
Evidently, Egs.(37) and (38) must admit solution for
: 4 p {a,}, due to the mere existence of the unitary operattg)
Then if we define Hy as Hg(a,20,9)  and its formal perturbative expansion. However, there is no

The unitary operatorU(g) is determined up to a
N-dependent, arbitrary, right phase factor, whidre agao.

=U"(g)H(ap,a.g)U(g), we have uniqueness property because of the phase freedom in the
. : mappingU(g). In our case of QAO with standard quartic
Ha(a0,89,9)=H(a(g),a'(9),9), (33 interaction, the “minimal” solution{a,} is such that each,,
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is a polynomial of degreer2+1 in ay and ag with rational
coefficients, and monomials of odd degrees only

_ N ki
a,= (Xn, k120N “+ Y 1INag ).

2k+/=2n+1
1<lgggs=2n+1

Let us now define th@-dependent operatoes,(T) by

an(T)=exp(i2 H,ty anexp(—iz H,ty
k=0 k=0

(n=0,12...) (39

wheret,=g"t. We claim that these operators obey exactly

the canonical commutation relatiofis?) and the differential
Egs. (10) which serve previously to determine thg(T)’s.

Because of EQq(37), this is immediate for the relations

(12). As for Egs.(10), one first derives from Eq.39)
Dh—mam(T)=i EX[{ IIZO Hktk) [Hn—m({ar})aam]
xexp(—iZ Hktk)
k=0
which, summing up, yields

mZO anmam<T>=imE:0 [Ho-m({a (M1, an(M],
(40)

where the commutativity of thil,’'s has been used twice. On

the other hand, using E¢7) together with Eqs(33) and(36)
to expressH(A(T,g),A’(T,g),g) in terms of the function
H,, one readily finds that Eq$10) read as well

mzo anmAm(T):imE:O [anm({Ar(T)})aAm(T)],
(41

identical to Eq.(40). This is actually true not only for the
QAO but for a general interaction.

PHYSICAL REVIEW A 65 032120

ag(t,g)=agexd —it(1+3gN—3g2%(7+17N?)/4)+ O(g?)].

The “renormalization” phenomenon can be pinned down
to the fact thaH (N) —H(N—1) is the trivial identity opera-
tor at the zeroth order, and becomes a true operator for
higher orders.

As mentioned at the beginning, and apparent in E29).
and(30), the solutionA(T,g) constructed there corresponds
to initial conditions depending oAy and g If one insists in
having the perturbative solution with prescribed
g-independent initial conditionA(0,g) =a, with [a,a']=1,
this is easily achieved by a few additional manipulations.
Indeed, it is sufficient to invert order by order the relation

a=Ag+ X, g"F(Ag,Al)
n=1

(which is straightforward in spite of the noncommutative al-
gebra to get

Ao=a+ >, g"G,(a,ah
n=1

and to reinsert this expression &g in Egs.(29) and(30), as
well as inN=A/A,, truncated at the relevant order. Then, of
course, the expression A{T,g) in terms ofa anda' has no
longer the “simple” structure that it exhibits in terms 8§
andA}).

To conclude this section, we wish to stress again that the
arguments presented here are quite general, not specific of
the QAO. If one considers a Hamiltonian which is the sum of
a harmonic oscillator one and a “potential” represented by a
self-adjoint operator function of the position and the momen-
tum, such an analysis can be repeated. Actually, the equiva-
lence between MST and unitary transformation diagonalizing
the Hamiltonian is likely to be a rather general feature. In
particular, the previous discussion can be extended in a
rather straigthforward way to systems with more than one
degree of freedom.

Furthermore, the equivalence between the multitime ap-
proach and the perturbative construction of the relevant uni-
tary transformation must have a classical counterpart. In the

Therefore {A,(T)} can be identified as one of the solu- classical frame\_/vork, multitime expansipns should appear as
tions {a,(T)}, which establishes the equivalence of the twoessennally equale_nt to the construction qf appropriate ca-
schemes, and hence the consistence of the multitime methé@nical transformations, following the Poincaion Zeipel
we used, together with the general validity of the assertiong'€thodL7], or some of its disguises. As a matter of fact, one

(1) to (3) put forward at the beginning of this section.

can find an indication of such a connection in the literature

It is possible now to comment on the “mass renormaliza[l4:8]- This aspect of the question, which we have not touched

tion” introduced by B&B. SinceH is a pure function oN,
H¢=H(N), Eq. (39 for aO(T)|tj=gjt:A0(T)|tj=gjt
=ap(t,g) reads

ao(t,g)=exp(+iH(N)t)agexp(—iH (N)t),
or, by usingagN=(N+1)a,
ao(t,g)=agexd —i(H(N)—H(N—-1))t].

Together with Eq(28), this gives

upon in the present paper, might deserve a further study.

V. CONCLUSION

In this paper, we have used the anharmonic oscillator in
the Heisenberg picture as a model for investigating the prac-
ticability of the derivative expansion method, of common use
in classical physics, within the quantum framework. This
method turns out to be successful in providing us with the
perturbative expansion of the time-dependent dynamical
variables together with the energy levels, which we have
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derived explicitly up to the second order. We also have (i) To be simplera anda’ stand fora, anda/):
proved that this MST is equivalent to the perturbative con-

struction of an unitary transformation diagonalizing the full a;=(2a%-a"-6Na")/4,

Hamiltonian, leading to a step-by-step algorithm for the cal- 3 5 3 ) N +3
culation of the previous quantities at any order, and thereby?2 = (—9a+1208°+6a°—120a°N+27aN"+84a'— 42a
strengthening the status of the multiple scale techniques in  _ 4515, 4oNgt3+ 276N2a")/32,

guantum mechanics.

a;=(6092°+ 756a°+ 8a’ — 8844a3N + 44222°N?
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attention to this topic and Miguel Manna for enlightening —6a'’—928Na' +2408Na"*+ 23N a"> - 1203N%a"?
discussions on the perturbative multiscale theory. — 904N3a')/128
APPENDIX a,=(—20064%+ 1 546 4163+ 380 86&°+ 9264’
We give below, up to order 6 the following. +40a%—2 975 28@3N + 2 143 296°N?
(i) The coefficientsa,, of the expansiorf35) of the anni-
hilator a(g) in terms ofN= agao_ —-714 43&3N3_ 322 89&5N +80 72‘35N2— 308&7N
(ii) The coefficientE(n) of the expansion of the energy 500 298N2+ 162 755N+ 506 76GT — 358 20G "3

levels
—221832a™-6696""-32a™9+67339Na’

1 o0
En(@)=5+n+ le g“Ex(n). +18646MNa'5+223Na’7+ 3 040 99N2at

_ , —4727882%a™—- 46 616N%a">+ 157 596v%a ™3
Both have been computed by applying the algorithm de-
scribed in Sec. IMEQgs.(37) and(38)]. +1 365 24M*a’)/2048,

as=(116798 776°+ 51228 696°+ 2 189 52@’ + 20 8322°+ 48a''— 266 946 573N + 255 315 936°3N?
—1218426483N3+ 30460 662°N*—58 614 828°N + 24 750 36@°N>— 4 125 06@°N3— 1 300 12&'N
+216 68&'N2—5208°N+52 602 092N+ 41 073 824N>— 6 417 388N°— 21 539 684 13— 28 787 584"
—154209@"7— 16 32("°— 40a"11- 121 625 250/a" + 50 282 976la’ 3+ 32 551 23R a' >+ 912 60N a'’
+408MNa'— 47389 88M%a"*— 13618 08M2%a’>— 152 100N%a’"— 219 914 6761%a" + 22 248 3961%a"®

+226968MN%a">—5 562 09N*a’3— 55675 9381°%a)/8192,

ag=(—2 649077 788+ 19 854 323 048°+ 14 799 326 898°+ 1 000 498 176"+ 15 874 84@°+ 78 72(**+ 112a*3
—15744'N—524104705923N + 59 605 775 856°N2— 37 821 182 832°N %+ 13 464 443 168°N*
—2 692888 632°N°— 20 808 622 808°N + 11 852 140 508°N?— 3 324 992 408°N°3+ 415 624 058°N*
—817 924 896N+ 242212 752"N?—26 912 528'N3— 7 253 184°N+ 906 64&°N>— 16 271 788 328N?
—6 097 87599aN*+521 267 538N°+ 4 255953 324" — 2 581 523 30438 101 045 37a"5— 691 648 564"’
—1224224@"°— 64 72@"1- 96213+ 12 94N a1+ 7 571 823 00D a3+ 11 245 609 128 a5+ 562 441 728la'’
+5584 128la'°+ 35 458 238 1982a’— 9 129 805 05812a3— 6 326 409 960I%a™>— 165 946 10M2a "’
—698 016N%a’+5 783860 87R a3+ 1 757 503 8401°a >+ 18 438 4561%a" "+ 29 695 249 18R “a’

—2 055444 398*a™®— 219 687 9801*a’>+ 411 088 878!°a '3+ 4 768 483 54BI%a")/65 536.
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(i)

E;(n)=3(1+2n+2n?)/4,

E,(n)=—(1+2n)(21+17n+17n?)/8,

E3(n)=3(111+ 347+ 471+ 2503+ 125n%)/16,

E4(n)=—(1+2n)(30885+4992h+ 60 616>+ 21 373

+1068%%)/128,

E5(n)=3(305577 1 189 8931+ 2 060 4612
+185787®°+ 1 220 76%*+ 350 196°

+116 732°)/256,

PHYSICAL REVIEW A 65 032120

E¢(n)=—(1+2n)(65518 40} 146 338 896
421317 24362+ 139 931 868+ 85627 928*
+18 794 394°+ 6 264 79%:°)/1024.

Several number theoretic properties of tBg(n)’s are
worth pointing out. First, all the coefficients, of nP in
E(n) are rational and positive, and the signs of E)g€n)’s
alternate, as it should be. Perhaps different are the following
observations: whereas the denominator in the expression of
E(n) is a power of 2, the numerator is always a multiple of
3 (for integern). This peculiarity was already noticed by
Bender and W{i9] for the ground staten=0). It thus turns
out to hold for the excited levels too. Also, the sum of the
numerators of the coefficientg, in eachE,(n) is a multiple
of 5. Finally, if one expresses thg,(n)’s in terms of the
variablem=n+ 3, one observes that they are even polyno-
mials with positive coefficientgmultiplied by —m if k is
even. More than that, all the zeroes of these polynomials are
pure imaginary. This means that all the zeroe€gfn) lie
on the linen=—3+iy.
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